SlideShare une entreprise Scribd logo
1  sur  28
Télécharger pour lire hors ligne
Evidence for a Dynamo in the Main Group Pallasite Parent Body
                               John A. Tarduno et al.
                               Science 338, 939 (2012);
                               DOI: 10.1126/science.1223932




                               This copy is for your personal, non-commercial use only.




             If you wish to distribute this article to others, you can order high-quality copies for your




                                                                                                                      Downloaded from www.sciencemag.org on November 16, 2012
             colleagues, clients, or customers by clicking here.
             Permission to republish or repurpose articles or portions of articles can be obtained by
             following the guidelines here.

             The following resources related to this article are available online at
             www.sciencemag.org (this information is current as of November 16, 2012 ):

             Updated information and services, including high-resolution figures, can be found in the online
             version of this article at:
             http://www.sciencemag.org/content/338/6109/939.full.html
             Supporting Online Material can be found at:
             http://www.sciencemag.org/content/suppl/2012/11/15/338.6109.939.DC1.html
             A list of selected additional articles on the Science Web sites related to this article can be
             found at:
             http://www.sciencemag.org/content/338/6109/939.full.html#related
             This article cites 54 articles, 3 of which can be accessed free:
             http://www.sciencemag.org/content/338/6109/939.full.html#ref-list-1
             This article has been cited by 1 articles hosted by HighWire Press; see:
             http://www.sciencemag.org/content/338/6109/939.full.html#related-urls




Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the
American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright
2012 by the American Association for the Advancement of Science; all rights reserved. The title Science is a
registered trademark of AAAS.
REPORTS
10. S. Tamura, D. C. Hurley, J. P. Wolfe, Phys. Rev. B 38,         25. Materials and methods are available as supplementary        39. Y. Meir, N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
    1427 (1988).                                                       materials on Science Online.                                40. G. Pernot et al., Nat. Mater. 9, 491 (2010).
11. T. Yao, Appl. Phys. Lett. 51, 1798 (1987).                     26. M. A. Afromowitz, J. Appl. Phys. 44, 1292 (1973).           41. R. M. Costescu, D. G. Cahill, F. H. Fabreguette,
12. X. Y. Yu, G. Chen, A. Verma, J. S. Smith, Appl. Phys. Lett.    27. P. Hyldgaard, G. D. Mahan, Phys. Rev. B 56, 10754               Z. A. Sechrist, S. M. George, Science 303, 989
    67, 3554 (1995).                                                   (1997).                                                         (2004).
13. W. S. Capinski et al., Phys. Rev. B 59, 8105                   28. S. Tamura, Y. Tanaka, H. J. Maris, Phys. Rev. B 60, 2627    42. C. Chiritescu et al., Science 315, 351 (2007).
    (1999).                                                            (1999).
14. S.-M. Lee, D. G. Cahill, R. Venkatasubramanian,                29. E. S. Landry, A. J. H. McGaughey, Phys. Rev. B 79,          Acknowledgments: We thank A. A. Maznev, K. A. Nelson,
    Appl. Phys. Lett. 70, 2957 (1997).                                 075316 (2009).                                              K. C. Collins, and J. Johnson for helpful discussions. This
15. G. Chen, Phys. Rev. B 57, 14958 (1998).                        30. S. Volz, J. B. Saulnier, G. Chen, P. Beauchamp,             material is based on work supported as part of the Solid State
16. B. C. Daly, H. J. Maris, K. Imamura, S. Tamura, Phys. Rev. B       Microelectron. J. 31, 815 (2000).                           Solar-Thermal Energy Conversion Center (S3TEC), an Energy
    66, 024301 (2002).                                             31. S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58,     Frontier Research Center funded by the U.S. Department of
17. Y. K. Koh, Y. Cao, D. G. Cahill, D. Jena, Adv. Funct. Mater.       1861 (1987).                                                Energy, Office of Science, Office of Basic Energy Sciences
    19, 610 (2009).                                                32. D. A. Broido, M. Malorny, G. Birner, N. Mingo,              under award DE-SC0001299/DE-FG02-09ER46577. M.N.L. was
18. E. T. Swartz, R. O. Pohl, Rev. Mod. Phys. 61, 605                  D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).         partially supported by the National Science Foundation
    (1989).                                                        33. K. Esfarjani, G. Chen, H. T. Stokes, Phys. Rev. B 84,       Graduate Research Fellowship under grant 1122374.
19. R. Landauer, Philos. Mag. 21, 863 (1970).                          085204 (2011).
20. D. Li et al., Appl. Phys. Lett. 83, 2934 (2003).               34. J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev.     Supplementary Materials
21. P. D. Robb, A. J. Craven, Ultramicroscopy 109, 61                  Lett. 106, 045901 (2011).                                   www.sciencemag.org/cgi/content/full/338/6109/936/DC1
    (2008).                                                        35. J. Garg, N. Bonini, N. Marzari, Nano Lett. 11, 5135         Materials and Methods
22. C. A. Paddock, G. L. Eesley, J. Appl. Phys. 60, 285                (2011).                                                     Figs. S1 to S4
    (1986).                                                        36. S. Tamura, Phys. Rev. B 27, 858 (1983).                     References (43–57)




                                                                                                                                                                                                          Downloaded from www.sciencemag.org on November 16, 2012
23. D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).              37. P. A. Lee, D. S. Fisher, Phys. Rev. Lett. 47, 882 (1981).
24. A. J. Schmidt, X. Chen, G. Chen, Rev. Sci. Instrum. 79,        38. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James,       4 June 2012; accepted 9 October 2012
    114902 (2008).                                                     J. Phys. C Solid State Phys. 4, 916 (1971).                 10.1126/science.1225549




Evidence for a Dynamo in the Main                                                                                                  teorite edge and several millimeters from the
                                                                                                                                   olivine/metal contact. Prior studies (18, 19) sug-
                                                                                                                                   gest that at these distances, heating effects due to
Group Pallasite Parent Body                                                                                                        atmospheric entry are negligible.
                                                                                                                                       We have observed strings of large inclusions,
                                                                                                                                   tens of micrometers in size (Fig. 1C), in some
John A. Tarduno,1,2* Rory D. Cottrell,1 Francis Nimmo,3 Julianna Hopkins,2 Julia Voronov,1
                                                                                                                                   olivines using transmitted light microscopy. Scan-
Austen Erickson,1,2 Eric Blackman,2 Edward R.D. Scott,4 Robert McKinley1
                                                                                                                                   ning electron microscopy (SEM) reveals isolated
                                                                                                                                   and strings of much smaller inclusions (≲10 mm)
Understanding the origin of pallasites, stony-iron meteorites made mainly of olivine crystals                                      (Fig. 1D) that are composed of Fe, Ni, S, and Cr
and FeNi metal, has been a vexing problem since their discovery. Here, we show that pallasite                                      (fig S3). Microprobe analyses detail submicrometer-
olivines host minute magnetic inclusions that have favorable magnetic recording properties. Our                                    sized, irregularly spaced FeNi particles within these
paleointensity measurements indicate strong paleomagnetic fields, suggesting dynamo action in                                      smaller inclusions, surrounded by troilite (fig S4).
the pallasite parent body. We use these data and thermal modeling to suggest that some pallasites                                  These metal particles are sometimes Ni rich [~51
formed when liquid FeNi from the core of an impactor was injected as dikes into the shallow
                                                                                                                                   to 58 weight percent (wt %) Ni] and are potential
mantle of a ~200-kilometer-radius protoplanet. The protoplanet remained intact for at least                                        stable magnetic recorders.
several tens of millions of years after the olivine-metal mixing event.
                                                                                                                                       Olivine subsamples lacking inclusions visible
                                                                                                                                   to the naked eye show pseudo-single– to single-
        ord Rayleigh (Robert John Strutt) (1)                      (9) comparable with those of unshocked terres-                  domain magnetic hysteresis behavior (Fig. 1, E

L       noted the paradox posed by pallasite me-
        teorites: Olivine and metal seemingly should
have separated into layers in their parent body.
                                                                   trial samples. The metal in main group pallasites
                                                                   is Ir poor and is thought to have originated from
                                                                   the residual melt fraction of a core similar in
                                                                                                                                   and F). In contrast, samples with visible inclu-
                                                                                                                                   sions have multidomain behavior. In the former
                                                                                                                                   case, we find only a slight anisotropy (Fig. 1G),
Some models, to avoid segregation, have invoked                    composition to IIIAB iron meteorites (3).                       and first-order reversal curves (20) fail to show
small metal pools throughout a parent body (2),                        Paleomagnetism might help to distinguish                    substantial magnetic interactions (Fig. 1H). Thus,
but the putative scenario has remained in forma-                   between models for pallasite formation, but prior               we further selected olivine subsamples lacking
tion near a core-mantle boundary (3). There are                    attempts have failed to yield interpretable data.               visible inclusions because they can have optimal
~50 known pallasite meteorites. Most have iso-                     The massive FeNi of the pallasite matrix is the                 properties for paleointensity determination (21).
topic ratios that fall near the terrestrial mass                   likely culprit. This metal is similar to that com-                  Many meteorites have been exposed to mag-
fractionation line and are called “main group”                     posing iron meteorites, which carries a highly                  netic contamination during collection (13). We
pallasites (4). Olivine ranges from Fa11 to Fa20                   anisotropic, soft magnetization; it is notoriously              therefore first used alternating field demagne-
and often occurs as centimeter-sized (Fig. 1, A                    poor as a paleomagnetic recorder (10, 11). Paleo-               tization, which revealed removal of magnetiza-
and B) crystals (5–8), with a dislocation density                  magnetic studies of other meteorites [for example,              tions after the application of low peak fields (5 to
                                                                   (12–13)], however, suggest some parent bodies                   10 mT). Magnetization directions stabilized after
                                                                   hosted dynamos. Modeling suggests bodies >80 km                 this pretreatment, and it was here that we started
1
  Department of Earth and Environmental Sciences, University       in radius could be in the regime of supercritical               thermal demagnetization. We used thermal meth-
of Rochester, Rochester, NY 14627, USA. 2Department of Phys-       magnetic Reynolds numbers, in which large-scale                 ods because they best replicate the potential mag-
ics and Astronomy, University of Rochester, Rochester, NY          dynamo action is possible (14, 15).                             netization acquisition process [thermoremanent
14627, USA. 3Department of Earth and Planetary Sciences,               Rather than studying bulk material, we ap-                  magnetization (TRM)] (21). In many meteorites,
University of California, Santa Cruz, CA 95064, USA. 4Hawaii
Institute for Geophysics and Planetology, University of Hawaii,    plied techniques of single-silicate crystal analysis            magnetic mineral alteration accompanying thermal
Manoa, HI 96822, USA.                                              (16, 17) to an investigation of the Imilac and                  treatment is severe (11–13). Studies of terrestrial
*To whom correspondence should be addressed. E-mail:               Esquel main group pallasites. We selected gem-                  samples indicate that inclusions in single-silicate
john.tarduno@rochester.edu                                         like olivine subsamples ≳0.5 cm from the me-                    crystals are less susceptible to alteration (16, 17).


                                                www.sciencemag.org               SCIENCE            VOL 338          16 NOVEMBER 2012                                                               939
REPORTS
          Low unblocking temperature magnetiza-               pallasite olivine shows a large decrease in nat-         A and B). Only very small NRM changes are
      tions (<360°C) observed from Esquel olivine             ural remanent magnetization (NRM) and a sta-             seen at higher demagnetization temperatures,
      likely have a viscous origin. However, the Esquel       ble direction between ~360° and 500°C (Fig. 2,           between 500° and 750°C. The dominant drop

       A                                    B                                        E                                     F




                                                                                     G                                     H



       C                                   D




                                                                                                                                                                                Downloaded from www.sciencemag.org on November 16, 2012
                                     m


                                                                                   Fig. 1. Magnetic character of inclusions in pallasite olivine. (A and B) Esquel and
                                                2 m
                                                                                   Imilac meteorite samples, respectively. (C) Large inclusions in olivine (transmitted light
                                                                                   microscopy). (D) String of smaller inclusions (between white arrows; SEM). (E and F)
      Magnetic hysteresis curves for olivine. (G) Hysteresis parameter versus angle of measurement (16) and (H) First-order reversal curve plot (20) for Esquel olivine. Mr,
      remanent magnetization; Ms, saturation magnetization; Hcr, coercivity of remanence; Hc, coercivity.




      Fig. 2. Paleointensity experiments on pallasite olivine. (A) Demagnetization         (calculated by comparing values at three temperature steps highlighted by
      of NRM of Esquel olivine (black line). (B) Orthogonal vector plot of (A); red is     gray boxes). (E to H) Paleointensity data as discussed above on Imilac olivine
      inclination, blue is declination (orientation relative). (C) Thellier-Coe paleo-     indicating paleofields of 64.9 mT (Thellier-Coe technique, 60-mT applied field)
      intensity data, NRM removed versus TRM gained using a 60-mT applied field            and 67.3 mT (Total TRM method, 30-mT applied field). (I) An oriented section of
      suggests a paleofield of 110.7 mT. (D) Demagnetization of a laboratory Total         the Esquel meteorite with metal removed. (J to L) Associated demagnetization
      TRM acquired in a 60-mT field [(A), red curve] suggests a paleofield of 118.8 mT     results.


