SlideShare une entreprise Scribd logo
1  sur  34
Materiales Compuestos  Fibra de Vidrio, carbono y Kevlar. Julio del 2011
INTRODUCCIÓN De acuerdo con el diccionario Webster, los materiales son sustancias con las que algo está compuesto o hecho, aunque esta sea una definición muy amplia, desde la perspectiva de ingeniería trasciende el hecho de cómo son utilizados, de esta forma y con años de investigación se han logrado clasificar gracias al estudio microscópico de su estructura la composición de estos obteniendo así sus propiedades y dependiendo de ellas, la familia a la que pertenecen: Metales, cerámicos, polímeros, compuestos.
MATERIALES COMPUESTOS Se entiende por materiales compuestos aquellos formados por dos o más materiales distintos sin que se produzca reacción química entre ellos.  En todo material compuesto se distinguen dos componentes:    La MATRIZ, componente que se presenta en fase continua, actuando como ligante El REFUERZO, en fase discontinua, que es el elemento resistente.
CLASIFICACIÓN TIPO MATRIZ: Materiales compuestos de matriz METÁLICA o MMC (METAL MATRIX COMPOSITES) Materiales compuestos de matriz CERÁMICA o CMC (CERAMIC MATRIX COMPOSITES) Materiales compuestos de matriz de CARBON Materiales compuestos de matriz ORGÁNICA o RP (REINFORCED PLASTICS). TIPO RESINA: FIBRAS, elementos en forma de hilo en las que la relación.  CARGAS, el resto, utilizadas en elementos de poca responsabilidad estructural.
Matrices organicas CARACTERISTICAS: Dar estabilidad al conjunto, transfiriendo las cargas al refuerzo.  Proteger al refuerzo del deterioro mecánico y químico. Evitar la propagación de grietas.  Las matrices orgánicas (más vulgarmente conocidas como plásticos) pueden ser:  TERMOPLÁSTICOS, usadas en aplicaciones de bajos requisitos, aunque se están empezando a emplear termoplásticos avanzados para altas prestaciones.  ELASTOMEROS, utilizadas en neumáticos y cintas transportadoras.  DUROPLASTICOS o TERMOESTABLES, las más empleadas en materiales compuestos de altas prestaciones.
MATRICES ORGÁNICAS RESINAS: EPOXIS, que son las de uso más general en altas prestaciones, con una temperatura máxima de uso en torno a los 170'. Como ejemplo, podemos citar la M18 de CIBA (HEXCEL).  BISMALEIMIDAS (BMI), para altas temperaturas (hasta 250º), utilizada, por ejemplo en los bordes de ataque de las alas del Eurofighter-2000. Ejemplo: 5250 de CYTEC.  POLlAMIDAS (P1), también para aplicaciones de altas temperaturas, en el entorno de los 300º.  FENOLICAS, resistentes al fuego. Utilizadas, por ejemplo, en mamparas contra incendios y paneles interiores de aviones.  POLIÉSTERES, poco usados por sus bajas características mecánicas. Además, absorben mucha agua y se contraen al curar.  CIANOESTERES, utilizadas en aplicaciones radioeléctricas (antenas), ya que presentan baja absorción de humedad y buena "tangente de pérdidas" (característica radioeléctrica de los materiales).
fibras En Estados Unidos se usan tres tipos principales de fibras sinéticas para reforzar materiales plásticos: vidrio, aramida (que se conoce como Kevlar) y carbono. El vidrio es, por amplio margen, la fibra de refuerzo que se usa más y a menudo la de menor costo. Las fibras de aramida y de carbono tienen alta resistencia y baja densidad, por lo cual se usan en muchas aplicaciones, sobre todo aeroespaciales, a pesar de tener un costo más alto.
Presentación de las fibras  HILOS, conjunto de fibras asociadas en un cilindro de diámetro uniforme y longitud indefinida. Dos o más hilos se pueden retorcer sobre sí mismos y formar hilos más gruesos. Su densidad se expresa como el peso en gramos de 9.000 metros de hilo (DERNIER). Su resistencia, denominada tenacidad, se mide en gramos por DERNIER. CINTAS ("TAPES'), hilos dispuestos paralelos en forma unidireccional. Sólo se presentan en forma de preimpregnados, en los que el refuerzo viene impregnado en resina sin polimerizar en estado semilíquido y sirve como ligante de los hilos.  FIELTROS, hilos continuos o cortados depositados de forma multidireccional, aleatoriamente.   TEJIDOS ("FABRICS),productos en los que los hilos se entrelazan perpendicularmente.
Uno o más filamentos continuos  Filamento no continuo o fibras cortadas  Filamento continuo, unido sin torsión  Hilos simples o doblados, retorcidos juntos  Muchos hilos doblados juntos.
Tafetán (A)  Esterilla (B)  Semiesterila (C)  Sarga (D)  Raso (E)  Satén De Espiguilla (F)
Fibra de vidrio La fibra de vidrio (del inglés fiberglass) es un material fibroso obtenido al hacer fluir vidrio fundido a través de una pieza de agujeros muy finos (espinerette) y al solidificarse tiene suficiente flexibilidad para ser usado como fibra. Sus principales propiedades son:    Buen aislamiento térmico Inerte ante ácidos Soporta altas temperaturas.
