SlideShare une entreprise Scribd logo
1  sur  8
Télécharger pour lire hors ligne
Reports
excitation of atmospheric species, such
as O2, O and H2O. To subtract the light
reflected from the surface, we generated model spectral images by convolving normalized inverted visible images
with a solar UV spectrum (15). Whereas the surface reflectance corrected
1,2
2
1
Lorenz Roth, *† Joachim Saur, † Kurt D. Retherford, Darrell F.
Lyman-α brightness is mostly conStrobel,3,4 Paul D. Feldman,4 Melissa A. McGrath,5 Francis Nimmo6
sistent with a zero signal for the 1999
and November 2012 observations, a
1
Southwest Research Institute, San Antonio, TX, USA. 2Institute of Geophysics and Meteorology, University
3
pronounced 400-600 R (16) region is
of Cologne, Germany. Department of Earth and Planetary Science, The Johns Hopkins University,
found above the limb near the south
Baltimore, MD, USA. 4Department of Physics and Astronomy, The Johns Hopkins University, Baltimore,
pole in the residual Lyman-α emission
MD, USA. 5NASA Marshall Space Flight Center, Huntsville, AL, USA. 6Department of Earth and Planetary
in the December 2012 image (Fig. 1I).
Sciences, University of California Santa Cruz, CA, USA.
The residual atmospheric oxygen
*Corresponding author. E-mail: lorenz.roth@swri.edu
emissions at 130.4 nm and 135.6 nm in
†These authors contributed equally to this work.
contrast cover most of Europa’s disk
(Fig. 1, J to O). The 135.6/130.4 ratios
In November and December 2012 the Hubble Space Telescope (HST) imaged
of 1.6 ± 0.1 (both 1999 and November
Europa’s ultraviolet emissions in the search for vapor plume activity. We report
2012) and 2.1 ± 0.2 (December 2012)
statistically significant coincident surpluses of hydrogen Lyman-α and oxygen
are consistent with previous measureOI130.4 nm emissions above the southern hemisphere in December 2012. These
ments and an O2 atmosphere with a low
emissions are persistently found in the same area over ~7 hours, suggesting
mixing ratio of O (10, 11). The oxygen
atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of
aurora morphologies undergo considerwater vapor with line-of-sight column densities of about 1020 m−2. Nondetection in
able variations during the ~7 hours of
November and in previous HST images from 1999 suggests varying plume activity
all observations (Fig. 2 and figs. S1 and
that might depend on changing surface stresses based on Europa’s orbital phases.
S2). Bright OI135.6 nm patches are
The plume was present when Europa was near apocenter and not detected close to
found close to the poles, which appear
its pericenter, in agreement with tidal modeling predictions.
to rock toward and away from Jupiter in
correlation with the varying magnetic
field orientation at Europa. The
Europa’s exceptional surface morphology suggests the existence of a
OI130.4 nm aurora pattern roughly resembles the OI135.6 nm pattern
layer of liquid water under the icy crust (1, 2), which has been confirmed
independently by magnetometer measurements (3). Despite signs of (cf. I and N in figs. S1 and S2, respectively) as expected if both OI mulactive resurfacing in chaos terrains (4) and the existence of a subsurface tiplets originate from electron-impact dissociated O2. Apparent deviaocean, current geologic activity has not been observed directly in Voy- tions of the OI130.4 nm morphology from the OI135.6 emission can be
ager and Galileo observations (2, 5, 6) or in any other data. Europa also attributed in part to the inhomogeneity of the higher surface reflectance
possesses a tenuous atmosphere generated by sputtering and radiolysis at 130.4 nm. This becomes most apparent in the combined images (Fig.
(7–9) that was detected in 1995 through HST ultraviolet (UV) observa- 1, J to L), because the time-variable atmospheric contributions are
tions of oxygen emissions at 130.4 nm and 135.6 nm (10, 11). Spatially smoothed through the superposition. The generally patchy OI130.4 nm
revolved images of these atmospheric emissions obtained by the HST morphology is additionally affected by the low signal-to-noise ratio of
Space Telescope Imaging Spectrograph (STIS) revealed an irregular the 130.4 nm emission (15).
We focus our analysis on the emission above the limb of Europa,
emission pattern at the two oxygen multiplets, which originates from an
which is only marginally influenced by the surface reflectance due to
inhomogeneous neutral gas abundance across the surface (12, 13) or
Europa’s highly variable plasma environment, or both. An enhanced instrument-scattered light from the on-disk features. Above the south
emission near 90° west longitude when Europa was near its apocenter polar limb in the December 2012 composite images an OI130.4 nm endetected by the HST Advanced Camera for Surveys (ACS) was associat- hancement of similar appearance is found in the same region as the
ed with a possible existence of plumes in a region where high shear Lyman-α enhancement (compare Fig. 1, I and L). Detectable Lyman-α
stresses are expected, but an unambiguous correlation was not possible and OI130.4 nm emissions are persistently found above the southern
anti-Jovian limb during all five HST orbits of the December 2012 obserdue to low data quality (14).
We report STIS spectral images of Europa’s trailing/anti-Jovian vations (Fig. 2, A to J). Bright OI135.6 nm emissions across the entire
hemisphere and leading hemisphere obtained in November and Decem- south polar region shift from the sub-Jovian to the anti-Jovian hemiber 2012, respectively. Previous observations, in 1999, targeted Europa’s sphere between the first and last orbit (Fig. 2, K to O). A persistent or
trailing hemisphere (Table 1). The observations in 2012 were timed to significant above-limb OI135.6 nm emission surplus is not detected.
In a next step, we subdivided the region between 1 RE (Europa radicoincide with the maximum variation of the Jupiter’s magnetic field
orientation at Europa. With this configuration, spatially inhomogeneous us, 1561 km) and 1.25 RE (corresponding to an above-limb altitude of
yet time-variable emissions originating from the periodically changing 390 km) in 18 bins spanning angles of 20° around the disk of Europa in
magnetospheric conditions can be separated from time-stationary emis- all images (Fig. 3). The December 2012 Lyman-α image brightnesses of
all pixels in limb bins 12 and 13 are 420 ± 136 R and 604 ± 140 R,
sion inhomogeneities due to atmospheric anomalies.
After correction of the images for instrumental and background which exceed the faint average limb emission of 46 R (outside the
noise (15), the remaining emission sources are: solar reflectance from anomaly) by 2.8 and 4.0 times the propagated uncertainty (σ), respecEuropa’s surface, solar resonance scattering by atmospheric H and O tively. The OI130.4 emission of 59 ± 18 R in bin 13 is also significantly
atoms (negligible for OI135.6 nm), and electron impact (dissociative) (2.4σ) higher than the average limb emission of 16 R, and bin 12 shows
a slight enhancement (35 ± 17 R). At both lines the emission anomaly

Transient Water Vapor at Europa’s
South Pole

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 1/ 10.1126/science.1247051
appears to have two individual peaks in bins 12 and 13, which can, however, not be clearly separated within the measurement uncertainties. No
significant emission surplus is found in either of the bins at 135.6 nm
(Fig. 3E). In 1999 and November 2012 all of the Lyman-α bins are consistent with zero signal within 2σ (17).
Detectable Lyman-α emission is not expected for the generally assumed abundance of hydrogen bearing molecules (≤1017 m−2) in the
global sputtered atmosphere (7–9). Lyman-α emission from a global
atomic hydrogen corona that is not gravitationally bound as observed at
Ganymede (18) would be isotropic. Lyman-α solar resonant scattering
on atomic H also would require optically-thick columns (>1017 m−2) to
produce brightnesses >400 R and can be excluded. In contrast, H2O
freezes (19) and any enhancement must be localized to its source. In
addition, electron impact on H2O yields HI121.6 nm and OI130.4 nm,
but has a lower cross section at 135.6 nm (20). Hence, the emission surplus at HI121.6 nm and OI130.4 nm in an area, where no remarkable
enhancement of OI135.6 nm is found, suggests a local atmospheric H2O
enhancement.
We derive average H2O and O2 column densities using measured
cross sections for electron-impact dissociative excitation and the standard plasma parameters for Europa (15). Neglecting presumably small
contributions from e + O or e + H2O, the observed OI135.6 nm brightness of bin 13 requires a line-of-sight O2 column of ~5 × 1019 m−2. The
Lyman-α brightness in bin 13 implies an optically thin H2O column
density of 1.5 × 1020 m−2. In this case, excitation of O2 and H2O would
contribute 27 R and 29 R, respectively, to the OI130.4 nm emission consistent with the measured brightness of 59 ± 18 R in bin 13. Thus, the
Lyman-α/OI130.4 nm/OI135.6 nm ratios are diagnostic of e + H2O in an
approach similar to the average OI135.6 nm/OI130.4 nm ratio being
diagnostic of e + O2 (10, 11).
We generated model images for two three-dimensional plume distributions taking into account H2O continuum absorption and resonant
scattering. We started by generating a standard model for an average
background atmosphere by adjusting the density of an exponentially
decreasing O2 atmosphere with low O and H2O mixing ratios (15) to the
observed OI135.6 nm limb brightness for all observations (Fig. 3E,F,
dotted grey). The fitted vertical O2 column density of NO2 = 3.5 × 1018
m−2 agrees well with the observed OI130.4 limb brightness and is consistent with previous results (7–11, 21). Deviations from the model in
several bins for both oxygen aurora lines are likely attributed to the variable plasma environment.
We then generated model images with two local H2O plumes (15).
We adjusted the plume height of 200 km and the latitudinal expansion of
10° (or ~270 km on the surface) to the observed spatial profile of the
Lyman-α emissions. The implemented density profile resembles an intermediate case between Io’s shock-dominated Pele-type plumes (22)
and the low-gravity outgassing of the Enceladus plumes (23). Because
the surface source locations cannot be determined from the images, the
plumes were arbitrarily centered on the anti-Jovian meridian (180°W)
and in the center of the bins 12 and 13 at 55°S and 75°S, respectively.
The densities of the plumes were fit to the observed Lyman-α bin brightness yielding total contents of 4.9 ×1031 and 8.2 × 1031 H2O molecules
for the plumes at 55°S and 75°S, respectively. The combined plume
content is 1-2 orders of magnitude higher than the H2O abundance in
global atmosphere models without plumes (7–9). The derived H2O
plume densities independently match the observed OI130.4 nm emission
surplus if resonant scattering and electron impact on O with an estimated
mixing ratio of O/H2O ~ 0.2% is taken into account (15).
The model reasonably reproduces the Lyman-α plume morphology
and brightness decrease with altitude (Fig. 3). At low altitudes (< 100
km) the measured brightness decreases for both the Lyman-α and
OI130.4 nm emission. Because bright OI135.6 nm emission is also detected up to altitudes of 200 km, the OI130.4 nm profile might be best