940                                            16 NOVEMBER 2012             VOL 338       SCIENCE         www.sciencemag.org
REPORTS
in NRM suggests a taenite carrier (~50 to 55             ferences may indicate minor thermally induced            ~15% of the values obtained from our first ex-
wt % Ni) (21, 22), which is consistent with our          alteration. Demagnetization of the Total TRM             periments (tables S1 to S4).
microprobe results. Ordering may be limited in           allows for a second estimation of the paleofield;            Olivine subsamples from the Imilac pallasite
very small taenite particles within troilite inclu-      this yields 118.8 T 5.7 mT. Subsamples from two          show similar behavior (Fig. 2, E to H). Thellier-
sions (23).                                              additional crystals from the same Esquel meteor-         Coe experiments on two separate samples yield
    Thellier-Coe (23, 24) paleointensity data (Fig.      ite sample yield similar values (116.0 T 5.4 mT,         67.9 T 9.2 mT and 79.3 T 7.2 mT (paleointensities
2C) of a typical sample suggest that a TRM was           109.6 T 7.0 mT, Thellier-Coe method; 115.0 T 6.9         based on Total TRM experiments are 67.7 T 6.2
imparted in a paleofield of 110.7 T 5.2 mT. To           mT, 113.4 T 4.0 mT, Total TRM method). As a              and 77.7 T 2.2 mT, respectively). Total TRM ex-
further examine the nature of the NRM, we im-            further consistency test, we studied a second Esquel     periments using two different applied field values
parted a Total TRM to the sample by heating at           pallasite sample. We observed nearly identical           yield consistent paleointensities (table S2), sug-
700°C in the presence of a 60-mT field. The de-          demagnetization behavior, with Thellier-Coe and          gesting no applied field dependence.
magnetization curve of the Total TRM is similar          Total TRM paleointensity estimates of 132.4 T                The unblocking temperatures we have ob-
to that of the initial NRM (Fig. 2A); small dif-         5.7 mT and 134.3 T 6.1 mT, respectively, within          served, viewed in the context provided by our
                                                                                                                  microprobe results, are inconsistent with terres-
                                                                                                                  trial weathering (23). Also, our experiments dem-
                                                                                                                  onstrate that the dominant magnetization is not an
                                                                                                                  artifact of kamacite-taenite interaction discussed
                                                                                                                  in the study of iron meteorites (10). Our paleo-




                                                                                                                                                                                Downloaded from www.sciencemag.org on November 16, 2012
                                                                                                                  intensity measurements are on unoriented olivine
                                                                                                                  crystals. In some meteorites, subsamples have
                                                                                                                  been found to have different magnetic directions,
                                                                                                                  precluding the acquisition of a TRM after the
                                                                                                                  meteorite mass had assembled (11–13). In con-
                                                                                                                  trast, at unblocking temperatures >360°C, we ob-
                                                                                                                  served consistent directions from oriented pallasite
                                                                                                                  olivine crystals (Fig. 2, I to L).
                                                                                                                      The average field value obtained from the
                                                                                                                  Esquel meteorite (122.3 T 14.4 mT, Thellier-Coe
                                                                                                                  method; 125.2 T 12.9 mT, Total TRM method) is
                                                                                                                  somewhat larger than those observed on Earth’s
                                                                                                                  surface but somewhat weaker than Earth’s field
                                                                                                                  calculated at the core-mantle boundary (for ex-
                                                                                                                  ample, the radial component was typically 200 to
                                                                                                                  600 mT in 1990) (25). The average value from the
                                                                                                                  Imilac meteorite (73.6 T 8.1 mT, Thellier-Coe
                                                                                                                  method; 72.7 T 7.1 mT, Total TRM method) is
                                                                                                                  comparable with Earth’s surface field. These rela-
                                                                                                                  tively high intensities suggest an internally gen-
                                                                                                                  erated magnetic field in the pallasite parent body
                                                                                                                  because other sources create fields orders of mag-
                                                                                                                  nitude weaker (13). We interpret these data as
                                                                                                                  recording dynamo action after the injection of
                                                                                                                  metal into the olivine crystals. The fracture path-
                                                                                                                  ways for the metal injection subsequently healed,
                                                                                                                  and the inclusions cooled below the Curie tem-
                                                                                                                  perature of taenite. This injection probably coin-
                                                                                                                  cided with an impact creating the larger-scale
                                                                                                                  olivine-metal mixing.
                                                                                                                      The absolute age of the mixing event is un-
                                                                                                                  known, but Mn-Cr systematics provide an oldest
                                                                                                                  age bound of 4.558 billion years ago (26). Fission-
                                                                                                                  track model ages suggest that the magnetization
Fig. 3. Spherically symmetric three-layer conductive asteroid cooling model (23). (Left) Evolution of             we have measured may have set in as late as 4.4
temperature as a function of radius and time. The model consists of an insulating regolith, a silicate            to 4.2 billion years ago (27), values that are con-
mantle, and a metallic core. The initial condition is 1600 K everywhere. The core remains isothermal
                                                                                                                  sistent with an early mixing event followed by
(liquid) until it starts to solidify at 1200 K and thereafter cools conductively. The mantle cools conductively
                                                                                                                  slow cooling (23).
throughout. The 800 K and 633 K isotherms correspond to taenite diffusion recording cooling rate and
the lowest paleomagnetic unblocking temperature defining the characteristic magnetization, respectively.              Our data thus imply that the parent body must
The horizontal dashed line indicates the core mantle boundary, and the vertical dashed line indicates the         have retained a partially liquid iron core (to permit
time at which core solidification is complete. (Right) Cooling rate at 800 K as a function of distance. The       a dynamo) until the pallasites cooled to ~360°C,
dark shaded box indicates the assumed megaregolith thickness (23). The light shaded box is the 2 to 9 K           and therefore they cannot have been too close
per million years cooling rate estimate from pallasite metal experiments (28). The solid and dashed lines         to the core-mantle boundary. The magnetic evi-
represent model cooling rates with and without a megaregolith, respectively. The core was still convecting        dence is consistent with, and independent of, the
(not solid) when the pallasites reached 633 K. So, the pallasites must be shallower than the depth                diversity of main group pallasite cooling rates
indicated by the dotted line. For a 200-km-radius body, there is a region at radius (r) = ~160 km at which        that previously have been used to argue (28)
both the cooling rate and the paleomagnetic constraint are satisfied.                                             against a core-mantle boundary origin. A liquid


                                        www.sciencemag.org            SCIENCE         VOL 338       16 NOVEMBER 2012                                                      941
REPORTS
      core requires a temperature exceeding ~1200 K           bined with a time-dependent dynamo field. In                         12. S. M. Cisowski, in Geomagnetism, J. A. Jacobs, Ed.
      (29), so assuming conductive cooling (23), the          any event, generation of a strong, magnetic field                        (Academic Press, New York, 1987), vol. 2, pp. 525–560.
                                                                                                                                   13. B. P. Weiss, J. Gattacceca, S. Stanley, P. Rochette,
      pallasites we have investigated were in the top         by a dynamo at least several tens of millions of                         U. R. Christensen, Space Sci. Rev. 152, 341 (2010).
      ~60% of the protoplanet mantle. Cooling rates at        years after olivine/metal mixing is required by                      14. F. Nimmo, Geophys. Res. Lett. 36, L10201 (2009).
      800 K (the diffusion temperature of taenite) in         our data.                                                            15. B. P. Weiss et al., Science 322, 713 (2008).
      this depth range in a 200-km-radius body match               We recall that the pallasite metal is Ir poor,                  16. J. A. Tarduno, R. D. Cottrell, A. V. Smirnov, Rev. Geophys.
                                                                                                                                       44, RG1002 (2006).
      estimated pallasite metal cooling rates (28) of 2 to    implicating a fractionated source. This require-                     17. J. A. Tarduno, R. D. Cottrell, M. K. Watkeys, D. Bauch,
      9 K per million years (Fig. 3). Conversely, in a        ment together with the likely position of the pal-                       Nature 446, 657 (2007).
      larger 600-km-radius body the pallasites would          lasites in the protoplanet and the time constraints                  18. J. F. Lovering, L. G. Parry, J. C. Jaeger, Geochim.
      have to have resided in the near-surface mega-          on when the dynamo was active suggest that the                           Cosmochim. Acta 19, 156 (1960).
                                                                                                                                   19. T. Nagata, Phys. Earth Planet. Inter. 20, 324 (1979).
      regolith, which is inconsistent with their unshocked    pallasite metal was derived from the liquid iron                     20. A. P. Roberts, C. R. Pike, K. L. Verosub, J. Geophys. Res.
      state, whereas in a smaller 100-km-radius body,         core of a differentiated asteroid impactor (fig. S7)                     105, 28461 (2000).
      the cooling rate is too fast (Fig. 3). Compositional    that struck before the Curie isotherm was reached.                   21. D. J. Dunlop, Ö Özdemir, Rock Magnetism,
                                                                                                                                                        .
      convection in the core (14) can drive the dynamo,       The metal could have been introduced into a                              Fundamentals and Frontiers (Cambridge Univ. Press,
                                                                                                                                       Cambridge, 1997).
      and impacts can provide additional short-term           dunite mantle as dike-like intrusions, similar to
                                                                                                                                   22. Y.-Y. Chuang, Y. A. Chang, R. Schmid, J.-C. Lin,
      stirring (30). For a 200-km-radius body, pressure       impact melt dikes seen in terrestrial impact struc-                      Metall. Trans. A 17, 1361 (1986).
      effects on the magnetization are likely minor (23).     tures (31). This mechanism provides a solution to                    23. Materials and methods are available as supplementary
      These conclusions on parent body size assume the        the pallasite paradox because dikes propagating                          materials on Science Online.




                                                                                                                                                                                                       Downloaded from www.sciencemag.org on November 16, 2012
      pallasites were not remagnetized during impact          through relatively cold olivine will undergo an ini-                 24. R. S. Coe, J. Geomag. Geoelectr. 19, 157 (1967).
                                                                                                                                   25. A. Jackson, A. R. T. Jonkers, M. R. Walker, Philos. Trans. R.
      heating subsequent to the olive-metal mixing            tial phase of rapid cooling, freezing in the olivine-                    Soc. London A 358, 957 (2000).
      event. If such reheating occurred, parent bodies        metal pallasite structure, before cooling through                    26. G. W. Lugmair, A. Shukolyukov, Geochim. Cosmochim.
      ranging from 100- to 200-km radius could satisfy        the taenite Curie temperature. The differentiated                        Acta 62, 2863 (1998).
      the data, and the pallasites could have formed          pallasite parent body may have been formed in                        27. Y. V. Bondar, V. P. Perelygin, Radiat. Meas. 36, 367
                                                                                                                                       (2003).
      deeper in the parent body, within 10% of the            the terrestrial planet-forming zone (32). If so, the                 28. J. Yang, J. I. Goldstein, E. R. D. Scott, Geochim.
      core-mantle boundary. However, we view this as          timing of dynamo action suggests that the pal-                           Cosmochim. Acta 74, 4471 (2010).
      improbable because such reheating is inconsist-         lasite protoplanet was one of the few, late survi-                   29. A. Ghosh, H. Y. McSween Jr., Icarus 134, 187 (1998).
      ent with the low observed pallasite shock state (23).   vors in this zone before a cataclysmic collision                     30. M. Le Bars, M. A. Wieczorek, Ö Karatekin, D. Cébron,
                                                                                                                                                                         .
                                                                                                                                       M. Laneuville, Nature 479, 215 (2011).
           The factor of ~2 difference between Esquel         that scattered pallasite fragments from a position                   31. W. U. Reimold, R. L. Gibson, Chem. Erde 66, 1 (2006).
      and Imilac paleointensity estimates could indi-         closer to the Sun outward to the asteroid belt.                      32. W. F. Bottke, D. Nesvorný, R. E. Grimm, A. Morbidelli,
      cate different positions within the protoplanet. For                                                                             D. P. O’Brien, Nature 439, 821 (2006).
      instance, the Esquel and Imilac meteorites could            References and Notes
                                                               1. L. Rayleigh, Proc. R. Soc. London Ser. A Math. Phys. Sci.        Acknowledgments: We thank J. Hunt for assistance with
      have resided at original depths of 40 km and
                                                                  179, 386 (1942).                                                 microprobe analyses. This work was supported by NASA
      10 km, respectively, within a 200-km-radius body,        2. H. C. Urey, Mon. Not. R. Astron. Soc. 131, 199 (1966).           grant NNX11AG66G and NSF grants EAR0619467 and
      assuming a dipolar field. In this case, the Curie        3. J. T. Wasson, B. G. Choi, Geochim. Cosmochim. Acta 67,           EAR1015269 (to J.A.T.) Paleomagnetic data are included
      isotherm of taenite would be reached at 180 mil-            3079 (2003).                                                     in the supplementary materials.
      lion and 52 million years after the body formed          4. R. N. Clayton, Space Sci. Rev. 106, 19 (2003).
                                                               5. E. R. D. Scott, Geochim. Cosmochim. Acta 41, 349 (1977).         Supplementary Materials
      for the Esquel and Imilac pallasites, respectively       6. P. R. Buseck, Geochim. Cosmochim. Acta 41, 711 (1977).           www.sciencemag.org/cgi/content/full/338/6109/939/DC1
      (Fig. 3). The heat fluxes at the core at these times     7. D. W. Mittlefehldt, Earth Planet. Sci. Lett. 51, 29 (1980).      Materials and Methods
      are 33 and 0.8 mW m−2, respectively; the former          8. A. M. Davis, E. J. Olsen, Nature 353, 637 (1991).                Figs. S1 to S7
      at least is sufficient to drive a dynamo if com-         9. T. Matsui, S. Karato, T. Yokokura, Geophys. Res. Lett. 7,        Tables S1 to S5
                                                                  1007 (1980).                                                     References (33–65)
      positional convection occurs (14). However, the         10. A. Brecher, L. Albright, J. Geomag. Geoelectr. 29, 379 (1977).
      paleointensity difference could also be explained       11. T. Nagata, Mem. Natl. Inst. Polar Res. Spec. Issue 8, 240        27 April 2012; accepted 5 October 2012
      by a smaller difference in original depth com-              (1978).                                                          10.1126/science.1223932




