SlideShare a Scribd company logo
1 of 41
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources
IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 2012
Habilitation à Diriger des Recherches
Modeling chemical kinetics and
turbulence interactions for internal
combustion
engine reactive flow simulations
António Pires da Cruz
Engine CFD and Simulation department
November 15, 2012
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20122
Habilitation à Diriger des Recherches
Institut National Polytechnique de Toulouse
Correspondant:
Dr. T. Poinsot, Directeur de Recherche, CNRS & Université de Toulouse, France
Rapporteurs:
Prof. A. M. Dean, William K. Coors Distinguished Professor and Dean, Colorado
School of Mines, USA
Prof. E. Mastorakos, Cambridge University, UK
Prof. L. Vervisch, Professeur à l'INSA de Rouen, France
Membres du jury:
Prof. S. Candel, Professeur à l'Ecole Centrale de Paris et membre de l'Académie
des Sciences
M. F. Ravet, Expert à Renault SA
M. S. Henriot, Directeur à IFP Energies nouvelles
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20123
Background and resume
Education:
1988-1993: Mechanical Engineering, IST Lisboa, Portugal
1993-1994: Masters degree (DEA), Univ. Paris VI, France
1994-1997: PhD Thesis, Univ. Paris VI, France and IFPEN (December 9, 1997)
Professional experience:
1991-1993: IST, Portugal – Finite elements thermo structural modeling (part time)
1997-1998: IFPEN, France – Research engineer (4 months)
1998-2000: ExxonMobil Research and Engineering, USA – Post-doctoral position
Since 2000: IFPEN, France
2000-2004: IFP School professor and research engineer
2004-2011: Project manager – CFD modeling and simulation and engine combustion
Since 2008: Department head – Engine CFD and Simulation department
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20124
 PhD students:
 G. Subramanian with L. Vervisch, INSA Rouen and O. Colin, IFPEN,
2002-2005
 J. Anderlohr with F. Battin-Leclerc and R. Bounaceur, ENSIC
Nancy, 2006-2009
 Teaching (fundamental combustion, thermodynamics,
programming...):
 2000-2012, 639 hours, 60 to 90 students per year
 Projects
 IFPEN internal, GSM, ADEME, consortia, scientific collaborations,
contribution to numerous research proposals
 Member of the Combustion Institute (French section board
2006-2010)
 Publications:
 Papers with reading committee (WOS): 11
 Editorials: 1
Tuition, scientific activity and production
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20125
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20126
Green house gases: Estimated
human impact on surface temperature
Olivié et al., Atm. Chem. Phys., 2012
Total
Shipping
Aviation
CO2 –
Road transport
Non CO2 –
Road transport
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20127
CO2 sources from transport
Olivié et al., Atm. Chem. Phys., 2012
l'auto-journal (1er
nov 2012)
Shipping AviationRoad transport
Year 2000
Major CO2 reduction efforts made
by European (95 gCO2/km in 2020)
and Japanese auto OEMs must be
reinforced and globalized to all
countries and transport modes
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20128
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20129
Modeling and Simulation1
 For the growing number of problems where experiments
are impossible, dangerous, or inordinately costly, (...)
computing will enable the solution of vastly more accurate
predictive models and the analysis of massive quantities
of data, producing (...) advances in areas of science and
technology that are essential (...). For example, (...)
computing will push the frontiers of:
 Reduction of the carbon footprint of the transportation sector
 Innovative designs for cost‐effective renewable energy
resources such as batteries, catalysts, and biofuels
 Design, control and manufacture of advanced technology
devices
 (...)
1
The opportunities and challenges of
exascale computing, US DOE ASCAC
Comitee, 2010
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201210
km
mm
µm
nm
Turbulent
flame
Combustion
chamber
Engine
m
Vehicle
Environmental
impact
Spatial scales
related to transport and emissions
Flame/Vortex
interaction
Molecular
reactions
Laminar
flame
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201211
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201212
 Species i mass fraction Favre average
transport equation:
 Average and instantaneous reaction rate
(Arrhenius type):
Average flows: RANS turbulent
combustion modeling fundamentals
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201213
RANS Turbulent versus kinetic modeling
Turbulent mixing layer with 1-step chemistry
x
time [µs]
Turbulent
combustion model
"Arrhenius" or
"order 0 model" approach
time [µs]
TF = 300 K
Tox = 1000 K
YF,0 (nC7H16) = 1
Yox,0 = 0.233
Zst,nC7 = 0.062
Zmr ~ Zst
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201214
Main observations and highlights
 Different ignition delays:
 Kinetic: Total mixing (~0.05 ms)
 Turbulent: AI delay depends on
mixing time (~0.3 ms)
 Different ignition locations:
 Kin: Z most reactive1
 Turb: Highest probability of
finding Z most reactive
 Reaction rate distribution:
 Kin: High reaction rate over all
the mixing zone
 Turb: Reaction progress
towards lean and rich zones
 After AI:
 Kin: Reaction at Zst
 Turb: Mixing layer too diluted
Probability of finding Zst
Turb "no model"
1
E. Mastorakos et al., C&F, 1997
Zmr ~ Zst = 0.062
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201215