explained by a peak in oxygen abundance at higher altitudes. Also, the
derived plume height of 200 km is higher than expected from model
results (24) and would require large super-sonic eruption velocities of
~700 m/s. However, interpretation of the derived height and radial profile requires caution because of the systematic uncertainties of the disk
location by 1-2 pixels or ~100 km. Moreover, a local density enhancement within a smooth global atmosphere would substantially alter the
plasma environment, which in turn modifies the aurora morphology and
brightness (25).
The high plume velocities and relatively low number densities we inferred are consistent with vapor emission from narrow fractures (15), as
occurs at Enceladus (23, 26). The surface area of Europa’s fractures is
too small to produce a thermal anomaly detectable by the Galileo Photopolarimeter-Radiometer instrument (27). Plume fallback could produce
terrain softening in the near-polar regions, which might be detectable in
suitable high-resolution images (15).
The modeled Lyman-α limb brightnesses for the 1999 and November 2012 geometries are not consistent with persistent plumes. Also, no
striking surplus of OI130.4 nm emission is detected. The model indicates
that the plumes were less dense by at least a factor of 2 and 3 during the
1999 and November 2012 observations, respectively, if present (fig. S3).
Thus, the plume activity appears to undergo considerable variability.
Recently, the plumes at Enceladus’ south pole have been shown to
be more active near apocenter than at the pericenter (28). Similar tidal
stress variability for Europa is expected to open and close its Linea features (fig. S4, (15)). Europa was very close to its apocenter during the
December 2012 observations, and was shortly before and at the pericenter during the 1999 and November 2012 observations (Table 1). This
causal relationship might explain the observed variability and the lack of
detections in 1999 and November 2012. The plume variability, if real,
verifies a key prediction of tidal-flexing models based on the existence
of a subsurface ocean.
References and Notes
1. M. H. Carr, M. J. Belton, C. R. Chapman, M. E. Davies, P. Geissler,
R. Greenberg, A. S. McEwen, B. R. Tufts, R. Greeley, R. Sullivan, J.
W. Head, R. T. Pappalardo, K. P. Klaasen, T. V. Johnson, J.
Kaufman, D. Senske, J. Moore, G. Neukum, G. Schubert, J. A.
Burns, P. Thomas, J. Veverka, Evidence for a subsurface ocean on
Europa. Nature 391, 363–365 (1998). doi:10.1038/34857 Medline
2. R. T. Pappalardo, M. J. S. Belton, H. H. Breneman, M. H. Carr, C. R.
Chapman, G. C. Collins, T. Denk, S. Fagents, P. E. Geissler, B.
Giese, R. Greeley, R. Greenberg, J. W. Head, P. Helfenstein, G.
Hoppa, S. D. Kadel, K. P. Klaasen, J. E. Klemaszewski, K. Magee,
A. S. McEwen, J. M. Moore, W. B. Moore, G. Neukum, C. B.
Phillips, L. M. Prockter, G. Schubert, D. A. Senske, R. J. Sullivan, B.
R. Tufts, E. P. Turtle, R. Wagner, K. K. Williams, Does Europa have
a subsurface ocean? Evaluation of the geological evidence. J.
Geophys.
Res.
104,
(E10),
24015–24055
(1999).
doi:10.1029/1998JE000628
3. K. K. Khurana, M. G. Kivelson, D. J. Stevenson, G. Schubert, C. T.
Russell, R. J. Walker, C. Polanskey, Induced magnetic fields as
evidence for subsurface oceans in Europa and Callisto. Nature 395,
777–780 (1998). doi:10.1038/27394 Medline
4. B. E. Schmidt, D. D. Blankenship, G. W. Patterson, P. M. Schenk,
Active formation of ‘chaos terrain’ over shallow subsurface water on
Europa. Nature 479, 502–505 (2011). doi:10.1038/nature10608
Medline
5. C. B. Phillips, A. S. McEwen, G. V. Hoppa, S. A. Fagents, R.
Greeley, J. E. Klemaszewski, R. T. Pappalardo, K. P. Klaasen, H. H.
Breneman, The search for current geologic activity on Europa. J.
Geophys.
Res.
105,
(E9),
22579–22597
(2000).
doi:10.1029/1999JE001139
6. S. A. Fagents, Considerations for effusive cryovolcanism on Europa:
The post-Galileo perspective. J. Geophys. Res. 108, (E12), 5139
(2003). doi:10.1029/2003JE002128

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 2/ 10.1126/science.1247051

2
7. V. I. Shematovich, R. E. Johnson, J. F. Cooper, M. C. Wong, Surfacebounded atmosphere of Europa. Icarus 173, 480–498 (2005).
doi:10.1016/j.icarus.2004.08.013
8. W. H. Smyth, M. L. Marconi, Europa’s atmosphere, gas tori, and
magnetospheric implications. Icarus 181, 510–526 (2006).
doi:10.1016/j.icarus.2005.10.019
9. C. Plainaki, A. Milillo, A. Mura, S. Orsini, S. Massetti, T. Cassidy,
The role of sputtering and radiolysis in the generation of Europa
exosphere.
Icarus
218,
956–966
(2012).
doi:10.1016/j.icarus.2012.01.023
10. D. T. Hall, D. F. Strobel, P. D. Feldman, M. A. McGrath, H. A.
Weaver, Detection of an oxygen atmosphere on Jupiter’s moon
Europa. Nature 373, 677–679 (1995). doi:10.1038/373677a0 Medline
11. D. T. Hall, P. D. Feldman, M. A. McGrath, D. F. Strobel, The farultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J.
499, 475–481 (1998). doi:10.1086/305604
12. M. A. McGrath, C. J. Hansen, A. R. Hendrix, in Europa, R. T.
Pappalardo, W. B. McKinnon, K. K. Khurana, Eds. (Univ. of
Arizona Press, 2009), pp. 485–505
13. T. A. Cassidy, R. E. Johnson, M. A. McGrath, M. C. Wong, J. F.
Cooper, The spatial morphology of Europa’s near-surface O2
atmosphere.
Icarus
191,
755–764
(2007).
doi:10.1016/j.icarus.2007.04.033
14. J. Saur, P. D. Feldman, L. Roth, F. Nimmo, D. F. Strobel, K. D.
Retherford, M. A. McGrath, N. Schilling, J.-C. Gérard, D. Grodent,
Hubble Space Telescope/Advanced Camera for Surveys
Observations of Europa’s Atmospheric Ultraviolet Emission at
Eastern Elongation. Astrophys. J. 738, 153 (2011). doi:10.1088/0004637X/738/2/153
15. See supplementary materials for more information.
16. Rayleigh [R] is the column emission rate of 1010 photons per square
meter per column per second, 1 R = 1010/4π photons m−2 sr−1 s−1.
17. The 1999 Lyman-α image might hint a plume feature in the south
polar region (Fig. 1G), but is not statistically significant and is
therefore not considered further.
18. C. A. Barth, C. W. Hord, A. I. F. Stewart, W. R. Pryor, K. E.
Simmons, W. E. McClintock, J. M. Ajello, K. L. Naviaux, J. J.
Aiello, Galileo ultraviolet spectrometer observations of atomic
hydrogen in the atmosphere at Ganymede. Geophys. Res. Lett. 24,
2147–2150 (1997). doi:10.1029/97GL01927
19. J. R. Spencer, L. K. Tamppari, T. Z. Martin, L. D. Travis,
Temperatures on Europa from Galileo photopolarimeter-radiometer:
Nighttime thermal anomalies. Science 284, 1514–1516 (1999).
doi:10.1126/science.284.5419.1514 Medline
20. O. P. Makarov et al., Kinetic energy distributions and line profile
measurements of dissociation products of water upon electron
impact. J. Geophys. Res. 109, (A18), A09303 (2004).
doi:10.1029/2002JA009353
21. J. Saur, D. F. Strobel, F. M. Neubauer, Interaction of the Jovian
magnetosphere with Europa: Constraints on the neutral atmosphere.
J.
Geophys.
Res.
103,
(E9),
19947–19962
(1998).
doi:10.1029/97JE03556
22. J. Zhang, D. B. Goldstein, P. L. Varghese, N. E. Gimelshein, S. F.
Gimelshein, D. A. Levin, Simulation of gas dynamics and radiation
in volcanic plumes on Io. Icarus 163, 182–197 (2003).
doi:10.1016/S0019-1035(03)00050-2
23. F. Tian, A. I. F. Stewart, O. B. Toon, K. W. Larsen, L. W. Esposito,
Monte Carlo simulations of the water vapor plumes on Enceladus.
Icarus 188, 154–161 (2007). doi:10.1016/j.icarus.2006.11.010
24. S. A. Fagents et al., Cryomagmatic mechanisms for the formation of
Rhadamanthys Linea, triple band margins, and other low-albedo
features
on
Europa.
Icarus
144,
54–88
(2000).
doi:10.1006/icar.1999.6254
25. L. Roth, J. Saur, K. D. Retherford, D. F. Strobel, J. R. Spencer,
Simulation of Io’s auroral emission: Constraints on the atmosphere in
eclipse.
Icarus
214,
495–509
(2011).
doi:10.1016/j.icarus.2011.05.014
26. C. J. Hansen, D. E. Shemansky, L. W. Esposito, A. I. F. Stewart, B.
R. Lewis, J. E. Colwell, A. R. Hendrix, R. A. West, J. H. Waite, Jr.,