      Evidence for Early Hafted                                                                                                    Middle Pleistocene, and genetic studies situ-
                                                                                                                                   ate the divergence of H. sapiens and Neandertal
                                                                                                                                   lineages at between ~800 and 400 thousand years
      Hunting Technology                                                                                                           ago (ka) (3). Because Middle Stone Age (MSA)
                                                                                                                                   hominins and Neandertals probably both had
      Jayne Wilkins,1* Benjamin J. Schoville,2 Kyle S. Brown,2,3 Michael Chazan1                                                   stone-tipped hunting equipment, it is possible that
                                                                                                                                   H. heidelbergensis also possessed this form of
      Hafting stone points to spears was an important advance in weaponry for early humans. Multiple lines                         technology.
      of evidence indicate that ~500,000-year-old stone points from the archaeological site of Kathu Pan                               By ~780 ka, hominins were regularly killing
      1 (KP1), South Africa, functioned as spear tips. KP1 points exhibit fracture types diagnostic of impact.                     large game, based on evidence of repeated in situ
      Modification near the base of some points is consistent with hafting. Experimental and metric data                           processing of complete carcasses of fallow deer at
      indicate that the points could function well as spear tips. Shape analysis demonstrates that the smaller                     Gesher Benot Ya’kov in Israel (4). At the English
      retouched points are as symmetrical as larger retouched points, which fits expectations for spear tips.
                                                                                                                                   1
      The distribution of edge damage is similar to that in an experimental sample of spear tips and is                             Department of Anthropology, University of Toronto, 19 Russell
      inconsistent with expectations for cutting or scraping tools. Thus, early humans were manufacturing                          Street, Toronto, Ontario M5S 2S2, Canada. 2Institute of Human
      hafted multicomponent tools ~200,000 years earlier than previously thought.                                                  Origins, School of Human Evolution and Social Change, Post
                                                                                                                                   Office Box 872402, Arizona State University, Tempe, AZ
                                                                                                                                   85287-4101, USA. 3Department of Archaeology, University of
              ehavioral traits common to both modern          last common ancestor, commonly held to be

      B
                                                                                                                                   Cape Town, Rondebosch 7701, South Africa.
              humans and Neandertals could repre-             Homo heidelbergensis (1, 2). The fossil record                       *To whom correspondence should be addressed. E-mail:
              sent shared traits inherited from their         for H. heidelbergensis begins during the early                       jayne.wilkins@utoronto.ca


942                                          16 NOVEMBER 2012                 VOL 338           SCIENCE            www.sciencemag.org
www.sciencemag.org/cgi/content/full/338/6109/939/DC1




                            Supplementary Material for
     Evidence for a Dynamo in the Main Group Pallasite Parent Body
 John A. Tarduno,* Rory D. Cottrell, Francis Nimmo, Julianna Hopkins, Julia Voronov,
        Austen Erickson, Eric Blackman, Edward R.D. Scott, Robert McKinley


          *To whom correspondence should be addressed. E-mail: john.tarduno@rochester.edu

                          Published 16 November 2012, Science 338, 939 (2012)
                                     DOI: 10.1126/science.1223932

This PDF file includes:


Materials and Methods
Figs. S1 to S7
Tables S1 to S5
References (33–65)
Tarduno et al., Evidence for a dynamo in the main group pallasite parent body

Supporting Online Material

Materials and Methods

   Magnetic hysteresis data were collected using the University of Rochester Princeton Measure-
ments Corporation Alternating Gradient Force Magnetometer. Values for the examples shown in
Fig. 1 of the main text are as follows: Hcr , Hc and Mr /Ms are 154.6 Oe, 200.0 Oe and 0.3911
respectively for the Esquel specimen, and 111.1 Oe, 151.9 Oe and 0.3714, respectively, for the
Imilac specimen. For all remanence measurements we select mm-sized gem-like olivine subsam-
ples, lacking any surface discoloration that might be residual contamination from the surrounding
pallasite metal (we note that our initial tests revealed that samples with visible inclusions from
olivine crystal rims altered rapidly when heated). Obtaining suitable samples generally required
cleaning crystals in distilled water. A weak acid (HCl) was used on some crystals to remove surface
contamination. Remanence measurements were made with a 2G Enterprises 3-component 755R
DC SQUID magnetometer and a 2G small (6.3 mm) bore 3-component DC SQUID magnetometer
in the University of Rochester’s magnetically shielded room (ambient field <200 nT). CO2 laser
heating and cooling was conducted (in air) in additional magnetic shields to produce a magnetically
null environment.
   Olivine samples 2-3 millimeters in size were mounted on the end of quartz tubes with Omega
cement (both of which are routinely measured to ensure the blank is in the 10−13 to 10−14 A m2
range). The sample holder also served as the target for CO2 laser heating (the 7 mm diameter laser
beam applied at peak temperature for ∼1 minute ensures uniform heating of the crystal; heatings
at each Thellier-Coe paleointensity step were for 3 minutes). The natural remanent magnetization
of approximately 15% of the clean crystal subsamples measured were in the 10−9 to 10−10 A m2
range; these are the focus of our studies as the magnetizations are well within the measuring
range of the DC SQUID magnetometers throughout the demagnetization procedures. The success
rate for crystals having these intensities (yielded interpretable paleointensity results) was ∼50%.
This compares well with paleointensity success rates from Thellier-Coe experiments on whole-rock
terrestrial basalts, which often average 20% (or less).
   Thellier-Coe (24) paleointensity data consist of demagnetization of the NRM (field-off step),
followed by the reheating of the sample at the same temperature in a known applied field (field-on
step). We use orthogonal vector plots of the field-off steps to determine the optimal tempera-
ture range to calculate paleointensities. In this study, we typically use a lowermost Thellier-Coe
unblocking temperature for paleointensity calculation that is slightly higher than the lowest un-
blocking temperature where we believe a primary magnetization is held (i.e. 360 o C). This approach
is conservative, and aimed to avoid any influence of magnetizations held at lower unblocking tem-
peratures. For consistency, we use this same temperature range in determining paleointensity from
Total TRM data (see below), although we note that some minor alteration might be expected given
the cumulative time at elevated temperature.


                                                   1
Heatings were minimized by collecting Thellier-Coe paleointensity data only in the temperature
range where orthogonal vector plots show univectorial decay. An applied field of 60 µT was used for
all Thellier-Coe measurements. After NRM demagnetization and collection of Thellier-Coe data,
a Total TRM was applied. Using a CO2 laser, samples were heated to 700 o C and then cooled
in the presence of a field over a 10 minute time span. The Total TRM was subsequently stepwise
demagnetized using the CO2 laser. An applied field of 60 µT was used in the collection of all initial
Total TRM data. After demagnetization of the first Total TRM, subsample Imilac E3 was given
a second Total TRM in the presence of a 30 µT field (and subsequently demagnetized with a CO2
laser) to check for any potential applied field dependence on paleointensity.
   To test for consistency in magnetic directions, an oriented section 1-mm thick was prepared.
Metal was etched away, leaving several mutually oriented gem-like olivine crystals, which we sub-
sequently separated (maintaining orientation) and thermally demagnetized using the CO2 laser.


SOM Text

Paleointensity selection criteria. Examples of accepted results are shown in Figure 2 of the main
text. Two additional examples of accepted results are included here (fig. S1). Results of Thellier-
Coe and Total TRM paleointensity experiments are reported in tables S1-2. Values are judged
acceptable if Thellier-Coe paleointensity and Total TRM paleofield estimates are consistent within
15% (see table S2). The uncertainty in the individual Thellier-Coe and Total TRM paleointensity
estimates must be ≤15%
   Here we use demagnetization of a Total TRM to assess alteration because it can readily detect
(and in our case exclude) whole-scale transformations with heating seen in some FeNi magnetic
carriers in meteorites (10). Although our heating times using the CO2 laser are very rapid compared
to those of standard ovens used in paleomagnetism, we note that at the end of our experiments a
specimen has still been exposed to elevated temperatures for a cumulative time exceeding 2 hours.
We forgo pTRM checks (33) which, if applied, would have resulted in even longer cumulative times
at elevated temperature. The Total TRM data also aid in the interpretation of magnetizations
observed at high unblocking temperatures. For example, some Esquel olivine specimens acquire
additional partial TRMs after the temperature at which the NRM appears to have been completely
demagnetized. This is expressed as a flattening of NRM/TRM data (Fig. 2C), which in itself
might suggest that a very low (or null) field is recorded at high unblocking temperatures. However,
demagnetization of a Total TRM reveals only a minor TRM in this same temperature interval (Fig.
2D) suggesting that increases in partial TRM at high temperatures reflect either minor alteration
and/or the influence of minor, and more complex, magnetic phases (see discussion in “Minor high
unblocking temperature magnetizations” below).
   Several factors contribute to the cause of unsuccessful experiments. The NRM intensity of
some samples decreased rapidly on AF demagnetization to levels after which measurement with
the SQUID magnetometers through an entire paleointensity run was no longer viable. The main
cause of unsuccessful samples that did not display such AF demagnetization characteristics appears


                                                 2
to be thermally-induced alteration. This was manifested by either a scattered NRM demagnetiza-
tion pattern (fig S2A,B) and/or a Total TRM curve that differed markedly from that of the NRM
demagnetization (fig S2B,C).


                                                                                                                             N,Up                                                                 C 15
              A                             100                                                                          B                                                                                                                         410




                                                                                                                                                                                                  NRM (x 10-11 A m2)
                                                      90                                                  Esquel
                                                                                                                                                                                  360                                  10
                                                      80
                                                                                                                                          410
               Intensity x10-11 A m2




                                                      70                                                             W                                                                        E
                                                                                  NRM                                                                                                                                   5

                                                      60                                                                                                                                                                                                                         500
                                                                                                                                                                                                                                              109.6 T
                                                                                                                                                                                                                        0
                                                      50                                                                                                                                                                               0                         5                     10
                                                      40                                                                                                                                                                                                TRM (x 10-11 A m2)
                                                                                                                         S,Down
                                                      30       Total TRM
                                                                                                                             D                                 100
                                                      20
                                                                                    410
                                                      10                                                                                                                   80




                                                                                                                                   Intensity x10-11 A m2
                                                      0                                                                                                                    60
                                                           0   100   200    300   400     500       600    700     800
                                                                                          o                                                                                40
                                                                           Temperature C
                                                                                                                                                                           20
                                                                                                                                                                                                                                             113.4      T

                                                                                                                                                                            0
                                                                                                                                                                                350     400       450                                             500
                                                                                                                                                                                          Temperature oC




                        E                                                                                                    F N,Up                                                                       G
                                                                                                                                                                                                                                     1
                                                                                                          Imilac         W                                                                        E                                                              400




                                                                                                                                                                                                                        NRM (x 10-11 A m2)
                                                                                                                             400
                              Intensity x10-11 A m2




                                                                                                                                   320
                                                      10                                                                     250                                                                                                                                         500



                                                                                                                                                                                                                                                  57.9 T
                                                                                                                                 S, Down                                                                                             0
                                                                                                                                                                                                                                              0                                             1
                                                       5                                                                                                                                                                                                    TRM (x 10-11 A m2)

                                                                                                                             H                                             3
                                                                                                                                                   Intensity x10-11 A m2




                                                                                   400        500                                                                          2
                                                       0
                                                           0         200          400               600            800
                                                                           Temperature oC                                                                                  1                                                                 59.9 T


                                                                                                                                                                           0
                                                                                                                                                                                350     400       450                                             500

                                                                                                                                                                                          Temperature oC




Fig. S1. Additional examples of successful paleointensity experiments on pallasite olivine. (A)
Demagnetization of natural remanent magnetization (NRM) of Esquel olivine (black line). (B)
Orthogonal vector plot of (A), red is inclination, blue is declination (orientation relative). (C)
Thellier-Coe paleointensity data, NRM removed versus thermoremanent magnetization (TRM)
gained using a 60 µT applied field suggests a paleofield of 109.6 µT. (D) Demagnetization of a
laboratory Total TRM acquired in a 60 µT field (red curve in (A)) suggests a paleofield of 113.4
µT (calculated by comparing values at three temperature steps highlighted by grey boxes). (E-H)
Paleointensity data as discussed above on Imilac olivine indicating paleofields of 57.9 µT (Thellier-
Coe technique, 60 µT applied field) and 59.9 µT (Total TRM method, 60 µT applied field).