Conclusions:
RANS turbulent combustion modeling
 Turbulence and kinetics are intrinsically coupled:
 Non linear chemical kinetics (exponential behavior with
temperature)
 Large turbulent fluctuations (temperature fluctuations
several 100 K)
 In RANS, turbulent structures are handled statistically
 Molecular mixing (at the smallest scales) and turbulent
fluctuations must be taken into account (eg. Mastorakos
et al., CMC auto-ignition, CST, 1997): Models for numerical
mixing are required
 Kinetic reaction rates must be integrated over the
mixing distribution (eg. Pires da Cruz et al., C&F, 1999)
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201216
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201217
Choice of surrogate fuels
 From historical ICE surrogate fuels:
 n-Heptane: Diesel auto-ignition
 iso-Octane: Gasoline laminar flame speed
 PRF (nC7 / iC8): Gasoline auto-ignition (knock)
 To more complex surrogate fuels:
 IDEA-EFFECT diesel: 70% nC7 / 30% amn (volume)
 Biodiesel: 70/30 + methyl oleate (BIOKIN)
 XTL + diesel: 70/30 + iC8 / nC16 (BIOKIN)
 Toluene Reference Fuel (TRF): European gasoline
(literature + GSM 2006 proportions)
 TRF/ethanol: EXX for gasoline / ethanol mixtures
 MFC2 extensive surrogate fuels database
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201218
TRF fuel for gasoline ICE
SI engine experimental results1
suggested the validity
of the TRF2
as a gasoline surrogate
Heat release rate
CO2 emissions
NOx emissions
1
P. Anselmi et al., Rapport IFPEN 60419, GSM E2.3, 2007
2
C. Pera and V. Knop, Fuel, 2012
iC8H18
Standard gasoline
TRF mixture
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201219
 Primary
Mechanism
 Secondary
Mechanism
Mech generator EXGAS LRGP
 C0-C2
Reactions
Base
Bounaceur
et al.2
(LRGP)
n-Heptane / iso-Octane (PRF)3Toluene
Kinetic
Model
THERGAS
KINGAS
ReactiveSpecies C0-C2 Reactions
Base
Primary
Mechanism
Secondary
Mechanism
Building a TRF/NOx kinetic mechanism1
NOx
GRI-MECH
3.0
Coupling: PRF-
toluene
Coupling: NOx-PRF
Coupling:
NOx-toluene
1
J. Anderlohr et al., C&F, 2009
2
R. Bounaceur et al., Int. J. Chem. Kin., 2005
3
F. Buda et al., C&F, 2005
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201220
Mechanism validation (PSR)
n-Heptane
Temperature [K]
MolarFraction[-]
■▲
■
■
■
■
■
■
■
■
■ ■ ■ ■ ■ ■
▲■▲
▲
▲
▲
▲
▲
▲ ▲ ▲ ▲ ▲ ▲ ▲
▲
■
■
■ ■ ■■■
■
▲
▲ ▲ ▲ ▲ ▲ ▲
Temperature [K]MolarFraction[-]
▲
■
■
▲
▲
toluene
▲
Pressure: 10 atm, Ф: 1
Dilution: 98 mol %
Moréac et al., C&F, 2006
Sim
Exp
Fuel + 500 ppmv NO
Fuel (no NO)
▲
●
Fuel + 50 ppmv NO ∎Good agreement between simulation and experience on the impact of
NO over alkanes and toluene oxidation
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201221
Final kinetic mechanism: TRF + NOx1
 Validated over a wide range of experimental
conditions
 Model size:
 Number of species: ~ 500
 Number of reactions: ~ 3000
 Number of reactions NOx – HC: ~ 400
1
J. Anderlohr et al., C&F, 2009
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201222
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201223
10 years and more ago...
 New and growing vehicle emissions
regulations
 Fuel economy and low CO2 emissions
imposed
 New and alternate fuels: Biodiesel, ethanol,
NGV...
 Technological breakthroughs, like DI diesel
and gasoline, leading to chamber geometrical
constraints
 Raising experimental security regulations and
costs
 Benefits of CFD had been already highlighted
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201224
Engine CFD
Turbulent combustion modeling issues
 Except for DNS, in LES and RANS, flames
mostly have subgrid dimensions
 Subgrid turbulent combustion models are
needed
 Due to combustion reaction rate non linearity,
turbulent effects have to be taken into
10-4
10-5
10-6
10-3
Thermallaminar
flamethickness10-2
Turbulentscales
DNScellsize
LEScellsize
RANScellsize
m
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201225
Turbulence / Chemistry interactions
 Necessary ingredients:
 Turbulence model
 Description of fuel/air or fresh/burned gas mixing
 Chemical kinetics – Complexity depends on
required goals (heat release only, major species,
regulated or non regulated pollutants...)
 Turbulent combustion models:
 Flamelet assumptions (two state description)1
 Flamelets with presumed PDFs2
 Thickened flame description3
 Transported PDFs4
 CMC5
1
S. Candel and T. Poinsot, CST, 1990
2
L. Vervisch et al., J. of Turb., 2004, Michel et al. C&F, 2008
3
O. Colin et al., Phys. Fluids, 2000
4
S. Pope, PECS, 1985
5
R. Bilger, Phys. Fluids, 1993 & E. Mastorakos et al., 1997
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201226
Taking chemical kinetics into account
 ICE fuels: Complex mixtures of tenths to
hundreds of pure component fuels
 Each fuel: Hundreds to thousands of chemical
species and reversible reactions
 1st
Step: Choose convenient surrogate fuels
 2nd
Step: Adapt or build kinetic mechanisms for the
surrogates (depending on required goals)
 3rd
Step: Include chemical kinetic information into the CFD
code (complex, reduced, tabulated kinetics)
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201227
Levelofinformation
Simulationtime  Simple chemistry (1 global
reaction): Reaction rate
 Reduced chemistry
(~ 10 reactions): Heat
release, major species
 Tabulated chemistry: HR,
tabulated species
 Direct chemistry / CFD
coupling: HR, all mechanism
species
27
Complex kinetics and CFD: How to?
 