B. Teolis, B. A. Magee, The composition and structure of the
Enceladus plume. Geophys. Res. Lett. 38, L11202 (2011).
doi:10.1029/2011GL047415
27. J. A. Rathbun, N. J. Rodriguez, J. R. Spencer, Galileo PPR
observations of Europa: Hotspot detection limits and surface thermal
properties.
Icarus
210,
763–769
(2010).
doi:10.1016/j.icarus.2010.07.017
28. M. M. Hedman, C. M. Gosmeyer, P. D. Nicholson, C. Sotin, R. H.
Brown, R. N. Clark, K. H. Baines, B. J. Buratti, M. R. Showalter, An
observed correlation between plume activity and tidal stresses on
Enceladus. Nature 500, 182–184 (2013). doi:10.1038/nature12371
Medline
29. Z. A. Selvans, Time, Tides and Tectonics on Icy Satellites, thesis,
University of Colorado at Boulder (2009)
30. F. Nimmo, J. R. Spencer, R. T. Pappalardo, M. E. Mullen, Shear
heating as the origin of the plumes and heat flux on Enceladus.
Nature 447, 289–291 (2007). doi:10.1038/nature05783 Medline
31. G. V. Hoppa, B. R. Tufts, R. Greenberg, P. E. Geissler, Strike-slip
faults on Europa: Global shear patterns driven by tidal stress. Icarus
141, 287–298 (1999). doi:10.1006/icar.1999.6185
32. G. V. Hoppa, R. Greenberg, B. R. Tufts, P. E. Geissler, Plume
detection on Europa: Locations of favorable tidal stress, in Lunar and
Planetary Institute Science Conference Abstracts, 30, p. 1603 (1999)
33. F. L. Roesler, H. W. Moos, R. J. Oliversen, R. C. Woodward, Jr., K.
D. Retherford, F. Scherb, M. A. McGrath, W. H. Smyth, P. D.
Feldman, D. F. Strobel, Far-ultraviolet imaging spectroscopy of Io’s
atmosphere with HST/STIS. Science 283, 353–357 (1999).
doi:10.1126/science.283.5400.353 Medline
34. P. D. Feldman, M. A. McGrath, D. F. Strobel, H. W. Moos, K. D.
Retherford, B. C. Wolven, HST/STIS ultraviolet imaging of polar
aurora on Ganymede. Astrophys. J. 535, 1085–1090 (2000).
doi:10.1086/308889
35. P. D. Feldman, D. F. Strobel, H. W. Moos, K. D. Retherford, B. C.
Wolven, M. A. McGrath, F. L. Roesler, R. C. Woodward, R. J.
Oliversen, G. E. Ballester, Lyman-alpha imaging of the SO2
distribution on Io. Geophys. Res. Lett. 27, 1787–1790 (2000).
doi:10.1029/1999GL011067
36. K. D. Retherford, H. W. Moos, D. F. Strobel, B. C. Wolven, F. L.
Roesler, Io’s equatorial spots: Morphology of neutral UV emissions.
J.
Geophys. Res.
105, (A12),
27157–27165
(2000).
doi:10.1029/2000JA002500
37. K. D. Retherford, H. W. Moos, D. F. Strobel, Io’s auroral limb glow:
Hubble Space Telescope FUV observations. J. Geophys. Res. 108,
(A8), 1333–1341 (2003). doi:10.1029/2002JA009710
38. B. C. Wolven, H. W. Moos, K. D. Retherford, P. D. Feldman, D. F.
Strobel, W. H. Smyth, F. L. Roesler, Emission profiles of neutral
oxygen and sulfur in Io's exospheric corona. J. Geophys. Res. 106,
(A11), 26155–26182 (2001). doi:10.1029/2000JA002506
39. D. F. Strobel, J. Saur, P. D. Feldman, M. A. McGrath, Hubble Space
Telescope space telescope imaging spectrograph search for an
atmosphere on Callisto: A Jovian unipolar inductor. Astrophys. J.
581, L51–L54 (2002). doi:10.1086/345803
40. L. M. Feaga, M. A. McGrath, P. D. Feldman, The abundance of
atomic sulfur in the atmosphere of Io. Astrophys. J. 570, 439–446
(2002). doi:10.1086/339500
41. L. M. Feaga, M. McGrath, P. D. Feldman, Io’s dayside SO2
atmosphere.
Icarus
201,
570–584
(2009).
doi:10.1016/j.icarus.2009.01.029
42. M. A. McGrath, X. Jia, K. Retherford, P. D. Feldman, D. F. Strobel,
J. Saur, Aurora on Ganymede. J. Geophys. Res. 118, 2043–2054
(2013). doi:10.1002/jgra.50122
43. L. Roth, J. Saur, K. D. Retherford, P. D. Feldman, D. F. Strobel, A
phenomenological model for Io’s UV aurora based on HST/STIS
observations.
Icarus
228,
386–406
(2014).
doi:10.1016/j.icarus.2013.10.009
44. C. R. Proffitt, Changes in the STIS FUVMAMA Dark Current (Space
Telescope STIS Instrument Science Report, Space Telescope Science
Institute, 2007)
45. W. Curdt, P. Brekke, U. Feldman, K. Wilhelm, B. N. Dwivedi, U.

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 3/ 10.1126/science.1247051

3
Schühle, P. Lemaire, The SUMER spectral atlas of solar-disk
features. Astron. Astrophys. 375, 591–613 (2001). doi:10.1051/00046361:20010364
46. T. N. Woods, D. K. Prinz, G. J. Rottman, J. London, P. C. Crane, R.
P. Cebula, E. Hilsenrath, G. E. Brueckner, M. D. Andrews, O. R.
White, M. E. VanHoosier, L. E. Floyd, L. C. Herring, B. G. Knapp,
C. K. Pankratz, P. A. Reiser, Validation of the UARS solar
ultraviolet irradiances: Comparison with the ATLAS 1 and 2
measurements. J. Geophys. Res. 101, (D6), 9541–9569 (1996).
doi:10.1029/96JD00225
47. T. N. Woods et al., Solar EUV Experiment (SEE): Mission overview
and first results. J. Geophys. Res. 110, (A1), A01312 (2005).
doi:10.1029/2004JA010765
48 J. E. Krist, R. N. Hook, F. Stoehr, 20 years of Hubble Space
Telescope optical modeling using Tiny Tim, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, 8127 (2011);
49. R. Greeley et al., (Cambridge Univ. Press, 2004), pp. 457–483
50. R. L. Lucke, R. C. Henry, W. G. Fastie, Far-ultraviolet albedo of the
moon. Astron. J. 81, 1162–1169 (1976). doi:10.1086/112000
51. R. C. Henry, W. G. Fastie, R. L. Lucke, B. W. Hapke, A farultraviolet photometer for planetary surface analysis. Moon 15, 51–
65 (1976). doi:10.1007/BF00562471
52. J. P. Doering, E. E. Gulcicek, Absolute differential and integral
electron excitation cross sections for atomic oxygen 7. The 3P → 1D
and 3P → 1S transitions from 4.0 to 30 eV. J. Geophys. Res. 94, (A2),
1541–1546 (1989). doi:10.1029/JA094iA02p01541
53. J. P. Doering, E. E. Gulcicek, Absolute differential and integral
electron excitation cross sections for atomic oxygen 8. The ³P → 5So
transition (1356 Å) from 13.9 to 30 eV. J. Geophys. Res. 94, (A3),
2733–2736 (1989). doi:10.1029/JA094iA03p02733
54. J. P. Doering, Absolute differential and integral electron excitation
cross sections for atomic oxygen 9. Improved cross section for the ³P
→ ¹D transition from 4.0 to 30 eV. J. Geophys. Res. 97, (A12),
19531–19534 (1992). doi:10.1029/92JA02007
55. I. Kanik et al., Electron impact dissociative excitation of O2: 2.
Absolute emission cross sections of the OI(130.4 nm) and OI(135.6
nm) lines. J. Geophys. Res. 108, (E11), 5126 (2003).
doi:10.1029/2000JE001423
56. P. V. Johnson, I. Kanik, D. E. Shemansky, X. Liu, Electron-impact
cross sections of atomic oxygen. J. Phys. At. Mol. Opt. Phys. 36,
3203–3218 (2003). doi:10.1088/0953-4075/36/15/303
57. S. P. Sander et al., Chemical Kinetics and Photochemical Data for
Use in Atmospheric Studies, Evaluation No. 17 (JPL Publication 106, Jet Propulsion Laboratory, Pasadena, CA, 2011)
58. K. Yoshino, W. H. Parkinson, K. Ito, T. Matsui, Absolute absorption
cross-section measurements of Schumann Runge continuum of O2 at
90 and 295 K. J. Mol. Spectrosc. 229, 238–243 (2005).
doi:10.1016/j.jms.2004.08.020
59 H.-C. Lu, K.-K. Chen, H.-F. Chen, B.-M. Cheng, J.F. Ogilvie,
Absorption cross section of molecular oxygen in the transition E 3Σuv = 0 – X 3Σg- v = 0 at 38 K. Astronom. Astrophys., 520 (2010);
60. T. Harb, W. Kedzierski, J. W. McConkey, Production of ground state
OH following electron impact on H2O. J. Chem. Phys. 115, 5507–
5512 (2001). doi:10.1063/1.1397327
61. J. S. Lee, R. R. Meier, Angle-dependent frequency redistribution in a
plane-parallel medium - External source case. Astrophys. J. 240,
185–195 (1980). doi:10.1086/158222
62. D. C. Morton, Atomic data for resonance absorption lines. I Wavelengths longward of the Lyman limit. Astrophys. J. 77,
(Suppl.), 119–202 (1991). doi:10.1086/191601
63. J. Marti, K. Mauersberger, A survey and new measurements of ice
vapor pressure at temperatures between 170 and 250K. Geophys. Res.
Lett. 20, 363–366 (1993). doi:10.1029/93GL00105
64. J. D. Goguen, B. J. Buratti, R. H. Brown, R. N. Clark, P. D.
Nicholson, M. M. Hedman, R. R. Howell, C. Sotin, D. P.
Cruikshank, K. H. Baines, K. J. Lawrence, J. R. Spencer, D. G.
Blackburn, The temperature and width of an active fissure on
Enceladus measured with Cassini VIMS during the 14 April 2012
South Pole flyover. Icarus 226, 1128–1137
(2013).