                                                                                                                         3
A 14                                                                                                                          B 14
                                                  12                                                                                                                      12




                                                                                                                                               Intensity (x10 −11 A m2)
               Intensity (x10−11 A m2)
                                                  10                                                                                                                      10


                                                          8                                                                                                               8


                                                          6                                                                                                               6


                                                          4                                                                                                               4


                                                          2                                                                                                               2


                                                          0                                                                                                               0
                                                                   0           100     200      300       400    500     600           700                                     0           100       200    300       400   500   600   700
                                                                                                            o
                                                                                              Temperature C                                                                                                Temperature oC
                                                                                                                             N                                                                   N
                                                                                                                                                                               W                                  E




                                                                                                      W                                E




                                                                                                                                                                                                 S
                                                                                                                             S

                                 C                                 80
                                                                                                                                                                                       N

                                                                   70

                                                                   60
                                         Intensity (x10−11 A m2)




                                                                   50


                                                                   40

                                                                   30


                                                                   20
                                                                                                                                                                                   W                              E

                                                                   10
                                                                                                                                                                                            S
                                                                       0
                                                                           0     100    200     300       400   500    600       700         800
                                                                                                 Temperature oC




Fig. S2. Examples of paleointensity results that did not meet selection criteria. Intensity versus
temperature plots show natural remanent magnetization (NRM) decay (A,B,C) (black) and Total
Thermoremanent Magnetization decay (B,C) (red). Orthogonal vector plots are shown for NRM
demagnetization (red is inclination, blue is declination of relative orientation).


Paleointensity results and averages. Two pallasite meteorites were sampled (Esquel and Imi-
lac). Two thin slabs from each pallasite were available for study (denoted by 1, 2, respectively in
the tables below). Several consistency tests were performed and the results of these tests were in-
corporated into hierarchial averages (tables S3-4) as follows. For Total TRM, paleofield results from
the same crystal measured at different applied field values were averaged (“applied field average”).
Paleofield results from different subsamples from a single olivine crystal were averaged (“crystal
average”). Results from different crystals from a given meteorite sample were averaged (“meteorite
sample estimate”). “Meteorite averages” were determined by averaging the two meteorite sample
estimates available for each meteorite studied.




                                                                                                                                                      4
Table S1. Thellier-Coe paleointensity estimates.

                        Subsample          FT hC (µT)      T (o C) [N]       R2      f         g
                     Esquel 1 (green4)     132.4 ±5.7      400-500 [3]       0.92   0.155     0.278
                      Esquel 2 (19c)       110.7 ±5.2      400-450 [3]       0.98   0.129     0.493
                       Esquel 2 (3c)       116.0 ±5.4      410-485 [6]       0.98   0.185     0.788
                       Esquel 2 (4b)       109.6 ±7.0      410-500 [7]       0.99   0.184     0.724
                       Imilac 1 (F8)       74.4 ±6.7       400-500 [3]       0.92   0.058     0.392
                       Imilac 1 (E3)       64.9 ±4.5       400-500 [5]       0.98   0.059     0.742
                       Imilac 1 (E7)       57.9 ±7.8       400-500 [5]       0.97   0.031     0.707
                      Imilac 2 (G9)*       82.1 ±6.3       425-520 [5]       0.98   0.038     0.739
                      Imilac 2 (G12)       79.3 ±7.2       400-520 [6]       0.94   0.081     0.726

Abbreviations: FT hC , Thellier-Coe field value with 1σ uncertainty; T , temperature range of fit; N ,
number of temperature steps used in fit; f, g are fraction of NRM fit and gap factor, respectively,
from (33).   ∗   Sample omitted from averages because of high Total TRM paleointensity uncertainty
(see table S2).

                           Table S2. Total TRM paleointensity estimates.

                        Subsample          FT T RM (µT)        T (o C) [N]     ∆FT T RM −FT hC %
                     Esquel 1 (green4)      134.3 ±6.1         400-500 [3]               1
                       Esquel 2 (19c)       118.8 ±5.7         400-450 [3]               7
                       Esquel 2 (3c)        115.9 ±6.8         410-485 [3]            <-1
                       Esquel 2 (4b)        113.4 ±4.0         410-500 [3]               3
                       Imilac 1 (F8)           72.1 ±1.0       400-500 [3]               -3
                       Imilac 1   (E3)†        65.9 ±4.4       400-500 [3]               2
                       Imilac 1 (E3)‡          67.3 ±3.4       400-500 [3]               4
                       Imilac 1 (E7)           59.9 ±1.0       400-500 [3]               3
                       Imilac 2 (G9)*       84.5 ±15.5         425-520 [3]               3
                       Imilac 2 (G12)          77.7 ±2.2       400-520 [3]            -2

Abbreviations: FT T RM , Total TRM field value estimate with 1σ uncertainty; T , temperature range
of fit; N , number of temperature steps used in fit; ∆FT T RM −FT hC , difference between Total TRM
and Thellier-Coe paleointensity estimates, expressed as percent of the Thellier-Coe value.            †   60 µT
applied field;    ‡   30 µT applied field.   ∗   Sample omitted from averages because of high Total TRM
paleointensity uncertainty.




                                                           5
Table S3. Thellier-Coe hierarchical paleointensity averages.

         Subsample     FT hC (µT)         Crystal      Meteorite sample estimate             Meteorite
                                       average (µT)                    (µT)                 average (µT)
          Esquel 1
           green4      132.4 ±5.7                                      132.4                  Esquel
          Esquel 2                                                                          122.3 ±14.4
              19c      110.7 ±5.2                                  112.1 ±3.4                  (N=2)
              3c       116.0 ±5.4                                     (N=3)
              4b       109.6 ±7.0
          Imilac 1
              F8        74.4 ±6.7                                    67.9 ±9.2                 Imilac
              E3        64.9 ±4.5        61.4 ±4.9                    (N=2)                  73.6 ±8.1
              E7        57.9 ±7.8         (N=2)                                                (N=2)
          Imilac 2
              G12       79.3 ±7.2                                      79.3

Abbreviations: FT hC , Thellier-Coe field value. All averages shown with 1σ uncertainty.

     Table S4. Total TRM hierarchical paleointensity averages.

     Subsample      FT T RM (µT)     Applied field          Crystal       Meteorite sample        Meteorite
                                     average (µT)     average (µT)         estimate (µT)       average (µT)
      Esquel 1
       green4        134.3 ±6.1                                                  134.3            Esquel
      Esquel 2                                                                                  125.2 ±12.9
        19c          118.8 ±5.7                                                116.0 ±2.7         (N=2)
         3c          115.9 ±6.8                                                  (N=3)
         4b          113.4 ±4.0
      Imilac 1
         F8          72.1 ±1.0                                                 67.7 ±6.2
        E3†          65.9 ±4.4         66.6 ±1.0                                 (N=2)
        E3‡          67.3 ±3.4          (N=2)          63.3 ±4.7
         E7          59.9 ±1.0                             (N=2)                                   Imilac
      Imilac 2                                                                                   72.7 ±7.1
        G12          77.7 ±2.2                                                    77.7            (N=2)

Abbreviations: FT T RM , Total TRM field value estimate. All averages shown with 1σ uncertainty.
†   60 µT applied field;   ‡   30 µT applied field.




                                                       6
Minor high unblocking temperature magnetizations. Although the dominant natural re-
manent magnetization is removed by thermal demagnetization between 360 and 500 o C, consistent
with a taenite carrier, we note there is a very small signal (1-5% of the NRM) at demagnetization
temperatures >500 o C in some samples. On the basis of microprobe analyses (discussed below) and
potential unblocking temperatures, we consider these small signals to be carried by a fine-grained
mixture of taenite and kamacite. We further note that some samples show a small NRM and To-
tal TRM remanence increase (and subsequent decrease) at thermal demagnetization temperatures
>500 o C (cf Figure 2). This increase generally occurs over a restricted temperature range (∼100
o C),   but its exact initiation temperature varies between samples. We interpret this as reflecting ex-
change interaction between fine-grained taenite and kamacite. Because these are very minor phases
compared to the bulk magnetization, this interaction is not apparent in FORC diagrams. We also
note that small amounts of tetrataenite could be recorded at these high unblocking temperatures.
However, the reproducibility of the intensity increase seen in demagnetization of a Total TRM (see
Figure 2e) indicates that tetrataenite cannot be solely responsible for these minor magnetizations
because tetrataenite should not have survived heating to 700 o C (i.e. the temperature at which the
Total TRM was applied).


Terrestrial weathering. Unblocking temperatures similar (but not identical) to those reported
in our study have been reported by Uehara et al. (34) in weathered chondrite meteorites and
interpreted to reflect maghemite and substituted magnetite formed during terrestrial weathering,
resulting in a terrestrial magnetization overprinting an extraterrestrial signal. This was not the
case for chondrites with no or little weathering. Maghemite generally inverts after heating above
250 o C (21), and this results in irreversible magnetic behavior; this was not observed in our thermal
demagnetization experiments. Moreover, evidence for maghemite or a substituted magnetite phase
was not found during our SEM or microprobe analyses (detailed below), whereas clear evidence
for FeNi particles was identified. However, we emphasize that our analyses have been restricted to
gem-like olivine particles. Our meteorite samples were selected to have minimal weathering. Al-
though not studied here, we predict that weathered pallasite olivines do contain magnetic minerals
formed during terrestrial weathering.


SEM and Microprobe analyses of FeNi particles. Scanning electron microscopy (SEM)
analyses were conducted using a Zeiss SUPRA 40VP with EDAX spectrometer at the University
of Rochester. SEM analyses reveal FeNi inclusions that are potential remanence recorders. These
are similar to those reported in some prior studies (35-36) but differ from the tubular symplectic
inclusions studied in the Fukang pallasite (37). We observed some Cr-rich inclusions, but these
are not candidates for the major NRM carrier which demagnetizes between 360 and 500 o C. SEM
analyses of an olivine inclusion that is a candidate remanence carrier from the Esquel meteorite is
shown in fig. S3.




                                                    7
Esquel - Crystal D2, Inclusion 7




                              Maps of inclusion 7 in crystal D2
                  Si                  O                   Mg




                   FeK                FeL                 S




                   NiL                NiK                 C




Fig. S3. SEM analyses of an inclusion in olivine of the Esquel pallasite meteorite. EDAX K and
L shell shell composition maps are shown for Fe and Ni.


EDAX spectra show an absence of Si, Mg and O, indicating that the inclusion is distinct from the
olivine matrix. Sulfur-rich regions (darker grey areas of the inclusion in the SEM image) separate
concentrations of FeNi within the inclusion.
   Compositions of inclusions were further explored using a JEOL 8900 electron microprobe at
Cornell University with an accelerating voltage of 8 KeV to obtain ∼0.5 micron resolution. Electron
microprobe results reveal FeNi compositions within the inclusion (fig. S4). A pentlandite (Fe,
Ni)9 S8 standard from Manibridge, Ontario (weight percentages S: 33.01, Fe: 30.77, Co: 0.10, Ni:
36.12) was used for these analyses. Total weight percentages less than 100% in the analyses plotted
reflect the presence of elements other than Fe and Ni (mostly S). The compositions of Ni-rich
particles overlap with those of the ordered FeNi mineral tetrataenite. However, the dominant


                                                8
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body
Evidence for a Dynamo in the Main Group Pallasite Parent Body

Contenu connexe

Tendances

Chris Dube_Publications_Conference Proceedings_Patents
Chris Dube_Publications_Conference Proceedings_PatentsChris Dube_Publications_Conference Proceedings_Patents
Chris Dube_Publications_Conference Proceedings_PatentsChris Dub
 
Publication And Abstract List Dr. Deon Louw
Publication And Abstract List   Dr. Deon LouwPublication And Abstract List   Dr. Deon Louw
Publication And Abstract List Dr. Deon Louwsuresurgery
 
Resume
ResumeResume
Resumeyaliao
 

Tendances (9)

Batchelder_pub_list
Batchelder_pub_listBatchelder_pub_list
Batchelder_pub_list
 
The 2012 Nobel Laureates
The 2012 Nobel LaureatesThe 2012 Nobel Laureates
The 2012 Nobel Laureates
 
CV_Allen_Jan2016
CV_Allen_Jan2016CV_Allen_Jan2016
CV_Allen_Jan2016
 
Chris Dube_Publications_Conference Proceedings_Patents
Chris Dube_Publications_Conference Proceedings_PatentsChris Dube_Publications_Conference Proceedings_Patents
Chris Dube_Publications_Conference Proceedings_Patents
 
My papers
My papersMy papers
My papers
 
Publication And Abstract List Dr. Deon Louw
Publication And Abstract List   Dr. Deon LouwPublication And Abstract List   Dr. Deon Louw
Publication And Abstract List Dr. Deon Louw
 
Resume
ResumeResume
Resume
 
Sci am 05.2014
Sci am 05.2014Sci am 05.2014
Sci am 05.2014
 
Sci am 02.2014
Sci am 02.2014Sci am 02.2014
Sci am 02.2014
 

Similaire à Evidence for a Dynamo in the Main Group Pallasite Parent Body

Science 2011-fumagalli-1245-9
Science 2011-fumagalli-1245-9Science 2011-fumagalli-1245-9
Science 2011-fumagalli-1245-9Sérgio Sacani
 
The gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladusThe gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladusSérgio Sacani
 
The gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusThe gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusGOASA
 
Science 2011-lehner-955-8
Science 2011-lehner-955-8Science 2011-lehner-955-8
Science 2011-lehner-955-8Sérgio Sacani
 
Science 2011-tumlinson-948-52
Science 2011-tumlinson-948-52Science 2011-tumlinson-948-52
Science 2011-tumlinson-948-52Sérgio Sacani
 
Topography of northern_hemisphere_of_mercury_from_messenger_altimeter
Topography of northern_hemisphere_of_mercury_from_messenger_altimeterTopography of northern_hemisphere_of_mercury_from_messenger_altimeter
Topography of northern_hemisphere_of_mercury_from_messenger_altimeterSérgio Sacani
 
Science 2011-tripp-952-5
Science 2011-tripp-952-5Science 2011-tripp-952-5
Science 2011-tripp-952-5Sérgio Sacani
 
Color and albedo_heterogeneity_on_vesta
Color and albedo_heterogeneity_on_vestaColor and albedo_heterogeneity_on_vesta
Color and albedo_heterogeneity_on_vestaSérgio Sacani
 
Science 2012-levine-907-11
Science 2012-levine-907-11Science 2012-levine-907-11
Science 2012-levine-907-11vtsiri
 
A Mound Complex in Louisiana at 5400-5000 Years Before the Present
A Mound Complex in Louisiana at 5400-5000 Years Before the PresentA Mound Complex in Louisiana at 5400-5000 Years Before the Present
A Mound Complex in Louisiana at 5400-5000 Years Before the PresentJosé Luis Moreno Garvayo
 
Science 2011-akeson-316-7
Science 2011-akeson-316-7Science 2011-akeson-316-7
Science 2011-akeson-316-7Sérgio Sacani
 
Conlin 858 M Presentation
Conlin 858 M PresentationConlin 858 M Presentation
Conlin 858 M PresentationLuke Conlin
 
A comparative study of living cell micromechanical properties by oscillatory ...
A comparative study of living cell micromechanical properties by oscillatory ...A comparative study of living cell micromechanical properties by oscillatory ...
A comparative study of living cell micromechanical properties by oscillatory ...Angela Zaorski
 
Cv100705
Cv100705Cv100705
Cv100705spears9
 
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_ringsObservations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_ringsSérgio Sacani
 
Recent theoreritcal developments for 2D heterostructues
Recent theoreritcal developments for 2D heterostructuesRecent theoreritcal developments for 2D heterostructues
Recent theoreritcal developments for 2D heterostructuesClaudio Attaccalite
 
A 3 d view of sodium channels
A 3 d view of sodium channelsA 3 d view of sodium channels
A 3 d view of sodium channelsProsenjit Pal
 
Spectroscopic characterization vesta_mineralogy
Spectroscopic characterization vesta_mineralogySpectroscopic characterization vesta_mineralogy
Spectroscopic characterization vesta_mineralogySérgio Sacani
 

Similaire à Evidence for a Dynamo in the Main Group Pallasite Parent Body (20)

Science 2011-fumagalli-1245-9
Science 2011-fumagalli-1245-9Science 2011-fumagalli-1245-9
Science 2011-fumagalli-1245-9
 
The gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladusThe gravity field_and_interior_structure_of_enceladus
The gravity field_and_interior_structure_of_enceladus
 
The gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladusThe gravity fieldandinteriorstructureofenceladus
The gravity fieldandinteriorstructureofenceladus
 
Science 2011-lehner-955-8
Science 2011-lehner-955-8Science 2011-lehner-955-8
Science 2011-lehner-955-8
 
Science 2011-tumlinson-948-52
Science 2011-tumlinson-948-52Science 2011-tumlinson-948-52
Science 2011-tumlinson-948-52
 
Topography of northern_hemisphere_of_mercury_from_messenger_altimeter
Topography of northern_hemisphere_of_mercury_from_messenger_altimeterTopography of northern_hemisphere_of_mercury_from_messenger_altimeter
Topography of northern_hemisphere_of_mercury_from_messenger_altimeter
 
Science 2011-tripp-952-5
Science 2011-tripp-952-5Science 2011-tripp-952-5
Science 2011-tripp-952-5
 
Mellars 06(2)
Mellars 06(2)Mellars 06(2)
Mellars 06(2)
 
Color and albedo_heterogeneity_on_vesta
Color and albedo_heterogeneity_on_vestaColor and albedo_heterogeneity_on_vesta
Color and albedo_heterogeneity_on_vesta
 
Science 2012-levine-907-11
Science 2012-levine-907-11Science 2012-levine-907-11
Science 2012-levine-907-11
 
A Mound Complex in Louisiana at 5400-5000 Years Before the Present
A Mound Complex in Louisiana at 5400-5000 Years Before the PresentA Mound Complex in Louisiana at 5400-5000 Years Before the Present
A Mound Complex in Louisiana at 5400-5000 Years Before the Present
 
Science 2011-akeson-316-7
Science 2011-akeson-316-7Science 2011-akeson-316-7
Science 2011-akeson-316-7
 
Conlin 858 M Presentation
Conlin 858 M PresentationConlin 858 M Presentation
Conlin 858 M Presentation
 
A comparative study of living cell micromechanical properties by oscillatory ...
A comparative study of living cell micromechanical properties by oscillatory ...A comparative study of living cell micromechanical properties by oscillatory ...
A comparative study of living cell micromechanical properties by oscillatory ...
 
Cv100705
Cv100705Cv100705
Cv100705
 
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_ringsObservations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
Observations of ejecta_clouds_produced_by_impacts_onto_saturn_rings
 
1190
11901190
1190
 
Recent theoreritcal developments for 2D heterostructues
Recent theoreritcal developments for 2D heterostructuesRecent theoreritcal developments for 2D heterostructues
Recent theoreritcal developments for 2D heterostructues
 
A 3 d view of sodium channels
A 3 d view of sodium channelsA 3 d view of sodium channels
A 3 d view of sodium channels
 
Spectroscopic characterization vesta_mineralogy
Spectroscopic characterization vesta_mineralogySpectroscopic characterization vesta_mineralogy
Spectroscopic characterization vesta_mineralogy
 

Plus de Carlos Bella

Offshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenonOffshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenonCarlos Bella
 
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imagingRevealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imagingCarlos Bella
 
Animal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzeesAnimal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzeesCarlos Bella
 
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...Carlos Bella
 
Detection of Radio Emission from Fireballs
Detection of Radio Emission from FireballsDetection of Radio Emission from Fireballs
Detection of Radio Emission from FireballsCarlos Bella
 
Skeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscienceSkeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscienceCarlos Bella
 
Preserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt brecciasPreserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt brecciasCarlos Bella
 
An assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill craniumAn assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill craniumCarlos Bella
 
A Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsA Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsCarlos Bella
 
Fuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosionFuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosionCarlos Bella
 
Meteor Phenomena and Bodies
Meteor Phenomena and BodiesMeteor Phenomena and Bodies
Meteor Phenomena and BodiesCarlos Bella
 
The Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor ShowerThe Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor ShowerCarlos Bella
 
Physics first spectrum of ball lightning
Physics   first spectrum of ball lightningPhysics   first spectrum of ball lightning
Physics first spectrum of ball lightningCarlos Bella
 
Transient Water Vapor at Europa’s South Pole
Transient Water Vapor at Europa’s South PoleTransient Water Vapor at Europa’s South Pole
Transient Water Vapor at Europa’s South PoleCarlos Bella
 
Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...Carlos Bella
 
Broadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetectorBroadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetectorCarlos Bella
 
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-PhaseCarlos Bella
 
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...Carlos Bella
 
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...Carlos Bella
 

Plus de Carlos Bella (20)

Offshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenonOffshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenon
 
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imagingRevealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
 
Animal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzeesAnimal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzees
 
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
 
Detection of Radio Emission from Fireballs
Detection of Radio Emission from FireballsDetection of Radio Emission from Fireballs
Detection of Radio Emission from Fireballs
 
Skeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscienceSkeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscience
 
Preserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt brecciasPreserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt breccias
 
An assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill craniumAn assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill cranium
 
A Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsA Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical units
 
Fuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosionFuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosion
 
Meteor Phenomena and Bodies
Meteor Phenomena and BodiesMeteor Phenomena and Bodies
Meteor Phenomena and Bodies
 
The Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor ShowerThe Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor Shower
 
Physics first spectrum of ball lightning
Physics   first spectrum of ball lightningPhysics   first spectrum of ball lightning
Physics first spectrum of ball lightning
 
Nature12917
Nature12917Nature12917
Nature12917
 
Transient Water Vapor at Europa’s South Pole
Transient Water Vapor at Europa’s South PoleTransient Water Vapor at Europa’s South Pole
Transient Water Vapor at Europa’s South Pole
 
Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...
 
Broadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetectorBroadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetector
 
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
 
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
 

Dernier

Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 

Dernier (20)

Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 

Evidence for a Dynamo in the Main Group Pallasite Parent Body

  • 1. Evidence for a Dynamo in the Main Group Pallasite Parent Body John A. Tarduno et al. Science 338, 939 (2012); DOI: 10.1126/science.1223932 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your Downloaded from www.sciencemag.org on November 16, 2012 colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of November 16, 2012 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/338/6109/939.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2012/11/15/338.6109.939.DC1.html A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/content/338/6109/939.full.html#related This article cites 54 articles, 3 of which can be accessed free: http://www.sciencemag.org/content/338/6109/939.full.html#ref-list-1 This article has been cited by 1 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/338/6109/939.full.html#related-urls Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2012 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS.
  • 2. REPORTS 10. S. Tamura, D. C. Hurley, J. P. Wolfe, Phys. Rev. B 38, 25. Materials and methods are available as supplementary 39. Y. Meir, N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992). 1427 (1988). materials on Science Online. 40. G. Pernot et al., Nat. Mater. 9, 491 (2010). 11. T. Yao, Appl. Phys. Lett. 51, 1798 (1987). 26. M. A. Afromowitz, J. Appl. Phys. 44, 1292 (1973). 41. R. M. Costescu, D. G. Cahill, F. H. Fabreguette, 12. X. Y. Yu, G. Chen, A. Verma, J. S. Smith, Appl. Phys. Lett. 27. P. Hyldgaard, G. D. Mahan, Phys. Rev. B 56, 10754 Z. A. Sechrist, S. M. George, Science 303, 989 67, 3554 (1995). (1997). (2004). 13. W. S. Capinski et al., Phys. Rev. B 59, 8105 28. S. Tamura, Y. Tanaka, H. J. Maris, Phys. Rev. B 60, 2627 42. C. Chiritescu et al., Science 315, 351 (2007). (1999). (1999). 14. S.-M. Lee, D. G. Cahill, R. Venkatasubramanian, 29. E. S. Landry, A. J. H. McGaughey, Phys. Rev. B 79, Acknowledgments: We thank A. A. Maznev, K. A. Nelson, Appl. Phys. Lett. 70, 2957 (1997). 075316 (2009). K. C. Collins, and J. Johnson for helpful discussions. This 15. G. Chen, Phys. Rev. B 57, 14958 (1998). 30. S. Volz, J. B. Saulnier, G. Chen, P. Beauchamp, material is based on work supported as part of the Solid State 16. B. C. Daly, H. J. Maris, K. Imamura, S. Tamura, Phys. Rev. B Microelectron. J. 31, 815 (2000). Solar-Thermal Energy Conversion Center (S3TEC), an Energy 66, 024301 (2002). 31. S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, Frontier Research Center funded by the U.S. Department of 17. Y. K. Koh, Y. Cao, D. G. Cahill, D. Jena, Adv. Funct. Mater. 1861 (1987). Energy, Office of Science, Office of Basic Energy Sciences 19, 610 (2009). 32. D. A. Broido, M. Malorny, G. Birner, N. Mingo, under award DE-SC0001299/DE-FG02-09ER46577. M.N.L. was 18. E. T. Swartz, R. O. Pohl, Rev. Mod. Phys. 61, 605 D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007). partially supported by the National Science Foundation (1989). 33. K. Esfarjani, G. Chen, H. T. Stokes, Phys. Rev. B 84, Graduate Research Fellowship under grant 1122374. 19. R. Landauer, Philos. Mag. 21, 863 (1970). 085204 (2011). 20. D. Li et al., Appl. Phys. Lett. 83, 2934 (2003). 34. J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Supplementary Materials 21. P. D. Robb, A. J. Craven, Ultramicroscopy 109, 61 Lett. 106, 045901 (2011). www.sciencemag.org/cgi/content/full/338/6109/936/DC1 (2008). 35. J. Garg, N. Bonini, N. Marzari, Nano Lett. 11, 5135 Materials and Methods 22. C. A. Paddock, G. L. Eesley, J. Appl. Phys. 60, 285 (2011). Figs. S1 to S4 (1986). 36. S. Tamura, Phys. Rev. B 27, 858 (1983). References (43–57) Downloaded from www.sciencemag.org on November 16, 2012 23. D. G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004). 37. P. A. Lee, D. S. Fisher, Phys. Rev. Lett. 47, 882 (1981). 24. A. J. Schmidt, X. Chen, G. Chen, Rev. Sci. Instrum. 79, 38. C. Caroli, R. Combescot, P. Nozieres, D. Saint-James, 4 June 2012; accepted 9 October 2012 114902 (2008). J. Phys. C Solid State Phys. 4, 916 (1971). 10.1126/science.1225549 Evidence for a Dynamo in the Main teorite edge and several millimeters from the olivine/metal contact. Prior studies (18, 19) sug- gest that at these distances, heating effects due to Group Pallasite Parent Body atmospheric entry are negligible. We have observed strings of large inclusions, tens of micrometers in size (Fig. 1C), in some John A. Tarduno,1,2* Rory D. Cottrell,1 Francis Nimmo,3 Julianna Hopkins,2 Julia Voronov,1 olivines using transmitted light microscopy. Scan- Austen Erickson,1,2 Eric Blackman,2 Edward R.D. Scott,4 Robert McKinley1 ning electron microscopy (SEM) reveals isolated and strings of much smaller inclusions (≲10 mm) Understanding the origin of pallasites, stony-iron meteorites made mainly of olivine crystals (Fig. 1D) that are composed of Fe, Ni, S, and Cr and FeNi metal, has been a vexing problem since their discovery. Here, we show that pallasite (fig S3). Microprobe analyses detail submicrometer- olivines host minute magnetic inclusions that have favorable magnetic recording properties. Our sized, irregularly spaced FeNi particles within these paleointensity measurements indicate strong paleomagnetic fields, suggesting dynamo action in smaller inclusions, surrounded by troilite (fig S4). the pallasite parent body. We use these data and thermal modeling to suggest that some pallasites These metal particles are sometimes Ni rich [~51 formed when liquid FeNi from the core of an impactor was injected as dikes into the shallow to 58 weight percent (wt %) Ni] and are potential mantle of a ~200-kilometer-radius protoplanet. The protoplanet remained intact for at least stable magnetic recorders. several tens of millions of years after the olivine-metal mixing event. Olivine subsamples lacking inclusions visible to the naked eye show pseudo-single– to single- ord Rayleigh (Robert John Strutt) (1) (9) comparable with those of unshocked terres- domain magnetic hysteresis behavior (Fig. 1, E L noted the paradox posed by pallasite me- teorites: Olivine and metal seemingly should have separated into layers in their parent body. trial samples. The metal in main group pallasites is Ir poor and is thought to have originated from the residual melt fraction of a core similar in and F). In contrast, samples with visible inclu- sions have multidomain behavior. In the former case, we find only a slight anisotropy (Fig. 1G), Some models, to avoid segregation, have invoked composition to IIIAB iron meteorites (3). and first-order reversal curves (20) fail to show small metal pools throughout a parent body (2), Paleomagnetism might help to distinguish substantial magnetic interactions (Fig. 1H). Thus, but the putative scenario has remained in forma- between models for pallasite formation, but prior we further selected olivine subsamples lacking tion near a core-mantle boundary (3). There are attempts have failed to yield interpretable data. visible inclusions because they can have optimal ~50 known pallasite meteorites. Most have iso- The massive FeNi of the pallasite matrix is the properties for paleointensity determination (21). topic ratios that fall near the terrestrial mass likely culprit. This metal is similar to that com- Many meteorites have been exposed to mag- fractionation line and are called “main group” posing iron meteorites, which carries a highly netic contamination during collection (13). We pallasites (4). Olivine ranges from Fa11 to Fa20 anisotropic, soft magnetization; it is notoriously therefore first used alternating field demagne- and often occurs as centimeter-sized (Fig. 1, A poor as a paleomagnetic recorder (10, 11). Paleo- tization, which revealed removal of magnetiza- and B) crystals (5–8), with a dislocation density magnetic studies of other meteorites [for example, tions after the application of low peak fields (5 to (12–13)], however, suggest some parent bodies 10 mT). Magnetization directions stabilized after hosted dynamos. Modeling suggests bodies >80 km this pretreatment, and it was here that we started 1 Department of Earth and Environmental Sciences, University in radius could be in the regime of supercritical thermal demagnetization. We used thermal meth- of Rochester, Rochester, NY 14627, USA. 2Department of Phys- magnetic Reynolds numbers, in which large-scale ods because they best replicate the potential mag- ics and Astronomy, University of Rochester, Rochester, NY dynamo action is possible (14, 15). netization acquisition process [thermoremanent 14627, USA. 3Department of Earth and Planetary Sciences, Rather than studying bulk material, we ap- magnetization (TRM)] (21). In many meteorites, University of California, Santa Cruz, CA 95064, USA. 4Hawaii Institute for Geophysics and Planetology, University of Hawaii, plied techniques of single-silicate crystal analysis magnetic mineral alteration accompanying thermal Manoa, HI 96822, USA. (16, 17) to an investigation of the Imilac and treatment is severe (11–13). Studies of terrestrial *To whom correspondence should be addressed. E-mail: Esquel main group pallasites. We selected gem- samples indicate that inclusions in single-silicate john.tarduno@rochester.edu like olivine subsamples ≳0.5 cm from the me- crystals are less susceptible to alteration (16, 17). www.sciencemag.org SCIENCE VOL 338 16 NOVEMBER 2012 939
  • 3. REPORTS Low unblocking temperature magnetiza- pallasite olivine shows a large decrease in nat- A and B). Only very small NRM changes are tions (<360°C) observed from Esquel olivine ural remanent magnetization (NRM) and a sta- seen at higher demagnetization temperatures, likely have a viscous origin. However, the Esquel ble direction between ~360° and 500°C (Fig. 2, between 500° and 750°C. The dominant drop A B E F G H C D Downloaded from www.sciencemag.org on November 16, 2012 m Fig. 1. Magnetic character of inclusions in pallasite olivine. (A and B) Esquel and 2 m Imilac meteorite samples, respectively. (C) Large inclusions in olivine (transmitted light microscopy). (D) String of smaller inclusions (between white arrows; SEM). (E and F) Magnetic hysteresis curves for olivine. (G) Hysteresis parameter versus angle of measurement (16) and (H) First-order reversal curve plot (20) for Esquel olivine. Mr, remanent magnetization; Ms, saturation magnetization; Hcr, coercivity of remanence; Hc, coercivity. Fig. 2. Paleointensity experiments on pallasite olivine. (A) Demagnetization (calculated by comparing values at three temperature steps highlighted by of NRM of Esquel olivine (black line). (B) Orthogonal vector plot of (A); red is gray boxes). (E to H) Paleointensity data as discussed above on Imilac olivine inclination, blue is declination (orientation relative). (C) Thellier-Coe paleo- indicating paleofields of 64.9 mT (Thellier-Coe technique, 60-mT applied field) intensity data, NRM removed versus TRM gained using a 60-mT applied field and 67.3 mT (Total TRM method, 30-mT applied field). (I) An oriented section of suggests a paleofield of 110.7 mT. (D) Demagnetization of a laboratory Total the Esquel meteorite with metal removed. (J to L) Associated demagnetization TRM acquired in a 60-mT field [(A), red curve] suggests a paleofield of 118.8 mT results. 940 16 NOVEMBER 2012 VOL 338 SCIENCE www.sciencemag.org
  • 4. REPORTS in NRM suggests a taenite carrier (~50 to 55 ferences may indicate minor thermally induced ~15% of the values obtained from our first ex- wt % Ni) (21, 22), which is consistent with our alteration. Demagnetization of the Total TRM periments (tables S1 to S4). microprobe results. Ordering may be limited in allows for a second estimation of the paleofield; Olivine subsamples from the Imilac pallasite very small taenite particles within troilite inclu- this yields 118.8 T 5.7 mT. Subsamples from two show similar behavior (Fig. 2, E to H). Thellier- sions (23). additional crystals from the same Esquel meteor- Coe experiments on two separate samples yield Thellier-Coe (23, 24) paleointensity data (Fig. ite sample yield similar values (116.0 T 5.4 mT, 67.9 T 9.2 mT and 79.3 T 7.2 mT (paleointensities 2C) of a typical sample suggest that a TRM was 109.6 T 7.0 mT, Thellier-Coe method; 115.0 T 6.9 based on Total TRM experiments are 67.7 T 6.2 imparted in a paleofield of 110.7 T 5.2 mT. To mT, 113.4 T 4.0 mT, Total TRM method). As a and 77.7 T 2.2 mT, respectively). Total TRM ex- further examine the nature of the NRM, we im- further consistency test, we studied a second Esquel periments using two different applied field values parted a Total TRM to the sample by heating at pallasite sample. We observed nearly identical yield consistent paleointensities (table S2), sug- 700°C in the presence of a 60-mT field. The de- demagnetization behavior, with Thellier-Coe and gesting no applied field dependence. magnetization curve of the Total TRM is similar Total TRM paleointensity estimates of 132.4 T The unblocking temperatures we have ob- to that of the initial NRM (Fig. 2A); small dif- 5.7 mT and 134.3 T 6.1 mT, respectively, within served, viewed in the context provided by our microprobe results, are inconsistent with terres- trial weathering (23). Also, our experiments dem- onstrate that the dominant magnetization is not an artifact of kamacite-taenite interaction discussed in the study of iron meteorites (10). Our paleo- Downloaded from www.sciencemag.org on November 16, 2012 intensity measurements are on unoriented olivine crystals. In some meteorites, subsamples have been found to have different magnetic directions, precluding the acquisition of a TRM after the meteorite mass had assembled (11–13). In con- trast, at unblocking temperatures >360°C, we ob- served consistent directions from oriented pallasite olivine crystals (Fig. 2, I to L). The average field value obtained from the Esquel meteorite (122.3 T 14.4 mT, Thellier-Coe method; 125.2 T 12.9 mT, Total TRM method) is somewhat larger than those observed on Earth’s surface but somewhat weaker than Earth’s field calculated at the core-mantle boundary (for ex- ample, the radial component was typically 200 to 600 mT in 1990) (25). The average value from the Imilac meteorite (73.6 T 8.1 mT, Thellier-Coe method; 72.7 T 7.1 mT, Total TRM method) is comparable with Earth’s surface field. These rela- tively high intensities suggest an internally gen- erated magnetic field in the pallasite parent body because other sources create fields orders of mag- nitude