SlideShare une entreprise Scribd logo
1  sur  25
Télécharger pour lire hors ligne
Design of a Scramjet Engine
Adam J. Resler
ME 566 – Aerospace Propulsion
Wed 04/29/15
Overview
• Scramjet Introduction
• Current State of Scramjet Technology
• Design Considerations
• Methods
• Results and Conclusions
• Questions & Comments
Scramjet Introduction
Scramjet Benefits
• Air-Breathing Engine – No oxidizer required to
be carried onboard
• No moving parts
• Theoretical Specific Impulse between 1000 –
4000 seconds
• Escape velocity capable; Theoretical Range
between Mach 5 and Mach 26 flight velocity
Scramjet Disadvantages
• Special materials requirements
– High strength/weight – scramjet have high
payload mass fractions making weight a concern
– High thermal stress characteristics – heavy cooling
burden; also loss of cooling ability as fuel is
consumed
• Current designs typically start at Mach 5
• Poor thrust/weight ratio
• Low to very low lift/drag ratio
Scramjet Programs
• SCRAM: USA; Mach 4 – 10
• National Aerospace Plane (NASP): USA; Mach 17
Upper Limit; Mach 25 Possible; Current H2
Combustion Model (31 Reactions; 16 Species)
• HyShot: Australia; Flew at Mach 7.6 for 6
seconds; 10 vehicles; 40% Success Rate
• HyperX: USA; Mach 7 for 11 seconds (15 miles)
2004; Mach 10 in 2004;
• X-51 Waverider: USA; In 2013 flew for 240
seconds ~Mach 5.1 before running out of fuel
NASA X-43A HS Vehicle w/ Scramjet
Design Considerations
• Design Velocity: Mach 5
• Maximum Temperature: 2000 K
• Flight Altitude: 15 km
• Number of Inlet Shocks: 3
Design Method
• Solution of the simplified compressible,
inviscid, Navier-Stokes equations with semi-
perfect gas equations of state
• Generalized Quasi-1D Flow – takes into
account area change, friction, and heat
addition; however, no differential mass terms
• Complete combustion model (no dissociation,
complete combustion prior to nozzle)
Results of Analysis
• Thrust: 405.7 kN (91,210 lbf)
• Isp: 174.1 s
• Efficiency: 0.83pr/0.56t/.47o
• TSFC: 0.01757 kg/kN-s
• T/ma: 0.572 kN-s/kg
• Time in engine: 0.0021 s
• Specific burn time: 9.82 s/m3
Results of Analysis
Property Diffuser Combustor Nozzle
Pressure
Recovery
0.8355 0.5433 0.6724
Total
Recovery
0.3053
Adiabatic
Efficiency
0.9243 1.0 0.9127
Perspective
• Actual speed-over-land: ~0.9 to 1 mile/second
• New York to LA: 44.68 minutes
• Around Earth at Equator: 7.576 hours
• Destin, FL to New Orleans, LA: 5 minutes
• Compared to F-15 Eagle P&W F100-220
Turbofan Engine: ~3.8 times more thrust
Conclusions
• Low specific impulse - unexpected
• Engine not viable unless installed in a large
vehicle
• Better combustion model required to study
higher Mach numbers
Summary
• Scramjet Introduction
• Current State of Scramjet Technology
• Design Considerations
• Methods
• Results and Conclusions
• Questions & Comments
Q&C
• Scramjet CFD Model (1 min)
https://www.youtube.com/watch?v=kaVDDm222H8
• Scramjet Engine Wind Tunnel Test (no
apparent combustion): (40 sec)
https://www.youtube.com/watch?v=EfJp2luk_IY

Contenu connexe

Tendances

Hypersonic Flight_Dora_Musielak_2016
Hypersonic Flight_Dora_Musielak_2016Hypersonic Flight_Dora_Musielak_2016
Hypersonic Flight_Dora_Musielak_2016
Dora Musielak, Ph.D.
 
Mechanical Aspects in Stealth Technology
Mechanical Aspects in Stealth TechnologyMechanical Aspects in Stealth Technology
Mechanical Aspects in Stealth Technology
BipinKumarJha1
 
Chapter 9 weight & balance presentation
Chapter 9 weight & balance presentationChapter 9 weight & balance presentation
Chapter 9 weight & balance presentation
MWPerkins
 

Tendances (20)

Hypersonic aircraft ppt
Hypersonic aircraft pptHypersonic aircraft ppt
Hypersonic aircraft ppt
 
Stealth technology
Stealth technologyStealth technology
Stealth technology
 
Unit iv - Rockets and Misiles
Unit iv - Rockets and MisilesUnit iv - Rockets and Misiles
Unit iv - Rockets and Misiles
 