doi:10.1016/j.icarus.2013.07.012
65. P. Schenk, J. Schmidt, O. White, The Snows of Enceladus. In EPSCDPS Joint Meeting 2011, Vol. 1, 1358 (2011)
66. A. P. Ingersoll, A. A. Pankine, Subsurface heat transfer on
Enceladus: Conditions under which melting occurs. Icarus 206, 594–
607 (2010). doi:10.1016/j.icarus.2009.09.015
67. F. Nimmo, Stresses generated in cooling viscoelastic ice shells:
Application to Europa. J. Geophys. Res. 109, (E12), E12001 (2004).
doi:10.1029/2004JE002347
68. H. Hussmann, T. Spohn, Thermal-orbital evolution of Io and Europa.
Icarus 171, 391–410 (2004). doi:10.1016/j.icarus.2004.05.020
69. A. P. Ingersoll, S. P. Ewald, Total particulate mass in Enceladus
plumes and mass of Saturn’s E ring inferred from Cassini ISS
images.
Icarus
216,
492–506
(2011).
doi:10.1016/j.icarus.2011.09.018
70. F. Nimmo, P. D. Thomas, R. T. Pappalardo, W. B. Moore, The
global shape of Europa: Constraints on lateral shell thickness
variations.
Icarus
191,
183–192
(2007).
doi:10.1016/j.icarus.2007.04.021
Acknowledgments: This work is based on Hubble Space Telescope
observations available at the NASA MAST data archive. Support for
program number GO-13040 was provided by NASA through a grant
from the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, under
contract NAS5-26555; and by Verbundforschung Astronomie und
Astrophysik.
Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1247051/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S10
Tables S1 to S2
References (29–70)
10 October 2013; accepted 2 December 2013
Published online 12 December 2013; 10.1126/science.1247051

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 4/ 10.1126/science.1247051

4
Table 1. HST/STIS G140L observations of Europa’s UV emissions.
Observation
start date and
time

HST orbits/
exposures

5-Oct-1999
5/9
8:39*
8-Nov-2012
5/10
20:41†
30-Dec-2012
5/9
18:49†
*PI M. A. McGrath. †PI J. Saur.

Total
exp. time
(min)

Spatial
resolution
(km/pixel)

Sub-observer
W long. (°)

System III
longitude (°)

Mag. lat.
range
(°)

True
anomaly
f (°)

Water vapor
detected

156

71.5

245–274

300–158

–9.5–6.8

343–13

No

183

73.9

209–238

25–243

–9.3–9.5

289–318

No

164

74.9

79–108

0–218

–9.5–9.5

185–218

Yes

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 5/ 10.1126/science.1247051

5
Fig. 1. Visible images of the observed hemispheres (A to C) with sub-observer longitudes listed and combined STIS
images of the hydrogen and oxygen emissions (D to O) (Table 1). The Lyman-α morphology [(D) to (F)] reveals an anticorrelation with the brightness in the visible (15). (G) to (O) Same Lyman-α images, and OI130.4 nm and OI135.6 nm images
with solar disk-reflectance subtracted. 3 × 3 pixels are binned and the STIS images are smoothed to enhance visibility of the
significant features. The dotted light blue circles indicate the multiplet lines (15). The color scale is normalized to the respective
brightness and the scale maximum (corresponding to 1.0 on the scale) is listed in each image. Oversaturated pixels with
intensities above maximum are white. The contours show signal-to-noise (SNR) ratios of the binned pixels [and contours for
SNR = 1 are omitted here in (D) to (F) and (M) to (O)].

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 6/ 10.1126/science.1247051

6
Fig. 2. Individual STIS images of the 5 HST orbits from December 2012. Lyman-α before disk-reflectance subtraction (A to
E), and reflectance-subtracted Lyman-α and oxygen emissions (F to T). The persistent plume emission is highlighted in
dashed-red. Sub-observer longitude φobs, Jovian System-III-longitude λIII, magnetic latitude ψmag and projected magnetic field
line B are listed below. Leading meridian (90°W) is dashed-white, equator is solid-white. Other details are as in Fig. 1.

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 7/ 10.1126/science.1247051

7
Fig. 3. Comparison of December 2012 observations and atmosphere plume model results. (A to D) Lyman-α and OI
130.4 nm STIS images (as in Fig. 1) and model aurora images from a global atmosphere with two H2O plumes. The south polar
above-limb emission is found in bins 12 and 13 of the eighteen 20° bins illustrated by the dotted yellow lines. The patchiness of
the 130.4 nm on-disk emissions might originate from surface reflectance, atmospheric, or plasma inhomogeneities, but is also
consistent with statistically expected variations across a uniform disk (15). (E) Measured (solid black) and modeled (dotted)
brightnesses of each 20°-wide limb bin around Europa’s disk. The best-fit plume model atmosphere is shown in red, and plume
densities decreased by factor 2 and factor 3 are shown in blue and green, respectively. (F) Radial profiles of measured and
modeled brightness versus altitude in bins 12 + 13.

/ http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 8/ 10.1126/science.1247051

8

Contenu connexe

Tendances

SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...
SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...
SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...grssieee
 
Clusters of cyclones encircling Jupiter’s poles
Clusters of cyclones encircling Jupiter’s polesClusters of cyclones encircling Jupiter’s poles
Clusters of cyclones encircling Jupiter’s polesSérgio Sacani
 
First results from_the_hubble_opal_program_jupiter_in_2015
First results from_the_hubble_opal_program_jupiter_in_2015First results from_the_hubble_opal_program_jupiter_in_2015
First results from_the_hubble_opal_program_jupiter_in_2015Sérgio Sacani
 
Measurement of Jupiter’s asymmetric gravity field
Measurement of Jupiter’s asymmetric gravity fieldMeasurement of Jupiter’s asymmetric gravity field
Measurement of Jupiter’s asymmetric gravity fieldSérgio Sacani
 
Herschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_centerHerschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_centerSérgio Sacani
 
High resolution image_of_a_cometary_globule_in_helix_nebula
High resolution image_of_a_cometary_globule_in_helix_nebulaHigh resolution image_of_a_cometary_globule_in_helix_nebula
High resolution image_of_a_cometary_globule_in_helix_nebulaSérgio Sacani
 

Tendances (6)

SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...
SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...
SAR Data for Subsurface Saline Lacustrine Deposits Detection and Primary Inte...
 
Clusters of cyclones encircling Jupiter’s poles
Clusters of cyclones encircling Jupiter’s polesClusters of cyclones encircling Jupiter’s poles
Clusters of cyclones encircling Jupiter’s poles
 
First results from_the_hubble_opal_program_jupiter_in_2015
First results from_the_hubble_opal_program_jupiter_in_2015First results from_the_hubble_opal_program_jupiter_in_2015
First results from_the_hubble_opal_program_jupiter_in_2015
 
Measurement of Jupiter’s asymmetric gravity field
Measurement of Jupiter’s asymmetric gravity fieldMeasurement of Jupiter’s asymmetric gravity field
Measurement of Jupiter’s asymmetric gravity field
 
Herschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_centerHerschel far infrared_spectroscopy_of_the_galactic_center
Herschel far infrared_spectroscopy_of_the_galactic_center
 
High resolution image_of_a_cometary_globule_in_helix_nebula
High resolution image_of_a_cometary_globule_in_helix_nebulaHigh resolution image_of_a_cometary_globule_in_helix_nebula
High resolution image_of_a_cometary_globule_in_helix_nebula
 

En vedette

Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...
Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...
Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...Deniz Jimenez
 
Comunicacion interna - Gestionar Diferencias Culturales en Hostelería
Comunicacion interna - Gestionar Diferencias Culturales en HosteleríaComunicacion interna - Gestionar Diferencias Culturales en Hostelería
Comunicacion interna - Gestionar Diferencias Culturales en HosteleríaFelipe Gonzalez Varas
 
aprendizaje colaborativo
aprendizaje colaborativoaprendizaje colaborativo
aprendizaje colaborativoDeniz Jimenez
 

En vedette (9)

01 presentación fp 28 11 13
01 presentación fp 28 11 1301 presentación fp 28 11 13
01 presentación fp 28 11 13
 
Huila
HuilaHuila
Huila
 
Natal da Magia
Natal da Magia Natal da Magia
Natal da Magia
 
05.bloc2.viver empreses.pwpoint
05.bloc2.viver empreses.pwpoint05.bloc2.viver empreses.pwpoint
05.bloc2.viver empreses.pwpoint
 
Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...
Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...
Tratamientos más efectivos y alternativos en el trastorno de ansiedad general...
 
Comunicacion interna - Gestionar Diferencias Culturales en Hostelería
Comunicacion interna - Gestionar Diferencias Culturales en HosteleríaComunicacion interna - Gestionar Diferencias Culturales en Hostelería
Comunicacion interna - Gestionar Diferencias Culturales en Hostelería
 
aprendizaje colaborativo
aprendizaje colaborativoaprendizaje colaborativo
aprendizaje colaborativo
 
Educacion & Concepto Del Hombre
Educacion & Concepto Del HombreEducacion & Concepto Del Hombre
Educacion & Concepto Del Hombre
 
Educacion y concepto del hombre
Educacion y concepto del hombreEducacion y concepto del hombre
Educacion y concepto del hombre
 

Similaire à Transient Water Vapor at Europa’s South Pole

Long-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstormsLong-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstormsSérgio Sacani
 
The pristine nature of SMSS 1605−1443 revealed by ESPRESSO
The pristine nature of SMSS 1605−1443 revealed by ESPRESSOThe pristine nature of SMSS 1605−1443 revealed by ESPRESSO
The pristine nature of SMSS 1605−1443 revealed by ESPRESSOSérgio Sacani
 
The shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grains
The shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grainsThe shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grains
The shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grainsSérgio Sacani
 
Water vapor mapping on mars using omega mars express
Water vapor mapping on mars using omega mars expressWater vapor mapping on mars using omega mars express
Water vapor mapping on mars using omega mars expressAwad Albalwi
 
A measurement of water vapour amid a largely
A measurement of water vapour amid a largelyA measurement of water vapour amid a largely
A measurement of water vapour amid a largelyFelipe Hime
 
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signaturesEvidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signaturesSérgio Sacani
 
Tales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with cover
Tales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with coverTales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with cover
Tales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with coverRobina Shaheen
 
Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...
Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...
Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...Sérgio Sacani
 
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objectsDistances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objectsSérgio Sacani
 
Basic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric CouplingBasic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric Couplingdavohawrami
 
Polarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary systemPolarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary systemSérgio Sacani
 
The ionosphere and radio propagation
The ionosphere and radio propagationThe ionosphere and radio propagation
The ionosphere and radio propagationIAEME Publication
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISSérgio Sacani
 
Radial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootisRadial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootisSérgio Sacani
 
Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...
Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...
Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...Sérgio Sacani
 