weaker (13). We interpret these data as recording dynamo action after the injection of metal into the olivine crystals. The fracture path- ways for the metal injection subsequently healed, and the inclusions cooled below the Curie tem- perature of taenite. This injection probably coin- cided with an impact creating the larger-scale olivine-metal mixing. The absolute age of the mixing event is un- known, but Mn-Cr systematics provide an oldest age bound of 4.558 billion years ago (26). Fission- track model ages suggest that the magnetization Fig. 3. Spherically symmetric three-layer conductive asteroid cooling model (23). (Left) Evolution of we have measured may have set in as late as 4.4 temperature as a function of radius and time. The model consists of an insulating regolith, a silicate to 4.2 billion years ago (27), values that are con- mantle, and a metallic core. The initial condition is 1600 K everywhere. The core remains isothermal sistent with an early mixing event followed by (liquid) until it starts to solidify at 1200 K and thereafter cools conductively. The mantle cools conductively slow cooling (23). throughout. The 800 K and 633 K isotherms correspond to taenite diffusion recording cooling rate and the lowest paleomagnetic unblocking temperature defining the characteristic magnetization, respectively. Our data thus imply that the parent body must The horizontal dashed line indicates the core mantle boundary, and the vertical dashed line indicates the have retained a partially liquid iron core (to permit time at which core solidification is complete. (Right) Cooling rate at 800 K as a function of distance. The a dynamo) until the pallasites cooled to ~360°C, dark shaded box indicates the assumed megaregolith thickness (23). The light shaded box is the 2 to 9 K and therefore they cannot have been too close per million years cooling rate estimate from pallasite metal experiments (28). The solid and dashed lines to the core-mantle boundary. The magnetic evi- represent model cooling rates with and without a megaregolith, respectively. The core was still convecting dence is consistent with, and independent of, the (not solid) when the pallasites reached 633 K. So, the pallasites must be shallower than the depth diversity of main group pallasite cooling rates indicated by the dotted line. For a 200-km-radius body, there is a region at radius (r) = ~160 km at which that previously have been used to argue (28) both the cooling rate and the paleomagnetic constraint are satisfied. against a core-mantle boundary origin. A liquid www.sciencemag.org SCIENCE VOL 338 16 NOVEMBER 2012 941
  • 5. REPORTS core requires a temperature exceeding ~1200 K bined with a time-dependent dynamo field. In 12. S. M. Cisowski, in Geomagnetism, J. A. Jacobs, Ed. (29), so assuming conductive cooling (23), the any event, generation of a strong, magnetic field (Academic Press, New York, 1987), vol. 2, pp. 525–560. 13. B. P. Weiss, J. Gattacceca, S. Stanley, P. Rochette, pallasites we have investigated were in the top by a dynamo at least several tens of millions of U. R. Christensen, Space Sci. Rev. 152, 341 (2010). ~60% of the protoplanet mantle. Cooling rates at years after olivine/metal mixing is required by 14. F. Nimmo, Geophys. Res. Lett. 36, L10201 (2009). 800 K (the diffusion temperature of taenite) in our data. 15. B. P. Weiss et al., Science 322, 713 (2008). this depth range in a 200-km-radius body match We recall that the pallasite metal is Ir poor, 16. J. A. Tarduno, R. D. Cottrell, A. V. Smirnov, Rev. Geophys. 44, RG1002 (2006). estimated pallasite metal cooling rates (28) of 2 to implicating a fractionated source. This require- 17. J. A. Tarduno, R. D. Cottrell, M. K. Watkeys, D. Bauch, 9 K per million years (Fig. 3). Conversely, in a ment together with the likely position of the pal- Nature 446, 657 (2007). larger 600-km-radius body the pallasites would lasites in the protoplanet and the time constraints 18. J. F. Lovering, L. G. Parry, J. C. Jaeger, Geochim. have to have resided in the near-surface mega- on when the dynamo was active suggest that the Cosmochim. Acta 19, 156 (1960). 19. T. Nagata, Phys. Earth Planet. Inter. 20, 324 (1979). regolith, which is inconsistent with their unshocked pallasite metal was derived from the liquid iron 20. A. P. Roberts, C. R. Pike, K. L. Verosub, J. Geophys. Res. state, whereas in a smaller 100-km-radius body, core of a differentiated asteroid impactor (fig. S7) 105, 28461 (2000). the cooling rate is too fast (Fig. 3). Compositional that struck before the Curie isotherm was reached. 21. D. J. Dunlop, Ö Özdemir, Rock Magnetism, . convection in the core (14) can drive the dynamo, The metal could have been introduced into a Fundamentals and Frontiers (Cambridge Univ. Press, Cambridge, 1997). and impacts can provide additional short-term dunite mantle as dike-like intrusions, similar to 22. Y.-Y. Chuang, Y. A. Chang, R. Schmid, J.-C. Lin, stirring (30). For a 200-km-radius body, pressure impact melt dikes seen in terrestrial impact struc- Metall. Trans. A 17, 1361 (1986). effects on the magnetization are likely minor (23). tures (31). This mechanism provides a solution to 23. Materials and methods are available as supplementary These conclusions on parent body size assume the the pallasite paradox because dikes propagating materials on Science Online. Downloaded from www.sciencemag.org on November 16, 2012 pallasites were not remagnetized during impact through relatively cold olivine will undergo an ini- 24. R. S. Coe, J. Geomag. Geoelectr. 19, 157 (1967). 25. A. Jackson, A. R. T. Jonkers, M. R. Walker, Philos. Trans. R. heating subsequent to the olive-metal mixing tial phase of rapid cooling, freezing in the olivine- Soc. London A 358, 957 (2000). event. If such reheating occurred, parent bodies metal pallasite structure, before cooling through 26. G. W. Lugmair, A. Shukolyukov, Geochim. Cosmochim. ranging from 100- to 200-km radius could satisfy the taenite Curie temperature. The differentiated Acta 62, 2863 (1998). the data, and the pallasites could have formed pallasite parent body may have been formed in 27. Y. V. Bondar, V. P. Perelygin, Radiat. Meas. 36, 367 (2003). deeper in the parent body, within 10% of the the terrestrial planet-forming zone (32). If so, the 28. J. Yang, J. I. Goldstein, E. R. D. Scott, Geochim. core-mantle boundary. However, we view this as timing of dynamo action suggests that the pal- Cosmochim. Acta 74, 4471 (2010). improbable because such reheating is inconsist- lasite protoplanet was one of the few, late survi- 29. A. Ghosh, H. Y. McSween Jr., Icarus 134, 187 (1998). ent with the low observed pallasite shock state (23). vors in this zone before a cataclysmic collision 30. M. Le Bars, M. A. Wieczorek, Ö Karatekin, D. Cébron, . M. Laneuville, Nature 479, 215 (2011). The factor of ~2 difference between Esquel that scattered pallasite fragments from a position 31. W. U. Reimold, R. L. Gibson, Chem. Erde 66, 1 (2006). and Imilac paleointensity estimates could indi- closer to the Sun outward to the asteroid belt. 32. W. F. Bottke, D. Nesvorný, R. E. Grimm, A. Morbidelli, cate different positions within the protoplanet. For D. P. O’Brien, Nature 439, 821 (2006). instance, the Esquel and Imilac meteorites could References and Notes 1. L. Rayleigh, Proc. R. Soc. London Ser. A Math. Phys. Sci. Acknowledgments: We thank J. Hunt for assistance with have resided at original depths of 40 km and 179, 386 (1942). microprobe analyses. This work was supported by NASA 10 km, respectively, within a 200-km-radius body, 2. H. C. Urey, Mon. Not. R. Astron. Soc. 131, 199 (1966). grant NNX11AG66G and NSF grants EAR0619467 and assuming a dipolar field. In this case, the Curie 3. J. T. Wasson, B. G. Choi, Geochim. Cosmochim. Acta 67, EAR1015269 (to J.A.T.) Paleomagnetic data are included isotherm of taenite would be reached at 180 mil- 3079 (2003). in the supplementary materials. lion and 52 million years after the body formed 4. R. N. Clayton, Space Sci. Rev. 106, 19 (2003). 5. E. R. D. Scott, Geochim. Cosmochim. Acta 41, 349 (1977). Supplementary Materials for the Esquel and Imilac pallasites, respectively 6. P. R. Buseck, Geochim. Cosmochim. Acta 41, 711 (1977). www.sciencemag.org/cgi/content/full/338/6109/939/DC1 (Fig. 3). The heat fluxes at the core at these times 7. D. W. Mittlefehldt, Earth Planet. Sci. Lett. 51, 29 (1980). Materials and Methods are 33 and 0.8 mW m−2, respectively; the former 8. A. M. Davis, E. J. Olsen, Nature 353, 637 (1991). Figs. S1 to S7 at least is sufficient to drive a dynamo if com- 9. T. Matsui, S. Karato, T. Yokokura, Geophys. Res. Lett. 7, Tables S1 to S5 1007 (1980). References (33–65) positional convection occurs (14). However, the 10. A. Brecher, L. Albright, J. Geomag. Geoelectr. 29, 379 (1977). paleointensity difference could also be explained 11. T. Nagata, Mem. Natl. Inst. Polar Res. Spec. Issue 8, 240 27 April 2012; accepted 5 October 2012 by a smaller difference in original depth com- (1978). 10.1126/science.1223932 Evidence for Early Hafted Middle Pleistocene, and genetic studies situ- ate the divergence of H. sapiens and Neandertal lineages at between ~800 and 400 thousand years Hunting Technology ago (ka) (3). Because Middle Stone Age (MSA) hominins and Neandertals probably both had Jayne Wilkins,1* Benjamin J. Schoville,2 Kyle S. Brown,2,3 Michael Chazan1 stone-tipped hunting equipment, it is possible that H. heidelbergensis also possessed this form of Hafting stone points to spears was an important advance in weaponry for early humans. Multiple lines technology. of evidence indicate that ~500,000-year-old stone points from the archaeological site of Kathu Pan By ~780 ka, hominins were regularly killing 1 (KP1), South Africa, functioned as spear tips. KP1 points exhibit fracture types diagnostic of impact. large game, based on evidence of repeated in situ Modification near the base of some points is consistent with hafting. Experimental and metric data processing of complete carcasses of fallow deer at indicate that the points could function well as spear tips. Shape analysis demonstrates that the smaller Gesher Benot Ya’kov in Israel (4). At the English retouched points are as symmetrical as larger retouched points, which fits expectations for spear tips. 1 The distribution of edge damage is similar to that in an experimental sample of spear tips and is Department of Anthropology, University of Toronto, 19 Russell inconsistent with expectations for cutting or scraping tools. Thus, early humans were manufacturing Street, Toronto, Ontario M5S 2S2, Canada. 2Institute of Human hafted multicomponent tools ~200,000 years earlier than previously thought. Origins, School of Human Evolution and Social Change, Post Office Box 872402, Arizona State University, Tempe, AZ 85287-4101, USA. 3Department of Archaeology, University of ehavioral traits common to both modern last common ancestor, commonly held to be B Cape Town, Rondebosch 7701, South Africa. humans and Neandertals could repre- Homo heidelbergensis (1, 2). The fossil record *To whom correspondence should be addressed. E-mail: sent shared traits inherited from their for H. heidelbergensis begins during the early jayne.wilkins@utoronto.ca 942 16 NOVEMBER 2012 VOL 338 SCIENCE www.sciencemag.org
  • 6. www.sciencemag.org/cgi/content/full/338/6109/939/DC1 Supplementary Material for Evidence for a Dynamo in the Main Group Pallasite Parent Body John A. Tarduno,* Rory D. Cottrell, Francis Nimmo, Julianna Hopkins, Julia Voronov, Austen Erickson, Eric Blackman, Edward R.D. Scott, Robert McKinley *To whom correspondence should be addressed. E-mail: john.tarduno@rochester.edu Published 16 November 2012, Science 338, 939 (2012) DOI: 10.1126/science.1223932 This PDF file includes: Materials and Methods Figs. S1 to S7 Tables S1 to S5 References (33–65)
  • 7. Tarduno et al., Evidence for a dynamo in the main group pallasite parent body Supporting Online Material Materials and Methods Magnetic hysteresis data were collected using the University of Rochester Princeton Measure- ments Corporation Alternating Gradient Force Magnetometer. Values for the examples shown in Fig. 1 of the main text are as follows: Hcr , Hc and Mr /Ms are 154.6 Oe, 200.0 Oe and 0.3911 respectively for the Esquel specimen, and 111.1 Oe, 151.9 Oe and 0.3714, respectively, for the Imilac specimen. For all remanence measurements we select mm-sized gem-like olivine subsam- ples, lacking any surface discoloration that might be residual contamination from the surrounding pallasite metal (we note that our initial tests revealed that samples with visible inclusions from olivine crystal rims altered rapidly when heated). Obtaining suitable samples generally required cleaning crystals in distilled water. A weak acid (HCl) was used on some crystals to remove surface contamination. Remanence measurements were made with a 2G Enterprises 3-component 755R DC SQUID magnetometer and a 2G small (6.3 mm) bore 3-component DC SQUID magnetometer in the University of Rochester’s magnetically shielded room (ambient field <200 nT). CO2 laser heating and cooling was conducted (in air) in additional magnetic shields to produce a magnetically null environment. Olivine samples 2-3 millimeters in size were mounted on the end of quartz tubes with Omega cement (both of which are routinely measured to ensure the blank is in the 10−13 to 10−14 A m2 range). The sample holder also served as the target for CO2 laser heating (the 7 mm diameter laser beam applied at peak temperature for ∼1 minute ensures uniform heating of the crystal; heatings at each Thellier-Coe paleointensity step were for 3 minutes). The natural remanent magnetization of approximately 15% of the clean crystal subsamples measured were in the 10−9 to 10−10 A m2 range; these are the focus of our studies as the magnetizations are well within the measuring range of the DC SQUID magnetometers throughout the demagnetization procedures. The success rate for crystals having these intensities (yielded interpretable paleointensity results) was ∼50%. This compares well with paleointensity success rates from Thellier-Coe experiments on whole-rock terrestrial basalts, which often average 20% (or less). Thellier-Coe (24) paleointensity data consist of demagnetization of the NRM (field-off step), followed by the reheating of the sample at the same temperature in a known applied field (field-on step). We use orthogonal vector plots of the field-off steps to determine the optimal tempera- ture range to calculate paleointensities. In this study, we typically use a lowermost Thellier-Coe unblocking temperature for paleointensity calculation that is slightly higher than the lowest un- blocking temperature where we believe a primary magnetization is held (i.e. 360 o C). This approach is conservative, and aimed to avoid any influence of magnetizations held at lower unblocking tem- peratures. For consistency, we use this same temperature range in determining paleointensity from Total TRM data (see below), although we note that some minor alteration might be expected given the cumulative time at elevated temperature. 1
