SlideShare une entreprise Scribd logo
1  sur  15
Télécharger pour lire hors ligne
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/286624017
STUDY	ON	THE	EFFECT	OF	POLLUTION	ON
SOME	VEGETABLE	CROPS
ARTICLE	·	JANUARY	2005
4	AUTHORS,	INCLUDING:
Ahmed	abd	el-hady	sayed	Abd	El-Wahab
Agricultural	Research	Center,	Egypt
10	PUBLICATIONS			0	CITATIONS			
SEE	PROFILE
All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,
letting	you	access	and	read	them	immediately.
Available	from:	Ahmed	abd	el-hady	sayed	Abd	El-Wahab
Retrieved	on:	14	December	2015
Bekhit, et. al., (2005)
474
STUDY ON THE EFFECT OF POLLUTION ON SOME VEGETABLE CROPS
*Bekhit, R. S.; *Shahien, M. M.; **EL- Doweny, H. H. A. and **El- Eslamboly, A.
A.S.A
* Vegetable dept., Fac. of Agri., Cairo Univ.
** Hort. Res. Institute, Agric. Res. Center,
ABSTRACT
Two field experiments were carried out during winter seasons of 2001/2002 and 2002/2003 at
a farm in El-Badrashean city, Giza governorate at a distance 20 kilo meter south Giza from Cairo
Assuit road, to study the effect of distance from traffic road on growth and yield characters and lead
and cadmium accumulations in spinach, squash and turnip plants. In addition to study the effect of
washing the edible parts on reducing the above mentioned heavy metals content. Experiments included
three different distances far from the driving road (0-10, 80-90 and 160-170 meters). Traffic density of
the used road was 32458 vehicles/day. The fresh samples were collected after 40, 55 and 70 days from
sowing. Representative samples from plant parts i.e. leaves, roots and fruits were taken for chemical
analysis. Half of these samples were washed with deionized water while the other half was left without
washing. The vegetative parameters of the three crops were increased with increasing the distances
from the traffic road. The chemical constituents of pigments and vitamin C showed a similar trend as
that recorded on the vegetative growth characters. Plants pollution with lead and cadmium were
decreased with increasing distance from traffic road. Washing the edible parts from squash, spinach
and turnip plant led to decreasing the concentration of lead by about 30.47%, 25.44% and 15.79%
respectively. Also, washing in water reduced Cd content by 24.72 %, 22.75% and 10.11%
respectively. Besides, washing was more effective in removing lead than cadmium in fruit crops than
leafy ones. Spinach leaf blades contained high levels from lead and cadmium compared with turnip
roots and squash fruits which contained a low level of lead and cadmium. The concentrations of heavy
metals at the first distance were higher than the maximum codex committee level. Consequently, it
could be recommended that vegetable have to be cultivated far from the traffic road (at least 80-90-
meter) in addition early harvesting as well as washing the edible part before consuming especially,
leafy and root vegetables.
2- INTRODUCTION
Vegetables crops are an important for human diet since they contain carbohydrates,
proteins, as well as vitamins, minerals, and trace elements. Vegetables grown at
environmentally contaminated sites in Egypt could take up and accumulate heavy metals at
concentrations that are toxic to human health.
There are many different forms of pollution, such as chemicals and wastes from
factories, farms, motorcars and even houses. These kinds of pollution are very harmful as they
affect land, water and air. Concentrations of cadmium, nickel, lead and zinc in roadside soil
and vegetation decrease with distance far from traffic (Lagerwerff and Specht, 1970). In this
regard, Davies and Holmes (1972) in England recommended that, it might be prudent not to
grow vegetables within 50m of busy roads. Moreover, Ali (1974) indicated that, plants may
absorb lead through both leaves and roots with translocation within the plant. EI-Mola (1980)
indicated that, the dry matter decreased by increasing the addition of lead nitrate to both
shoots and roots of spinach plants.
Page, et.al. (1981) showed that, relative Cd uptake by range of different crop plants
growing in contaminated soils were in, turnip, spinach > tomato, lettuce > swiss chard, radish,
and carrot.
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
475
Ndiokwere (1984) reported that, concentrations of metals in vegetation could be
reduced to 1/2-1/3 by washing the samples with deionised water. Mohamed (1985) indicated
that washing plant samples grown on roadside soils by water could, loose about 43 to 62% of
their total lead content, indicating the importance of washing for polluted plants before being
used by man or animal.
Ochaia (1987) divided the, mechanisms of metal toxicity into five groups: (1) the
displacement of essential metal ions from biomolecules and other biologically functional
units; (2) blocking essential functional groups of biomolecules, including enzymes and
polynucleotides; (3) modifying the active conformation of biomolecules especially enzymes
and polynucleotides; (4) disrupting the integrity of biomolecules; and (5) modifying other
biologically active agents.
Guttormsen (1990) studied the cadmium and lead levels in Norwegian vegetables and
recorded that a reasonable consumption of the vegetables would not appear to present a health
risk, on the basis of the FAO/WHO provisional tolerable weekly intake of 0.5 mg Cd and 3
mg Pb/60 kg of mean body weight.
In Cairo Mahmoud (1992) reported that, lead is highly toxic to man, animals and
plants, and it has become of a major chemical pollutant of the environment.
Feng et.al. (1993) study the heavy metals pollution of vegetables in Boashen district,
Shanghai. They mentioned that, the heavy metal content of different vegetable types was in
the order of leafy vegetables > root tubers > fruit vegetables.
Ali and Riad (1995) observed that, lead content of washed lettuce was low compared
to unwashed ones. It is found that washing lettuce plant with tap water served in lowering
lead content in the plant by about 30 % compared to the unwashed. Hassan and Gewifel
(1998) in Egypt also recorded that, the traffic densities from roads are located in northern
Egypt especially Cairo–Alexandria road, Alexandria–Matrouh Road and Abbis Road. They
examined these roads during 24 hrs, and reported that traffic densities were 35200 (high
density), 20700 (moderate density) and 1100 (low density) respectively. It was found also that
concentration of Pb, Zn and Cd in radish and lettuce collected from each site in both plants,
generally decreased with the increase of the distance from the road. Moreover, these
concentrations were higher in material collected from sites along Cairo-Alexandria highway
than those collected from Alexandria-Matrouh road or from Abbis road.
CODEX (2000) recorded that, for vegetables, except brassica, leafy vegetables and
mushrooms, the proposal is 0.1 mg/kg. A proposal of 0.3 mg/kg stands for brassica, except
kale, and for leafy vegetables, except spinach.
Thabet (2001) showed that, the highest contamination percentages were found in leafy
vegetable samples collected from Benisuef, Qalubiya, Cairo, Minufiya governorates as 93.8%,
92%, 89.1%, and 86% respectively. However, the contamination percentages in the other
Governorates were 81.3% and 78.6% in Giza and Ismailia, respectively.
The objective of this study aimed to study the effect of cars pollution on the vegetative
growth, fruit characters and yield of squash, spinach and turnip. Also to estimate the heavy
metal concentrations i.e. lead and cadmium and the residues and effect of washing for the
mentioned heavy metal with special emphasis on their toxicological implications and studied
the effect of heavy metal on these vegetable crops growth and yield.
MATERIALS AND METHODS
1 - Effect of exhaust car pollution:-
The study was carried out at a farm in El-Badrashean city, Giza governorate at 20-
kilometer south Giza; on the east of Cairo Assuit Agriculture road .Three different vegetable
Bekhit, et. al., (2005)
476
crops i.e. turnip, squash and spinach were used. The experiments were conducted during the
two successive seasons of 2001 /2002 and 2002 / 2003. Planting dates were 6th
and 1st
of
October for the first and second seasons, respectively. A randomized complete block design
with three replicates was adopted. Three different distances far from the traffic road, were
studied, 0-10, 80-90 and 160-170 meters. Traffic densities on the examined road were about
32458 vehicles/day. The fresh samples were collected after 40, 55 and 70 days from sowing.
Half of these samples were washed with distilled water while the other half was left as control
(unwashed). Representative samples were taken for chemical analysis.
The conventional agricultural practices i.e., irrigation, fertilization and weeding were
done as recommended by the Ministry of the Agriculture in Egypt, for turnip, squash and
spinach production. No pesticides and herbicides were used.
1.1 Squash experiment:-
This experiment aimed to study the effect of pollution by exhausts cars on the
squash Cucurbita pepo, L. on vegetative growth characters, , flowering and fruit characters,
yield, chlorophyll pigments a, b and carotenoids and the contents of Pb and Cd contamination
in the different parts of the vegetable samples either washed or unwashed. Eskandarani
variety, which is widely spread in Egypt, was used in this experiment. Each plot area was 10
m2 include 3 rows was 4 meter long and the number of plants in unit area was 25 plants. The
plants were spaced at 40 cm a part in rows and 80 cm a parts.
1.2 Spinach experiment:-
This experiment aimed to study the effect of pollution by exhausts cars on the spinach
Spinacia oleracea, L. on yield, vegetative growth characteristics, total chlorophyll pigments
and the contents of Pb and Cd contamination in the edible part of plant samples either washed
or unwashed plant part of El-Dokki cultivars. Each plot area was 10 m2
and the number of
plants in unit area was 200 plants.
1.3 Turnip experiment:-
The aim of this experiment was to study the effect of pollution by exhausts cars on
the turnip Brassica campestris, L. var. Iraqi on yield vegetative growth characters, total
chlorophyll pigments and the contents of Pb and Cd contamination in the edible part of plant
samples either washed or unwashed. Each plot area was 5 m2
and the number of plants in unit
area was 125 plants.
Recorded data
A. Plant growth characteristics
1. Leaves area (cm2
). 2. Plant fresh weight (g).3. Plant dry weight (g).4. Root size (cm3
).
5. Root fresh weight (g). 6. Root dry weight (g). 7. Fruit fresh weight (g). 8. Fruit dry
weight (g). 9. Number of fruits. 10. Total yield (ton/ feddan)
B. Chemical analysis
1. Determination of leaf pigments: Chlorophyll pigments of total chlorophyll as mg/100 gm
were determined in the leaves according to Wettestein (1957).
2. Heavy metal pollution.
Lead and cadmium contents of Squash, Spanish and Turnip samples were determined
in leaves, stems and petioles, roots and fruits (mg/kg fresh weight) for all intervals of plant
ages either washed or unwashed by using Perian-Elemer Model 3300 Atomic Absorption
Spectrometer according to the method described by Rawe (1973).
Statistical analysis:-
Data obtained was subjected to statistical analysis by the technique of analysis of
variance (ANOVA) for randomized complete blocks design. The treatment means were
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
477
compared using least significant difference (LSD) method as mentioned by Gomez and
Gomez (1984).
RESULTS AND DISCUSSION
1 - Effect of distances from traffic road in plant characteristics.
1.1- Squash experiments:
Results in Table (1) showed that sowing the plants far from the road gave the highest
values from plant fresh weight, plant dry weight, leave area and total chlorophyll, were
detected at 160-170 meter distance compared with first distance (0-10m) in all plant ages. On
the other hand there are no significant differences between the second and the third distance
on the plant fresh and dry weight and leave area in all plant ages in the both seasons. These
inhibition of all characteristics may be due to heavy metal contamination from air and soil
resulted by motor cars emission. These results were similar may be due to as shown (Cottonie
et.al., 1976) who indicated that reduction of biomass production and nutritional quality is
observed on crops grown in soils contaminated with moderate levels of heavy metal. Similar,
results were obtained by several investigators e.g., EI-Mola (1980), Ali (1982) and Moursi
(1990). They reported that, vegetative area was increased by increasing distances from the
main source of pollution. Also similar conclusions were reported by Ali ( 1991 and 1992 ),
Abd El- Aziz (2001) and Ibrahium (2001).
Table (1): Effect of different distances from traffic way plant fresh and dry weight (g), leaves
area (cm2
) and total chlorophyll (mg/g fresh weight) of squash plants at 40,55 and
70 days from planting in 2001/2002 and 2002/2003 seasons.
2001/2002
Days
Plant fresh
weight (g)
Plant dry
weight (g)
Leaves area
(cm2
)
Total chlorophyll
40 55 70 40 55 70 40 55 70 40 55 70
Distances
0-10 740.3 1042.7 1422.7 66.3 88.6 107.8 5401.3 7327.8 7327.8 0.031 0.039 0.036
80-90 1464.2 1902.3 2254.4 128.8 157.8 181.1 9842.7 12411.8 14354.4 0.051 0.054 0.059
160-170 1422.7 1878.7 2129.8 118.7 158.7 185.9 10033.0 12764.8 14766.7 0.051 0.057 0.063
L.S.D
at 0.05
101.26 197.1 96.87 8.95 19.55 13.47 1573.6 1486.6 1666.9 0.007 0.006 0.0064
2002/2003
Distances
0-10 671.8 951.3 1197.5 62.1 83.1 100.5 4888.2 6682.7 8032.0 0.031 0.035 0.033
80-90 1333.9 1735.6 2062.2 120.7 147.7 169.4 8937.6 11348.7 13091.3 0.047 0.055 0.06
160-170 1298.4 1712.6 1940.6 111.6 148.2 170.8 9126.8 10725.6 13192.7 0.051 0.057 0.064
L.S.D
at 0.05
94.32 182.6 93.4 8.92 18.70 14.8 1416.6 1680.2 1117.5 0.0056 0.0058 0.0067
As for the results concerning the effect of driving way emission on number of fruits,
fruits fresh weight and dry weight per plant of squash plants are shown in (Table2). Significant
effect was observed by increasing the distance from traffic road. The highest values from
these characters were detected at 160-170 meter distance in both seasons while the lowest
values were obtained at 0-10 meter distance far from the traffic road. Similar conclusions
were reported on strawberry by Abd El-Aziz (2001).
Results in Table (3) show the effect of distances from driving way on squash yield
(Ton/Fed). A significant differences between the first distance and both the second and the
third distances were detected. The highest total yield was obtained from 160-170 and 80-90
meter distance. While, the lowest value was recorded at 0-10 meter distance from the road.
These results may be caused by the effect on Photosynthesis, transpiration, carbohydrate
metabolism and other metabolic activities which were inhibited by cadmium and lead
Bekhit, et. al., (2005)
478
accumulation. These results were in agreement with Nasralla (1975) who reported that, the
road dust as source of lead reduced photosynthesis leading to loss of plant yield. Also, agree
with those of Bazzaz et.al. (1974 and 1975), Baszynski et.al. (1980). McCrea (1984) and