PRODUCCIÓN DE FIBRAS DE VIDRIO Las fibras de vidrio se producen extrayendo monofilamentos de vidrio de un horno que contiene vidrio fundido y reuniendo un gran número de esos filamentos se tuercen para formar un hilo de fibras de vidrio. Los hilos se usan entonces para formar madejas de fibras de vidrio llamadas “rovings”, las cuales están formadas por haces de filamentos continuos. Los rovings pueden presentarse como hilos continuos o también como hilos entretejidos, para fabricar los rovings tejidos.
FIBRAS DE VIDRIO PARA REFORZAR RESINAS DE PLÁSTICO. Las fibras de vidrio se usan como refuerzo de matrices de plástico para formar compuestos estructurales y compuestos de molde. Los materiales compuestos de plástico con fibra de vidrio tienen las siguientes características favorables: Alta relación entre Resistencia y Peso. Buena estabilidad dimensional. Buena resistencia al calor, el frío y la corrosión. Buenas propiedades de aislamiento eléctrico. Facilidad de fabricación y costo relativamente bajo.
FIBRA DE VIDRIO E Fibras hechas de vidrio E (eléctrico), que es un vidrio de borosilicato1 del cual se fabrican más comúnmente fibras para el reforzamiento de plásticos con fibra de vidrio. El vidrio E es el que se usa más comúnmente en fibras continuas, en esencia, el vidrio E está hecho de Cal, aluminio y borosilicato con niveles de sodio y potasio ulos o bajos. La composición básica del vidrio E fluctúa entre 52% y 56% SiO2, 12 y 16% Al2O3, 16 a 25% CaO y de 8 a 13% B2O3. El vidrio E tiene una resistencia a la tensión de 500 ksi (3.44 GPa).
FIBRA DE VIDRIO S Fibras hechas de vidrio S, que es un vidrio de silicato de magnesia-alúminica cuyas fibras se usan en plásticos reforzados con fibra de vidrio cuando requiere una resistencia especialmente en las fibras. El vidrio S tiene una relación entre Resistencia y Peso más alta y es más caro que el vidrio E; se usa  sobretodo en aplicaciones militares y aeroespaciales. La resistencia a la tensión del vidrio S es superior a 660 ksi (4.48 GPa) y su modulo de elasticidad es de 200.4 msi (85.4 Gpa), aproximadamente. Una composición típica del vidrio S es de cerca de 65% SiO2, 25% Al2O3, y 10% MgO.
OTRAS FIBRAS Fibras de Vidrio C Para estabilidad química.  Fibras de Vidrio M Para muy alta rigidez.  Fibras de Vidrio D Para muy baja constante dieléctrica.
RESINAS DE POLIÉSTER REFORZADAS CON FIBRA DE VIDRIO. La resistencia de los plásticos reforzados con fibra de vidrio depende sobre todo del contenido de vidrio del material y del arreglo de la fibra de vidrio. En general, mientras más alto es el porcentaje en peso del vidrio en el compuesto, tanto más resistente es el plástico reforzado. Cuando hay hilos de vidrio en dirección paralela, como puede ocurrir en el caso del embobinado de los filamentos, el contenido de fibra de vidrio puede ser hasta del 80% en peso, lo cual conduce a valor de resistencia muy altos para el material compuesto.
Algunas propiedades mecánicas de los compuestos de poliéster y fibra de vidrio
MAYORES USOS La fibra de vidrio, también es usada para realizar los cables de fibra óptica utilizados en el mundo de las telecomunicaciones para transmitir señales lumínicas, producidas por láser o LEDs. También se utiliza habitualmente como aislante térmico en la construcción, en modo de mantas o paneles de unos pocos centímetros. Se recomienda utilizar fibra de vidrio para la fabricación de artículos que estén expuestos a agentes químicos y degradación por corrosión. Otro de los usos importantes de la fibra de vidrio es la Fabricación de la rejilla de fibra de vidrio, barandales, escaleras marinas, perfiles estructurales, tapas para registros.
FIBRA DE CARBONO. La fibra de carbono es un material compuesto, constituido principalmente por carbono. Tiene propiedades mecánicas similares al acero y es tan ligera como la madera o el plástico. Por su dureza tiene menor resistencia al impacto que el acero.  Al tratarse de un material compuesto, en la mayoría de los casos -aproximadamente un 75%- se utilizan polímeros termoestables. El polímero es habitualmente resina epoxi, de tipo termoestable aunque otros polímeros, como el poliéster o el viniléster también se usan como base para la fibra de carbono aunque están cayendo en desuso. Son fabricadas principalmente de poliacrilonitrilo (PAN) o brea que se estiran para alinear la estructura de la red fibrilar dentro de cada fibra de carbono y se calientan para eliminar el oxígeno, al nitrógeno y al hidrógeno de las fibras iniciadoras o precursoras.
PRODUCCIÓN Estabilización.   	En esta etapa, las fibras de PAN se estiran primero para alinear las redes fibrilares dentro de cada fibra en dirección paralela al eje de la misma, después se oxidan en aire a una temperatura entre 200°C y 220° C (392 a 428°F) manteniéndolas siempre en tensión.   Carbonización. 	En este proceso, las fibras a base de PAN estabilizadas son pirolizadas (calentadas) hasta que se transforman en fibras de carbón por la eliminación de Oxigeno, Hidrogeno y Nitrógeno de la fibra precursora. El tratamiento térmico de carbonización suele realizarse en una atmosfera inerte dentro del rango de 1000°C a 1500°C (1832 a 2732°F). En el proceso de carbonización se forman fibrillas o cintas dentro de cada fibra, que aumentan considerablemente la resistencia del material a la tensión.   Grafitización.   	Se agrega cuando se desea lograr un incremento del modulo de elasticidad a expensas de la alta resistencia a la tensión. Durante este proceso se lleva a cabo por encima de los 1800°C (3272°F), se incrementa la orientación deseada de as cristalitas con apariencia de grafito dentro de cada fibra.