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...Sérgio Sacani
 
Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82Sérgio Sacani
 
Ionic chemistry in atmosphere
Ionic chemistry in atmosphereIonic chemistry in atmosphere
Ionic chemistry in atmosphereAshish Sharma
 

Similaire à Transient Water Vapor at Europa’s South Pole (20)

Long-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstormsLong-lasting,deepeffectof Saturn’s giantstorms
Long-lasting,deepeffectof Saturn’s giantstorms
 
The pristine nature of SMSS 1605−1443 revealed by ESPRESSO
The pristine nature of SMSS 1605−1443 revealed by ESPRESSOThe pristine nature of SMSS 1605−1443 revealed by ESPRESSO
The pristine nature of SMSS 1605−1443 revealed by ESPRESSO
 
The shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grains
The shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grainsThe shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grains
The shadow _of_the_flying_saucer_a_very_low_temperature_for_large_dust_grains
 
Water vapor mapping on mars using omega mars express
Water vapor mapping on mars using omega mars expressWater vapor mapping on mars using omega mars express
Water vapor mapping on mars using omega mars express
 
A measurement of water vapour amid a largely
A measurement of water vapour amid a largelyA measurement of water vapour amid a largely
A measurement of water vapour amid a largely
 
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signaturesEvidence of a plume on Europa from Galileo magnetic and plasma wave signatures
Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures
 
Tales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with cover
Tales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with coverTales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with cover
Tales of volcanoes-ENSO-PNAS-2013-Shaheen-1213149110-with cover
 
Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...
Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...
Measurements of the_near_nucleus_coma_of_comet_67_p_churyumov_gerasimenko_wit...
 
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objectsDistances luminosities and_temperatures_of_the_coldest_known_substelar_objects
Distances luminosities and_temperatures_of_the_coldest_known_substelar_objects
 
Basic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric CouplingBasic Components of Seismo-Ionospheric Coupling
Basic Components of Seismo-Ionospheric Coupling
 
Polarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary systemPolarized reflected light from the Spica binary system
Polarized reflected light from the Spica binary system
 
The ionosphere and radio propagation
The ionosphere and radio propagationThe ionosphere and radio propagation
The ionosphere and radio propagation
 
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STISPROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS
 
Brazil1
Brazil1Brazil1
Brazil1
 
Radial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootisRadial velocity trail_from_the_giant_planet_orbiting_t_bootis
Radial velocity trail_from_the_giant_planet_orbiting_t_bootis
 
Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...
Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...
Variations in the amount of water ice on Ceres’ surface suggest a seasonal wa...
 
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
Molecular nitrogen in_comet_67_p_churyumov_gerasimenko_indicates_a_low_format...
 
Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82Discovery of carbon_radio_recombination_lines_in_m82
Discovery of carbon_radio_recombination_lines_in_m82
 
Solar radiation spectra
Solar radiation spectraSolar radiation spectra
Solar radiation spectra
 
Ionic chemistry in atmosphere
Ionic chemistry in atmosphereIonic chemistry in atmosphere
Ionic chemistry in atmosphere
 

Plus de Carlos Bella

Offshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenonOffshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenonCarlos Bella
 
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imagingRevealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imagingCarlos Bella
 
Animal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzeesAnimal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzeesCarlos Bella
 
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...Carlos Bella
 
Detection of Radio Emission from Fireballs
Detection of Radio Emission from FireballsDetection of Radio Emission from Fireballs
Detection of Radio Emission from FireballsCarlos Bella
 
Skeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscienceSkeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscienceCarlos Bella
 
Preserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt brecciasPreserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt brecciasCarlos Bella
 
An assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill craniumAn assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill craniumCarlos Bella
 
A Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsA Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsCarlos Bella
 
Fuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosionFuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosionCarlos Bella
 
Meteor Phenomena and Bodies
Meteor Phenomena and BodiesMeteor Phenomena and Bodies
Meteor Phenomena and BodiesCarlos Bella
 
The Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor ShowerThe Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor ShowerCarlos Bella
 
Physics first spectrum of ball lightning
Physics   first spectrum of ball lightningPhysics   first spectrum of ball lightning
Physics first spectrum of ball lightningCarlos Bella
 
Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...Carlos Bella
 
Broadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetectorBroadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetectorCarlos Bella
 
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-PhaseCarlos Bella
 
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...Carlos Bella
 
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...Carlos Bella
 
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...Carlos Bella
 

Plus de Carlos Bella (20)

Offshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenonOffshore fresh groundwater reserves as a global phenomenon
Offshore fresh groundwater reserves as a global phenomenon
 
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imagingRevealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging
 
Animal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzeesAnimal behaviour: Incipient tradition in wild chimpanzees
Animal behaviour: Incipient tradition in wild chimpanzees
 
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075...
 
Detection of Radio Emission from Fireballs
Detection of Radio Emission from FireballsDetection of Radio Emission from Fireballs
Detection of Radio Emission from Fireballs
 
Skeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscienceSkeptic encyclopedia of pseudoscience
Skeptic encyclopedia of pseudoscience
 
Preserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt brecciasPreserved flora and organics in impact melt breccias
Preserved flora and organics in impact melt breccias
 
An assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill craniumAn assessment of the temporal bone lesions of the Broken Hill cranium
An assessment of the temporal bone lesions of the Broken Hill cranium
 
A Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical unitsA Sedna-like body with a perihelion of 80 astronomical units
A Sedna-like body with a perihelion of 80 astronomical units
 
Fuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosionFuel gain exceeding unity in an inertially confined fusion implosion
Fuel gain exceeding unity in an inertially confined fusion implosion
 
Meteor Phenomena and Bodies
Meteor Phenomena and BodiesMeteor Phenomena and Bodies
Meteor Phenomena and Bodies
 
The Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor ShowerThe Origin Of The 1998 June BoöTid Meteor Shower
The Origin Of The 1998 June BoöTid Meteor Shower
 
Physics first spectrum of ball lightning
Physics   first spectrum of ball lightningPhysics   first spectrum of ball lightning
Physics first spectrum of ball lightning
 
Nature12917
Nature12917Nature12917
Nature12917
 
Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...Solid-state plastic deformation in the dynamic interior of a differentiated a...
Solid-state plastic deformation in the dynamic interior of a differentiated a...
 
Broadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetectorBroadband high photoresponse from pure monolayer graphene photodetector
Broadband high photoresponse from pure monolayer graphene photodetector
 
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early...
 
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
Minor Planet Evidence for Water in the Rocky Debris of a Disrupted Extrasolar...
 
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
Unique chemistry of a diamond-bearing pebble from the Libyan Desert Glass str...
 

Dernier

Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptxmary850239
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 
4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptx4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptxmary850239
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...HetalPathak10
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...Nguyen Thanh Tu Collection
 
How to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command LineHow to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command LineCeline George
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvRicaMaeCastro1
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 

Dernier (20)

Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx4.9.24 School Desegregation in Boston.pptx
4.9.24 School Desegregation in Boston.pptx
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 
4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptx4.9.24 Social Capital and Social Exclusion.pptx
4.9.24 Social Capital and Social Exclusion.pptx
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
 
How to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command LineHow to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command Line
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnvESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
ESP 4-EDITED.pdfmmcncncncmcmmnmnmncnmncmnnjvnnv
 
Spearman's correlation,Formula,Advantages,
Spearman's correlation,Formula,Advantages,Spearman's correlation,Formula,Advantages,
Spearman's correlation,Formula,Advantages,
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Introduction to Research ,Need for research, Need for design of Experiments, ...
Introduction to Research ,Need for research, Need for design of Experiments, ...Introduction to Research ,Need for research, Need for design of Experiments, ...
Introduction to Research ,Need for research, Need for design of Experiments, ...
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 