Xian (1989) they found that lead pollution caused a severe loss in the yield of several crops.
Table (2): Effect of different distances from traffic way on number of fruit per plant, fruit
fresh weight and fruit dry weight (g) of squash plants at 40,55 and 70 days from
planting in 2001/2002 and 2002/2003 seasons.
2001/2002
Days
Number of fruits
per plant
Fruits fresh
Weight (g)/plant
Fruits dry
Weight (g)/plant
40 55 70 40 55 70 40 55 70
Distances
0-10 3.00 8.00 13.30 111.1 291.8 445.5 8.82 22.16 31.42
80-90 5.00 14.00 19.00 288.5 948.9 1366.1 22.89 66.21 136.42
160-170 4.33 13.67 20.00 294.9 987.7 1962.7 21.58 71.07 154.79
L.S.D at 0.05 1.51 0.76 2.39 88.72 100.2 216.8 6.96 13.94 19.20
2002/2003
Distances
0-10 2.67 7.00 8.33 95.1 251.8 386.2 7.61 19.27 27.44
80-90 3.33 12.67 18.30 247.8 821.6 1711.4 19.81 60.67 119.64
160-170 3.67 13.30 18.0 255.2 853.4 1690.3 18.81 61.88 134.06
L.S.D at 0.05 1.19 1.31 2.00 76.2 87.8 184.9 6.03 8.94 16.52
Table (3): Effect of different distances from traffic way on total yield (ton/feddan) of squash
plants in 2001/2002 and 2002/2003 seasons.
Distances
2001/2002 2002/2003
Yield (Ton/feddan) Yield (Ton/feddan)
0-10 6.45 6.34
80-90 9.73 9.72
160-170 9.87 9.79
L.S.D at 0.05 0.39 0.13
1.2-Spinach experiment
Data in Table (4) show that, there was a significant effect between the first distance
and both the second and the third distance from traffic road on plant fresh weight, plant dry
weight, leave area and total chlorophyll. These morphological characters and total
chlorophyll were significantly increased with distance far from driving way at different plant
ages in both season, The highest values from plant fresh weight, plant dry weight, leave area
and total chlorophyll, were detected at 160-170 meter distance in all plant ages, while the
lowest values were obtained at 0-10 meter from the traffic road. Mean while there is no
significant difference between the second and the third distance on the plant fresh and dry
weight and leave area in all plant ages in both seasons. It may be assumed that this is due to
uptake of the metal into the inner chloroplast space and, hence, that Cd can easily penetrate
the chloroplast envelope, which inhibits photosynthesis (Weigel 1985). Ali (1991) found that,
chlorophyll concentration was significantly affected in leaves of orange trees grown around
Cairo- Alexandria highway. The same author (1992) confirmed that, highly positive
correlations (r>0.9) were found between chlorophyll and soluble protein contents of plants
and the distance from traffic roads. Similar results were obtained by several investigators, e.g.
Ali and Riad (1995), Abd El- Aziz (2001) and Ibrahium (2001).
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
479
Table (4): Effect of different distances from traffic way plant fresh and dry weight (g), leaves
area (cm2
) and total chlorophyll (mg/g fresh weight) of spinach plants at 40,55
and 70 days from planting in 2001/2002 and 2002/2003 seasons.
2001/2002
Plant fresh weight
(g) /plant
Plant dry weight
(g) /plant
Leaves area
(cm2
)
Total chlorophyll
(mg/g F.W)
Days 40 55 70 40 55 70 40 55 70 40 55 70
Distances
0-10 46.6 149.4 234.0 3.76 12.64 19.20 1157.3 1536.3 1689.8 0.033 0.035 0.032
80-90 104.5 277.4 331.5 7.69 25.91 32.87 1534.0 2056.0 2610.0 0.053 0.058 0.065
160-170 119.3 292.1 344.4 8.79 26.25 32.34 1631.3 2089.7 2571.0 0.062 0.068 0.073
L.S.D at 0.05 20.7 36.1 27.5 1.82 0.92 4.26 149.8 248 188.6 0.0055 0.0107 0.0071
2002/2003
Distances
0-10 61.9 129.0 230.0 4.78 11.75 17.10 1223.7 1551.7 1638.0 0.033 0.04 0.029
80-90 112.4 277.6 346.6 8.20 25.80 35.39 1651.7 2270.7 2641.7 0.054 0.058 0.067
160-170 126.6 345.5 354.2 9.24 27.41 34.40 1723.0 2076.0 2666.7 0.058 0.062 0.07
L.S.D at 0.05 23.4 89.1 31.9 0.92 1.82 3.54 217.2 288.0 247.4 0.0146 0.0127 0.0155
Data in Table (5) indicated that, there was a significant effect between the first
distance and the second or the third distance from traffic road on total yield (ton/feddan). The
highest values from total yield were detected at 160-170 meter distance, while the lowest
values were obtained at 0-10 meter distance from the traffic road. While, there is no
significant differences between the second and the third distance on the total yield in both
seasons. These results may be due to the affected on photosynthesis, respiration and
transpiration, and allow the penetration of phytotoxic gaseous pollutants. Productivity is
generally decreased and visible injury symptoms may occur. Similar finding agreed with Ali
(1982, 1991) and Farmer (1993).
Table (5) Effect of different distances from traffic way on total yield (ton/feddan) of spinach
plants in 2001/2002 and 2002/2003 seasons.
Distances
2001/2002 2002/2003
Yield (Ton/ feddan) Yield (Ton/ feddan)
0-10 4.790 4.738
80-90 11.160 11.548
160-170 11.58 11.392
L.S.D. at 0.05 1.18 0.512
1.3 - Turnip experiment
The influence of the distances from the traffic way on root fresh and dry weight, root
size, plant fresh and dry weight, leaves area and total chlorophyll were listed in Tables (6, 7).
There was a significant effect between the first distance and both second and third distance
far from driving way in both season, The highest values were detected at 160-170 meter
distance, while the lowest values were obtained at 0-10 meter distance from the traffic road.
There are no significant differences between the second and the third distance on these
characters in both seasons. In this connection Bazzaz et.al. (1974) found that relatively low
concentration of lead, cadmium and nickel inhibited photosynthesis and transpiration of
detached sunflower leaves. Also, agree with Ali (1982), Nasralla and Ali (1985) and Moursi
(1990) they mentioned that accumulation of a very fine air pollution particles including some
heavy metals, led to decrease the dry matter. Vegetative area was increased by increasing
Bekhit, et. al., (2005)
480
distances from the main source of pollution. These results agreed with the finding of Abd El –
Aziz (2001) and Ibrahium (2001).
Data presented in Table (8) clarifies the effect of the distance from traffic road in
turnip yield. There was a significant effect between the first distance and both the second and
the third distance from traffic road on total yield (ton/feddan). Data indicate that there was
significantly increase in yield with increasing distance from driving way in both seasons. The
highest value from total yield was detected at 160-170 meter, while the lowest values were
obtained at 0-10 meter from the traffic road. There were no significant differences between
the second and the third distance on the total yield in both seasons. The results were agreed
with finding of Ali (1982).
Table (6)Effect of different distances from traffic way on root size (cm3
( and root fresh and
dry weight (g) of turnip plants at 40,55 and 70 days from planting in 2001/2002
and 2002/2003 seasons.
2001/2002
Days
Root size Root fresh weight Root dry weight (g)
40 55 70 40 55 70 40 55 70
Distances
0-10 102.0 159.7 205.2 65.4 109.0 145.0 5.91 7.71 10.11
80-90 161.9 294.4 360.7 116.1 215.4 241.5 10.48 17.28 22.39
160-170 190.5 283.6 350.7 127.2 211.9 279.3 10.87 17.27 22.80
L.S.D at 0.05 32.1 18.9 33.2 25.2 18.2 83.8 3.50 1.39 2.93
2002/2003
Distances
0-10 105.4 166.2 208.0 68.9 126.5 161.7 6.33 10.36 13.37
80-90 146.0 246.7 298.3 112.4 196.7 215.6 10.92 17.28 21.50
160-170 159.3 247.5 297.7 118.5 201.8 256.4 11.14 17.95 22.75
L.S.D at 0.05 26.4 20.3 18.2 16.6 15.8 76.5 1.34 1.30 2.51
Table (7): Effect of different distances from traffic way on plant fresh and dry weight (g),
leaves area (cm2
) and total chlorophyll (mg/g fresh weight) of turnip plants at
40,55 and 70 days from planting in 2001/2002 and 2002/2003 seasons.
2001/2002
Plant fresh
weight (g)/plant
Plant dry
weight (g)/plant
Leaves area (cm2
) Total chlorophyll
Days 40 55 70 40 55 70 40 55 70 40 55 70
Distances
0-10 199.5 304.7 385.9 15.31 23.32 29.70 839.3 1153.4 1611.4 0.047 0.056 0.063
80-90 327.3 543.1 648.1 28.46 47.56 58.21 2011.8 2468.4 2905.9 0.073 0.088 0.112
160-170 365.4 534.1 680.0 32.1 46.25 58.74 2039.3 2440.7 2861.4 0.075 0.089 0.115
L.S.D at 0.05 30.2 42.4 89.7 2.13 3.74 4.49 250.3 256.1 298.7 0.0125 0.011 0.0162
2002/2003
Distances
0-10 202.4 326.4 335.5 15.76 25.73 33.93 805.6 1340.6 1745.7 0.046 0.055 0.051
80-90 301.0 468.1 547.9 26.64 41.34 50.74 1793.3 2083.4 2416.7 0.072 0.085 0.103
160-170 319.0 460.3 592.4 28.64 42.72 52.56 1753.2 2149.3 2442.3 0.077 0.096 0.111
L.S.D at 0.05 25.0 28.5 1623 1.32 3.53 3.54 50.1 96.6 260.8 0.013 0.0259 0.0165
2. Heavy metal content
2-1. Percentage of removable by washing:
Concerning the effect of washing on lead and cadmium concentration from edible
parts on crops under study, data in Table (9) showed that, the washing treatment led to
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
481
decreasing the concentration of lead in squash, spinach and turnip by about (30.47%, 25.44%
and 15.79% respectively. Also, washing in distilled water reduced Cd content by (24.72%,
22.75% and 10.11%) in the edible parts from squash, spinach and turnip respectively. In the
other hand the washing was more effective in removing lead than cadmium in fruit crops than
leafy ones. These results are similar to those of Ndiokwere (1984), Mohamed (1985) and
Basovic, et.al., (1986) they found that washing in cold running or distilled water reduced Pb
content by 27.45-76.13% compared with unwashed lettuce. Ali and Riad (1995) recorded that,
washing lettuce plants with tap water served in lowering lead content in the plant by about 30
% compared to the unwashed.
Table (8) Effect of different distances from traffic way on total yield (ton/feddan) of turnip
plants in 2001/2002 and 2002/2003 seasons.
Distances
2001/2002 2002/2003
Yield(Ton/ feddan) Yield(Ton/ feddan)
0-10 10.572 10.348
80-90 19.160 18.480
160-170 20.268 18.120
L.S.D. at 0.05 2.382 0.573
Table (9) Means of lead and cadmium concentration on edible parts of squash, spinach and
turnip plants as affected by washed and percentage removable from them.
Crops
Pb Cd
2001/2002
Un W W Removable % Un W W Removable %
Squash 0.448 0.309 31.03 0.089 0.067 24.72
Spinach 0.773 0.573 25.92 0.226 0.174 22.75
Turnip 0.477 0.401 16.06 0.185 0.166 10.11
2002/2003
Squash 0.454 0.316 30.47 0.097 0.067 31.27
Spinach 0.820 0.612 25.44 0.253 0.191 24.37
Turnip 0.549 0.462 15.79 0.205 0.183 10.42
2-2. Effect of distances
The study includes the evaluation of lead and cadmium contaminations in different
edible part of some vegetable crops namely, squash, turnip and spinach grown in the field at
different distances from traffic roads. The influence of the distance from the road on Pb and
Cd concentration in these vegetables are illustrated in Table (10). It is obvious that, there was
decrease in lead and cadmium concentration in all vegetable under these studies by increasing
the distance from traffic road. The highest value from Pb and Cd concentrations was detected
at 0-10 meter distance, while the lowest value was noticed at 160- 170 in all plant ages from
different vegetables in both seasons. These results are in agreement with those obtained by
Nasralla (1975), EI-Mola (1980), Ali (1982), Mohamed (1985), Nasralla and Ali (1985), Ali
and Nasralla (1986), Moursi (1990), Ali (1991, 1992), Ali and Riad (1995), Hassan and
Gewifel (1998) and Abd El–Aziz (2001) they indicated that, motor cars exhaust is an
important source for soil and plant contamination with lead. The highest concentrations of
lead were greatly depending on traffic volumes. Furthermore, lead, concentrations in soils and
grasses were found to decrease with distance far from the road.
Generally unwashed plant parts of squash, spinach and turnip found to contain more
amounts of heavy metals as compared with those of the washed ones with a significant effect.
Bekhit, et. al., (2005)
482
In the same table, washing showed significant decrease in lead and cadmium contamination.
Nevertheless, in the first distance (0-10) washing treatment was not succeeded to reduce it
under the maximum guidelines level recommended by CODEX alimentarius commission.
Data in the same Table indicated that spinach leaves were content higher
concentration of lead and cadmium than turnip root and squash fruit in all plant ages in both
seasons. These results are harmony with Page, et.al. (1981) who showed that, relative Cd
uptakebydifferent crop plants growing in contaminated soils were in the range: turnip, spinach
> tomato, lettuce > swiss chard, radish, carrot. In the same trend Chumbley and Unwin (1982)
and Kuboi et.al. (1986) have subsequently examined Cd uptake in 34 plants species of nine
different families. They found that different plant families responded differently and classified
them into three groups: 1. Low accumulation ( Leguminosae). 2. Moderate accumulation
(Gramineae, Liliaceae, Cucurbitaceae and Umbelliferae). 3. High accumulation
(Chenopodiaceae, Cruciferae, Solonaceae and Compositae). Also, the obtained results agreed
with Feng et.al. (1993) who study the heavy metals pollution of vegetables in Boashen
district, Shanghai. They mentioned that, the heavy metal content of different vegetable types
was in the order of leafy vegetables > root tubers > fruit vegetables.
The highest concentration from lead and cadmium was detected in spinach leaves
followed by turnip roots followed by squash fruit. Turnip roots were contain more amounts of
heavy metal especially cadmium, where unexposed plant part to atmospheric Pb contributed
due to it was account heavy metal hyperaccumulate as recorded by Ross (1994) the
exposed plant parts (the leaves) accumulate larger quantities of air-derived metals than do
unexposed plant part (e.g., roots and pea fruit). Although Pb is generally considered not to
be easily translocated within plant tissues, Harrison and Chirgawi's (1989) indicate that
atmospheric Pb contributed to the unexposed plant parts, especially the storage roots of
radish, turnip and carrot.
Squash fruits at the first distance (0-10 meter) contained high level of lead and exceed
for the maximum level recommended by CODEX. Washing treatment wasn’t decreased the
level under that recommended by CODEX in all plant age under study (40-55-70 days). At
the second distance (80-90 meter) squash fruits at 55 and 70 days from planting contained
high values from lead but washing reduced it under the safety level. At the third distance
(160-170 meter) from the traffic road squash fruits were safety in all plant ages in both
seasons. While the contaminations of cadmium in all squash fruit from all plant ages was not
excess the guidelines level of CODEX.
Data in the same Table showed that, spinach leaves at the first distance in all plant
ages in both seasons were contained highly levels from lead and cadmium higher than the
recommended maximum level. Washing treatment did not succeed to reduce this level of both
elements except leaves at 40 days from planting for lead only. While, leaves from spinach
plants grown at the second and third distances in all plant ages were lower in their content
than the guideline level.