?? Stiffness
??HPC
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201228
Kinetic tabulation techniques
 Major benefits:
 Reproduction of fuel diversity, if kinetic mechanisms
available
 Major species (heat release) available
 Minor species – regulated and NR pollutants – available, if
tabulated
 Fuel complex kinetics reproduced: eg. Double stage AI
 Reduced implementation efforts and computing time
 Coupling with reduced or detailed kinetics remains possible
 Drawbacks:
 Assumption of a system invariant, a priori, chemical
behavior
 Which system to tabulate? Auto-ignition? Diffusion or
premixed flames?
 Tabulation needs non dimensional time: Progress variable
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201229
TKI1
: A "simple" tabulation and
interpolation approach
Ti,pj,φl
Ti+1,pj,φl
Ti,pj+1,φl
1
, , , resc
T p Xω φ 
 ÷
 
&
, , ,
k
c resT p Xω φ 
 ÷
 
&
1
, , ,
k
c resT p Xω φ+
 
 ÷
 
&
c%
, , , resT p Xφ
1
( , )
k k
c c cfctω ω ω
+
=& & &
1
d
τ C1
Ti,pj+1,φl+1
Ti+1,pj,φl+1
No tunable
AI parameter
in the code
AI constant
pressure simulation
Input
Output
1
O. Colin et al., 30th
Int. Symp. Comb., 2004
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201230
TKI and reduced kinetics coupling: Diesel
injection timing1
CORK2
: Heat release
Zeldovich: NO
PSK: Soot
1
V. Knop et al., OGST, 2008
2
S. Jay et al., SAE, 2007
TKI: AI delay
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201231
Integration of
kinetic tabulations and turbulence1
1
G. Subramanian et al., SAE, 2007
 Subramanian (PhD)
proposed the first TKI-
PDF model version at
IFPEN, including:
 Tabulated kinetics
(fully tabulated
reaction rates)
 PDF fuel/air mixing
 A priori integration of
turbulence effects
 His model set the
grounds for further
tabulated approaches
at IFPEN:
 PhD Galpin (LES)
 PhD Michel (ADF-
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201232
Tabulation of
AI delay Tabulation of
2 AI delays
FPI like tabulation models – progress variable
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Tabulation of delays and reaction rates TKI
PhD Subramanian Tabul.
of Reaction rates (RANS)
Laminar Fl
Speed (GSM)
PhD Galpin Tabul. of react.
rates and mass fract (LES)
PhD Michel Tabul diffusion
flames+PDF (RANS)
PhD Anderlohr Post-
oxidation (RANS)
PhD Mauviot (0D)
FPI + ECFM
(GSM)
FPI V cst (GSM)
FPI expansion (GSM)
FPI compression /
expansion (GSM)
FPI V variable +
fluctuations (GSM)
PhD Lecocq FPI + PDF +
ECFM (LES)
PhD Dulbecco (0D)
StrainLam Fl
Speed (ANR)
PhD Bouali FPI/DNS
PhD Bernard CO + NOx 0D
PhD Vervisch Soot + NOx
PhD Tillou Tabulated
diffusion flames+PDF (LES)
PhD Karkar Soot
100% IFPEN
IFPEN PhD Tab
Lam Fl Speed Tab
GSM Tab
Kinetic tabulated approaches at IFPEN
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201233
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201234
Conclusions
 In the context of present and future severe
reduction of exhaust emissions and CO2 from
IC engines, simulation plays an important and
increasing role
 3D IC engines CFD can help:
 Studying more complex IC engines:
 Combustion chamber geometries and technological
solutions
 Complex operating conditions
 Set boundary conditions for increasingly complex
after-treatment systems
 Optimizing fuel diversity
 Taking vehicle hybridization into account:

012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201235
Highlights on IC engine CFD modeling
 IC engines: Turbulent reactive flows
 In RANS CFD, the intimate coupling between
turbulence and chemical kinetics must be
modeled:
 Mixing and flame structures are subgrid
 Turbulent structures are not simulated
 Perfect stirred reactor kinetic assumptions are not
adapted
 Flamelet assumptions can be used: eg. ECFM
model for premixed or partially premixed
flame propagation
 Presumed PDF approaches are well fit for
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201236
My main contributions to IC engines CFD
 Among the first attempts to couple chemistry and
turbulence in RANS models for auto-ignition and
diffusion flames, using a presumed PDF approach
(PhD)
 Introduction of fuel complex chemistry into engine CFD
codes using tabulation techniques:
 AI delay for diesel combustion and knock in SI engines
(Pires da Cruz, 2004)
 Tabulation of progress variable reaction rates (Colin et
al., 2004)
 First coupling of tabulated chemistry and turbulence
using a presumed PDF approach (Subramanian, 2005)
 Modeling the complex kinetics of realistic diesel and
gasoline surrogate fuels (Anderlohr, 2009)
 Construction of extensive experimental databases for
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201237
Overview
 Emissions from transportation: A global issue
 Engine CFD modeling
 Turbulent combustion modeling
 Chemical kinetic representation of surrogate
fuels
 Coupling turbulence and chemical kinetics
 Conclusions
 Future trends on engine combustion modeling
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201238
How about the future?
 HPC development during the last few years is
changing the engine CFD landscape:
 It allows resolution of more complex geometrical
problems
 It strongly reduces computing return time leading to use
of more discrete meshes and higher precision numerical
methods
 More complex and CPU time consuming models can be
proposed, including complex chemical kinetics and
turbulence
 LES and maybe DNS are gaining momentum:
 For industrialization, large research efforts are required
 In LES, turbulence/chemistry interactions are easier to
describe, but subgrid modeling is still necessary
 In LES, the modeling effort is probably lower: More fit
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201239
Future of RANS IC engine modeling
 RANS simulations are nevertheless still the most
industrial "friendly"
 A priori integrated [chemistry/presumed PDF] has proven
to be a fair approach but requires tabulated kinetics
 Tabulation techniques are becoming rather complex
when it comes to simulating IC engines (variable volume
and pressure, realistic flame configurations, multiple
object species, fuel diversity...)
 Complex kinetics are now available for a large number of
realistic components – Tabulation techniques do not tend
to facilitate the use of chemistry in the future
 Kinetic reduction techniques have also been largely
improved
 How about further exploring mixed tabulation / reduced
012-IFPEnergiesnouvelles
HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201240
Acknowledgements
 T. Poinsot (PhD advisor, HDR correspondent) and all jury members
 IFPEN and all my colleagues (present and former) at IFPEN, with
whom I worked closely during all these years (CFD, optical
diagnostics, engines, thermodynamics...)
 My PhD students and their co-advisers (L. Vervisch, O. Colin, F.
Battin-Leclerc and R. Bounaceur)
 My colleagues at ExxonMobil who helped me getting rid of my
chemical complex!
 EM2C, CERFACS, CORIA, LRPG and all the other CNRS, university
and research laboratories colleagues with whom I have collaborated
 All my former hierarchy and S. Henriot who have always provided the
maximum to granting a high quality R&D environment
 Many thanks to those who have closely supervised my research work
through the years and who are absent today (P. Eyzat, T. Baritaud,
JM Duclos, A. Torres)
 GSM, industrial partners, Ademe, ANR, EU... for financing
 My family who put up with lack of evenings, weekends and holydays!
012-IFPEnergiesnouvelles
Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources
www.ifpenergiesnouvelles.com

More Related Content

Similar to Defense_APC_20121115_Final

Costs of the French PWR
Costs of the French PWRCosts of the French PWR
Costs of the French PWR
myatom
 
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Global CCS Institute
 
From Weather Dwarfs to Kilometre-Scale Earth System Simulations
From Weather Dwarfs to Kilometre-Scale Earth System SimulationsFrom Weather Dwarfs to Kilometre-Scale Earth System Simulations
From Weather Dwarfs to Kilometre-Scale Earth System Simulations
inside-BigData.com
 
20101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_104869
20101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_10486920101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_104869
20101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_104869
Jim Kuijper
 

Similar to Defense_APC_20121115_Final (20)

Overview R&DD Activities in the Climit Program, Hans Jørg Fell (Gassnova) UK/...
Overview R&DD Activities in the Climit Program, Hans Jørg Fell (Gassnova) UK/...Overview R&DD Activities in the Climit Program, Hans Jørg Fell (Gassnova) UK/...
Overview R&DD Activities in the Climit Program, Hans Jørg Fell (Gassnova) UK/...
 
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
The Role of Carbon Capture Storage (CCS) and Carbon Capture Utilization (CCU)...
 
Lecture of the José Arana Varela Award, XXI B-MRS Meeting, October 1 - 5, 202...
Lecture of the José Arana Varela Award, XXI B-MRS Meeting, October 1 - 5, 202...Lecture of the José Arana Varela Award, XXI B-MRS Meeting, October 1 - 5, 202...
Lecture of the José Arana Varela Award, XXI B-MRS Meeting, October 1 - 5, 202...
 
Costs of the French PWR
Costs of the French PWRCosts of the French PWR
Costs of the French PWR
 
Environmental programs - Sustainable Electronics 2010
Environmental programs  - Sustainable Electronics 2010Environmental programs  - Sustainable Electronics 2010
Environmental programs - Sustainable Electronics 2010
 
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
POTENTIAL OPTION FOR COMPUTATIONAL FLUID DYNAMIC (CFD) SCHEME IN BIODIESEL ST...
 
Strategic Paths to the Future Energy System
Strategic Paths to the Future Energy SystemStrategic Paths to the Future Energy System
Strategic Paths to the Future Energy System
 
Gilles MATHONNIERE I-tésé CEA (Atoms for the Future 2013)
Gilles MATHONNIERE I-tésé CEA (Atoms for the Future 2013)Gilles MATHONNIERE I-tésé CEA (Atoms for the Future 2013)
Gilles MATHONNIERE I-tésé CEA (Atoms for the Future 2013)
 
Powertrain Technologies and Energy Carriers for Future Transport – A sectoria...
Powertrain Technologies and Energy Carriers for Future Transport – A sectoria...Powertrain Technologies and Energy Carriers for Future Transport – A sectoria...
Powertrain Technologies and Energy Carriers for Future Transport – A sectoria...
 
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
Apec workshop 2 presentation 12 lh ci cinco presidentes-pemex-apec workshop 2
 
STEMinars
STEMinarsSTEMinars
STEMinars
 
771139-DSAT-EN-107377
771139-DSAT-EN-107377771139-DSAT-EN-107377
771139-DSAT-EN-107377
 
Carbon footprints
Carbon footprintsCarbon footprints
Carbon footprints
 
IMPACTS - The impact of the quality of CO2 on transport and storage behaviour...
IMPACTS - The impact of the quality of CO2 on transport and storage behaviour...IMPACTS - The impact of the quality of CO2 on transport and storage behaviour...
IMPACTS - The impact of the quality of CO2 on transport and storage behaviour...
 