Fibra de Carbono de alta resistencia Fibra de Carbono con alto modulo de elasticidad
FIBRAS DE CARBONO PARA PLÁSTICOS REFORZADOS. Los materiales compuestos que se fabrican utilizando fibras de carbono para reforzar matrices de resina plástica, como las epóxicas, se caracterizan por tener una combinación de ligereza de peso, muy alta resistencia y elevada rigidez (módulo de elasticidad). Estas propiedades hacen que el uso de materiales compuestos de plástico con fibra de carbono sea especialmente atractivo para aplicaciones aeroespaciales. Las fibras de carbono para esos compuestos provienen principalmente de dos fuentes: el poliacrilonitrilo (PAN) y la brea, que reciben el nombre de precursores.
RESINAS EPOXICAS REFORZADAS CON FIBRA DE CARBONO. En materiales compuestos a base de fibras de carbono, las fibras aportan las propiedades de alta rigidez y resistencia a la tensión, mientras que el aglutinante (la matriz) es el vehículo para la alineación de las fibras y aporta cierta resistencia al impacto. Las resinas epoxicas son, por amplio margen, las matrices que se usan más comúnmente para las fibras de carbono, pero en ciertas aplicaciones pueden usarse como resinas, como las polimidas, sulfuro de polifenileno o polisulfones.
propiedades La principal ventaja de las fibras de carbono son sus altos valores de resistencia y modulo de elasticidad combinadas con su baja densidad. Por esta razón los compuestos de fibra de carbono están sustituyendo a los metales en algunas aplicaciones aeroespaciales donde el ahorro en peso es importante.  Se caracterizan porque son de muy alta resistencia y rigidez, por la estructura cristalográfica del grafito. Se distinguen los siguientes tipos:    De muy alto módulo (para aplicaciones que requieran rigidez,500 GPa de Módulo elástico)  De alto módulo (400 GPa)  De módulo intermedio (300 GPa)  De alta resistencia (200 GPa)
KEVLAR (O Fibra de Aramida) Fibras producidas por síntesis química que se usan para el refuerzo de los de plásticos. Las fibras de aramida tienen en su estructura lineal de poliamida arimática (tipo anillo de bencenos) y los fabrica comercialmente la Du Pont Co., con el nombre comercial de Kevlar. La más utilizada es el KEVLAR @. de DUPONT (POLIARAMIDA) de fibras con las siguientes características:  Muy rígidas,  Coeficiente de dilatación térmica longitudinal nulo,  Baja densidad,  Radio transparente,  Con excelente resistencia al impacto.
FIBRAS DE ARAMIDA PARA REFORZAR RESINAS DE PLÁSTICO. Estructura química repititiva de las fibra Kevlar.
FIBRAS DE ARAMIDA PARA REFORZAR RESINAS DE PLÁSTICO. La fibra de aramida es el nombre genérico de las fibras de poiliamida aromática. Las fibras de aramida fueron presentada comercialmente en 1972 por Du Pont con el nombre comercial de Kevlar, y en la actualidad se ofrecen en dos tipos comerciales: Kevlar 29 y 49.  El kevlar 29 es una fibra aramida de baja densidad y alta resistencia, diseñada para ciertas aplicaciones como protección balística, cuerdas y cables. El kevlar 49 se caracteriza por su baja densidad y alta resistencia y modulo de elasticidad. Las propiedades del kevlar 49 hacen que sus fibras sean útiles como refuerzos de plástico en materiales compuestos para aplicaciones aeroespaciales, marítimas, automotrices y otras de tipo industrial.
USOS La aramida de kevlar se usa en aplicaciones a base de materiales compuestos de alto rendimiento cuando el peso es liviano, la elevada resistencia y rigidez, la resistencia a daños, la resistencia a la fatiga y a la ruptura por tensión son importantes. Un hecho de especial interés es que el material keclar-epoxi se ha usado en varias partes de los transbordadores espaciales.
OTROS USOS Cuerdas, bolsas de aire en el sistema de aterrizaje del MarsPathfinder; Hilo para coser; El blindaje antimetralla en los motores jet de avión, de protección a pasajeros en caso de explosión; Neumáticos funcionales que funcionan desinflados; Guantes contra cortes, raspones y otras lesiones; Kayaks con resistencia de impacto, sin peso adicional; Esquís, cascos y racquets fuertes, ligeros. Chaleco antibalas. Compuesto de CD / DVD por su resistencia tangencial de rotación Construcción de motores. Cascos de Fórmula 1 Botas de alta montaña Traje de Batman (en la pelicula). Alas de aviones Impermeables
CONCLUSIONES Los materiales compuestos aprovechan las propiedades de los materiales que los componen, potenciando sus ventajas y compensando sus defectos. Las relaciones resistencia/peso y rigidez/peso de los compuestos reforzados con fibras son muy superiores a los metales estructurales.   Son muy útiles en aplicaciones donde el peso es relevante.
GRACIAS