Turnip roots from the plants grown at the first distance were contaminated by lead to
the harmful level in all plant ages under study. Washing treatment did not reduce this level to
the safety range. Plants at the second distance were not reaching to the maximum harmful
level except after 55 days from sowing. Washing treatment was not succeeded to decrease it
to the safety level. While at the third distance roots contents were under the safety level for
lead. Cadmium content in turnip roots at the first distance were also higher than
recommended and washing did not succeed to decrease it. Turnip roots obtained from the
second and third distances contained safety level from cadmium in all plant ages.
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
483
Table (10): Effect of distances from traffic road and washed on Pb and Cd concentrations
(mg/kg. fresh weight) on edible part from squash, turnip and spinach plants during
seasons (2001/2002 and 2002/2003) compared with maximum level or guidelines for
maximum limit (ML) of metals in vegetables were adopted from FAO/WHO.
Pb 2001/2002 Recommended Max.
L. for Vegetables
(mg/kg. f. w.)
40 55 70
Un W Un W Un W
Squash fruit
D1 0.183* 0.130* 0.260* 0.194* 0.346* 0.295*
0.1a
D2 0.086 0.050 0.118* 0.065 0.127* 0.086
D3 0.055 0.019 0.081 0.035 0.088 0.053
Spinach leaves
D1 0.328* 0.251 0.425* 0.337* 0.634* 0.543*
0.3a
D2 0.219 0.126 0.168 0.110 0.273 0.192
D3 0.076 0.041 0.092 0.047 0.104 0.071
Turnip root D1 0.243* 0.220* 0.310* 0.258* 0.335* 0.289*
0.1a
D2 0.099 0.078 0.109* 0.088 0.122* 0.101*
D3 0.066 0.049 0.068 0.056 0.080 0.063
2002/2003
Squash fruit
D1 0.185* 0.131* 0.264* 0.197* 0.351* 0.300*
0.1a
D2 0.087 0.052 0.118* 0.067 0.129* 0.091
D3 0.056 0.019 0.082 0.036 0.090 0.054
Spinach leaves
D1 0.346* 0.265 0.450* 0.356* 0.675* 0.579*
0.3a
D2 0.234 0.134 0.181 0.121 0.289 0.213
D3 0.080 0.043 0.097 0.049 0.109 0.075
Turnip root D1 0.280* 0.254* 0.356* 0.297* 0.386* 0.333*
0.1a
D2 0.114* 0.090 0.125* 0.102* 0.140* 0.118*
D3 0.076 0.056 0.078 0.065 0.092 0.072
Cd 2001/2002
Squash fruit
D1 0.053 0.042 0.057 0.044 0.066 0.052
0.1b
D2 0.016 0.012 0.019 0.014 0.021 0.016
D3 0.010 0.005 0.012 0.007 0.013 0.009
Spinach leaves
D1 0.143* 0.110* 0.159* 0.133* 0.123* 0.106*
0.1b
D2 0.044 0.032 0.062 0.044 0.067 0.048
D3 0.021 0.011 0.024 0.017 0.034 0.022
Turnip root D1 0.089 0.084 0.110* 0.103* 0.144* 0.131*
0.1b
D2 0.046 0.037 0.050 0.044 0.049 0.044
D3 0.019 0.015 0.023 0.020 0.024 0.020
2002/2003
Squash fruit
D1 0.053 0.043 0.059 0.046 0.068 0.053
0.1b
D2 0.015 0.011 0.018 0.012 0.020 0.015
D3 0.033 0.004 0.012 0.007 0.013 0.009
Spinach leaves
D1 0.151* 0.111* 0.164* 0.134* 0.181* 0.153*
0.1b
D2 0.047 0.031 0.066 0.045 0.070 0.048
D3 0.020 0.012 0.025 0.018 0.035 0.022
Turnip root D1 0.093 0.085 0.117* 0.105* 0.157* 0.134*
0.1b
D2 0.048 0.049 0.062 0.054 0.060 0.056
D3 0.022 0.019 0.026 0.024 0.029 0.024
D1 : 0- 10 D2 : 80- 90 D3 : 160 – 170 W : washed Un : unwashed
a
Source: FAO/WHO - Codex alimentarius commission, 1999.
b
Source: FAO/WHO - Codex alimentarius commission, 2001.
*
> Recommended Maximum Level for Vegetables.
This may simply reflect relatively high air lead concentrations and the low
efficiency of soil lead uptake compared to the other trace metals studied. There are
rather few corroborative published data. Hovmand et.al., (1983) reported that
anything from 20 to 60 % of Cd uptake by a range of different edible crops could be
air-derived. The leaves of kale and the grain of barley showed highest Cd
concentration derived from air pollution, at 50- 60 % and 40-60 % respectively. The
studies of Harrison and Johnston (1987) and Harrison and Chirgawi (1989) indicate a
relative ease of uptake of Zn and Cd from soil, but not for Pb. Their experiments also
Bekhit, et. al., (2005)
484
indicate that metals in atmospheric pollution can contribute substantially to the metal
fund of the plant and be translocated to unexposed plant parts. El- Syied (1998)
recorded that, the highest values from Cd of concentration index were found in clover
tops, turnip roots and orange pulps. Indicated also, the highest values from lead were
found in turnip roots, clover tops and corn tops.
REFERENCES
Abd El-Aziz, M. G. 2001. Heavy metal contents of strawberry fruits grown under different
environmental conditions. M. sc. Thesis, Faculty of Agriculture, Ain Shams
University, Egypt.
Ali, A.M. and Riad, W.Y. 1995. Effect of air lead pollution on lettuce plant. Egypt. J.
Appl. Sci.,10 ( 2 ): 255-264.
Ali, E.A. 1974. Influence of heavy metal (Pb) contamination M. Sc. Thesis, Leeds
University, England.
Ali, E.A. 1982. Physiological studies on the contamination and toxicity of some plants
by certain heavy metals. Ph. D. Thesis, Faculty of Agriculture Cairo University,
Egypt.
Ali, E.A. 1991. Accumulation of toxic metals in orange fruits and the toxic effect of
autoexhaust on orange trees grown around traffic roads. J. Egypt Soc. Toxicol., 7:
107-114.
Ali, E.A. 1992. Toxic effects of autoexhaust on vegetation and the use of soluble protein
and chlorophyll as pollution indicators. J. Egypt. Soc. Toxicol., 8: 89-93.
Ali, E.A.; M.M. Nasralla, and A.A. Shakour, 1986. Spatial and seasonal variation of lead
in Cairo atmosphere. Environ. Pollut. IIB: 205-210.
Basovic, M.; V. Prica, and Z. Cmelik, (1986). Lead content of lettuce grown near roads.
Radovi-Poljoprivrednog-Fakulteta-Univerziteta-u-Sarajevu., 34 (38): 57-62, (c. f.
Horticultural-Abstracts 1987, 057-06359).
Baszynski, T.; L. Wajda,; M.Krol, ; D. Wolinska, ; Z. Krupa, and A. Tukcn-dorf, 1980.
Photosynihetic activities of cadmium treated tomato plants. Physiol. Plant., 48:
365-370.
Bazzaz, F.A.; R. W. Carlson, and G. L. Roue, 1974. Effect of Cd on photosynthesis and
transpiration of excised leaves of corn and sunflower. Physiol. Plant., 32: 373-376.
Bazzaz, F.A.; R.W. Carlson, and G.L., Roue. 1975. Inhibition of corn and sunflower
photosynthesis by lead. Physiol. Plant., 34: 326-329.
Chumbley, C.G. and R.J. Unwin, 1982. Cadmium and lead content of vegetable crops
grown on land with a history of sewage sludge application. Environmental
Pollution (Series B)., 4: 231-237.
CODEX Alimentarius Commission Food and Agriculture World Health Organization of
the United Nations 2000. Agenda Item 17(b) CX/FAC 00/24 December 1999, Joint
FAO/WHO Food Standards Programme Codex Committee on Food Additives and
Contaminants. Thirty-second Session, Beijing, People's Republic of China, 20-24,
March 2000, Draft Maximum Levels For Lead (Prepared by Denmark)
CODEX Alimentarius Commission, FAO/WHO. 2001. Food Additives And
Contaminants. Joint FAO/WHO Food Standards Programme 2001, ALINORM
01/12A:1-289.
Cottonie. A.; A. Dhaese, and R. Camerlynck, 1976. Plant quality response to uptake of
polluting elements. Qual. Plant.-PI. Fds. Hum. Nutr., 26: 293-319.
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
485
Davies, B.E. and P.L. Holmes, 1972. Lead contamination of roadside soil and grass in
Birmingham, England, in relation to naturally occurring levels. J. Agric. Sci.
Camb., 79 (3): 479-484.
EI-Mola, S.H. 1980. Studies on soil and plant pollution with lead. M. Sc. Thesis Faculty
of Agriculture Ain Shams University, Egypt.
El-Syied, S.S. 1998. Levels of cadmium, lead and mercury in some plants growing under
some environmental contaminations in Egypt. M. Sc. Thesis, Environmental
Science Department of Biology Institute of Environmental Studies and Research,
Ain Shams University Egypt.
Farmer, A.M. 1993. The effects of dust on vegetation-a review. Environmental-
Pollution., 79 (1): 63-75.
Feng, G.Y.; J. Chang, and J.P. Wu, 1993. Study on heavy metal pollution of vegetables in
Boashen district, Shanghai. Journal of Shanghai Agricultural College., 11 (1): 43-
50, (c. f. Thabet, W.M. (2001). Monitoring of Heavy Metals in vegetables and
fruits. M. Sc. Thesis, Environmental Science, Department of Agricultural Science,
Institute of Environmental Studies and research, Ain Shams University, Egypt).
Gomez, K.A. and , A.A. Gomez 1984. Statistical procedures for agricultural research.
2nd
Ed. Inc. New- York; Joho Wiley and Sons. 680 p.
Guttormsen, G. 1990. Cadmium and lead levels in Norwegian vegetables. Norwegian J.
of Agricultural Sci., 4 (2): 95-101,(c. f. Nutrition-Abstracts-and-Reviews.-Series-A
1991, 061-06060).
Harrison, R. M. and M. B. Chirgawi, 1989. The assessment of air and soil as contributors
of some trace metals to vegetable plants. I- Use of a filtered air growth cabinet. The
Science of the Total Environment., 83: 13-34.
Harrison, R.M. and W.R. Johnston, 1987. Experimental investigations on the relative
contribution of atmosphere and soils to the lead content of crops. In: Coughtrey,
P.J., Martin, M.H. and Unsworth, M.H. (Editors). Pollutant Transport and Fate in
Ecosystems. Special Publication of the British Ecological Society, No.6, 277-287.
Blackwell Scientific, Oxford.
Hassan, A.I. and M.I. Gewifel, 1998. Heavy Metals in Egyptian Soils: Uptake by
Vegetable Crops. Egypt. J. Bot., 38 (1-2): 119-129.
Hovmand, M.F.; J.C. Tjell, and H. Mosbaek, 1983. Plant uptake of airborne cadmium.
Environmental Pollution (Series A), 30: 27-38.
Ibrahium, R.K. 2001. Study of Some Bioindicators of Pollution with Some Heavy metals
in Plant. M. Sc. Thesis, Environmental Science Department of Biological and
Physical Sciences Institute of Environmental Studies and Research Ain Shams
University.
Kuboi, T.; A. Noguchi, and J. Yazaki, 1986. Family-dependent cadmium accumulation
characteristics in higher plants. Plant and Soil., 92: 405-415.
Lagerwerff, J.V. and A.W. Specht, 1970. Contamination of roadside soil and vegetation
with cadmium, nickel, lead and zinc. Environmental Science and Technology, 4:
583-586.
Mahmoud, A.M 1992. Biochemical studies on lead pollution. M. Sc. Thesis, Faculty of
Agriculture Cairo University, Egypt.
McCrea, P.R. 1984. An assessment of the effects of road dust on agricultural production
system. Research report in agricultural economics. Newzealand., 156:10-18.
Mohamed, M.M. 1985. Lead contamination of road side soils and plants. M. Sc. Thesis,
Faculty of Agriculture, Al-Azhar University, Egypt.
Bekhit, et. al., (2005)
486
Moursi, M.A. 1990. Studies on pollution of some Egyptian soils by heavy metals. M. Sc.
Thesis, Faculty of Agriculture, Minia University, Egypt.
Nasralla, M.M. 1975. Combustion-generated air pollutants. Ph. D. Thesis, Leeds
University, England.
Nasralla, M.M. and E.A. Ali, 1985. Lead accumulation in edible portions of crops grown
near Egyptian traffic roads. Agriculture Ecosystems and Environment.
13: (1) 73-82.
Ndiokwere, C.L.A. 1984. A study of heavy metal pollution from motor vehicle emissions
and its effect on roadside soil, vegetation and crops in Nigeria. Environmental
Pollution., B., 7 (1): 35-42.
Ochaia, E.I. 1987. General principles of biochemisty of the elements. New York : Plenum
Press, (c. f. Ross, S.M., Editor, (1994) Toxic metal Soil-Plant System. New York;
John Wiley & Sons, pp 154).
Page, A.L.; F.T. Bingham, and A.C. Chang, 1981. Cadmium. In: Lepp, N. W. (Ed.)
Effect of Trace Metals on Plant Function, pp. 77-109. Applied Science Publishers,
London.
Rawe, G.J. 1973. Food Analysis by Atomic Absorption Spectroscopy" Varian. Techtrom.
Australia, U.S.A Switzer land pp. 89.
Ross, M.S. 1994. Toxic metal in soil- plant systems. New York; John Wiley &
Sons.387p.
Thabet, W.M. 2001. Monitoring of heavy metals in vegetables and fruits. M. Sc. Thesis,
Environmental Science, Department of Agricultural Science, Institute of
Environmental Studies and research, Ain Shams University, Egypt.
Weigel H. J., 1985. Inhibition of Photosynthetic Reactions of Isolated Intact Chloroplasts
by Cadmium. Plant Physiol., 119: 179-189.
Wettstein, D. 1957. Chlorophyll letale under der Submikroskopische Formwechsel der
Plastiden. Exptl. Cell. Res. 12: 427-433.
Xian, X.F. 1989. Effect of chemical forms of cadmium, zinc and lead in polluted soils on
their uptake by cabbage plants. Plant and Soil., 113: 256- 265.
The 6th
Arabian Conference For Horticulture, Ismailia, Egypt
487
‫الخضر‬ ‫محاصيل‬ ‫بعض‬ ‫على‬ ‫الثقيلة‬ ‫بالعناصر‬ ‫التلوث‬ ‫على‬ ‫دراسات‬
*‫بخيت‬ ‫صادق‬ ‫رأفت‬-
*
‫شاهين‬ ‫محمد‬ ‫محمد‬-‫الضويني‬ ‫حسن‬ ‫**حمدي‬-**‫الهادي‬ ‫عبد‬ ‫احمد‬‫سيد‬‫عبدالوهاب‬‫االسالمبولي‬
*
‫الخضر‬ ‫قسم‬-‫الزراعة‬ ‫كلية‬-‫القاهرة‬ ‫جامعة‬
**
‫البساتين‬ ‫بحوث‬ ‫معهد‬-‫الزراعية‬ ‫البحوث‬ ‫مركز‬
‫أج‬‫لعامي‬ ‫الشتوي‬ ‫الموسم‬ ‫في‬ ‫حقليتان‬ ‫تجربتان‬ ‫ريت‬2001/2002‫و‬2002/2003‫مزارع‬ ‫في‬‫ة‬
‫تبعد‬ ‫البدرشين‬ ‫بمنطقة‬ ‫الزراعي‬ ‫أسيوط‬ ‫مصر‬ ‫طريق‬ ‫على‬20‫البعد‬ ‫تأثير‬ ‫لدراسة‬ ‫وذلك‬ ‫الجيزة‬ ‫جنوب‬ ‫متر‬ ‫كيلو‬
‫النمو‬ ‫على‬ ‫الطريق‬ ‫عن‬‫والمحصول‬‫بالكادميوم‬ ‫والتلوث‬ ‫الجودة‬ ‫وصفات‬‫الغ‬ ‫تأثير‬ ‫وأيضا‬ ‫والرصاص‬‫عل‬ ‫سيل‬‫ى‬
‫هي‬ ‫محاصيل‬ ‫ثالثة‬ ‫في‬ ‫والرصاص‬ ‫الكادميوم‬ ‫محتوي‬ ‫خفض‬‫الكوسة‬‫و‬.‫واللفت‬ ‫السبانخ‬
‫وهةي‬ ‫المةروري‬ ‫الطريةق‬ ‫مةن‬ ‫أبعةاد‬ ‫ثالثةة‬ ‫على‬ ‫الدراسة‬ ‫اشتملت‬0-10،80-90,160-170‫الكفافةة‬ ‫وكانةت‬ ‫متةر‬
‫المرورية‬32458‫بعد‬ ‫النباتية‬ ‫العينات‬ ‫جمع‬ ‫وتم‬ ‫يوم‬ / ‫سيارة‬40,55,70‫وذ‬ ‫الزراعة‬ ‫من‬ ‫يوم‬‫تسجيل‬ ‫بغرض‬ ‫لك‬
‫و‬ ‫الرضةري‬ ‫النمةو‬ ‫بيانةات‬‫المحصةول‬‫و‬‫ةر‬‫ة‬‫وت‬ ‫المقطةر‬ ‫بالمةا‬ ‫العينةات‬ ‫نصةن‬ ‫سةيل‬ ‫بعةد‬ ‫الكيمةاوي‬ ‫التحليةل‬ ‫اجةري‬
.)‫(كنترول‬ ‫سيل‬ ‫بدون‬ ‫الباقي‬ ‫النصن‬
:‫يلي‬ ‫كما‬ ‫النتائج‬ ‫تلريص‬ ‫ويمكن‬
1)‫الرضةر‬ ‫محاصةيل‬ ‫مةن‬ ‫لكةل‬ ‫وذلةك‬ ‫الطريةق‬ ‫عةن‬ ‫البعد‬ ‫بزيادة‬ ‫معنوية‬ ‫زيادة‬ ‫الرضري‬ ‫النمو‬ ‫بيانات‬ ‫سجلت‬
.‫الدراسة‬ ‫تحت‬ ‫الفالث‬
2)( ‫الطريق‬ ‫عن‬ ‫الفالث‬ ‫البعد‬ ‫سجل‬ ً‫ا‬‫أيض‬160-170‫الصبغات‬ ‫من‬ ‫النباتات‬ ‫محتوى‬ ‫في‬ ‫واضحة‬ ‫زيادة‬ )‫متر‬
.‫جـ‬ ‫فيتامين‬ ‫من‬ ‫األوراق‬ ‫ومحتوى‬ ‫النباتية‬
3)‫(الكةادميوم‬ ‫الفقيلةة‬ ‫بالعناصةر‬ ‫النباتات‬ ‫تلوث‬ ‫أن‬ ‫الكيماوي‬ ‫التحليل‬ ‫من‬ ‫تبين‬–‫بزيةادة‬ ‫انرفةض‬ )‫الرصةاص‬
.‫الطريق‬ ‫عن‬ ‫البعد‬
4)‫(الكةادميوم‬ ‫الفقيلةة‬ ‫العناصةر‬ ‫مةن‬ ‫محتواهةا‬ ‫فةي‬ ‫معنةوي‬ ‫انرفةاض‬ ‫إلى‬ ‫المأكولة‬ ‫النباتية‬ ‫األجزا‬ ‫سيل‬ ‫أدى‬
.)‫والرصاص‬‫ا‬ ‫وأوراق‬ ‫الكوسةة‬ ‫ثمةار‬ ‫لمحتةوى‬ ‫انرفةاض‬ ‫أحةدث‬ ‫حيث‬‫عنصةر‬ ‫مةن‬ ‫اللفةت‬ ‫وجةرور‬ ‫لسةبانخ‬
‫بمقةةدار‬ ‫ةاص‬‫ة‬‫الرص‬30.47، %22.44، %15.79‫عمليةةة‬ ‫أدت‬ ً‫ا‬‫ة‬‫ة‬‫وأيض‬ ‫ة‬‫ة‬‫الترتي‬ ‫ةى‬‫ة‬‫عل‬ ‫ةنلم‬‫ة‬‫م‬ ‫ةل‬‫ة‬‫لك‬ %
‫بنسةبة‬ ‫المأكولةة‬ ‫األجةزا‬ ‫فةي‬ ‫الكةادميوم‬ ‫محتةوى‬ ‫تقليةل‬ ‫إلى‬ ‫الغسيل‬24.72، %22.75، %10.11%
. ‫الترتي‬ ‫على‬ ‫واللفت‬ ‫والسبانخ‬ ‫الكوسة‬ ‫من‬ ‫لكل‬
5)‫م‬ ‫أن‬ ‫الدراسةة‬ ‫من‬ ‫كرلك‬ ‫أتضح‬ً‫ا‬‫مرتفعة‬ ‫كةان‬ ‫والرصةاص‬ ‫الكةادميوم‬ ‫عنصةري‬ ‫مةن‬ ‫السةبانخ‬ ‫أنصةال‬ ‫حتةوى‬
‫مةن‬ ً‫ا‬‫مرتفعة‬ ‫اللفت‬ ‫لنبات‬ ‫الجرور‬ ‫محتوى‬ ‫كان‬ ‫كرلك‬ .‫العناصر‬ ‫نفس‬ ‫من‬ ‫والجرور‬ ‫األعناق‬ ‫بمحتوى‬ ‫مقارنة‬
‫ةادميوم‬‫ة‬‫الك‬ ‫ةري‬‫ة‬‫عنص‬ ‫ةن‬‫ة‬‫م‬ ‫ةا‬‫ة‬‫محتواه‬ ‫ةي‬‫ة‬‫ف‬ ً‫ا‬‫ة‬‫ة‬ ‫ملحو‬ ً‫ا‬‫ة‬‫ة‬‫انرفاض‬ ‫ةة‬‫ة‬‫الكوس‬ ‫ةار‬‫ة‬‫ثم‬ ‫ةجلت‬‫ة‬‫س‬ ‫ةد‬‫ة‬‫وق‬ ‫ةابقة‬‫ة‬‫الس‬ ‫ةر‬‫ة‬‫العناص‬
.‫والرصاص‬
6)‫ن‬ ‫ة‬‫ة‬‫ف‬ ‫ةة‬‫ة‬‫عام‬ ‫ةفة‬‫ة‬‫بص‬‫ةجل‬‫ة‬‫س‬ ‫ةي‬‫ة‬‫الزراع‬ ‫ةق‬‫ة‬‫الطري‬ ‫ةن‬‫ة‬‫م‬ ‫ةة‬‫ة‬‫القريب‬ ‫ةافات‬‫ة‬‫المس‬ ‫ةي‬‫ة‬‫ف‬ ‫ةة‬‫ة‬‫الفقيل‬ ‫ةر‬‫ة‬‫بالعناص‬ ‫ةات‬‫ة‬‫النبات‬ ‫ةوث‬‫ة‬‫تل‬
‫العالمية‬ ‫بالحدود‬ ‫مقارنة‬ ً‫ا‬‫معنوي‬ ً‫ا‬‫ارتفاع‬‫لجنة‬ ‫بواسطة‬ ‫بلا‬ ‫المسموح‬.)‫(كودكس‬
‫المروريةة‬ ‫الطةرق‬ ‫عةن‬ ً‫ا‬‫بعيةد‬ ‫الرضةر‬ ‫نباتات‬ ‫زراعة‬ ‫بضرورة‬ ‫الدراسة‬ ‫وتوصي‬‫عةن‬ ‫قتقةل‬ ‫مسةافة‬ ‫علةي‬80‫متةر‬
‫األجز‬ ‫بغسيل‬ ‫وأيضا‬‫الورقية‬ ‫المحاصيل‬ ‫خاصة‬ ‫المأكولة‬ ‫ا‬‫والجررية‬. ‫اقستلال‬ ‫قبل‬