Transient Water Vapor at Europa’s South Pole

  • 1. Reports excitation of atmospheric species, such as O2, O and H2O. To subtract the light reflected from the surface, we generated model spectral images by convolving normalized inverted visible images with a solar UV spectrum (15). Whereas the surface reflectance corrected 1,2 2 1 Lorenz Roth, *† Joachim Saur, † Kurt D. Retherford, Darrell F. Lyman-α brightness is mostly conStrobel,3,4 Paul D. Feldman,4 Melissa A. McGrath,5 Francis Nimmo6 sistent with a zero signal for the 1999 and November 2012 observations, a 1 Southwest Research Institute, San Antonio, TX, USA. 2Institute of Geophysics and Meteorology, University 3 pronounced 400-600 R (16) region is of Cologne, Germany. Department of Earth and Planetary Science, The Johns Hopkins University, found above the limb near the south Baltimore, MD, USA. 4Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, pole in the residual Lyman-α emission MD, USA. 5NASA Marshall Space Flight Center, Huntsville, AL, USA. 6Department of Earth and Planetary in the December 2012 image (Fig. 1I). Sciences, University of California Santa Cruz, CA, USA. The residual atmospheric oxygen *Corresponding author. E-mail: lorenz.roth@swri.edu emissions at 130.4 nm and 135.6 nm in †These authors contributed equally to this work. contrast cover most of Europa’s disk (Fig. 1, J to O). The 135.6/130.4 ratios In November and December 2012 the Hubble Space Telescope (HST) imaged of 1.6 ± 0.1 (both 1999 and November Europa’s ultraviolet emissions in the search for vapor plume activity. We report 2012) and 2.1 ± 0.2 (December 2012) statistically significant coincident surpluses of hydrogen Lyman-α and oxygen are consistent with previous measureOI130.4 nm emissions above the southern hemisphere in December 2012. These ments and an O2 atmosphere with a low emissions are persistently found in the same area over ~7 hours, suggesting mixing ratio of O (10, 11). The oxygen atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of aurora morphologies undergo considerwater vapor with line-of-sight column densities of about 1020 m−2. Nondetection in able variations during the ~7 hours of November and in previous HST images from 1999 suggests varying plume activity all observations (Fig. 2 and figs. S1 and that might depend on changing surface stresses based on Europa’s orbital phases. S2). Bright OI135.6 nm patches are The plume was present when Europa was near apocenter and not detected close to found close to the poles, which appear its pericenter, in agreement with tidal modeling predictions. to rock toward and away from Jupiter in correlation with the varying magnetic field orientation at Europa. The Europa’s exceptional surface morphology suggests the existence of a OI130.4 nm aurora pattern roughly resembles the OI135.6 nm pattern layer of liquid water under the icy crust (1, 2), which has been confirmed independently by magnetometer measurements (3). Despite signs of (cf. I and N in figs. S1 and S2, respectively) as expected if both OI mulactive resurfacing in chaos terrains (4) and the existence of a subsurface tiplets originate from electron-impact dissociated O2. Apparent deviaocean, current geologic activity has not been observed directly in Voy- tions of the OI130.4 nm morphology from the OI135.6 emission can be ager and Galileo observations (2, 5, 6) or in any other data. Europa also attributed in part to the inhomogeneity of the higher surface reflectance possesses a tenuous atmosphere generated by sputtering and radiolysis at 130.4 nm. This becomes most apparent in the combined images (Fig. (7–9) that was detected in 1995 through HST ultraviolet (UV) observa- 1, J to L), because the time-variable atmospheric contributions are tions of oxygen emissions at 130.4 nm and 135.6 nm (10, 11). Spatially smoothed through the superposition. The generally patchy OI130.4 nm revolved images of these atmospheric emissions obtained by the HST morphology is additionally affected by the low signal-to-noise ratio of Space Telescope Imaging Spectrograph (STIS) revealed an irregular the 130.4 nm emission (15). We focus our analysis on the emission above the limb of Europa, emission pattern at the two oxygen multiplets, which originates from an which is only marginally influenced by the surface reflectance due to inhomogeneous neutral gas abundance across the surface (12, 13) or Europa’s highly variable plasma environment, or both. An enhanced instrument-scattered light from the on-disk features. Above the south emission near 90° west longitude when Europa was near its apocenter polar limb in the December 2012 composite images an OI130.4 nm endetected by the HST Advanced Camera for Surveys (ACS) was associat- hancement of similar appearance is found in the same region as the ed with a possible existence of plumes in a region where high shear Lyman-α enhancement (compare Fig. 1, I and L). Detectable Lyman-α stresses are expected, but an unambiguous correlation was not possible and OI130.4 nm emissions are persistently found above the southern anti-Jovian limb during all five HST orbits of the December 2012 obserdue to low data quality (14). We report STIS spectral images of Europa’s trailing/anti-Jovian vations (Fig. 2, A to J). Bright OI135.6 nm emissions across the entire hemisphere and leading hemisphere obtained in November and Decem- south polar region shift from the sub-Jovian to the anti-Jovian hemiber 2012, respectively. Previous observations, in 1999, targeted Europa’s sphere between the first and last orbit (Fig. 2, K to O). A persistent or trailing hemisphere (Table 1). The observations in 2012 were timed to significant above-limb OI135.6 nm emission surplus is not detected. In a next step, we subdivided the region between 1 RE (Europa radicoincide with the maximum variation of the Jupiter’s magnetic field orientation at Europa. With this configuration, spatially inhomogeneous us, 1561 km) and 1.25 RE (corresponding to an above-limb altitude of yet time-variable emissions originating from the periodically changing 390 km) in 18 bins spanning angles of 20° around the disk of Europa in magnetospheric conditions can be separated from time-stationary emis- all images (Fig. 3). The December 2012 Lyman-α image brightnesses of all pixels in limb bins 12 and 13 are 420 ± 136 R and 604 ± 140 R, sion inhomogeneities due to atmospheric anomalies. After correction of the images for instrumental and background which exceed the faint average limb emission of 46 R (outside the noise (15), the remaining emission sources are: solar reflectance from anomaly) by 2.8 and 4.0 times the propagated uncertainty (σ), respecEuropa’s surface, solar resonance scattering by atmospheric H and O tively. The OI130.4 emission of 59 ± 18 R in bin 13 is also significantly atoms (negligible for OI135.6 nm), and electron impact (dissociative) (2.4σ) higher than the average limb emission of 16 R, and bin 12 shows a slight enhancement (35 ± 17 R). At both lines the emission anomaly Transient Water Vapor at Europa’s South Pole / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 1/ 10.1126/science.1247051
  • 2. appears to have two individual peaks in bins 12 and 13, which can, however, not be clearly separated within the measurement uncertainties. No significant emission surplus is found in either of the bins at 135.6 nm (Fig. 3E). In 1999 and November 2012 all of the Lyman-α bins are consistent with zero signal within 2σ (17). Detectable Lyman-α emission is not expected for the generally assumed abundance of hydrogen bearing molecules (≤1017 m−2) in the global sputtered atmosphere (7–9). Lyman-α emission from a global atomic hydrogen corona that is not gravitationally bound as observed at Ganymede (18) would be isotropic. Lyman-α solar resonant scattering on atomic H also would require optically-thick columns (>1017 m−2) to produce brightnesses >400 R and can be excluded. In contrast, H2O freezes (19) and any enhancement must be localized to its source. In addition, electron impact on H2O yields HI121.6 nm and OI130.4 nm, but has a lower cross section at 135.6 nm (20). Hence, the emission surplus at HI121.6 nm and OI130.4 nm in an area, where no remarkable enhancement of OI135.6 nm is found, suggests a local atmospheric H2O enhancement. We derive average H2O and O2 column densities using measured cross sections for electron-impact dissociative excitation and the standard plasma parameters for Europa (15). Neglecting presumably small contributions from e + O or e + H2O, the observed OI135.6 nm brightness of bin 13 requires a line-of-sight O2 column of ~5 × 1019 m−2. The Lyman-α brightness in bin 13 implies an optically thin H2O column density of 1.5 × 1020 m−2. In this case, excitation of O2 and H2O would contribute 27 R and 29 R, respectively, to the OI130.4 nm emission consistent with the measured brightness of 59 ± 18 R in bin 13. Thus, the Lyman-α/OI130.4 nm/OI135.6 nm ratios are diagnostic of e + H2O in an approach similar to the average OI135.6 nm/OI130.4 nm ratio being diagnostic of e + O2 (10, 11). We generated model images for two three-dimensional plume distributions taking into account H2O continuum absorption and resonant scattering. We started by generating a standard model for an average background atmosphere by adjusting the density of an exponentially decreasing O2 atmosphere with low O and H2O mixing ratios (15) to the observed OI135.6 nm limb brightness for all observations (Fig. 3E,F, dotted grey). The fitted vertical O2 column density of NO2 = 3.5 × 1018 m−2 agrees well with the observed OI130.4 limb brightness and is consistent with previous results (7–11, 21). Deviations from the model in several bins for both oxygen aurora lines are likely attributed to the variable plasma environment. We then generated model images with two local H2O plumes (15). We adjusted the plume height of 200 km and the latitudinal expansion of 10° (or ~270 km on the surface) to the observed spatial profile of the Lyman-α emissions. The implemented density profile resembles an intermediate case between Io’s shock-dominated Pele-type plumes (22) and the low-gravity outgassing of the Enceladus plumes (23). Because the surface source locations cannot be determined from the images, the plumes were arbitrarily centered on the anti-Jovian meridian (180°W) and in the center of the bins 12 and 13 at 55°S and 75°S, respectively. The densities of the plumes were fit to the observed Lyman-α bin brightness yielding total contents of 4.9 ×1031 