MasterThesisPoster
MasterThesisPosterMasterThesisPoster
MasterThesisPoster
 
From Weather Dwarfs to Kilometre-Scale Earth System Simulations
From Weather Dwarfs to Kilometre-Scale Earth System SimulationsFrom Weather Dwarfs to Kilometre-Scale Earth System Simulations
From Weather Dwarfs to Kilometre-Scale Earth System Simulations
 
20101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_104869
20101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_10486920101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_104869
20101105_PUMA-1006-D411g-Publishable_Final_Activity_Report_NRG_104869
 
2021 hidalgo et al. - development of an innovative process involving the us...
2021   hidalgo et al. - development of an innovative process involving the us...2021   hidalgo et al. - development of an innovative process involving the us...
2021 hidalgo et al. - development of an innovative process involving the us...
 
From copert2 to copert4
From copert2 to copert4From copert2 to copert4
From copert2 to copert4
 
03 plasma-surface-interaction-snyders-u mons
03 plasma-surface-interaction-snyders-u mons03 plasma-surface-interaction-snyders-u mons
03 plasma-surface-interaction-snyders-u mons
 

Defense_APC_20121115_Final

  • 1. Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 2012 Habilitation à Diriger des Recherches Modeling chemical kinetics and turbulence interactions for internal combustion engine reactive flow simulations António Pires da Cruz Engine CFD and Simulation department November 15, 2012
  • 2. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20122 Habilitation à Diriger des Recherches Institut National Polytechnique de Toulouse Correspondant: Dr. T. Poinsot, Directeur de Recherche, CNRS & Université de Toulouse, France Rapporteurs: Prof. A. M. Dean, William K. Coors Distinguished Professor and Dean, Colorado School of Mines, USA Prof. E. Mastorakos, Cambridge University, UK Prof. L. Vervisch, Professeur à l'INSA de Rouen, France Membres du jury: Prof. S. Candel, Professeur à l'Ecole Centrale de Paris et membre de l'Académie des Sciences M. F. Ravet, Expert à Renault SA M. S. Henriot, Directeur à IFP Energies nouvelles
  • 3. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20123 Background and resume Education: 1988-1993: Mechanical Engineering, IST Lisboa, Portugal 1993-1994: Masters degree (DEA), Univ. Paris VI, France 1994-1997: PhD Thesis, Univ. Paris VI, France and IFPEN (December 9, 1997) Professional experience: 1991-1993: IST, Portugal – Finite elements thermo structural modeling (part time) 1997-1998: IFPEN, France – Research engineer (4 months) 1998-2000: ExxonMobil Research and Engineering, USA – Post-doctoral position Since 2000: IFPEN, France 2000-2004: IFP School professor and research engineer 2004-2011: Project manager – CFD modeling and simulation and engine combustion Since 2008: Department head – Engine CFD and Simulation department
  • 4. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20124  PhD students:  G. Subramanian with L. Vervisch, INSA Rouen and O. Colin, IFPEN, 2002-2005  J. Anderlohr with F. Battin-Leclerc and R. Bounaceur, ENSIC Nancy, 2006-2009  Teaching (fundamental combustion, thermodynamics, programming...):  2000-2012, 639 hours, 60 to 90 students per year  Projects  IFPEN internal, GSM, ADEME, consortia, scientific collaborations, contribution to numerous research proposals  Member of the Combustion Institute (French section board 2006-2010)  Publications:  Papers with reading committee (WOS): 11  Editorials: 1 Tuition, scientific activity and production
  • 5. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20125 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 6. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20126 Green house gases: Estimated human impact on surface temperature Olivié et al., Atm. Chem. Phys., 2012 Total Shipping Aviation CO2 – Road transport Non CO2 – Road transport
  • 7. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20127 CO2 sources from transport Olivié et al., Atm. Chem. Phys., 2012 l'auto-journal (1er nov 2012) Shipping AviationRoad transport Year 2000 Major CO2 reduction efforts made by European (95 gCO2/km in 2020) and Japanese auto OEMs must be reinforced and globalized to all countries and transport modes
  • 8. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20128 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 9. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 20129 Modeling and Simulation1  For the growing number of problems where experiments are impossible, dangerous, or inordinately costly, (...) computing will enable the solution of vastly more accurate predictive models and the analysis of massive quantities of data, producing (...) advances in areas of science and technology that are essential (...). For example, (...) computing will push the frontiers of:  Reduction of the carbon footprint of the transportation sector  Innovative designs for cost‐effective renewable energy resources such as batteries, catalysts, and biofuels  Design, control and manufacture of advanced technology devices  (...) 1 The opportunities and challenges of exascale computing, US DOE ASCAC Comitee, 2010
  • 10. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201210 km mm µm nm Turbulent flame Combustion chamber Engine m Vehicle Environmental impact Spatial scales related to transport and emissions Flame/Vortex interaction Molecular reactions Laminar flame
  • 11. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201211 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 12. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201212  Species i mass fraction Favre average transport equation:  Average and instantaneous reaction rate (Arrhenius type): Average flows: RANS turbulent combustion modeling fundamentals
  • 13. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201213 RANS Turbulent versus kinetic modeling Turbulent mixing layer with 1-step chemistry x time [µs] Turbulent combustion model "Arrhenius" or "order 0 model" approach time [µs] TF = 300 K Tox = 1000 K YF,0 (nC7H16) = 1 Yox,0 = 0.233 Zst,nC7 = 0.062 Zmr ~ Zst
  • 14. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201214 Main observations and highlights  Different ignition delays:  Kinetic: Total mixing (~0.05 ms)  Turbulent: AI delay depends on mixing time (~0.3 ms)  Different ignition locations:  Kin: Z most reactive1  Turb: Highest probability of finding Z most reactive  Reaction rate distribution:  Kin: High reaction rate over all the mixing zone  Turb: Reaction progress towards lean and rich zones  After AI:  Kin: Reaction at Zst  Turb: Mixing layer too diluted Probability of finding Zst Turb "no model" 1 E. Mastorakos et al., C&F, 1997 Zmr ~ Zst = 0.062