Contenu connexe

Tendances

PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)
PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)
PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)Waqas Azeem
 
Assessment of heavy metal contamination in green leafy
Assessment of heavy metal contamination in green leafyAssessment of heavy metal contamination in green leafy
Assessment of heavy metal contamination in green leafyAlexander Decker
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...
Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...
Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...Journal of Research in Biology
 
Effect of salinity on the physiological and biochemical responses of neem
Effect of salinity on the physiological and biochemical responses of neemEffect of salinity on the physiological and biochemical responses of neem
Effect of salinity on the physiological and biochemical responses of neemAgriculture Journal IJOEAR
 
C021202016027
C021202016027C021202016027
C021202016027theijes
 
Assessment of physicochemical and bacteriological drinking water quality of d...
Assessment of physicochemical and bacteriological drinking water quality of d...Assessment of physicochemical and bacteriological drinking water quality of d...
Assessment of physicochemical and bacteriological drinking water quality of d...IJERA Editor
 
Phyto-remediation NIB
Phyto-remediation NIBPhyto-remediation NIB
Phyto-remediation NIBYousaf Riaz
 
Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum Tri...
Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum  Tri...Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum  Tri...
Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum Tri...Scientific Review SR
 
The Role Of Trees in the Bioremediation of Drinking Water
The Role Of Trees in the Bioremediation of Drinking WaterThe Role Of Trees in the Bioremediation of Drinking Water
The Role Of Trees in the Bioremediation of Drinking Waterearthseva
 
Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...
Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...
Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...HalaYassinElKassas
 
A study on the removal of metal ions by Eichhornia Crassipes
A study on the removal of metal ions by Eichhornia Crassipes A study on the removal of metal ions by Eichhornia Crassipes
A study on the removal of metal ions by Eichhornia Crassipes Sooraj Garg
 

Tendances (19)

6
66
6
 
PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)
PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)
PHYTOREMEDIATION OF CONTAMINATED SOILS (WAQAS AZEEM)
 
L14
L14L14
L14
 
RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...
RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...
RELATIONSHIP BETWEEN HEAVY METAL AND TRANSFER FACTOR FROM SOIL TO VEGETABLE C...
 
Assessment of heavy metal contamination in green leafy
Assessment of heavy metal contamination in green leafyAssessment of heavy metal contamination in green leafy
Assessment of heavy metal contamination in green leafy
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
63997-234884-1-PB
63997-234884-1-PB63997-234884-1-PB
63997-234884-1-PB
 
Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...
Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...
Evaluation of air pollution tolerant tree species for Kothagiri Municipal Tow...
 
Effect of salinity on the physiological and biochemical responses of neem
Effect of salinity on the physiological and biochemical responses of neemEffect of salinity on the physiological and biochemical responses of neem
Effect of salinity on the physiological and biochemical responses of neem
 
1 (6)
1 (6)1 (6)
1 (6)
 
C021202016027
C021202016027C021202016027
C021202016027
 
ROLE OF SYNTHETIC CHELATORS IN PHYTOREMEDIATION OF HEAVY METALS BY INDIAN MUS...
ROLE OF SYNTHETIC CHELATORS IN PHYTOREMEDIATION OF HEAVY METALS BY INDIAN MUS...ROLE OF SYNTHETIC CHELATORS IN PHYTOREMEDIATION OF HEAVY METALS BY INDIAN MUS...
ROLE OF SYNTHETIC CHELATORS IN PHYTOREMEDIATION OF HEAVY METALS BY INDIAN MUS...
 
Assessment of physicochemical and bacteriological drinking water quality of d...
Assessment of physicochemical and bacteriological drinking water quality of d...Assessment of physicochemical and bacteriological drinking water quality of d...
Assessment of physicochemical and bacteriological drinking water quality of d...
 
Phyto-remediation NIB
Phyto-remediation NIBPhyto-remediation NIB
Phyto-remediation NIB
 
Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum Tri...
Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum  Tri...Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum  Tri...
Phytochemical and Heavy Metal Analysis of Gongronema Latifolium, Talinum Tri...
 
The Role Of Trees in the Bioremediation of Drinking Water
The Role Of Trees in the Bioremediation of Drinking WaterThe Role Of Trees in the Bioremediation of Drinking Water
The Role Of Trees in the Bioremediation of Drinking Water
 
Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...
Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...
Green technology-for-bioremediation-of-the-eutrophication-phenomenon-in-aquat...
 
A study on the removal of metal ions by Eichhornia Crassipes
A study on the removal of metal ions by Eichhornia Crassipes A study on the removal of metal ions by Eichhornia Crassipes
A study on the removal of metal ions by Eichhornia Crassipes
 
Phytoextraction of lead
Phytoextraction of leadPhytoextraction of lead
Phytoextraction of lead
 

En vedette

Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...
Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...
Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...Marcella Marletta
 
Allied Presentation PD Jan 2015
Allied Presentation  PD Jan 2015Allied Presentation  PD Jan 2015
Allied Presentation PD Jan 2015Paul W Davies
 
Letting others lead
Letting others leadLetting others lead
Letting others leadMatt Kurleto
 
Session 10 – advanced goal & instanter
Session 10 – advanced goal & instanterSession 10 – advanced goal & instanter
Session 10 – advanced goal & instanterTrí Bằng
 
Amazon Final internship presentation
Amazon Final internship presentationAmazon Final internship presentation
Amazon Final internship presentationSteven Nguyen
 
Session 04 – field & collision effect
Session 04 – field & collision effectSession 04 – field & collision effect
Session 04 – field & collision effectTrí Bằng
 
Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15Faiz Aldalbhi
 
Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15Faiz Aldalbhi
 
fältstudie på LINKEDIN
fältstudie på LINKEDINfältstudie på LINKEDIN
fältstudie på LINKEDINEva. Lindqvist
 
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...RCCKL
 
NOSANN IT Scope of Services
NOSANN IT Scope of ServicesNOSANN IT Scope of Services
NOSANN IT Scope of ServicesMahmoud Abdullah
 
Certificate Nick.PDF
Certificate Nick.PDFCertificate Nick.PDF
Certificate Nick.PDFNick Brooks
 
Session 01 – introduces maya dynamics
Session 01 – introduces maya dynamicsSession 01 – introduces maya dynamics
Session 01 – introduces maya dynamicsTrí Bằng
 
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...RCCKL
 

En vedette (20)

ResumeMarch2015.docx
ResumeMarch2015.docxResumeMarch2015.docx
ResumeMarch2015.docx
 
Updated resume
Updated resumeUpdated resume
Updated resume
 
Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...
Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...
Marcella Marletta - Workshop "Il governo dell'innovazione farmaceutica" - Rom...
 
Allied Presentation PD Jan 2015
Allied Presentation  PD Jan 2015Allied Presentation  PD Jan 2015
Allied Presentation PD Jan 2015
 
Letting others lead
Letting others leadLetting others lead
Letting others lead
 
Session 10 – advanced goal & instanter
Session 10 – advanced goal & instanterSession 10 – advanced goal & instanter
Session 10 – advanced goal & instanter
 
Amazon Final internship presentation
Amazon Final internship presentationAmazon Final internship presentation
Amazon Final internship presentation
 
Session 04 – field & collision effect
Session 04 – field & collision effectSession 04 – field & collision effect
Session 04 – field & collision effect
 
CV - Hesham M. Badr - 2016
CV - Hesham M. Badr - 2016CV - Hesham M. Badr - 2016
CV - Hesham M. Badr - 2016
 
Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15
 
Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15Faiz Aldalbhi CV English dated 17 Nov 15
Faiz Aldalbhi CV English dated 17 Nov 15
 
Comune di Savignano sul Rubicone | Linee programmatiche 2014-2019
Comune di Savignano sul Rubicone | Linee programmatiche 2014-2019Comune di Savignano sul Rubicone | Linee programmatiche 2014-2019
Comune di Savignano sul Rubicone | Linee programmatiche 2014-2019
 
Iso9001 iqa
Iso9001 iqaIso9001 iqa
Iso9001 iqa
 
fältstudie på LINKEDIN
fältstudie på LINKEDINfältstudie på LINKEDIN
fältstudie på LINKEDIN
 
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Case D...
 
NOSANN IT Scope of Services
NOSANN IT Scope of ServicesNOSANN IT Scope of Services
NOSANN IT Scope of Services
 
Certificate Nick.PDF
Certificate Nick.PDFCertificate Nick.PDF
Certificate Nick.PDF
 
Session 01 – introduces maya dynamics
Session 01 – introduces maya dynamicsSession 01 – introduces maya dynamics
Session 01 – introduces maya dynamics
 
One Databyse To Rule 'em All
One Databyse To Rule 'em AllOne Databyse To Rule 'em All
One Databyse To Rule 'em All
 
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...
RCC K&L / KNVvK themadag Slim hergebruik van restwarmte 22 okt. 2015 - Algeme...
 