UAV (Unmanned Aerial Vehicle)
UAV (Unmanned Aerial Vehicle)UAV (Unmanned Aerial Vehicle)
UAV (Unmanned Aerial Vehicle)
 
Aircraft parts
Aircraft partsAircraft parts
Aircraft parts
 
Avionics
AvionicsAvionics
Avionics
 
Hypersonic Flight_Dora_Musielak_2016
Hypersonic Flight_Dora_Musielak_2016Hypersonic Flight_Dora_Musielak_2016
Hypersonic Flight_Dora_Musielak_2016
 
AIRSEDE OPERATION
AIRSEDE OPERATIONAIRSEDE OPERATION
AIRSEDE OPERATION
 
Cruise Missile Technology By Takalikar Mayur ppt
Cruise Missile Technology By Takalikar Mayur pptCruise Missile Technology By Takalikar Mayur ppt
Cruise Missile Technology By Takalikar Mayur ppt
 
INSIDE THE COCKPIT OF AN AIRPLANE
INSIDE THE COCKPIT                 OF AN AIRPLANEINSIDE THE COCKPIT                 OF AN AIRPLANE
INSIDE THE COCKPIT OF AN AIRPLANE
 
Hypersonic vehicle
Hypersonic vehicleHypersonic vehicle
Hypersonic vehicle
 
Airport operation
Airport operationAirport operation
Airport operation
 
Mechanical Aspects in Stealth Technology
Mechanical Aspects in Stealth TechnologyMechanical Aspects in Stealth Technology
Mechanical Aspects in Stealth Technology
 
Morphing Aircraft Technology – New Shapes for Aircraft Wing Design
Morphing Aircraft Technology – New Shapes for Aircraft Wing DesignMorphing Aircraft Technology – New Shapes for Aircraft Wing Design
Morphing Aircraft Technology – New Shapes for Aircraft Wing Design
 
Black box
Black boxBlack box
Black box
 
Anti icingt4
Anti icingt4Anti icingt4
Anti icingt4
 
Tactical Missile Design
Tactical Missile DesignTactical Missile Design
Tactical Missile Design
 
Progress and Challenges in Foundational Hypersonics Research
Progress and Challenges in Foundational Hypersonics ResearchProgress and Challenges in Foundational Hypersonics Research
Progress and Challenges in Foundational Hypersonics Research
 
Chapter 9 weight & balance presentation
Chapter 9 weight & balance presentationChapter 9 weight & balance presentation
Chapter 9 weight & balance presentation
 
data bus Mil1553 b
data bus Mil1553 bdata bus Mil1553 b
data bus Mil1553 b
 

En vedette

Scram jet
Scram jetScram jet
Scram jet
1_4_3
 
Web design presentation 2014 09-24 wed-dc
Web design presentation 2014 09-24 wed-dcWeb design presentation 2014 09-24 wed-dc
Web design presentation 2014 09-24 wed-dc
Nari Miyoshi
 
Meng_Aero_Vergara_Camilo
Meng_Aero_Vergara_CamiloMeng_Aero_Vergara_Camilo
Meng_Aero_Vergara_Camilo
Camilo Vergara
 
2016_aerothermal_Lau_revB
2016_aerothermal_Lau_revB2016_aerothermal_Lau_revB
2016_aerothermal_Lau_revB
Kei Yun lau
 

En vedette (20)

Scramjet engine
Scramjet engineScramjet engine
Scramjet engine
 
A Brief Intro to Scramjet Engines
A Brief Intro to Scramjet EnginesA Brief Intro to Scramjet Engines
A Brief Intro to Scramjet Engines
 
Scram jet
Scram jetScram jet
Scram jet
 
Scramjet
ScramjetScramjet
Scramjet
 
Ramjet
RamjetRamjet
Ramjet
 
HYPERSONIC VEHICLES
HYPERSONIC VEHICLESHYPERSONIC VEHICLES
HYPERSONIC VEHICLES
 
Hyperplane (Aerospace)
Hyperplane (Aerospace)Hyperplane (Aerospace)
Hyperplane (Aerospace)
 
Scramjet engine[1]by Shashwat Mishra
Scramjet engine[1]by Shashwat MishraScramjet engine[1]by Shashwat Mishra
Scramjet engine[1]by Shashwat Mishra
 
Web design presentation 2014 09-24 wed-dc
Web design presentation 2014 09-24 wed-dcWeb design presentation 2014 09-24 wed-dc
Web design presentation 2014 09-24 wed-dc
 
ICFD12-EG-5044_final
ICFD12-EG-5044_finalICFD12-EG-5044_final
ICFD12-EG-5044_final
 
Designing Your Day: Resources
Designing Your Day: ResourcesDesigning Your Day: Resources
Designing Your Day: Resources
 
ВЕБ-ДИЗАЙН МЕРТВ. ДА ЗДРАВСТВУЕТ ИНТЕРАКТИВНЫЙ ДИЗАЙН!
ВЕБ-ДИЗАЙН МЕРТВ. ДА ЗДРАВСТВУЕТ ИНТЕРАКТИВНЫЙ ДИЗАЙН! ВЕБ-ДИЗАЙН МЕРТВ. ДА ЗДРАВСТВУЕТ ИНТЕРАКТИВНЫЙ ДИЗАЙН!
ВЕБ-ДИЗАЙН МЕРТВ. ДА ЗДРАВСТВУЕТ ИНТЕРАКТИВНЫЙ ДИЗАЙН!
 