  • 15. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201215 Conclusions: RANS turbulent combustion modeling  Turbulence and kinetics are intrinsically coupled:  Non linear chemical kinetics (exponential behavior with temperature)  Large turbulent fluctuations (temperature fluctuations several 100 K)  In RANS, turbulent structures are handled statistically  Molecular mixing (at the smallest scales) and turbulent fluctuations must be taken into account (eg. Mastorakos et al., CMC auto-ignition, CST, 1997): Models for numerical mixing are required  Kinetic reaction rates must be integrated over the mixing distribution (eg. Pires da Cruz et al., C&F, 1999)
  • 16. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201216 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 17. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201217 Choice of surrogate fuels  From historical ICE surrogate fuels:  n-Heptane: Diesel auto-ignition  iso-Octane: Gasoline laminar flame speed  PRF (nC7 / iC8): Gasoline auto-ignition (knock)  To more complex surrogate fuels:  IDEA-EFFECT diesel: 70% nC7 / 30% amn (volume)  Biodiesel: 70/30 + methyl oleate (BIOKIN)  XTL + diesel: 70/30 + iC8 / nC16 (BIOKIN)  Toluene Reference Fuel (TRF): European gasoline (literature + GSM 2006 proportions)  TRF/ethanol: EXX for gasoline / ethanol mixtures  MFC2 extensive surrogate fuels database
  • 18. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201218 TRF fuel for gasoline ICE SI engine experimental results1 suggested the validity of the TRF2 as a gasoline surrogate Heat release rate CO2 emissions NOx emissions 1 P. Anselmi et al., Rapport IFPEN 60419, GSM E2.3, 2007 2 C. Pera and V. Knop, Fuel, 2012 iC8H18 Standard gasoline TRF mixture
  • 19. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201219  Primary Mechanism  Secondary Mechanism Mech generator EXGAS LRGP  C0-C2 Reactions Base Bounaceur et al.2 (LRGP) n-Heptane / iso-Octane (PRF)3Toluene Kinetic Model THERGAS KINGAS ReactiveSpecies C0-C2 Reactions Base Primary Mechanism Secondary Mechanism Building a TRF/NOx kinetic mechanism1 NOx GRI-MECH 3.0 Coupling: PRF- toluene Coupling: NOx-PRF Coupling: NOx-toluene 1 J. Anderlohr et al., C&F, 2009 2 R. Bounaceur et al., Int. J. Chem. Kin., 2005 3 F. Buda et al., C&F, 2005
  • 20. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201220 Mechanism validation (PSR) n-Heptane Temperature [K] MolarFraction[-] ■▲ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ▲■▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ■ ■ ■ ■ ■■■ ■ ▲ ▲ ▲ ▲ ▲ ▲ ▲ Temperature [K]MolarFraction[-] ▲ ■ ■ ▲ ▲ toluene ▲ Pressure: 10 atm, Ф: 1 Dilution: 98 mol % Moréac et al., C&F, 2006 Sim Exp Fuel + 500 ppmv NO Fuel (no NO) ▲ ● Fuel + 50 ppmv NO ∎Good agreement between simulation and experience on the impact of NO over alkanes and toluene oxidation
  • 21. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201221 Final kinetic mechanism: TRF + NOx1  Validated over a wide range of experimental conditions  Model size:  Number of species: ~ 500  Number of reactions: ~ 3000  Number of reactions NOx – HC: ~ 400 1 J. Anderlohr et al., C&F, 2009
  • 22. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201222 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 23. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201223 10 years and more ago...  New and growing vehicle emissions regulations  Fuel economy and low CO2 emissions imposed  New and alternate fuels: Biodiesel, ethanol, NGV...  Technological breakthroughs, like DI diesel and gasoline, leading to chamber geometrical constraints  Raising experimental security regulations and costs  Benefits of CFD had been already highlighted
  • 24. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201224 Engine CFD Turbulent combustion modeling issues  Except for DNS, in LES and RANS, flames mostly have subgrid dimensions  Subgrid turbulent combustion models are needed  Due to combustion reaction rate non linearity, turbulent effects have to be taken into 10-4 10-5 10-6 10-3 Thermallaminar flamethickness10-2 Turbulentscales DNScellsize LEScellsize RANScellsize m
  • 25. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201225 Turbulence / Chemistry interactions  Necessary ingredients:  Turbulence model  Description of fuel/air or fresh/burned gas mixing  Chemical kinetics – Complexity depends on required goals (heat release only, major species, regulated or non regulated pollutants...)  Turbulent combustion models:  Flamelet assumptions (two state description)1  Flamelets with presumed PDFs2  Thickened flame description3  Transported PDFs4  CMC5 1 S. Candel and T. Poinsot, CST, 1990 2 L. Vervisch et al., J. of Turb., 2004, Michel et al. C&F, 2008 3 O. Colin et al., Phys. Fluids, 2000 4 S. Pope, PECS, 1985 5 R. Bilger, Phys. Fluids, 1993 & E. Mastorakos et al., 1997
  • 26. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201226 Taking chemical kinetics into account  ICE fuels: Complex mixtures of tenths to hundreds of pure component fuels  Each fuel: Hundreds to thousands of chemical species and reversible reactions  1st Step: Choose convenient surrogate fuels  2nd Step: Adapt or build kinetic mechanisms for the surrogates (depending on required goals)  3rd Step: Include chemical kinetic information into the CFD code (complex, reduced, tabulated kinetics)
  • 27. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201227 Levelofinformation Simulationtime  Simple chemistry (1 global reaction): Reaction rate  Reduced chemistry (~ 10 reactions): Heat release, major species  Tabulated chemistry: HR, tabulated species  Direct chemistry / CFD coupling: HR, all mechanism species 27 Complex kinetics and CFD: How to?    ?? Stiffness ??HPC
  • 28. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201228 Kinetic tabulation techniques  Major benefits:  Reproduction of fuel diversity, if kinetic mechanisms available  Major species (heat release) available  Minor species – regulated and NR pollutants – available, if tabulated  Fuel complex kinetics reproduced: eg. Double stage AI  Reduced implementation efforts and computing time  Coupling with reduced or detailed kinetics remains possible  Drawbacks:  Assumption of a system invariant, a priori, chemical behavior  Which system to tabulate? Auto-ignition? Diffusion or premixed flames?  Tabulation needs non dimensional time: Progress variable
  • 29. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201229 TKI1 : A "simple" tabulation and interpolation approach Ti,pj,φl Ti+1,pj,φl Ti,pj+1,φl 1 , , , resc T p Xω φ   ÷   & , , , k c resT p Xω φ   ÷   & 1 , , , k c resT p Xω φ+    ÷   & c% , , , resT p Xφ 1 ( , ) k k c c cfctω ω ω + =& & & 1 d τ C1 Ti,pj+1,φl+1 Ti+1,pj,φl+1 No tunable AI parameter in the code AI constant pressure simulation Input Output 1 O. Colin et al., 30th Int. Symp. Comb., 2004