Similaire à Study on the effect of pollution on some vegetable crops

Physiological Characteristics of Maize under Chelators Induced Phytoextractio...
Physiological Characteristics of Maize under Chelators Induced Phytoextractio...Physiological Characteristics of Maize under Chelators Induced Phytoextractio...
Physiological Characteristics of Maize under Chelators Induced Phytoextractio...Conferenceproceedings
 
Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...Innspub Net
 
Determination of heavy metal pollution in water, soil and plants of vegetable...
Determination of heavy metal pollution in water, soil and plants of vegetable...Determination of heavy metal pollution in water, soil and plants of vegetable...
Determination of heavy metal pollution in water, soil and plants of vegetable...Journal of Research in Biology
 
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...IJEAB
 
Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...
Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...
Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...researchagriculture
 
Uptake and translocation of copper by mycorrhized seedlings Sterculia setige...
Uptake and translocation of copper by mycorrhized seedlings  Sterculia setige...Uptake and translocation of copper by mycorrhized seedlings  Sterculia setige...
Uptake and translocation of copper by mycorrhized seedlings Sterculia setige...researchagriculture
 
Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...
Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...
Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...IRJET Journal
 
Persistence and Mobility of Imidacloprid and Abamectin Residues
Persistence and Mobility of Imidacloprid and Abamectin ResiduesPersistence and Mobility of Imidacloprid and Abamectin Residues
Persistence and Mobility of Imidacloprid and Abamectin ResiduesMarwan Haddad
 
IJISR-14-195-04 (2)
IJISR-14-195-04 (2)IJISR-14-195-04 (2)
IJISR-14-195-04 (2)Kassa Belay
 
notes on agriculture engineering notesss
notes on agriculture engineering notesssnotes on agriculture engineering notesss
notes on agriculture engineering notesssShobhaByadagi
 
The Response of Chickpea to Irrigation with Treated journal paper
The Response of Chickpea to Irrigation with Treated journal paperThe Response of Chickpea to Irrigation with Treated journal paper
The Response of Chickpea to Irrigation with Treated journal paperMarwan Haddad
 
Phytoremediation potential of native plant species for gaseous pollution from...
Phytoremediation potential of native plant species for gaseous pollution from...Phytoremediation potential of native plant species for gaseous pollution from...
Phytoremediation potential of native plant species for gaseous pollution from...Innspub Net
 
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...EditorIJAERD
 
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...EditorIJAERD
 
Paper id 252014132
Paper id 252014132Paper id 252014132
Paper id 252014132IJRAT
 
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...Associate Professor in VSB Coimbatore
 
Human health risks impact of pesticide application
Human health risks impact of pesticide applicationHuman health risks impact of pesticide application
Human health risks impact of pesticide applicationAlexander Decker
 

Similaire à Study on the effect of pollution on some vegetable crops (20)

water hyacinth
water hyacinthwater hyacinth
water hyacinth
 
Physiological Characteristics of Maize under Chelators Induced Phytoextractio...
Physiological Characteristics of Maize under Chelators Induced Phytoextractio...Physiological Characteristics of Maize under Chelators Induced Phytoextractio...
Physiological Characteristics of Maize under Chelators Induced Phytoextractio...
 
Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...
 
Determination of heavy metal pollution in water, soil and plants of vegetable...
Determination of heavy metal pollution in water, soil and plants of vegetable...Determination of heavy metal pollution in water, soil and plants of vegetable...
Determination of heavy metal pollution in water, soil and plants of vegetable...
 
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
Bioremediating Effect of Glomus Hoi and Pseudomonas Aeruginosa on the Organic...
 
Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...
Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...
Uptake and translocation of copper by mycorrhized seedlings Sterculia setiger...
 
Uptake and translocation of copper by mycorrhized seedlings Sterculia setige...
Uptake and translocation of copper by mycorrhized seedlings  Sterculia setige...Uptake and translocation of copper by mycorrhized seedlings  Sterculia setige...
Uptake and translocation of copper by mycorrhized seedlings Sterculia setige...
 
Advanced Journal of Toxicology: Current Research
Advanced Journal of Toxicology: Current Research Advanced Journal of Toxicology: Current Research
Advanced Journal of Toxicology: Current Research
 
Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...
Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...
Phytoremediation of Lead-Contaminated Shooting Range Soils using Indian Musta...
 
Persistence and Mobility of Imidacloprid and Abamectin Residues
Persistence and Mobility of Imidacloprid and Abamectin ResiduesPersistence and Mobility of Imidacloprid and Abamectin Residues
Persistence and Mobility of Imidacloprid and Abamectin Residues
 
IJISR-14-195-04 (2)
IJISR-14-195-04 (2)IJISR-14-195-04 (2)
IJISR-14-195-04 (2)
 
notes on agriculture engineering notesss
notes on agriculture engineering notesssnotes on agriculture engineering notesss
notes on agriculture engineering notesss
 
The Response of Chickpea to Irrigation with Treated journal paper
The Response of Chickpea to Irrigation with Treated journal paperThe Response of Chickpea to Irrigation with Treated journal paper
The Response of Chickpea to Irrigation with Treated journal paper
 
Phytoremediation potential of native plant species for gaseous pollution from...
Phytoremediation potential of native plant species for gaseous pollution from...Phytoremediation potential of native plant species for gaseous pollution from...
Phytoremediation potential of native plant species for gaseous pollution from...
 
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
 
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
Remediation of heavy metals lead, cobalt and copper from industrail wastewate...
 
Paper id 252014132
Paper id 252014132Paper id 252014132
Paper id 252014132
 
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
Effect of Mycorrhiza Strains Isolated from AL-Jabal AL-Akhdar Forests Applica...
 
Human health risks impact of pesticide application
Human health risks impact of pesticide applicationHuman health risks impact of pesticide application
Human health risks impact of pesticide application
 
PHYTOREMEDIATION
PHYTOREMEDIATIONPHYTOREMEDIATION
PHYTOREMEDIATION
 

Plus de Ahmedabd Eleslamboly Eleslamboly

NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION
NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION
NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION Ahmedabd Eleslamboly Eleslamboly
 
New grafting method for seedless watermelon plants propagation
New grafting method for seedless watermelon plants propagation New grafting method for seedless watermelon plants propagation
New grafting method for seedless watermelon plants propagation Ahmedabd Eleslamboly Eleslamboly
 
Production and Evaluation of Highly Yielding Sweet Pepper Hybrids under Gree...
Production and Evaluation of  Highly Yielding Sweet Pepper Hybrids under Gree...Production and Evaluation of  Highly Yielding Sweet Pepper Hybrids under Gree...
Production and Evaluation of Highly Yielding Sweet Pepper Hybrids under Gree...Ahmedabd Eleslamboly Eleslamboly
 
Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...
Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...
Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...Ahmedabd Eleslamboly Eleslamboly
 
Impact of Different Grafting Methods on Yield and Quality of Watermelon
Impact of Different Grafting Methods on Yield and Quality of WatermelonImpact of Different Grafting Methods on Yield and Quality of Watermelon
Impact of Different Grafting Methods on Yield and Quality of WatermelonAhmedabd Eleslamboly Eleslamboly
 
Effect of grafting cucumber onto some rootstocks for controlling root knot ne...
Effect of grafting cucumber onto some rootstocks for controlling root knot ne...Effect of grafting cucumber onto some rootstocks for controlling root knot ne...
Effect of grafting cucumber onto some rootstocks for controlling root knot ne...Ahmedabd Eleslamboly Eleslamboly
 
Effect of planting containers, cutting types and IBA on transplants productio...
Effect of planting containers, cutting types and IBA on transplants productio...Effect of planting containers, cutting types and IBA on transplants productio...
Effect of planting containers, cutting types and IBA on transplants productio...Ahmedabd Eleslamboly Eleslamboly
 
Effect of BA, IBA and cutting type on transplants production from cuttings
Effect of BA, IBA and cutting type on transplants production from cuttingsEffect of BA, IBA and cutting type on transplants production from cuttings
Effect of BA, IBA and cutting type on transplants production from cuttingsAhmedabd Eleslamboly Eleslamboly
 

Plus de Ahmedabd Eleslamboly Eleslamboly (11)

NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION
NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION
NEW GRAFTING METHOD FOR SEEDLESS WATERMELON PLANTS PROPAGATION
 
New grafting method for seedless watermelon plants propagation
New grafting method for seedless watermelon plants propagation New grafting method for seedless watermelon plants propagation
New grafting method for seedless watermelon plants propagation
 
Study on the effect of pollution on some vegetable crops
Study on the effect of pollution on some vegetable  cropsStudy on the effect of pollution on some vegetable  crops
Study on the effect of pollution on some vegetable crops
 
Production and Evaluation of Highly Yielding Sweet Pepper Hybrids under Gree...
Production and Evaluation of  Highly Yielding Sweet Pepper Hybrids under Gree...Production and Evaluation of  Highly Yielding Sweet Pepper Hybrids under Gree...
Production and Evaluation of Highly Yielding Sweet Pepper Hybrids under Gree...
 
GENETIC ANALYSIS TO FIND SUITABLE PARENTS
GENETIC ANALYSIS TO FIND SUITABLE PARENTSGENETIC ANALYSIS TO FIND SUITABLE PARENTS
GENETIC ANALYSIS TO FIND SUITABLE PARENTS
 
Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...
Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...
Grafting Salinity Tolerant Rootstocks and Magnetic Iron Treatments for Cantal...
 
Impact of Different Grafting Methods on Yield and Quality of Watermelon
Impact of Different Grafting Methods on Yield and Quality of WatermelonImpact of Different Grafting Methods on Yield and Quality of Watermelon
Impact of Different Grafting Methods on Yield and Quality of Watermelon
 
Effect of grafting cucumber onto some rootstocks for controlling root knot ne...
Effect of grafting cucumber onto some rootstocks for controlling root knot ne...Effect of grafting cucumber onto some rootstocks for controlling root knot ne...
Effect of grafting cucumber onto some rootstocks for controlling root knot ne...
 
EFFECT OF WATERMELON PROPAGATION BY CUTTINGS ON
EFFECT OF WATERMELON PROPAGATION BY CUTTINGS ON   EFFECT OF WATERMELON PROPAGATION BY CUTTINGS ON
EFFECT OF WATERMELON PROPAGATION BY CUTTINGS ON
 
Effect of planting containers, cutting types and IBA on transplants productio...
Effect of planting containers, cutting types and IBA on transplants productio...Effect of planting containers, cutting types and IBA on transplants productio...
Effect of planting containers, cutting types and IBA on transplants productio...
 
Effect of BA, IBA and cutting type on transplants production from cuttings
Effect of BA, IBA and cutting type on transplants production from cuttingsEffect of BA, IBA and cutting type on transplants production from cuttings
Effect of BA, IBA and cutting type on transplants production from cuttings
 

Dernier

《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》rnrncn29
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 

Dernier (20)

《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》《Queensland毕业文凭-昆士兰大学毕业证成绩单》
《Queensland毕业文凭-昆士兰大学毕业证成绩单》
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 