Meng_Aero_Vergara_Camilo
Meng_Aero_Vergara_CamiloMeng_Aero_Vergara_Camilo
Meng_Aero_Vergara_Camilo
 
1 cfd-analysis-of-solid-fuel-scramjet
1 cfd-analysis-of-solid-fuel-scramjet1 cfd-analysis-of-solid-fuel-scramjet
1 cfd-analysis-of-solid-fuel-scramjet
 
NAVIC (Navigation with Indian Constellation)
NAVIC (Navigation with Indian Constellation)NAVIC (Navigation with Indian Constellation)
NAVIC (Navigation with Indian Constellation)
 
Hypersonic aircraft
Hypersonic aircraftHypersonic aircraft
Hypersonic aircraft
 
Ijmet 06 10_017
Ijmet 06 10_017Ijmet 06 10_017
Ijmet 06 10_017
 
Hstdv
HstdvHstdv
Hstdv
 
2016_aerothermal_Lau_revB
2016_aerothermal_Lau_revB2016_aerothermal_Lau_revB
2016_aerothermal_Lau_revB
 
Support vector machines
Support vector machinesSupport vector machines
Support vector machines
 

Similaire à Design of a Scramjet Engine

Slow descent v3_IYPT
Slow descent v3_IYPTSlow descent v3_IYPT
Slow descent v3_IYPT
Tony Zhang
 
Final Design Presentation (1) (1)
Final Design Presentation (1) (1)Final Design Presentation (1) (1)
Final Design Presentation (1) (1)
Craig Medlin
 
Final Detail Briefings
Final Detail BriefingsFinal Detail Briefings
Final Detail Briefings
Andrew Bothun
 
Aerojet 2012 модификация нк-33
Aerojet 2012  модификация нк-33Aerojet 2012  модификация нк-33
Aerojet 2012 модификация нк-33
Dmitry Tseitlin
 
2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt
AkashM918608
 
2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt
MUST
 

Similaire à Design of a Scramjet Engine (20)

NASA SPACE LAUNCH SYSTEM -A Complete Guide
NASA SPACE LAUNCH SYSTEM -A Complete GuideNASA SPACE LAUNCH SYSTEM -A Complete Guide
NASA SPACE LAUNCH SYSTEM -A Complete Guide
 
Slow descent v3_IYPT
Slow descent v3_IYPTSlow descent v3_IYPT
Slow descent v3_IYPT
 
Investigation of Solid State Hydrides For Autonomous Fuel Cell Vehicles
Investigation of Solid State Hydrides For Autonomous Fuel Cell VehiclesInvestigation of Solid State Hydrides For Autonomous Fuel Cell Vehicles
Investigation of Solid State Hydrides For Autonomous Fuel Cell Vehicles
 
LSB Symposium
LSB SymposiumLSB Symposium
LSB Symposium
 
LSB Symposium
LSB SymposiumLSB Symposium
LSB Symposium
 
3 Robot Actuators systems.pptx
3 Robot Actuators systems.pptx3 Robot Actuators systems.pptx
3 Robot Actuators systems.pptx
 
Reactor Design
Reactor DesignReactor Design
Reactor Design
 
HYBRIDROCKET
HYBRIDROCKETHYBRIDROCKET
HYBRIDROCKET
 
Propulsion
PropulsionPropulsion
Propulsion
 
turbojet.ppt
turbojet.pptturbojet.ppt
turbojet.ppt
 
Energy audit & conservation studies for industries
Energy audit & conservation studies for industriesEnergy audit & conservation studies for industries
Energy audit & conservation studies for industries
 
Final Design Presentation (1) (1)
Final Design Presentation (1) (1)Final Design Presentation (1) (1)
Final Design Presentation (1) (1)
 
Final Detail Briefings
Final Detail BriefingsFinal Detail Briefings
Final Detail Briefings
 
SI Delta Presentation APS Space Power 2022 Rev7.pdf
SI Delta Presentation APS Space Power 2022 Rev7.pdfSI Delta Presentation APS Space Power 2022 Rev7.pdf
SI Delta Presentation APS Space Power 2022 Rev7.pdf
 