  • 30. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201230 TKI and reduced kinetics coupling: Diesel injection timing1 CORK2 : Heat release Zeldovich: NO PSK: Soot 1 V. Knop et al., OGST, 2008 2 S. Jay et al., SAE, 2007 TKI: AI delay
  • 31. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201231 Integration of kinetic tabulations and turbulence1 1 G. Subramanian et al., SAE, 2007  Subramanian (PhD) proposed the first TKI- PDF model version at IFPEN, including:  Tabulated kinetics (fully tabulated reaction rates)  PDF fuel/air mixing  A priori integration of turbulence effects  His model set the grounds for further tabulated approaches at IFPEN:  PhD Galpin (LES)  PhD Michel (ADF-
  • 32. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201232 Tabulation of AI delay Tabulation of 2 AI delays FPI like tabulation models – progress variable 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Tabulation of delays and reaction rates TKI PhD Subramanian Tabul. of Reaction rates (RANS) Laminar Fl Speed (GSM) PhD Galpin Tabul. of react. rates and mass fract (LES) PhD Michel Tabul diffusion flames+PDF (RANS) PhD Anderlohr Post- oxidation (RANS) PhD Mauviot (0D) FPI + ECFM (GSM) FPI V cst (GSM) FPI expansion (GSM) FPI compression / expansion (GSM) FPI V variable + fluctuations (GSM) PhD Lecocq FPI + PDF + ECFM (LES) PhD Dulbecco (0D) StrainLam Fl Speed (ANR) PhD Bouali FPI/DNS PhD Bernard CO + NOx 0D PhD Vervisch Soot + NOx PhD Tillou Tabulated diffusion flames+PDF (LES) PhD Karkar Soot 100% IFPEN IFPEN PhD Tab Lam Fl Speed Tab GSM Tab Kinetic tabulated approaches at IFPEN
  • 33. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201233 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 34. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201234 Conclusions  In the context of present and future severe reduction of exhaust emissions and CO2 from IC engines, simulation plays an important and increasing role  3D IC engines CFD can help:  Studying more complex IC engines:  Combustion chamber geometries and technological solutions  Complex operating conditions  Set boundary conditions for increasingly complex after-treatment systems  Optimizing fuel diversity  Taking vehicle hybridization into account: 
  • 35. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201235 Highlights on IC engine CFD modeling  IC engines: Turbulent reactive flows  In RANS CFD, the intimate coupling between turbulence and chemical kinetics must be modeled:  Mixing and flame structures are subgrid  Turbulent structures are not simulated  Perfect stirred reactor kinetic assumptions are not adapted  Flamelet assumptions can be used: eg. ECFM model for premixed or partially premixed flame propagation  Presumed PDF approaches are well fit for
  • 36. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201236 My main contributions to IC engines CFD  Among the first attempts to couple chemistry and turbulence in RANS models for auto-ignition and diffusion flames, using a presumed PDF approach (PhD)  Introduction of fuel complex chemistry into engine CFD codes using tabulation techniques:  AI delay for diesel combustion and knock in SI engines (Pires da Cruz, 2004)  Tabulation of progress variable reaction rates (Colin et al., 2004)  First coupling of tabulated chemistry and turbulence using a presumed PDF approach (Subramanian, 2005)  Modeling the complex kinetics of realistic diesel and gasoline surrogate fuels (Anderlohr, 2009)  Construction of extensive experimental databases for
  • 37. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201237 Overview  Emissions from transportation: A global issue  Engine CFD modeling  Turbulent combustion modeling  Chemical kinetic representation of surrogate fuels  Coupling turbulence and chemical kinetics  Conclusions  Future trends on engine combustion modeling
  • 38. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201238 How about the future?  HPC development during the last few years is changing the engine CFD landscape:  It allows resolution of more complex geometrical problems  It strongly reduces computing return time leading to use of more discrete meshes and higher precision numerical methods  More complex and CPU time consuming models can be proposed, including complex chemical kinetics and turbulence  LES and maybe DNS are gaining momentum:  For industrialization, large research efforts are required  In LES, turbulence/chemistry interactions are easier to describe, but subgrid modeling is still necessary  In LES, the modeling effort is probably lower: More fit
  • 39. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201239 Future of RANS IC engine modeling  RANS simulations are nevertheless still the most industrial "friendly"  A priori integrated [chemistry/presumed PDF] has proven to be a fair approach but requires tabulated kinetics  Tabulation techniques are becoming rather complex when it comes to simulating IC engines (variable volume and pressure, realistic flame configurations, multiple object species, fuel diversity...)  Complex kinetics are now available for a large number of realistic components – Tabulation techniques do not tend to facilitate the use of chemistry in the future  Kinetic reduction techniques have also been largely improved  How about further exploring mixed tabulation / reduced
  • 40. 012-IFPEnergiesnouvelles HDR – A. Pires da Cruz, IFP Energies nouvelles, November 15, 201240 Acknowledgements  T. Poinsot (PhD advisor, HDR correspondent) and all jury members  IFPEN and all my colleagues (present and former) at IFPEN, with whom I worked closely during all these years (CFD, optical diagnostics, engines, thermodynamics...)  My PhD students and their co-advisers (L. Vervisch, O. Colin, F. Battin-Leclerc and R. Bounaceur)  My colleagues at ExxonMobil who helped me getting rid of my chemical complex!  EM2C, CERFACS, CORIA, LRPG and all the other CNRS, university and research laboratories colleagues with whom I have collaborated  All my former hierarchy and S. Henriot who have always provided the maximum to granting a high quality R&D environment  Many thanks to those who have closely supervised my research work through the years and who are absent today (P. Eyzat, T. Baritaud, JM Duclos, A. Torres)  GSM, industrial partners, Ademe, ANR, EU... for financing  My family who put up with lack of evenings, weekends and holydays!
  • 41. 012-IFPEnergiesnouvelles Renewable energies | Eco-friendly production | Innovative transport | Eco-efficient processes | Sustainable resources www.ifpenergiesnouvelles.com