Study on the effect of pollution on some vegetable crops

  • 2. Bekhit, et. al., (2005) 474 STUDY ON THE EFFECT OF POLLUTION ON SOME VEGETABLE CROPS *Bekhit, R. S.; *Shahien, M. M.; **EL- Doweny, H. H. A. and **El- Eslamboly, A. A.S.A * Vegetable dept., Fac. of Agri., Cairo Univ. ** Hort. Res. Institute, Agric. Res. Center, ABSTRACT Two field experiments were carried out during winter seasons of 2001/2002 and 2002/2003 at a farm in El-Badrashean city, Giza governorate at a distance 20 kilo meter south Giza from Cairo Assuit road, to study the effect of distance from traffic road on growth and yield characters and lead and cadmium accumulations in spinach, squash and turnip plants. In addition to study the effect of washing the edible parts on reducing the above mentioned heavy metals content. Experiments included three different distances far from the driving road (0-10, 80-90 and 160-170 meters). Traffic density of the used road was 32458 vehicles/day. The fresh samples were collected after 40, 55 and 70 days from sowing. Representative samples from plant parts i.e. leaves, roots and fruits were taken for chemical analysis. Half of these samples were washed with deionized water while the other half was left without washing. The vegetative parameters of the three crops were increased with increasing the distances from the traffic road. The chemical constituents of pigments and vitamin C showed a similar trend as that recorded on the vegetative growth characters. Plants pollution with lead and cadmium were decreased with increasing distance from traffic road. Washing the edible parts from squash, spinach and turnip plant led to decreasing the concentration of lead by about 30.47%, 25.44% and 15.79% respectively. Also, washing in water reduced Cd content by 24.72 %, 22.75% and 10.11% respectively. Besides, washing was more effective in removing lead than cadmium in fruit crops than leafy ones. Spinach leaf blades contained high levels from lead and cadmium compared with turnip roots and squash fruits which contained a low level of lead and cadmium. The concentrations of heavy metals at the first distance were higher than the maximum codex committee level. Consequently, it could be recommended that vegetable have to be cultivated far from the traffic road (at least 80-90- meter) in addition early harvesting as well as washing the edible part before consuming especially, leafy and root vegetables. 2- INTRODUCTION Vegetables crops are an important for human diet since they contain carbohydrates, proteins, as well as vitamins, minerals, and trace elements. Vegetables grown at environmentally contaminated sites in Egypt could take up and accumulate heavy metals at concentrations that are toxic to human health. There are many different forms of pollution, such as chemicals and wastes from factories, farms, motorcars and even houses. These kinds of pollution are very harmful as they affect land, water and air. Concentrations of cadmium, nickel, lead and zinc in roadside soil and vegetation decrease with distance far from traffic (Lagerwerff and Specht, 1970). In this regard, Davies and Holmes (1972) in England recommended that, it might be prudent not to grow vegetables within 50m of busy roads. Moreover, Ali (1974) indicated that, plants may absorb lead through both leaves and roots with translocation within the plant. EI-Mola (1980) indicated that, the dry matter decreased by increasing the addition of lead nitrate to both shoots and roots of spinach plants. Page, et.al. (1981) showed that, relative Cd uptake by range of different crop plants growing in contaminated soils were in, turnip, spinach > tomato, lettuce > swiss chard, radish, and carrot.
  • 3. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 475 Ndiokwere (1984) reported that, concentrations of metals in vegetation could be reduced to 1/2-1/3 by washing the samples with deionised water. Mohamed (1985) indicated that washing plant samples grown on roadside soils by water could, loose about 43 to 62% of their total lead content, indicating the importance of washing for polluted plants before being used by man or animal. Ochaia (1987) divided the, mechanisms of metal toxicity into five groups: (1) the displacement of essential metal ions from biomolecules and other biologically functional units; (2) blocking essential functional groups of biomolecules, including enzymes and polynucleotides; (3) modifying the active conformation of biomolecules especially enzymes and polynucleotides; (4) disrupting the integrity of biomolecules; and (5) modifying other biologically active agents. Guttormsen (1990) studied the cadmium and lead levels in Norwegian vegetables and recorded that a reasonable consumption of the vegetables would not appear to present a health risk, on the basis of the FAO/WHO provisional tolerable weekly intake of 0.5 mg Cd and 3 mg Pb/60 kg of mean body weight. In Cairo Mahmoud (1992) reported that, lead is highly toxic to man, animals and plants, and it has become of a major chemical pollutant of the environment. Feng et.al. (1993) study the heavy metals pollution of vegetables in Boashen district, Shanghai. They mentioned that, the heavy metal content of different vegetable types was in the order of leafy vegetables > root tubers > fruit vegetables. Ali and Riad (1995) observed that, lead content of washed lettuce was low compared to unwashed ones. It is found that washing lettuce plant with tap water served in lowering lead content in the plant by about 30 % compared to the unwashed. Hassan and Gewifel (1998) in Egypt also recorded that, the traffic densities from roads are located in northern Egypt especially Cairo–Alexandria road, Alexandria–Matrouh Road and Abbis Road. They examined these roads during 24 hrs, and reported that traffic densities were 35200 (high density), 20700 (moderate density) and 1100 (low density) respectively. It was found also that concentration of Pb, Zn and Cd in radish and lettuce collected from each site in both plants, generally decreased with the increase of the distance from the road. Moreover, these concentrations were higher in material collected from sites along Cairo-Alexandria highway than those collected from Alexandria-Matrouh road or from Abbis road. CODEX (2000) recorded that, for vegetables, except brassica, leafy vegetables and mushrooms, the proposal is 0.1 mg/kg. A proposal of 0.3 mg/kg stands for brassica, except kale, and for leafy vegetables, except spinach. Thabet (2001) showed that, the highest contamination percentages were found in leafy vegetable samples collected from Benisuef, Qalubiya, Cairo, Minufiya governorates as 93.8%, 92%, 89.1%, and 86% respectively. However, the contamination percentages in the other Governorates were 81.3% and 78.6% in Giza and Ismailia, respectively. The objective of this study aimed to study the effect of cars pollution on the vegetative growth, fruit characters and yield of squash, spinach and turnip. Also to estimate the heavy metal concentrations i.e. lead and cadmium and the residues and effect of washing for the mentioned heavy metal with special emphasis on their toxicological implications and studied the effect of heavy metal on these vegetable crops growth and yield. MATERIALS AND METHODS 1 - Effect of exhaust car pollution:- The study was carried out at a farm in El-Badrashean city, Giza governorate at 20- kilometer south Giza; on the east of Cairo Assuit Agriculture road .Three different vegetable
  • 4. Bekhit, et. al., (2005) 476 crops i.e. turnip, squash and spinach were used. The experiments were conducted during the two successive seasons of 2001 /2002 and 2002 / 2003. Planting dates were 6th and 1st of October for the first and second seasons, respectively. A randomized complete block design with three replicates was adopted. Three different distances far from the traffic road, were studied, 0-10, 80-90 and 160-170 meters. Traffic densities on the examined road were about 32458 vehicles/day. The fresh samples were collected after 40, 55 and 70 days from sowing. Half of these samples were washed with distilled water while the other half was left as control (unwashed). Representative samples were taken for chemical analysis. The conventional agricultural practices i.e., irrigation, fertilization and weeding were done as recommended by the Ministry of the Agriculture in Egypt, for turnip, squash and spinach production. No pesticides and herbicides were used. 1.1 Squash experiment:- This experiment aimed to study the effect of pollution by exhausts cars on the squash Cucurbita pepo, L. on vegetative growth characters, , flowering and fruit characters, yield, chlorophyll pigments a, b and carotenoids and the contents of Pb and Cd contamination in the different parts of the vegetable samples either washed or unwashed. Eskandarani variety, which is widely spread in Egypt, was used in this experiment. Each plot area was 10 m2 include 3 rows was 4 meter long and the number of plants in unit area was 25 plants. The plants were spaced at 40 cm a part in rows and 80 cm a parts. 1.2 Spinach experiment:- This experiment aimed to study the effect of pollution by exhausts cars on the spinach Spinacia oleracea, L. on yield, vegetative growth characteristics, total chlorophyll pigments and the contents of Pb and Cd contamination in the edible part of plant samples either washed or unwashed plant part of El-Dokki cultivars. Each plot area was 10 m2 and the number of plants in unit area was 200 plants. 1.3 Turnip experiment:- The aim of this experiment was to study the effect of pollution by exhausts cars on the turnip Brassica campestris, L. var. Iraqi on yield vegetative growth characters, total chlorophyll pigments and the contents of Pb and Cd contamination in the edible part of plant samples either washed or unwashed. Each plot area was 5 m2 and the number of plants in unit area was 125 plants. Recorded data A. Plant growth characteristics 1. Leaves area (cm2 ). 2. Plant fresh weight (g).3. Plant dry weight (g).4. Root size (cm3 ). 5. Root fresh weight (g). 6. Root dry weight (g). 7. Fruit fresh weight (g). 8. Fruit dry weight (g). 9. Number of fruits. 10. Total yield (ton/ feddan) B. Chemical analysis 1. Determination of leaf pigments: Chlorophyll pigments of total chlorophyll as mg/100 gm were determined in the leaves according to Wettestein (1957). 2. Heavy metal pollution. Lead and cadmium contents of Squash, Spanish and Turnip samples were determined in leaves, stems and petioles, roots and fruits (mg/kg fresh weight) for all intervals of plant ages either washed or unwashed by using Perian-Elemer Model 3300 Atomic Absorption Spectrometer according to the method described by Rawe (1973). Statistical analysis:- Data obtained was subjected to statistical analysis by the technique of analysis of variance (ANOVA) for randomized complete blocks design. The treatment means were
  • 5. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 477 compared using least significant difference (LSD) method as mentioned by Gomez and Gomez (1984). RESULTS AND DISCUSSION 1 - Effect of distances from traffic road in plant characteristics. 1.1- Squash experiments: Results in Table (1) showed that sowing the plants far from the road gave the highest values from plant fresh weight, plant dry weight, leave area and total chlorophyll, were detected at 160-170 meter distance compared with first distance (0-10m) in all plant ages. On the other hand there are no significant differences between the second and the third distance on the plant fresh and dry weight and leave area in all plant ages in the both seasons. These inhibition of all characteristics may be due to heavy metal contamination from air and soil resulted by motor cars emission. These results were similar may be due to as shown (Cottonie et.al., 1976) who indicated that reduction of biomass production and nutritional quality is observed on crops grown in soils contaminated with moderate levels of heavy metal. Similar, results were obtained by several investigators e.g., EI-Mola (1980), Ali (1982) and Moursi (1990). They reported that, vegetative area was increased by increasing distances from the main source of pollution. Also similar conclusions were reported by Ali ( 1991 and 1992 ), Abd El- Aziz (2001) and Ibrahium (2001). Table (1): Effect of different distances from traffic way plant fresh and dry weight (g), leaves area (cm2 ) and total chlorophyll (mg/g fresh weight) of squash plants at 40,55 and 70 days from planting in 2001/2002 and 2002/2003 seasons. 2001/2002 Days Plant fresh weight (g) Plant dry weight (g) Leaves area (cm2 ) Total chlorophyll 40 55 70 40 55 70 40 55 70 40 55 70 Distances 0-10 740.3 1042.7 1422.7 66.3 88.6 107.8 5401.3 7327.8 7327.8 0.031 0.039 0.036 80-90 1464.2 1902.3 2254.4 128.8 157.8 181.1 9842.7 12411.8 14354.4 0.051 0.054 0.059 160-170 1422.7 1878.7 2129.8 118.7 158.7 185.9 10033.0 12764.8 14766.7 0.051 0.057 0.063 L.S.D at 0.05 101.26 197.1 96.87 8.95 19.55 13.47 1573.6 1486.6 1666.9 0.007 0.006 0.0064 2002/2003 Distances 0-10 671.8 951.3 1197.5 62.1 83.1 100.5 4888.2 6682.7 8032.0 0.031 0.035 0.033 80-90 1333.9 1735.6 2062.2 120.7 147.7 169.4 8937.6 11348.7 13091.3 0.047 0.055 0.06 160-170 1298.4 1712.6 1940.6 111.6 148.2 170.8 9126.8 10725.6 13192.7 0.051 0.057 0.064 L.S.D at 0.05 94.32 182.6 93.4 8.92 18.70 14.8 1416.6 1680.2 1117.5 0.0056 0.0058 0.0067 As for the results concerning the effect of driving way emission on number of fruits, fruits fresh weight and dry weight per plant of squash plants are shown in (Table2). Significant effect was observed by increasing the distance from traffic road. The highest values from these characters were detected at 160-170 meter distance in both seasons while the lowest values were obtained at 0-10 meter distance far from the traffic road. Similar conclusions were reported on strawberry by Abd El-Aziz (2001). Results in Table (3) show the effect of distances from driving way on squash yield (Ton/Fed). A significant differences between the first distance and both the second and the third distances were detected. The highest total yield was obtained from 160-170 and 80-90 meter distance. While, the lowest value was recorded at 0-10 meter distance from the road. These results may be caused by the effect on Photosynthesis, transpiration, carbohydrate metabolism and other metabolic activities which were inhibited by cadmium and lead