and 8.2 × 1031 H2O molecules for the plumes at 55°S and 75°S, respectively. The combined plume content is 1-2 orders of magnitude higher than the H2O abundance in global atmosphere models without plumes (7–9). The derived H2O plume densities independently match the observed OI130.4 nm emission surplus if resonant scattering and electron impact on O with an estimated mixing ratio of O/H2O ~ 0.2% is taken into account (15). The model reasonably reproduces the Lyman-α plume morphology and brightness decrease with altitude (Fig. 3). At low altitudes (< 100 km) the measured brightness decreases for both the Lyman-α and OI130.4 nm emission. Because bright OI135.6 nm emission is also detected up to altitudes of 200 km, the OI130.4 nm profile might be best explained by a peak in oxygen abundance at higher altitudes. Also, the derived plume height of 200 km is higher than expected from model results (24) and would require large super-sonic eruption velocities of ~700 m/s. However, interpretation of the derived height and radial profile requires caution because of the systematic uncertainties of the disk location by 1-2 pixels or ~100 km. Moreover, a local density enhancement within a smooth global atmosphere would substantially alter the plasma environment, which in turn modifies the aurora morphology and brightness (25). The high plume velocities and relatively low number densities we inferred are consistent with vapor emission from narrow fractures (15), as occurs at Enceladus (23, 26). The surface area of Europa’s fractures is too small to produce a thermal anomaly detectable by the Galileo Photopolarimeter-Radiometer instrument (27). Plume fallback could produce terrain softening in the near-polar regions, which might be detectable in suitable high-resolution images (15). The modeled Lyman-α limb brightnesses for the 1999 and November 2012 geometries are not consistent with persistent plumes. Also, no striking surplus of OI130.4 nm emission is detected. The model indicates that the plumes were less dense by at least a factor of 2 and 3 during the 1999 and November 2012 observations, respectively, if present (fig. S3). Thus, the plume activity appears to undergo considerable variability. Recently, the plumes at Enceladus’ south pole have been shown to be more active near apocenter than at the pericenter (28). Similar tidal stress variability for Europa is expected to open and close its Linea features (fig. S4, (15)). Europa was very close to its apocenter during the December 2012 observations, and was shortly before and at the pericenter during the 1999 and November 2012 observations (Table 1). This causal relationship might explain the observed variability and the lack of detections in 1999 and November 2012. The plume variability, if real, verifies a key prediction of tidal-flexing models based on the existence of a subsurface ocean. References and Notes 1. M. H. Carr, M. J. Belton, C. R. Chapman, M. E. Davies, P. Geissler, R. Greenberg, A. S. McEwen, B. R. Tufts, R. Greeley, R. Sullivan, J. W. Head, R. T. Pappalardo, K. P. Klaasen, T. V. Johnson, J. Kaufman, D. Senske, J. Moore, G. Neukum, G. Schubert, J. A. Burns, P. Thomas, J. Veverka, Evidence for a subsurface ocean on Europa. Nature 391, 363–365 (1998). doi:10.1038/34857 Medline 2. R. T. Pappalardo, M. J. S. Belton, H. H. Breneman, M. H. Carr, C. R. Chapman, G. C. Collins, T. Denk, S. Fagents, P. E. Geissler, B. Giese, R. Greeley, R. Greenberg, J. W. Head, P. Helfenstein, G. Hoppa, S. D. Kadel, K. P. Klaasen, J. E. Klemaszewski, K. Magee, A. S. McEwen, J. M. Moore, W. B. Moore, G. Neukum, C. B. Phillips, L. M. Prockter, G. Schubert, D. A. Senske, R. J. Sullivan, B. R. Tufts, E. P. Turtle, R. Wagner, K. K. Williams, Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104, (E10), 24015–24055 (1999). doi:10.1029/1998JE000628 3. K. K. Khurana, M. G. Kivelson, D. J. Stevenson, G. Schubert, C. T. Russell, R. J. Walker, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998). doi:10.1038/27394 Medline 4. B. E. Schmidt, D. D. Blankenship, G. W. Patterson, P. M. Schenk, Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479, 502–505 (2011). doi:10.1038/nature10608 Medline 5. C. B. Phillips, A. S. McEwen, G. V. Hoppa, S. A. Fagents, R. Greeley, J. E. Klemaszewski, R. T. Pappalardo, K. P. Klaasen, H. H. Breneman, The search for current geologic activity on Europa. J. Geophys. Res. 105, (E9), 22579–22597 (2000). doi:10.1029/1999JE001139 6. S. A. Fagents, Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. J. Geophys. Res. 108, (E12), 5139 (2003). doi:10.1029/2003JE002128 / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 2/ 10.1126/science.1247051 2
  • 3. 7. V. I. Shematovich, R. E. Johnson, J. F. Cooper, M. C. Wong, Surfacebounded atmosphere of Europa. Icarus 173, 480–498 (2005). doi:10.1016/j.icarus.2004.08.013 8. W. H. Smyth, M. L. Marconi, Europa’s atmosphere, gas tori, and magnetospheric implications. Icarus 181, 510–526 (2006). doi:10.1016/j.icarus.2005.10.019 9. C. Plainaki, A. Milillo, A. Mura, S. Orsini, S. Massetti, T. Cassidy, The role of sputtering and radiolysis in the generation of Europa exosphere. Icarus 218, 956–966 (2012). doi:10.1016/j.icarus.2012.01.023 10. D. T. Hall, D. F. Strobel, P. D. Feldman, M. A. McGrath, H. A. Weaver, Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373, 677–679 (1995). doi:10.1038/373677a0 Medline 11. D. T. Hall, P. D. Feldman, M. A. McGrath, D. F. Strobel, The farultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499, 475–481 (1998). doi:10.1086/305604 12. M. A. McGrath, C. J. Hansen, A. R. Hendrix, in Europa, R. T. Pappalardo, W. B. McKinnon, K. K. Khurana, Eds. (Univ. of Arizona Press, 2009), pp. 485–505 13. T. A. Cassidy, R. E. Johnson, M. A. McGrath, M. C. Wong, J. F. Cooper, The spatial morphology of Europa’s near-surface O2 atmosphere. Icarus 191, 755–764 (2007). doi:10.1016/j.icarus.2007.04.033 14. J. Saur, P. D. Feldman, L. Roth, F. Nimmo, D. F. Strobel, K. D. Retherford, M. A. McGrath, N. Schilling, J.-C. Gérard, D. Grodent, Hubble Space Telescope/Advanced Camera for Surveys Observations of Europa’s Atmospheric Ultraviolet Emission at Eastern Elongation. Astrophys. J. 738, 153 (2011). doi:10.1088/0004637X/738/2/153 15. See supplementary materials for more information. 16. Rayleigh [R] is the column emission rate of 1010 photons per square meter per column per second, 1 R = 1010/4π photons m−2 sr−1 s−1. 17. The 1999 Lyman-α image might hint a plume feature in the south polar region (Fig. 1G), but is not statistically significant and is therefore not considered further. 18. C. A. Barth, C. W. Hord, A. I. F. Stewart, W. R. Pryor, K. E. Simmons, W. E. McClintock, J. M. Ajello, K. L. Naviaux, J. J. Aiello, Galileo ultraviolet spectrometer observations of atomic hydrogen in the atmosphere at Ganymede. Geophys. Res. Lett. 24, 2147–2150 (1997). doi:10.1029/97GL01927 19. J. R. Spencer, L. K. Tamppari, T. Z. Martin, L. D. Travis, Temperatures on Europa from Galileo photopolarimeter-radiometer: Nighttime thermal anomalies. Science 284, 1514–1516 (1999). doi:10.1126/science.284.5419.1514 Medline 20. O. P. Makarov et al., Kinetic energy distributions and line profile measurements of dissociation products of water upon electron impact. J. Geophys. Res. 109, (A18), A09303 (2004). doi:10.1029/2002JA009353 21. J. Saur, D. F. Strobel, F. M. Neubauer, Interaction of the Jovian magnetosphere with Europa: Constraints on the neutral atmosphere. J. Geophys. Res. 103, (E9), 19947–19962 (1998). doi:10.1029/97JE03556 22. J. Zhang, D. B. Goldstein, P. L. Varghese, N. E. Gimelshein, S. F. Gimelshein, D. A. Levin, Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus 163, 182–197 (2003). doi:10.1016/S0019-1035(03)00050-2 23. F. Tian, A. I. F. Stewart, O. B. Toon, K. W. Larsen, L. W. Esposito, Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus 188, 154–161 (2007). doi:10.1016/j.icarus.2006.11.010 24. S. A. Fagents et al., Cryomagmatic mechanisms for the formation of Rhadamanthys Linea, triple band margins, and other low-albedo features on Europa. Icarus 144, 54–88 (2000). doi:10.1006/icar.1999.6254 25. L. Roth, J. Saur, K. D. Retherford, D. F. Strobel, J. R. Spencer, Simulation of Io’s auroral emission: Constraints on the atmosphere in eclipse. Icarus 214, 495–509 (2011). doi:10.1016/j.icarus.2011.05.014 26. C. J. Hansen, D. E. Shemansky, L. W. Esposito, A. I. F. Stewart, B. R. Lewis, J. E. Colwell, A. R. Hendrix, R. A. West, J. H. Waite, Jr., B. Teolis, B. A. Magee, The composition and structure of the Enceladus plume. Geophys. Res. Lett. 38, L11202 (2011). doi:10.1029/2011GL047415 27. J. A. Rathbun, N. J. Rodriguez, J. R. Spencer, Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties. Icarus 210, 763–769 (2010). doi:10.1016/j.icarus.2010.07.017 28. M. M. Hedman, C. M. Gosmeyer, P. D. Nicholson, C. Sotin, R. H. Brown, R. N. Clark, K. H. Baines, B. J. Buratti, M. R. Showalter, An observed correlation between plume activity and tidal stresses on Enceladus. Nature 500, 182–184 (2013). doi:10.1038/nature12371 Medline 29. Z. A. Selvans, Time, Tides and Tectonics on Icy Satellites, thesis, University of Colorado at Boulder (2009) 30. F. Nimmo, J. R. Spencer, R. T. Pappalardo, M. E. Mullen, Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007). doi:10.1038/nature05783 Medline 31. G. V. Hoppa, B. R. Tufts, R. Greenberg, P. E. Geissler, Strike-slip faults on Europa: Global shear patterns driven by tidal stress. Icarus 141, 287–298 (1999). doi:10.1006/icar.1999.6185 32. G. V. Hoppa, R. Greenberg, B. R. Tufts, P. E. Geissler, Plume detection on Europa: Locations of favorable tidal stress, in Lunar and Planetary Institute Science Conference Abstracts, 30, p. 1603 (1999) 33. F. L. Roesler, H. W. Moos, R. J. Oliversen, R. C. Woodward, Jr., K. D. Retherford, F. Scherb, M. A. McGrath, W. H. Smyth, P. D. Feldman, D. F. Strobel, Far-ultraviolet imaging spectroscopy of Io’s atmosphere with HST/STIS. Science 283, 353–357 (1999). doi:10.1126/science.283.5400.353 Medline 34. P. D. Feldman, M. A. McGrath, D. F. Strobel, H. W. Moos, K. D. Retherford, B. C. Wolven, HST/STIS ultraviolet imaging of polar aurora on Ganymede. Astrophys. J. 535, 1085–1090 (2000). doi:10.1086/308889 35. P. D. Feldman, D. F. Strobel, H. W. Moos, K. D. Retherford, B. C. Wolven, M. A. McGrath, F. L. Roesler, R. C. Woodward, R. J. Oliversen, G. E. Ballester, Lyman-alpha imaging of the SO2 distribution on Io. Geophys. Res. Lett. 27, 1787–1790 (2000). doi:10.1029/1999GL011067 