Editor's Notes

  1. On s’est donc basé sur 3 blocs de réactions d’oxydation. En ce qui concerne les réactions des NOx avec les HC on a choisi le GRI-Mech 3.0. Concernant le toluène on a choisi le schéma d’oxydation proposé par Bounaceur et al.. Pour obtenir un modèle d’oxydation des PRF n-heptane et iso-octane on a généré schéma détaillé par le logiciel EXGAS. EXGAS est un générateur de schéma détaillé automatique et a été développé au DCPR à Nancy. Exgas consiste de 3 parties. Un mécanisme primaire qui prend en compte toutes réactions de carburant et des radicaux issus de son amorçage. Un mécanisme secondaire ou les produits lumpés du mécanisme primaire sont décomposes en espèces C1-C2 et une base de réaction détaillé d’espèces C1-C2.
  2. Le schéma TRF-NOx obtenu ainsi a été testé face à une large gamme de facilités expérimentales. Je vous montre ici la validation de l’oxydation du n-heptane pour des résultat expérimentaux obtenu par Moréac et al. dans réacteur auto-agité. Le n-heptane a été oxydé à stoichiométrie et à 10 atmosphère. Le taux de dilution était 98%. 3 cas ont été testés. Un premier pour l’oxydation du n-heptane pure, un deuxième en présence de 50ppm de NO et un troisième en présence de 500ppm de NO.Résultats expérimentaux sont indiqués par des symboles, résultat simulés par des traits.En regardant le profile du n-heptane en fonction de la température, on observe qu’a basse température la présence du NO inhibe l’oxydation du n-heptane, au températures supérieurs à 650 K par contre cet effet est inversé. Ceci est bien reproduit par le modèle et on observe un bon accord de la modélisation avec l’expérience.
  3. Pour résumer les travaux de modélisation, ces travaux nous ont permis d’obtenir un modèle TRF/NOx. Ce modèle est validé sur une large gamme de conditions en réacteurs auto-agités, mais également en machines à compression rapide et des moteurs HCCI Le mécanisme obtenu consiste de 500 espèces et 3000 réactions dont environ 400 décrivant les réactions HC-NOx.
  4. Il existent de différents stratégies d’intégrer la chimie dans un code CFD. Chaqu’une a des différents niveaux de qualité en terme de détails d’information et coût de calculs. Dans notre cas on a opté pour une méthode de tabulation de la chimie qui garanti un très bon détail d’information et un cout de calcul acceptable.
  5. Technological solutions are for example VVT and VVA, high pressure injection systems... Complex OC are for example Miller cycles, variable compression ratio,
  6. For example, probably easier to model dual fuel in LES???