  • 6. Bekhit, et. al., (2005) 478 accumulation. These results were in agreement with Nasralla (1975) who reported that, the road dust as source of lead reduced photosynthesis leading to loss of plant yield. Also, agree with those of Bazzaz et.al. (1974 and 1975), Baszynski et.al. (1980). McCrea (1984) and Xian (1989) they found that lead pollution caused a severe loss in the yield of several crops. Table (2): Effect of different distances from traffic way on number of fruit per plant, fruit fresh weight and fruit dry weight (g) of squash plants at 40,55 and 70 days from planting in 2001/2002 and 2002/2003 seasons. 2001/2002 Days Number of fruits per plant Fruits fresh Weight (g)/plant Fruits dry Weight (g)/plant 40 55 70 40 55 70 40 55 70 Distances 0-10 3.00 8.00 13.30 111.1 291.8 445.5 8.82 22.16 31.42 80-90 5.00 14.00 19.00 288.5 948.9 1366.1 22.89 66.21 136.42 160-170 4.33 13.67 20.00 294.9 987.7 1962.7 21.58 71.07 154.79 L.S.D at 0.05 1.51 0.76 2.39 88.72 100.2 216.8 6.96 13.94 19.20 2002/2003 Distances 0-10 2.67 7.00 8.33 95.1 251.8 386.2 7.61 19.27 27.44 80-90 3.33 12.67 18.30 247.8 821.6 1711.4 19.81 60.67 119.64 160-170 3.67 13.30 18.0 255.2 853.4 1690.3 18.81 61.88 134.06 L.S.D at 0.05 1.19 1.31 2.00 76.2 87.8 184.9 6.03 8.94 16.52 Table (3): Effect of different distances from traffic way on total yield (ton/feddan) of squash plants in 2001/2002 and 2002/2003 seasons. Distances 2001/2002 2002/2003 Yield (Ton/feddan) Yield (Ton/feddan) 0-10 6.45 6.34 80-90 9.73 9.72 160-170 9.87 9.79 L.S.D at 0.05 0.39 0.13 1.2-Spinach experiment Data in Table (4) show that, there was a significant effect between the first distance and both the second and the third distance from traffic road on plant fresh weight, plant dry weight, leave area and total chlorophyll. These morphological characters and total chlorophyll were significantly increased with distance far from driving way at different plant ages in both season, The highest values from plant fresh weight, plant dry weight, leave area and total chlorophyll, were detected at 160-170 meter distance in all plant ages, while the lowest values were obtained at 0-10 meter from the traffic road. Mean while there is no significant difference between the second and the third distance on the plant fresh and dry weight and leave area in all plant ages in both seasons. It may be assumed that this is due to uptake of the metal into the inner chloroplast space and, hence, that Cd can easily penetrate the chloroplast envelope, which inhibits photosynthesis (Weigel 1985). Ali (1991) found that, chlorophyll concentration was significantly affected in leaves of orange trees grown around Cairo- Alexandria highway. The same author (1992) confirmed that, highly positive correlations (r>0.9) were found between chlorophyll and soluble protein contents of plants and the distance from traffic roads. Similar results were obtained by several investigators, e.g. Ali and Riad (1995), Abd El- Aziz (2001) and Ibrahium (2001).
  • 7. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 479 Table (4): Effect of different distances from traffic way plant fresh and dry weight (g), leaves area (cm2 ) and total chlorophyll (mg/g fresh weight) of spinach plants at 40,55 and 70 days from planting in 2001/2002 and 2002/2003 seasons. 2001/2002 Plant fresh weight (g) /plant Plant dry weight (g) /plant Leaves area (cm2 ) Total chlorophyll (mg/g F.W) Days 40 55 70 40 55 70 40 55 70 40 55 70 Distances 0-10 46.6 149.4 234.0 3.76 12.64 19.20 1157.3 1536.3 1689.8 0.033 0.035 0.032 80-90 104.5 277.4 331.5 7.69 25.91 32.87 1534.0 2056.0 2610.0 0.053 0.058 0.065 160-170 119.3 292.1 344.4 8.79 26.25 32.34 1631.3 2089.7 2571.0 0.062 0.068 0.073 L.S.D at 0.05 20.7 36.1 27.5 1.82 0.92 4.26 149.8 248 188.6 0.0055 0.0107 0.0071 2002/2003 Distances 0-10 61.9 129.0 230.0 4.78 11.75 17.10 1223.7 1551.7 1638.0 0.033 0.04 0.029 80-90 112.4 277.6 346.6 8.20 25.80 35.39 1651.7 2270.7 2641.7 0.054 0.058 0.067 160-170 126.6 345.5 354.2 9.24 27.41 34.40 1723.0 2076.0 2666.7 0.058 0.062 0.07 L.S.D at 0.05 23.4 89.1 31.9 0.92 1.82 3.54 217.2 288.0 247.4 0.0146 0.0127 0.0155 Data in Table (5) indicated that, there was a significant effect between the first distance and the second or the third distance from traffic road on total yield (ton/feddan). The highest values from total yield were detected at 160-170 meter distance, while the lowest values were obtained at 0-10 meter distance from the traffic road. While, there is no significant differences between the second and the third distance on the total yield in both seasons. These results may be due to the affected on photosynthesis, respiration and transpiration, and allow the penetration of phytotoxic gaseous pollutants. Productivity is generally decreased and visible injury symptoms may occur. Similar finding agreed with Ali (1982, 1991) and Farmer (1993). Table (5) Effect of different distances from traffic way on total yield (ton/feddan) of spinach plants in 2001/2002 and 2002/2003 seasons. Distances 2001/2002 2002/2003 Yield (Ton/ feddan) Yield (Ton/ feddan) 0-10 4.790 4.738 80-90 11.160 11.548 160-170 11.58 11.392 L.S.D. at 0.05 1.18 0.512 1.3 - Turnip experiment The influence of the distances from the traffic way on root fresh and dry weight, root size, plant fresh and dry weight, leaves area and total chlorophyll were listed in Tables (6, 7). There was a significant effect between the first distance and both second and third distance far from driving way in both season, The highest values were detected at 160-170 meter distance, while the lowest values were obtained at 0-10 meter distance from the traffic road. There are no significant differences between the second and the third distance on these characters in both seasons. In this connection Bazzaz et.al. (1974) found that relatively low concentration of lead, cadmium and nickel inhibited photosynthesis and transpiration of detached sunflower leaves. Also, agree with Ali (1982), Nasralla and Ali (1985) and Moursi (1990) they mentioned that accumulation of a very fine air pollution particles including some heavy metals, led to decrease the dry matter. Vegetative area was increased by increasing
  • 8. Bekhit, et. al., (2005) 480 distances from the main source of pollution. These results agreed with the finding of Abd El – Aziz (2001) and Ibrahium (2001). Data presented in Table (8) clarifies the effect of the distance from traffic road in turnip yield. There was a significant effect between the first distance and both the second and the third distance from traffic road on total yield (ton/feddan). Data indicate that there was significantly increase in yield with increasing distance from driving way in both seasons. The highest value from total yield was detected at 160-170 meter, while the lowest values were obtained at 0-10 meter from the traffic road. There were no significant differences between the second and the third distance on the total yield in both seasons. The results were agreed with finding of Ali (1982). Table (6)Effect of different distances from traffic way on root size (cm3 ( and root fresh and dry weight (g) of turnip plants at 40,55 and 70 days from planting in 2001/2002 and 2002/2003 seasons. 2001/2002 Days Root size Root fresh weight Root dry weight (g) 40 55 70 40 55 70 40 55 70 Distances 0-10 102.0 159.7 205.2 65.4 109.0 145.0 5.91 7.71 10.11 80-90 161.9 294.4 360.7 116.1 215.4 241.5 10.48 17.28 22.39 160-170 190.5 283.6 350.7 127.2 211.9 279.3 10.87 17.27 22.80 L.S.D at 0.05 32.1 18.9 33.2 25.2 18.2 83.8 3.50 1.39 2.93 2002/2003 Distances 0-10 105.4 166.2 208.0 68.9 126.5 161.7 6.33 10.36 13.37 80-90 146.0 246.7 298.3 112.4 196.7 215.6 10.92 17.28 21.50 160-170 159.3 247.5 297.7 118.5 201.8 256.4 11.14 17.95 22.75 L.S.D at 0.05 26.4 20.3 18.2 16.6 15.8 76.5 1.34 1.30 2.51 Table (7): Effect of different distances from traffic way on plant fresh and dry weight (g), leaves area (cm2 ) and total chlorophyll (mg/g fresh weight) of turnip plants at 40,55 and 70 days from planting in 2001/2002 and 2002/2003 seasons. 2001/2002 Plant fresh weight (g)/plant Plant dry weight (g)/plant Leaves area (cm2 ) Total chlorophyll Days 40 55 70 40 55 70 40 55 70 40 55 70 Distances 0-10 199.5 304.7 385.9 15.31 23.32 29.70 839.3 1153.4 1611.4 0.047 0.056 0.063 80-90 327.3 543.1 648.1 28.46 47.56 58.21 2011.8 2468.4 2905.9 0.073 0.088 0.112 160-170 365.4 534.1 680.0 32.1 46.25 58.74 2039.3 2440.7 2861.4 0.075 0.089 0.115 L.S.D at 0.05 30.2 42.4 89.7 2.13 3.74 4.49 250.3 256.1 298.7 0.0125 0.011 0.0162 2002/2003 Distances 0-10 202.4 326.4 335.5 15.76 25.73 33.93 805.6 1340.6 1745.7 0.046 0.055 0.051 80-90 301.0 468.1 547.9 26.64 41.34 50.74 1793.3 2083.4 2416.7 0.072 0.085 0.103 160-170 319.0 460.3 592.4 28.64 42.72 52.56 1753.2 2149.3 2442.3 0.077 0.096 0.111 L.S.D at 0.05 25.0 28.5 1623 1.32 3.53 3.54 50.1 96.6 260.8 0.013 0.0259 0.0165 2. Heavy metal content 2-1. Percentage of removable by washing: Concerning the effect of washing on lead and cadmium concentration from edible parts on crops under study, data in Table (9) showed that, the washing treatment led to
  • 9. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 481 decreasing the concentration of lead in squash, spinach and turnip by about (30.47%, 25.44% and 15.79% respectively. Also, washing in distilled water reduced Cd content by (24.72%, 22.75% and 10.11%) in the edible parts from squash, spinach and turnip respectively. In the other hand the washing was more effective in removing lead than cadmium in fruit crops than leafy ones. These results are similar to those of Ndiokwere (1984), Mohamed (1985) and Basovic, et.al., (1986) they found that washing in cold running or distilled water reduced Pb content by 27.45-76.13% compared with unwashed lettuce. Ali and Riad (1995) recorded that, washing lettuce plants with tap water served in lowering lead content in the plant by about 30 % compared to the unwashed. Table (8) Effect of different distances from traffic way on total yield (ton/feddan) of turnip plants in 2001/2002 and 2002/2003 seasons. Distances 2001/2002 2002/2003 Yield(Ton/ feddan) Yield(Ton/ feddan) 0-10 10.572 10.348 80-90 19.160 18.480 160-170 20.268 18.120 L.S.D. at 0.05 2.382 0.573 Table (9) Means of lead and cadmium concentration on edible parts of squash, spinach and turnip plants as affected by washed and percentage removable from them. Crops Pb Cd 2001/2002 Un W W Removable % Un W W Removable % Squash 0.448 0.309 31.03 0.089 0.067 24.72 Spinach 0.773 0.573 25.92 0.226 0.174 22.75 Turnip 0.477 0.401 16.06 0.185 0.166 10.11 2002/2003 Squash 0.454 0.316 30.47 0.097 0.067 31.27 Spinach 0.820 0.612 25.44 0.253 0.191 24.37 Turnip 0.549 0.462 15.79 0.205 0.183 10.42 2-2. Effect of distances The study includes the evaluation of lead and cadmium contaminations in different edible part of some vegetable crops namely, squash, turnip and spinach grown in the field at different distances from traffic roads. The influence of the distance from the road on Pb and Cd concentration in these vegetables are illustrated in Table (10). It is obvious that, there was decrease in lead and cadmium concentration in all vegetable under these studies by increasing the distance from traffic road. The highest value from Pb and Cd concentrations was detected at 0-10 meter distance, while the lowest value was noticed at 160- 170 in all plant ages from different vegetables in both seasons. These results are in agreement with those obtained by Nasralla (1975), EI-Mola (1980), Ali (1982), Mohamed (1985), Nasralla and Ali (1985), Ali and Nasralla (1986), Moursi (1990), Ali (1991, 1992), Ali and Riad (1995), Hassan and Gewifel (1998) and Abd El–Aziz (2001) they indicated that, motor cars exhaust is an important source for soil and plant contamination with lead. The highest concentrations of lead were greatly depending on traffic volumes. Furthermore, lead, concentrations in soils and grasses were found to decrease with distance far from the road. Generally unwashed plant parts of squash, spinach and turnip found to contain more amounts of heavy metals as compared with those of the washed ones with a significant effect.
  • 10. Bekhit, et. al., (2005) 482 In the same table, washing showed significant decrease in lead and cadmium contamination. Nevertheless, in the first distance (0-10) washing treatment was not succeeded to reduce it under the maximum guidelines level recommended by CODEX alimentarius commission. Data in the same Table indicated that spinach leaves were content higher concentration of lead and cadmium than turnip root and squash fruit in all plant ages in both seasons. These results are harmony with Page, et.al. (1981) who showed that, relative Cd uptakebydifferent crop plants growing in contaminated soils were in the range: turnip, spinach > tomato, lettuce > swiss chard, radish, carrot. In the same trend Chumbley and Unwin (1982) and Kuboi et.al. (1986) have subsequently examined Cd uptake in 34 plants species of nine different families. They found that different plant families responded differently and classified them into three groups: 1. Low accumulation ( Leguminosae). 2. Moderate accumulation (Gramineae, Liliaceae, Cucurbitaceae and Umbelliferae). 3. High accumulation (Chenopodiaceae, Cruciferae, Solonaceae and Compositae). Also, the obtained results agreed with Feng et.al. (1993) who study the heavy metals pollution of vegetables in Boashen district, Shanghai. They mentioned that, the heavy metal content of different vegetable types was in the order of leafy vegetables > root tubers > fruit vegetables. The highest concentration from lead and cadmium was detected in spinach leaves followed by turnip roots followed by squash fruit. Turnip roots were contain more amounts of heavy metal especially cadmium, where unexposed plant part to atmospheric Pb contributed due to it was account heavy metal hyperaccumulate as recorded by Ross (1994) the exposed plant parts (the leaves) accumulate larger quantities of air-derived metals than do unexposed plant part (e.g., roots and pea fruit). Although Pb is generally considered not to be easily translocated within plant tissues, Harrison and Chirgawi's (1989) indicate that atmospheric Pb contributed to the unexposed plant parts, especially the storage roots of radish, turnip and carrot. Squash fruits at the first distance (0-10 meter) contained high level of lead and exceed for the maximum level recommended by CODEX. Washing treatment wasn’t decreased the level under that recommended by CODEX in all plant age under study (40-55-70 days). At the second distance (80-90 meter) squash fruits at 55 and 70 days from planting contained high values from lead but washing reduced it under the safety level. At the third distance (160-170 meter) from the traffic road squash fruits were safety in all plant ages in both seasons. While the contaminations of cadmium in all squash fruit from all plant ages was not excess the guidelines level of CODEX. Data in the same Table showed that, spinach leaves at the first distance in all plant ages in both seasons were contained highly levels from lead and cadmium higher than the recommended maximum level. Washing treatment did not succeed to reduce this level of both elements except leaves at 40 days from planting for lead only. While, leaves from spinach plants grown at the second and third distances in all plant ages were lower in their content than the guideline level. Turnip roots from the plants grown at the first distance were contaminated by lead to the harmful level in all plant ages under study. Washing treatment did not reduce this level to the safety range. Plants at the second distance were not reaching to the maximum harmful level except after 55 days from sowing. Washing treatment was not succeeded to decrease it to the safety level. While at the third distance roots contents were under the safety level for lead. Cadmium content in turnip roots at the first distance were also higher than recommended and washing did not succeed to decrease it. Turnip roots obtained from the second and third distances contained safety level from cadmium in all plant ages.