36. K. D. Retherford, H. W. Moos, D. F. Strobel, B. C. Wolven, F. L. Roesler, Io’s equatorial spots: Morphology of neutral UV emissions. J. Geophys. Res. 105, (A12), 27157–27165 (2000). doi:10.1029/2000JA002500 37. K. D. Retherford, H. W. Moos, D. F. Strobel, Io’s auroral limb glow: Hubble Space Telescope FUV observations. J. Geophys. Res. 108, (A8), 1333–1341 (2003). doi:10.1029/2002JA009710 38. B. C. Wolven, H. W. Moos, K. D. Retherford, P. D. Feldman, D. F. Strobel, W. H. Smyth, F. L. Roesler, Emission profiles of neutral oxygen and sulfur in Io's exospheric corona. J. Geophys. Res. 106, (A11), 26155–26182 (2001). doi:10.1029/2000JA002506 39. D. F. Strobel, J. Saur, P. D. Feldman, M. A. McGrath, Hubble Space Telescope space telescope imaging spectrograph search for an atmosphere on Callisto: A Jovian unipolar inductor. Astrophys. J. 581, L51–L54 (2002). doi:10.1086/345803 40. L. M. Feaga, M. A. McGrath, P. D. Feldman, The abundance of atomic sulfur in the atmosphere of Io. Astrophys. J. 570, 439–446 (2002). doi:10.1086/339500 41. L. M. Feaga, M. McGrath, P. D. Feldman, Io’s dayside SO2 atmosphere. Icarus 201, 570–584 (2009). doi:10.1016/j.icarus.2009.01.029 42. M. A. McGrath, X. Jia, K. Retherford, P. D. Feldman, D. F. Strobel, J. Saur, Aurora on Ganymede. J. Geophys. Res. 118, 2043–2054 (2013). doi:10.1002/jgra.50122 43. L. Roth, J. Saur, K. D. Retherford, P. D. Feldman, D. F. Strobel, A phenomenological model for Io’s UV aurora based on HST/STIS observations. Icarus 228, 386–406 (2014). doi:10.1016/j.icarus.2013.10.009 44. C. R. Proffitt, Changes in the STIS FUVMAMA Dark Current (Space Telescope STIS Instrument Science Report, Space Telescope Science Institute, 2007) 45. W. Curdt, P. Brekke, U. Feldman, K. Wilhelm, B. N. Dwivedi, U. / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 3/ 10.1126/science.1247051 3
  • 4. Schühle, P. Lemaire, The SUMER spectral atlas of solar-disk features. Astron. Astrophys. 375, 591–613 (2001). doi:10.1051/00046361:20010364 46. T. N. Woods, D. K. Prinz, G. J. Rottman, J. London, P. C. Crane, R. P. Cebula, E. Hilsenrath, G. E. Brueckner, M. D. Andrews, O. R. White, M. E. VanHoosier, L. E. Floyd, L. C. Herring, B. G. Knapp, C. K. Pankratz, P. A. Reiser, Validation of the UARS solar ultraviolet irradiances: Comparison with the ATLAS 1 and 2 measurements. J. Geophys. Res. 101, (D6), 9541–9569 (1996). doi:10.1029/96JD00225 47. T. N. Woods et al., Solar EUV Experiment (SEE): Mission overview and first results. J. Geophys. Res. 110, (A1), A01312 (2005). doi:10.1029/2004JA010765 48 J. E. Krist, R. N. Hook, F. Stoehr, 20 years of Hubble Space Telescope optical modeling using Tiny Tim, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 8127 (2011); 49. R. Greeley et al., (Cambridge Univ. Press, 2004), pp. 457–483 50. R. L. Lucke, R. C. Henry, W. G. Fastie, Far-ultraviolet albedo of the moon. Astron. J. 81, 1162–1169 (1976). doi:10.1086/112000 51. R. C. Henry, W. G. Fastie, R. L. Lucke, B. W. Hapke, A farultraviolet photometer for planetary surface analysis. Moon 15, 51– 65 (1976). doi:10.1007/BF00562471 52. J. P. Doering, E. E. Gulcicek, Absolute differential and integral electron excitation cross sections for atomic oxygen 7. The 3P → 1D and 3P → 1S transitions from 4.0 to 30 eV. J. Geophys. Res. 94, (A2), 1541–1546 (1989). doi:10.1029/JA094iA02p01541 53. J. P. Doering, E. E. Gulcicek, Absolute differential and integral electron excitation cross sections for atomic oxygen 8. The ³P → 5So transition (1356 Å) from 13.9 to 30 eV. J. Geophys. Res. 94, (A3), 2733–2736 (1989). doi:10.1029/JA094iA03p02733 54. J. P. Doering, Absolute differential and integral electron excitation cross sections for atomic oxygen 9. Improved cross section for the ³P → ¹D transition from 4.0 to 30 eV. J. Geophys. Res. 97, (A12), 19531–19534 (1992). doi:10.1029/92JA02007 55. I. Kanik et al., Electron impact dissociative excitation of O2: 2. Absolute emission cross sections of the OI(130.4 nm) and OI(135.6 nm) lines. J. Geophys. Res. 108, (E11), 5126 (2003). doi:10.1029/2000JE001423 56. P. V. Johnson, I. Kanik, D. E. Shemansky, X. Liu, Electron-impact cross sections of atomic oxygen. J. Phys. At. Mol. Opt. Phys. 36, 3203–3218 (2003). doi:10.1088/0953-4075/36/15/303 57. S. P. Sander et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17 (JPL Publication 106, Jet Propulsion Laboratory, Pasadena, CA, 2011) 58. K. Yoshino, W. H. Parkinson, K. Ito, T. Matsui, Absolute absorption cross-section measurements of Schumann Runge continuum of O2 at 90 and 295 K. J. Mol. Spectrosc. 229, 238–243 (2005). doi:10.1016/j.jms.2004.08.020 59 H.-C. Lu, K.-K. Chen, H.-F. Chen, B.-M. Cheng, J.F. Ogilvie, Absorption cross section of molecular oxygen in the transition E 3Σuv = 0 – X 3Σg- v = 0 at 38 K. Astronom. Astrophys., 520 (2010); 60. T. Harb, W. Kedzierski, J. W. McConkey, Production of ground state OH following electron impact on H2O. J. Chem. Phys. 115, 5507– 5512 (2001). doi:10.1063/1.1397327 61. J. S. Lee, R. R. Meier, Angle-dependent frequency redistribution in a plane-parallel medium - External source case. Astrophys. J. 240, 185–195 (1980). doi:10.1086/158222 62. D. C. Morton, Atomic data for resonance absorption lines. I Wavelengths longward of the Lyman limit. Astrophys. J. 77, (Suppl.), 119–202 (1991). doi:10.1086/191601 63. J. Marti, K. Mauersberger, A survey and new measurements of ice vapor pressure at temperatures between 170 and 250K. Geophys. Res. Lett. 20, 363–366 (1993). doi:10.1029/93GL00105 64. J. D. Goguen, B. J. Buratti, R. H. Brown, R. N. Clark, P. D. Nicholson, M. M. Hedman, R. R. Howell, C. Sotin, D. P. Cruikshank, K. H. Baines, K. J. Lawrence, J. R. Spencer, D. G. Blackburn, The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus 226, 1128–1137 (2013). doi:10.1016/j.icarus.2013.07.012 65. P. Schenk, J. Schmidt, O. White, The Snows of Enceladus. In EPSCDPS Joint Meeting 2011, Vol. 1, 1358 (2011) 66. A. P. Ingersoll, A. A. Pankine, Subsurface heat transfer on Enceladus: Conditions under which melting occurs. Icarus 206, 594– 607 (2010). doi:10.1016/j.icarus.2009.09.015 67. F. Nimmo, Stresses generated in cooling viscoelastic ice shells: Application to Europa. J. Geophys. Res. 109, (E12), E12001 (2004). doi:10.1029/2004JE002347 68. H. Hussmann, T. Spohn, Thermal-orbital evolution of Io and Europa. Icarus 171, 391–410 (2004). doi:10.1016/j.icarus.2004.05.020 69. A. P. Ingersoll, S. P. Ewald, Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images. Icarus 216, 492–506 (2011). doi:10.1016/j.icarus.2011.09.018 70. F. Nimmo, P. D. Thomas, R. T. Pappalardo, W. B. Moore, The global shape of Europa: Constraints on lateral shell thickness variations. Icarus 191, 183–192 (2007). doi:10.1016/j.icarus.2007.04.021 Acknowledgments: This work is based on Hubble Space Telescope observations available at the NASA MAST data archive. Support for program number GO-13040 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under contract NAS5-26555; and by Verbundforschung Astronomie und Astrophysik. Supplementary Materials www.sciencemag.org/cgi/content/full/science.1247051/DC1 Materials and Methods Supplementary Text Figs. S1 to S10 Tables S1 to S2 References (29–70) 10 October 2013; accepted 2 December 2013 Published online 12 December 2013; 10.1126/science.1247051 / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 4/ 10.1126/science.1247051 4
  • 5. Table 1. HST/STIS G140L observations of Europa’s UV emissions. Observation start date and time HST orbits/ exposures 5-Oct-1999 5/9 8:39* 8-Nov-2012 5/10 20:41† 30-Dec-2012 5/9 18:49† *PI M. A. McGrath. †PI J. Saur. Total exp. time (min) Spatial resolution (km/pixel) Sub-observer W long. (°) System III longitude (°) Mag. lat. range (°) True anomaly f (°) Water vapor detected 156 71.5 245–274 300–158 –9.5–6.8 343–13 No 183 73.9 209–238 25–243 –9.3–9.5 289–318 No 164 74.9 79–108 0–218 –9.5–9.5 185–218 Yes / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 5/ 10.1126/science.1247051 5
  • 6. Fig. 1. Visible images of the observed hemispheres (A to C) with sub-observer longitudes listed and combined STIS images of the hydrogen and oxygen emissions (D to O) (Table 1). The Lyman-α morphology [(D) to (F)] reveals an anticorrelation with the brightness in the visible (15). (G) to (O) Same Lyman-α images, and OI130.4 nm and OI135.6 nm images with solar disk-reflectance subtracted. 3 × 3 pixels are binned and the STIS images are smoothed to enhance visibility of the significant features. The dotted light blue circles indicate the multiplet lines (15). The color scale is normalized to the respective brightness and the scale maximum (corresponding to 1.0 on the scale) is listed in each image. Oversaturated pixels with intensities above maximum are white. The contours show signal-to-noise (SNR) ratios of the binned pixels [and contours for SNR = 1 are omitted here in (D) to (F) and (M) to (O)]. / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 6/ 10.1126/science.1247051 6
  • 7. Fig. 2. Individual STIS images of the 5 HST orbits from December 2012. Lyman-α before disk-reflectance subtraction (A to E), and reflectance-subtracted Lyman-α and oxygen emissions (F to T). The persistent plume emission is highlighted in dashed-red. Sub-observer longitude φobs, Jovian System-III-longitude λIII, magnetic latitude ψmag and projected magnetic field line B are listed below. Leading meridian (90°W) is dashed-white, equator is solid-white. Other details are as in Fig. 1. / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 7/ 10.1126/science.1247051 7
  • 8. Fig. 3. Comparison of December 2012 observations and atmosphere plume model results. (A to D) Lyman-α and OI 130.4 nm STIS images (as in Fig. 1) and model aurora images from a global atmosphere with two H2O plumes. The south polar above-limb emission is found in bins 12 and 13 of the eighteen 20° bins illustrated by the dotted yellow lines. The patchiness of the 130.4 nm on-disk emissions might originate from surface reflectance, atmospheric, or plasma inhomogeneities, but is also consistent with statistically expected variations across a uniform disk (15). (E) Measured (solid black) and modeled (dotted) brightnesses of each 20°-wide limb bin around Europa’s disk. The best-fit plume model atmosphere is shown in red, and plume densities decreased by factor 2 and factor 3 are shown in blue and green, respectively. (F) Radial profiles of measured and modeled brightness versus altitude in bins 12 + 13. / http://www.sciencemag.org/content/early/recent / 12 December 2013 / Page 8/ 10.1126/science.1247051 8