  • 8. Heatings were minimized by collecting Thellier-Coe paleointensity data only in the temperature range where orthogonal vector plots show univectorial decay. An applied field of 60 µT was used for all Thellier-Coe measurements. After NRM demagnetization and collection of Thellier-Coe data, a Total TRM was applied. Using a CO2 laser, samples were heated to 700 o C and then cooled in the presence of a field over a 10 minute time span. The Total TRM was subsequently stepwise demagnetized using the CO2 laser. An applied field of 60 µT was used in the collection of all initial Total TRM data. After demagnetization of the first Total TRM, subsample Imilac E3 was given a second Total TRM in the presence of a 30 µT field (and subsequently demagnetized with a CO2 laser) to check for any potential applied field dependence on paleointensity. To test for consistency in magnetic directions, an oriented section 1-mm thick was prepared. Metal was etched away, leaving several mutually oriented gem-like olivine crystals, which we sub- sequently separated (maintaining orientation) and thermally demagnetized using the CO2 laser. SOM Text Paleointensity selection criteria. Examples of accepted results are shown in Figure 2 of the main text. Two additional examples of accepted results are included here (fig. S1). Results of Thellier- Coe and Total TRM paleointensity experiments are reported in tables S1-2. Values are judged acceptable if Thellier-Coe paleointensity and Total TRM paleofield estimates are consistent within 15% (see table S2). The uncertainty in the individual Thellier-Coe and Total TRM paleointensity estimates must be ≤15% Here we use demagnetization of a Total TRM to assess alteration because it can readily detect (and in our case exclude) whole-scale transformations with heating seen in some FeNi magnetic carriers in meteorites (10). Although our heating times using the CO2 laser are very rapid compared to those of standard ovens used in paleomagnetism, we note that at the end of our experiments a specimen has still been exposed to elevated temperatures for a cumulative time exceeding 2 hours. We forgo pTRM checks (33) which, if applied, would have resulted in even longer cumulative times at elevated temperature. The Total TRM data also aid in the interpretation of magnetizations observed at high unblocking temperatures. For example, some Esquel olivine specimens acquire additional partial TRMs after the temperature at which the NRM appears to have been completely demagnetized. This is expressed as a flattening of NRM/TRM data (Fig. 2C), which in itself might suggest that a very low (or null) field is recorded at high unblocking temperatures. However, demagnetization of a Total TRM reveals only a minor TRM in this same temperature interval (Fig. 2D) suggesting that increases in partial TRM at high temperatures reflect either minor alteration and/or the influence of minor, and more complex, magnetic phases (see discussion in “Minor high unblocking temperature magnetizations” below). Several factors contribute to the cause of unsuccessful experiments. The NRM intensity of some samples decreased rapidly on AF demagnetization to levels after which measurement with the SQUID magnetometers through an entire paleointensity run was no longer viable. The main cause of unsuccessful samples that did not display such AF demagnetization characteristics appears 2
  • 9. to be thermally-induced alteration. This was manifested by either a scattered NRM demagnetiza- tion pattern (fig S2A,B) and/or a Total TRM curve that differed markedly from that of the NRM demagnetization (fig S2B,C). N,Up C 15 A 100 B 410 NRM (x 10-11 A m2) 90 Esquel 360 10 80 410 Intensity x10-11 A m2 70 W E NRM 5 60 500 109.6 T 0 50 0 5 10 40 TRM (x 10-11 A m2) S,Down 30 Total TRM D 100 20 410 10 80 Intensity x10-11 A m2 0 60 0 100 200 300 400 500 600 700 800 o 40 Temperature C 20 113.4 T 0 350 400 450 500 Temperature oC E F N,Up G 1 Imilac W E 400 NRM (x 10-11 A m2) 400 Intensity x10-11 A m2 320 10 250 500 57.9 T S, Down 0 0 1 5 TRM (x 10-11 A m2) H 3 Intensity x10-11 A m2 400 500 2 0 0 200 400 600 800 Temperature oC 1 59.9 T 0 350 400 450 500 Temperature oC Fig. S1. Additional examples of successful paleointensity experiments on pallasite olivine. (A) Demagnetization of natural remanent magnetization (NRM) of Esquel olivine (black line). (B) Orthogonal vector plot of (A), red is inclination, blue is declination (orientation relative). (C) Thellier-Coe paleointensity data, NRM removed versus thermoremanent magnetization (TRM) gained using a 60 µT applied field suggests a paleofield of 109.6 µT. (D) Demagnetization of a laboratory Total TRM acquired in a 60 µT field (red curve in (A)) suggests a paleofield of 113.4 µT (calculated by comparing values at three temperature steps highlighted by grey boxes). (E-H) Paleointensity data as discussed above on Imilac olivine indicating paleofields of 57.9 µT (Thellier- Coe technique, 60 µT applied field) and 59.9 µT (Total TRM method, 60 µT applied field). 3
  • 10. A 14 B 14 12 12 Intensity (x10 −11 A m2) Intensity (x10−11 A m2) 10 10 8 8 6 6 4 4 2 2 0 0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 o Temperature C Temperature oC N N W E W E S S C 80 N 70 60 Intensity (x10−11 A m2) 50 40 30 20 W E 10 S 0 0 100 200 300 400 500 600 700 800 Temperature oC Fig. S2. Examples of paleointensity results that did not meet selection criteria. Intensity versus temperature plots show natural remanent magnetization (NRM) decay (A,B,C) (black) and Total Thermoremanent Magnetization decay (B,C) (red). Orthogonal vector plots are shown for NRM demagnetization (red is inclination, blue is declination of relative orientation). Paleointensity results and averages. Two pallasite meteorites were sampled (Esquel and Imi- lac). Two thin slabs from each pallasite were available for study (denoted by 1, 2, respectively in the tables below). Several consistency tests were performed and the results of these tests were in- corporated into hierarchial averages (tables S3-4) as follows. For Total TRM, paleofield results from the same crystal measured at different applied field values were averaged (“applied field average”). Paleofield results from different subsamples from a single olivine crystal were averaged (“crystal average”). Results from different crystals from a given meteorite sample were averaged (“meteorite sample estimate”). “Meteorite averages” were determined by averaging the two meteorite sample estimates available for each meteorite studied. 4
  • 11. Table S1. Thellier-Coe paleointensity estimates. Subsample FT hC (µT) T (o C) [N] R2 f g Esquel 1 (green4) 132.4 ±5.7 400-500 [3] 0.92 0.155 0.278 Esquel 2 (19c) 110.7 ±5.2 400-450 [3] 0.98 0.129 0.493 Esquel 2 (3c) 116.0 ±5.4 410-485 [6] 0.98 0.185 0.788 Esquel 2 (4b) 109.6 ±7.0 410-500 [7] 0.99 0.184 0.724 Imilac 1 (F8) 74.4 ±6.7 400-500 [3] 0.92 0.058 0.392 Imilac 1 (E3) 64.9 ±4.5 400-500 [5] 0.98 0.059 0.742 Imilac 1 (E7) 57.9 ±7.8 400-500 [5] 0.97 0.031 0.707 Imilac 2 (G9)* 82.1 ±6.3 425-520 [5] 0.98 0.038 0.739 Imilac 2 (G12) 79.3 ±7.2 400-520 [6] 0.94 0.081 0.726 Abbreviations: FT hC , Thellier-Coe field value with 1σ uncertainty; T , temperature range of fit; N , number of temperature steps used in fit; f, g are fraction of NRM fit and gap factor, respectively, from (33). ∗ Sample omitted from averages because of high Total TRM paleointensity uncertainty (see table S2). Table S2. Total TRM paleointensity estimates. Subsample FT T RM (µT) T (o C) [N] ∆FT T RM −FT hC % Esquel 1 (green4) 134.3 ±6.1 400-500 [3] 1 Esquel 2 (19c) 118.8 ±5.7 400-450 [3] 7 Esquel 2 (3c) 115.9 ±6.8 410-485 [3] <-1 Esquel 2 (4b) 113.4 ±4.0 410-500 [3] 3 Imilac 1 (F8) 72.1 ±1.0 400-500 [3] -3 Imilac 1 (E3)† 65.9 ±4.4 400-500 [3] 2 Imilac 1 (E3)‡ 67.3 ±3.4 400-500 [3] 4 Imilac 1 (E7) 59.9 ±1.0 400-500 [3] 3 Imilac 2 (G9)* 84.5 ±15.5 425-520 [3] 3 Imilac 2 (G12) 77.7 ±2.2 400-520 [3] -2 Abbreviations: FT T RM , Total TRM field value estimate with 1σ uncertainty; T , temperature range of fit; N , number of temperature steps used in fit; ∆FT T RM −FT hC , difference between Total TRM and Thellier-Coe paleointensity estimates, expressed as percent of the Thellier-Coe value. † 60 µT applied field; ‡ 30 µT applied field. ∗ Sample omitted from averages because of high Total TRM paleointensity uncertainty. 5
  • 12. Table S3. Thellier-Coe hierarchical paleointensity averages. Subsample FT hC (µT) Crystal Meteorite sample estimate Meteorite average (µT) (µT) average (µT) Esquel 1 green4 132.4 ±5.7 132.4 Esquel Esquel 2 122.3 ±14.4 19c 110.7 ±5.2 112.1 ±3.4 (N=2) 3c 116.0 ±5.4 (N=3) 4b 109.6 ±7.0 Imilac 1 F8 74.4 ±6.7 67.9 ±9.2 Imilac E3 64.9 ±4.5 61.4 ±4.9 (N=2) 73.6 ±8.1 E7 57.9 ±7.8 (N=2) (N=2) Imilac 2 G12 79.3 ±7.2 79.3 Abbreviations: FT hC , Thellier-Coe field value. All averages shown with 1σ uncertainty. Table S4. Total TRM hierarchical paleointensity averages. Subsample FT T RM (µT) Applied field Crystal Meteorite sample Meteorite average (µT) average (µT) estimate (µT) average (µT) Esquel 1 green4 134.3 ±6.1 134.3 Esquel Esquel 2 125.2 ±12.9 19c 118.8 ±5.7 116.0 ±2.7 (N=2) 3c 115.9 ±6.8 (N=3) 4b 113.4 ±4.0 Imilac 1 F8 72.1 ±1.0 67.7 ±6.2 E3† 65.9 ±4.4 66.6 ±1.0 (N=2) E3‡ 67.3 ±3.4 (N=2) 63.3 ±4.7 E7 59.9 ±1.0 (N=2) Imilac Imilac 2 72.7 ±7.1 G12 77.7 ±2.2 77.7 (N=2) Abbreviations: FT T RM , Total TRM field value estimate. All averages shown with 1σ uncertainty. † 60 µT applied field; ‡ 30 µT applied field. 6
  • 13. Minor high unblocking temperature magnetizations. Although the dominant natural re- manent magnetization is removed by thermal demagnetization between 360 and 500 o C, consistent with a taenite carrier, we note there is a very small signal (1-5% of the NRM) at demagnetization temperatures >500 o C in some samples. On the basis of microprobe analyses (discussed below) and potential unblocking temperatures, we consider these small signals to be carried by a fine-grained mixture of taenite and kamacite. We further note that some samples show a small NRM and To- tal TRM remanence increase (and subsequent decrease) at thermal demagnetization temperatures >500 o C (cf Figure 2). This increase generally occurs over a restricted temperature range (∼100 o C), but its exact initiation temperature varies between samples. We interpret this as reflecting ex- change interaction between fine-grained taenite and kamacite. Because these are very minor phases compared to the bulk magnetization, this interaction is not apparent in FORC diagrams. We also note that small amounts of tetrataenite could be recorded at these high unblocking temperatures. However, the reproducibility of the intensity increase seen in demagnetization of a Total TRM (see Figure 2e) indicates that tetrataenite cannot be solely responsible for these minor magnetizations because tetrataenite should not have survived heating to 700 o C (i.e. the temperature at which the Total TRM was applied). Terrestrial weathering. Unblocking temperatures similar (but not identical) to those reported in our study have been reported by Uehara et al. (34) in weathered chondrite meteorites and interpreted to reflect maghemite and substituted magnetite formed during terrestrial weathering, resulting in a terrestrial magnetization overprinting an extraterrestrial signal. This was not the case for chondrites with no or little weathering. Maghemite generally inverts after heating above 250 o C (21), and this results in irreversible magnetic behavior; this was not observed in our thermal demagnetization experiments. Moreover, evidence for maghemite or a substituted magnetite phase was not found during our SEM or microprobe analyses (detailed below), whereas clear evidence for FeNi particles was identified. However, we emphasize that our analyses have been restricted to gem-like olivine particles. Our meteorite samples were selected to have minimal weathering. Al- though not studied here, we predict that weathered pallasite olivines do contain magnetic minerals formed during terrestrial weathering. SEM and Microprobe analyses of FeNi particles. Scanning electron microscopy (SEM) analyses were conducted using a Zeiss SUPRA 40VP with EDAX spectrometer at the University of Rochester. SEM analyses reveal FeNi inclusions that are potential remanence recorders. These are similar to those reported in some prior studies (35-36) but differ from the tubular symplectic inclusions studied in the Fukang pallasite (37). We observed some Cr-rich inclusions, but these are not candidates for the major NRM carrier which demagnetizes between 360 and 500 o C. SEM analyses of an olivine inclusion that is a candidate remanence carrier from the Esquel meteorite is shown in fig. S3. 7
  • 14. Esquel - Crystal D2, Inclusion 7 Maps of inclusion 7 in crystal D2 Si O Mg FeK FeL S NiL NiK C Fig. S3. SEM analyses of an inclusion in olivine of the Esquel pallasite meteorite. EDAX K and L shell shell composition maps are shown for Fe and Ni. EDAX spectra show an absence of Si, Mg and O, indicating that the inclusion is distinct from the olivine matrix. Sulfur-rich regions (darker grey areas of the inclusion in the SEM image) separate concentrations of FeNi within the inclusion. Compositions of inclusions were further explored using a JEOL 8900 electron microprobe at Cornell University with an accelerating voltage of 8 KeV to obtain ∼0.5 micron resolution. Electron microprobe results reveal FeNi compositions within the inclusion (fig. S4). A pentlandite (Fe, Ni)9 S8 standard from Manibridge, Ontario (weight percentages S: 33.01, Fe: 30.77, Co: 0.10, Ni: 36.12) was used for these analyses. Total weight percentages less than 100% in the analyses plotted reflect the presence of elements other than Fe and Ni (mostly S). The compositions of Ni-rich particles overlap with those of the ordered FeNi mineral tetrataenite. However, the dominant 8