  • 11. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 483 Table (10): Effect of distances from traffic road and washed on Pb and Cd concentrations (mg/kg. fresh weight) on edible part from squash, turnip and spinach plants during seasons (2001/2002 and 2002/2003) compared with maximum level or guidelines for maximum limit (ML) of metals in vegetables were adopted from FAO/WHO. Pb 2001/2002 Recommended Max. L. for Vegetables (mg/kg. f. w.) 40 55 70 Un W Un W Un W Squash fruit D1 0.183* 0.130* 0.260* 0.194* 0.346* 0.295* 0.1a D2 0.086 0.050 0.118* 0.065 0.127* 0.086 D3 0.055 0.019 0.081 0.035 0.088 0.053 Spinach leaves D1 0.328* 0.251 0.425* 0.337* 0.634* 0.543* 0.3a D2 0.219 0.126 0.168 0.110 0.273 0.192 D3 0.076 0.041 0.092 0.047 0.104 0.071 Turnip root D1 0.243* 0.220* 0.310* 0.258* 0.335* 0.289* 0.1a D2 0.099 0.078 0.109* 0.088 0.122* 0.101* D3 0.066 0.049 0.068 0.056 0.080 0.063 2002/2003 Squash fruit D1 0.185* 0.131* 0.264* 0.197* 0.351* 0.300* 0.1a D2 0.087 0.052 0.118* 0.067 0.129* 0.091 D3 0.056 0.019 0.082 0.036 0.090 0.054 Spinach leaves D1 0.346* 0.265 0.450* 0.356* 0.675* 0.579* 0.3a D2 0.234 0.134 0.181 0.121 0.289 0.213 D3 0.080 0.043 0.097 0.049 0.109 0.075 Turnip root D1 0.280* 0.254* 0.356* 0.297* 0.386* 0.333* 0.1a D2 0.114* 0.090 0.125* 0.102* 0.140* 0.118* D3 0.076 0.056 0.078 0.065 0.092 0.072 Cd 2001/2002 Squash fruit D1 0.053 0.042 0.057 0.044 0.066 0.052 0.1b D2 0.016 0.012 0.019 0.014 0.021 0.016 D3 0.010 0.005 0.012 0.007 0.013 0.009 Spinach leaves D1 0.143* 0.110* 0.159* 0.133* 0.123* 0.106* 0.1b D2 0.044 0.032 0.062 0.044 0.067 0.048 D3 0.021 0.011 0.024 0.017 0.034 0.022 Turnip root D1 0.089 0.084 0.110* 0.103* 0.144* 0.131* 0.1b D2 0.046 0.037 0.050 0.044 0.049 0.044 D3 0.019 0.015 0.023 0.020 0.024 0.020 2002/2003 Squash fruit D1 0.053 0.043 0.059 0.046 0.068 0.053 0.1b D2 0.015 0.011 0.018 0.012 0.020 0.015 D3 0.033 0.004 0.012 0.007 0.013 0.009 Spinach leaves D1 0.151* 0.111* 0.164* 0.134* 0.181* 0.153* 0.1b D2 0.047 0.031 0.066 0.045 0.070 0.048 D3 0.020 0.012 0.025 0.018 0.035 0.022 Turnip root D1 0.093 0.085 0.117* 0.105* 0.157* 0.134* 0.1b D2 0.048 0.049 0.062 0.054 0.060 0.056 D3 0.022 0.019 0.026 0.024 0.029 0.024 D1 : 0- 10 D2 : 80- 90 D3 : 160 – 170 W : washed Un : unwashed a Source: FAO/WHO - Codex alimentarius commission, 1999. b Source: FAO/WHO - Codex alimentarius commission, 2001. * > Recommended Maximum Level for Vegetables. This may simply reflect relatively high air lead concentrations and the low efficiency of soil lead uptake compared to the other trace metals studied. There are rather few corroborative published data. Hovmand et.al., (1983) reported that anything from 20 to 60 % of Cd uptake by a range of different edible crops could be air-derived. The leaves of kale and the grain of barley showed highest Cd concentration derived from air pollution, at 50- 60 % and 40-60 % respectively. The studies of Harrison and Johnston (1987) and Harrison and Chirgawi (1989) indicate a relative ease of uptake of Zn and Cd from soil, but not for Pb. Their experiments also
  • 12. Bekhit, et. al., (2005) 484 indicate that metals in atmospheric pollution can contribute substantially to the metal fund of the plant and be translocated to unexposed plant parts. El- Syied (1998) recorded that, the highest values from Cd of concentration index were found in clover tops, turnip roots and orange pulps. Indicated also, the highest values from lead were found in turnip roots, clover tops and corn tops. REFERENCES Abd El-Aziz, M. G. 2001. Heavy metal contents of strawberry fruits grown under different environmental conditions. M. sc. Thesis, Faculty of Agriculture, Ain Shams University, Egypt. Ali, A.M. and Riad, W.Y. 1995. Effect of air lead pollution on lettuce plant. Egypt. J. Appl. Sci.,10 ( 2 ): 255-264. Ali, E.A. 1974. Influence of heavy metal (Pb) contamination M. Sc. Thesis, Leeds University, England. Ali, E.A. 1982. Physiological studies on the contamination and toxicity of some plants by certain heavy metals. Ph. D. Thesis, Faculty of Agriculture Cairo University, Egypt. Ali, E.A. 1991. Accumulation of toxic metals in orange fruits and the toxic effect of autoexhaust on orange trees grown around traffic roads. J. Egypt Soc. Toxicol., 7: 107-114. Ali, E.A. 1992. Toxic effects of autoexhaust on vegetation and the use of soluble protein and chlorophyll as pollution indicators. J. Egypt. Soc. Toxicol., 8: 89-93. Ali, E.A.; M.M. Nasralla, and A.A. Shakour, 1986. Spatial and seasonal variation of lead in Cairo atmosphere. Environ. Pollut. IIB: 205-210. Basovic, M.; V. Prica, and Z. Cmelik, (1986). Lead content of lettuce grown near roads. Radovi-Poljoprivrednog-Fakulteta-Univerziteta-u-Sarajevu., 34 (38): 57-62, (c. f. Horticultural-Abstracts 1987, 057-06359). Baszynski, T.; L. Wajda,; M.Krol, ; D. Wolinska, ; Z. Krupa, and A. Tukcn-dorf, 1980. Photosynihetic activities of cadmium treated tomato plants. Physiol. Plant., 48: 365-370. Bazzaz, F.A.; R. W. Carlson, and G. L. Roue, 1974. Effect of Cd on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol. Plant., 32: 373-376. Bazzaz, F.A.; R.W. Carlson, and G.L., Roue. 1975. Inhibition of corn and sunflower photosynthesis by lead. Physiol. Plant., 34: 326-329. Chumbley, C.G. and R.J. Unwin, 1982. Cadmium and lead content of vegetable crops grown on land with a history of sewage sludge application. Environmental Pollution (Series B)., 4: 231-237. CODEX Alimentarius Commission Food and Agriculture World Health Organization of the United Nations 2000. Agenda Item 17(b) CX/FAC 00/24 December 1999, Joint FAO/WHO Food Standards Programme Codex Committee on Food Additives and Contaminants. Thirty-second Session, Beijing, People's Republic of China, 20-24, March 2000, Draft Maximum Levels For Lead (Prepared by Denmark) CODEX Alimentarius Commission, FAO/WHO. 2001. Food Additives And Contaminants. Joint FAO/WHO Food Standards Programme 2001, ALINORM 01/12A:1-289. Cottonie. A.; A. Dhaese, and R. Camerlynck, 1976. Plant quality response to uptake of polluting elements. Qual. Plant.-PI. Fds. Hum. Nutr., 26: 293-319.
  • 13. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 485 Davies, B.E. and P.L. Holmes, 1972. Lead contamination of roadside soil and grass in Birmingham, England, in relation to naturally occurring levels. J. Agric. Sci. Camb., 79 (3): 479-484. EI-Mola, S.H. 1980. Studies on soil and plant pollution with lead. M. Sc. Thesis Faculty of Agriculture Ain Shams University, Egypt. El-Syied, S.S. 1998. Levels of cadmium, lead and mercury in some plants growing under some environmental contaminations in Egypt. M. Sc. Thesis, Environmental Science Department of Biology Institute of Environmental Studies and Research, Ain Shams University Egypt. Farmer, A.M. 1993. The effects of dust on vegetation-a review. Environmental- Pollution., 79 (1): 63-75. Feng, G.Y.; J. Chang, and J.P. Wu, 1993. Study on heavy metal pollution of vegetables in Boashen district, Shanghai. Journal of Shanghai Agricultural College., 11 (1): 43- 50, (c. f. Thabet, W.M. (2001). Monitoring of Heavy Metals in vegetables and fruits. M. Sc. Thesis, Environmental Science, Department of Agricultural Science, Institute of Environmental Studies and research, Ain Shams University, Egypt). Gomez, K.A. and , A.A. Gomez 1984. Statistical procedures for agricultural research. 2nd Ed. Inc. New- York; Joho Wiley and Sons. 680 p. Guttormsen, G. 1990. Cadmium and lead levels in Norwegian vegetables. Norwegian J. of Agricultural Sci., 4 (2): 95-101,(c. f. Nutrition-Abstracts-and-Reviews.-Series-A 1991, 061-06060). Harrison, R. M. and M. B. Chirgawi, 1989. The assessment of air and soil as contributors of some trace metals to vegetable plants. I- Use of a filtered air growth cabinet. The Science of the Total Environment., 83: 13-34. Harrison, R.M. and W.R. Johnston, 1987. Experimental investigations on the relative contribution of atmosphere and soils to the lead content of crops. In: Coughtrey, P.J., Martin, M.H. and Unsworth, M.H. (Editors). Pollutant Transport and Fate in Ecosystems. Special Publication of the British Ecological Society, No.6, 277-287. Blackwell Scientific, Oxford. Hassan, A.I. and M.I. Gewifel, 1998. Heavy Metals in Egyptian Soils: Uptake by Vegetable Crops. Egypt. J. Bot., 38 (1-2): 119-129. Hovmand, M.F.; J.C. Tjell, and H. Mosbaek, 1983. Plant uptake of airborne cadmium. Environmental Pollution (Series A), 30: 27-38. Ibrahium, R.K. 2001. Study of Some Bioindicators of Pollution with Some Heavy metals in Plant. M. Sc. Thesis, Environmental Science Department of Biological and Physical Sciences Institute of Environmental Studies and Research Ain Shams University. Kuboi, T.; A. Noguchi, and J. Yazaki, 1986. Family-dependent cadmium accumulation characteristics in higher plants. Plant and Soil., 92: 405-415. Lagerwerff, J.V. and A.W. Specht, 1970. Contamination of roadside soil and vegetation with cadmium, nickel, lead and zinc. Environmental Science and Technology, 4: 583-586. Mahmoud, A.M 1992. Biochemical studies on lead pollution. M. Sc. Thesis, Faculty of Agriculture Cairo University, Egypt. McCrea, P.R. 1984. An assessment of the effects of road dust on agricultural production system. Research report in agricultural economics. Newzealand., 156:10-18. Mohamed, M.M. 1985. Lead contamination of road side soils and plants. M. Sc. Thesis, Faculty of Agriculture, Al-Azhar University, Egypt.
  • 14. Bekhit, et. al., (2005) 486 Moursi, M.A. 1990. Studies on pollution of some Egyptian soils by heavy metals. M. Sc. Thesis, Faculty of Agriculture, Minia University, Egypt. Nasralla, M.M. 1975. Combustion-generated air pollutants. Ph. D. Thesis, Leeds University, England. Nasralla, M.M. and E.A. Ali, 1985. Lead accumulation in edible portions of crops grown near Egyptian traffic roads. Agriculture Ecosystems and Environment. 13: (1) 73-82. Ndiokwere, C.L.A. 1984. A study of heavy metal pollution from motor vehicle emissions and its effect on roadside soil, vegetation and crops in Nigeria. Environmental Pollution., B., 7 (1): 35-42. Ochaia, E.I. 1987. General principles of biochemisty of the elements. New York : Plenum Press, (c. f. Ross, S.M., Editor, (1994) Toxic metal Soil-Plant System. New York; John Wiley & Sons, pp 154). Page, A.L.; F.T. Bingham, and A.C. Chang, 1981. Cadmium. In: Lepp, N. W. (Ed.) Effect of Trace Metals on Plant Function, pp. 77-109. Applied Science Publishers, London. Rawe, G.J. 1973. Food Analysis by Atomic Absorption Spectroscopy" Varian. Techtrom. Australia, U.S.A Switzer land pp. 89. Ross, M.S. 1994. Toxic metal in soil- plant systems. New York; John Wiley & Sons.387p. Thabet, W.M. 2001. Monitoring of heavy metals in vegetables and fruits. M. Sc. Thesis, Environmental Science, Department of Agricultural Science, Institute of Environmental Studies and research, Ain Shams University, Egypt. Weigel H. J., 1985. Inhibition of Photosynthetic Reactions of Isolated Intact Chloroplasts by Cadmium. Plant Physiol., 119: 179-189. Wettstein, D. 1957. Chlorophyll letale under der Submikroskopische Formwechsel der Plastiden. Exptl. Cell. Res. 12: 427-433. Xian, X.F. 1989. Effect of chemical forms of cadmium, zinc and lead in polluted soils on their uptake by cabbage plants. Plant and Soil., 113: 256- 265.
  • 15. The 6th Arabian Conference For Horticulture, Ismailia, Egypt 487 ‫الخضر‬ ‫محاصيل‬ ‫بعض‬ ‫على‬ ‫الثقيلة‬ ‫بالعناصر‬ ‫التلوث‬ ‫على‬ ‫دراسات‬ *‫بخيت‬ ‫صادق‬ ‫رأفت‬- * ‫شاهين‬ ‫محمد‬ ‫محمد‬-‫الضويني‬ ‫حسن‬ ‫**حمدي‬-**‫الهادي‬ ‫عبد‬ ‫احمد‬‫سيد‬‫عبدالوهاب‬‫االسالمبولي‬ * ‫الخضر‬ ‫قسم‬-‫الزراعة‬ ‫كلية‬-‫القاهرة‬ ‫جامعة‬ ** ‫البساتين‬ ‫بحوث‬ ‫معهد‬-‫الزراعية‬ ‫البحوث‬ ‫مركز‬ ‫أج‬‫لعامي‬ ‫الشتوي‬ ‫الموسم‬ ‫في‬ ‫حقليتان‬ ‫تجربتان‬ ‫ريت‬2001/2002‫و‬2002/2003‫مزارع‬ ‫في‬‫ة‬ ‫تبعد‬ ‫البدرشين‬ ‫بمنطقة‬ ‫الزراعي‬ ‫أسيوط‬ ‫مصر‬ ‫طريق‬ ‫على‬20‫البعد‬ ‫تأثير‬ ‫لدراسة‬ ‫وذلك‬ ‫الجيزة‬ ‫جنوب‬ ‫متر‬ ‫كيلو‬ ‫النمو‬ ‫على‬ ‫الطريق‬ ‫عن‬‫والمحصول‬‫بالكادميوم‬ ‫والتلوث‬ ‫الجودة‬ ‫وصفات‬‫الغ‬ ‫تأثير‬ ‫وأيضا‬ ‫والرصاص‬‫عل‬ ‫سيل‬‫ى‬ ‫هي‬ ‫محاصيل‬ ‫ثالثة‬ ‫في‬ ‫والرصاص‬ ‫الكادميوم‬ ‫محتوي‬ ‫خفض‬‫الكوسة‬‫و‬.‫واللفت‬ ‫السبانخ‬ ‫وهةي‬ ‫المةروري‬ ‫الطريةق‬ ‫مةن‬ ‫أبعةاد‬ ‫ثالثةة‬ ‫على‬ ‫الدراسة‬ ‫اشتملت‬0-10،80-90,160-170‫الكفافةة‬ ‫وكانةت‬ ‫متةر‬ ‫المرورية‬32458‫بعد‬ ‫النباتية‬ ‫العينات‬ ‫جمع‬ ‫وتم‬ ‫يوم‬ / ‫سيارة‬40,55,70‫وذ‬ ‫الزراعة‬ ‫من‬ ‫يوم‬‫تسجيل‬ ‫بغرض‬ ‫لك‬ ‫و‬ ‫الرضةري‬ ‫النمةو‬ ‫بيانةات‬‫المحصةول‬‫و‬‫ةر‬‫ة‬‫وت‬ ‫المقطةر‬ ‫بالمةا‬ ‫العينةات‬ ‫نصةن‬ ‫سةيل‬ ‫بعةد‬ ‫الكيمةاوي‬ ‫التحليةل‬ ‫اجةري‬ .)‫(كنترول‬ ‫سيل‬ ‫بدون‬ ‫الباقي‬ ‫النصن‬ :‫يلي‬ ‫كما‬ ‫النتائج‬ ‫تلريص‬ ‫ويمكن‬ 1)‫الرضةر‬ ‫محاصةيل‬ ‫مةن‬ ‫لكةل‬ ‫وذلةك‬ ‫الطريةق‬ ‫عةن‬ ‫البعد‬ ‫بزيادة‬ ‫معنوية‬ ‫زيادة‬ ‫الرضري‬ ‫النمو‬ ‫بيانات‬ ‫سجلت‬ .‫الدراسة‬ ‫تحت‬ ‫الفالث‬ 2)( ‫الطريق‬ ‫عن‬ ‫الفالث‬ ‫البعد‬ ‫سجل‬ ً‫ا‬‫أيض‬160-170‫الصبغات‬ ‫من‬ ‫النباتات‬ ‫محتوى‬ ‫في‬ ‫واضحة‬ ‫زيادة‬ )‫متر‬ .‫جـ‬ ‫فيتامين‬ ‫من‬ ‫األوراق‬ ‫ومحتوى‬ ‫النباتية‬ 3)‫(الكةادميوم‬ ‫الفقيلةة‬ ‫بالعناصةر‬ ‫النباتات‬ ‫تلوث‬ ‫أن‬ ‫الكيماوي‬ ‫التحليل‬ ‫من‬ ‫تبين‬–‫بزيةادة‬ ‫انرفةض‬ )‫الرصةاص‬ .‫الطريق‬ ‫عن‬ ‫البعد‬ 4)‫(الكةادميوم‬ ‫الفقيلةة‬ ‫العناصةر‬ ‫مةن‬ ‫محتواهةا‬ ‫فةي‬ ‫معنةوي‬ ‫انرفةاض‬ ‫إلى‬ ‫المأكولة‬ ‫النباتية‬ ‫األجزا‬ ‫سيل‬ ‫أدى‬ .)‫والرصاص‬‫ا‬ ‫وأوراق‬ ‫الكوسةة‬ ‫ثمةار‬ ‫لمحتةوى‬ ‫انرفةاض‬ ‫أحةدث‬ ‫حيث‬‫عنصةر‬ ‫مةن‬ ‫اللفةت‬ ‫وجةرور‬ ‫لسةبانخ‬ ‫بمقةةدار‬ ‫ةاص‬‫ة‬‫الرص‬30.47، %22.44، %15.79‫عمليةةة‬ ‫أدت‬ ً‫ا‬‫ة‬‫ة‬‫وأيض‬ ‫ة‬‫ة‬‫الترتي‬ ‫ةى‬‫ة‬‫عل‬ ‫ةنلم‬‫ة‬‫م‬ ‫ةل‬‫ة‬‫لك‬ % ‫بنسةبة‬ ‫المأكولةة‬ ‫األجةزا‬ ‫فةي‬ ‫الكةادميوم‬ ‫محتةوى‬ ‫تقليةل‬ ‫إلى‬ ‫الغسيل‬24.72، %22.75، %10.11% . ‫الترتي‬ ‫على‬ ‫واللفت‬ ‫والسبانخ‬ ‫الكوسة‬ ‫من‬ ‫لكل‬ 5)‫م‬ ‫أن‬ ‫الدراسةة‬ ‫من‬ ‫كرلك‬ ‫أتضح‬ً‫ا‬‫مرتفعة‬ ‫كةان‬ ‫والرصةاص‬ ‫الكةادميوم‬ ‫عنصةري‬ ‫مةن‬ ‫السةبانخ‬ ‫أنصةال‬ ‫حتةوى‬ ‫مةن‬ ً‫ا‬‫مرتفعة‬ ‫اللفت‬ ‫لنبات‬ ‫الجرور‬ ‫محتوى‬ ‫كان‬ ‫كرلك‬ .‫العناصر‬ ‫نفس‬ ‫من‬ ‫والجرور‬ ‫األعناق‬ ‫بمحتوى‬ ‫مقارنة‬ ‫ةادميوم‬‫ة‬‫الك‬ ‫ةري‬‫ة‬‫عنص‬ ‫ةن‬‫ة‬‫م‬ ‫ةا‬‫ة‬‫محتواه‬ ‫ةي‬‫ة‬‫ف‬ ً‫ا‬‫ة‬‫ة‬ ‫ملحو‬ ً‫ا‬‫ة‬‫ة‬‫انرفاض‬ ‫ةة‬‫ة‬‫الكوس‬ ‫ةار‬‫ة‬‫ثم‬ ‫ةجلت‬‫ة‬‫س‬ ‫ةد‬‫ة‬‫وق‬ ‫ةابقة‬‫ة‬‫الس‬ ‫ةر‬‫ة‬‫العناص‬ .‫والرصاص‬ 6)‫ن‬ ‫ة‬‫ة‬‫ف‬ ‫ةة‬‫ة‬‫عام‬ ‫ةفة‬‫ة‬‫بص‬‫ةجل‬‫ة‬‫س‬ ‫ةي‬‫ة‬‫الزراع‬ ‫ةق‬‫ة‬‫الطري‬ ‫ةن‬‫ة‬‫م‬ ‫ةة‬‫ة‬‫القريب‬ ‫ةافات‬‫ة‬‫المس‬ ‫ةي‬‫ة‬‫ف‬ ‫ةة‬‫ة‬‫الفقيل‬ ‫ةر‬‫ة‬‫بالعناص‬ ‫ةات‬‫ة‬‫النبات‬ ‫ةوث‬‫ة‬‫تل‬ ‫العالمية‬ ‫بالحدود‬ ‫مقارنة‬ ً‫ا‬‫معنوي‬ ً‫ا‬‫ارتفاع‬‫لجنة‬ ‫بواسطة‬ ‫بلا‬ ‫المسموح‬.)‫(كودكس‬ ‫المروريةة‬ ‫الطةرق‬ ‫عةن‬ ً‫ا‬‫بعيةد‬ ‫الرضةر‬ ‫نباتات‬ ‫زراعة‬ ‫بضرورة‬ ‫الدراسة‬ ‫وتوصي‬‫عةن‬ ‫قتقةل‬ ‫مسةافة‬ ‫علةي‬80‫متةر‬ ‫األجز‬ ‫بغسيل‬ ‫وأيضا‬‫الورقية‬ ‫المحاصيل‬ ‫خاصة‬ ‫المأكولة‬ ‫ا‬‫والجررية‬. ‫اقستلال‬ ‫قبل‬