Aerojet 2012 модификация нк-33
Aerojet 2012  модификация нк-33Aerojet 2012  модификация нк-33
Aerojet 2012 модификация нк-33
 
The Bloodhound Supersonic Car: Innovation at 1,000 mph
The Bloodhound Supersonic Car: Innovation at 1,000 mphThe Bloodhound Supersonic Car: Innovation at 1,000 mph
The Bloodhound Supersonic Car: Innovation at 1,000 mph
 
UNIT 5 PROPULSION
UNIT 5 PROPULSIONUNIT 5 PROPULSION
UNIT 5 PROPULSION
 
2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt
 
2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt2 Robot Actuators and drive systems.ppt
2 Robot Actuators and drive systems.ppt
 
Heat Exchanger Tube Rupture Scenario Evaluation using Aspen HYSYS Dynamics
Heat Exchanger Tube Rupture Scenario Evaluation using Aspen HYSYS DynamicsHeat Exchanger Tube Rupture Scenario Evaluation using Aspen HYSYS Dynamics
Heat Exchanger Tube Rupture Scenario Evaluation using Aspen HYSYS Dynamics
 

Design of a Scramjet Engine

  • 1. Design of a Scramjet Engine Adam J. Resler ME 566 – Aerospace Propulsion Wed 04/29/15
  • 2. Overview • Scramjet Introduction • Current State of Scramjet Technology • Design Considerations • Methods • Results and Conclusions • Questions & Comments
  • 4.
  • 5. Scramjet Benefits • Air-Breathing Engine – No oxidizer required to be carried onboard • No moving parts • Theoretical Specific Impulse between 1000 – 4000 seconds • Escape velocity capable; Theoretical Range between Mach 5 and Mach 26 flight velocity
  • 6. Scramjet Disadvantages • Special materials requirements – High strength/weight – scramjet have high payload mass fractions making weight a concern – High thermal stress characteristics – heavy cooling burden; also loss of cooling ability as fuel is consumed • Current designs typically start at Mach 5 • Poor thrust/weight ratio • Low to very low lift/drag ratio
  • 7. Scramjet Programs • SCRAM: USA; Mach 4 – 10 • National Aerospace Plane (NASP): USA; Mach 17 Upper Limit; Mach 25 Possible; Current H2 Combustion Model (31 Reactions; 16 Species) • HyShot: Australia; Flew at Mach 7.6 for 6 seconds; 10 vehicles; 40% Success Rate • HyperX: USA; Mach 7 for 11 seconds (15 miles) 2004; Mach 10 in 2004; • X-51 Waverider: USA; In 2013 flew for 240 seconds ~Mach 5.1 before running out of fuel
  • 8.
  • 9.
  • 10. NASA X-43A HS Vehicle w/ Scramjet
  • 11.
  • 12. Design Considerations • Design Velocity: Mach 5 • Maximum Temperature: 2000 K • Flight Altitude: 15 km • Number of Inlet Shocks: 3
  • 13. Design Method • Solution of the simplified compressible, inviscid, Navier-Stokes equations with semi- perfect gas equations of state • Generalized Quasi-1D Flow – takes into account area change, friction, and heat addition; however, no differential mass terms • Complete combustion model (no dissociation, complete combustion prior to nozzle)
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20. Results of Analysis • Thrust: 405.7 kN (91,210 lbf) • Isp: 174.1 s • Efficiency: 0.83pr/0.56t/.47o • TSFC: 0.01757 kg/kN-s • T/ma: 0.572 kN-s/kg • Time in engine: 0.0021 s • Specific burn time: 9.82 s/m3
  • 21. Results of Analysis Property Diffuser Combustor Nozzle Pressure Recovery 0.8355 0.5433 0.6724 Total Recovery 0.3053 Adiabatic Efficiency 0.9243 1.0 0.9127
  • 22. Perspective • Actual speed-over-land: ~0.9 to 1 mile/second • New York to LA: 44.68 minutes • Around Earth at Equator: 7.576 hours • Destin, FL to New Orleans, LA: 5 minutes • Compared to F-15 Eagle P&W F100-220 Turbofan Engine: ~3.8 times more thrust
  • 23. Conclusions • Low specific impulse - unexpected • Engine not viable unless installed in a large vehicle • Better combustion model required to study higher Mach numbers
  • 24. Summary • Scramjet Introduction • Current State of Scramjet Technology • Design Considerations • Methods • Results and Conclusions • Questions & Comments
  • 25. Q&C • Scramjet CFD Model (1 min) https://www.youtube.com/watch?v=kaVDDm222H8 • Scramjet Engine Wind Tunnel Test (no apparent combustion): (40 sec) https://www.youtube.com/watch?v=EfJp2luk_IY