Contenu connexe

Tendances (20)

Materiales Compuestos
Materiales CompuestosMateriales Compuestos
Materiales Compuestos
 
Propiedades de los.polimeros
Propiedades de los.polimerosPropiedades de los.polimeros
Propiedades de los.polimeros
 
Capitulo 4. materiales compuestos
Capitulo 4. materiales compuestosCapitulo 4. materiales compuestos
Capitulo 4. materiales compuestos
 
Plásticos termoestables. (1)
Plásticos termoestables. (1)Plásticos termoestables. (1)
Plásticos termoestables. (1)
 
Elastomeros
ElastomerosElastomeros
Elastomeros
 
Materiales compuestos
Materiales compuestosMateriales compuestos
Materiales compuestos
 
Polímeros plásticos
Polímeros  plásticosPolímeros  plásticos
Polímeros plásticos
 
Propiedades físico mecánicas de los polímeros
Propiedades físico mecánicas de los polímerosPropiedades físico mecánicas de los polímeros
Propiedades físico mecánicas de los polímeros
 
MATERIALES POLIMERICOS
MATERIALES POLIMERICOSMATERIALES POLIMERICOS
MATERIALES POLIMERICOS
 
fibra de carbono
fibra de carbono fibra de carbono
fibra de carbono
 
Materiales compuestos
Materiales compuestosMateriales compuestos
Materiales compuestos
 
Capitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicosCapitulo 4. materiales cerámicos
Capitulo 4. materiales cerámicos
 
Ficha resina Poliéster
Ficha resina PoliésterFicha resina Poliéster
Ficha resina Poliéster
 
MATERIALES NO METÁLICOS
MATERIALES NO  METÁLICOSMATERIALES NO  METÁLICOS
MATERIALES NO METÁLICOS
 
propiedades fisicas quimicas y mecanicas (materiales metalicos, polimeros, se...
propiedades fisicas quimicas y mecanicas (materiales metalicos, polimeros, se...propiedades fisicas quimicas y mecanicas (materiales metalicos, polimeros, se...
propiedades fisicas quimicas y mecanicas (materiales metalicos, polimeros, se...
 
MATERIALES CERÁMICOS
MATERIALES CERÁMICOSMATERIALES CERÁMICOS
MATERIALES CERÁMICOS
 
Los termoplásticos
Los termoplásticosLos termoplásticos
Los termoplásticos
 
Elastomeros
ElastomerosElastomeros
Elastomeros
 
Materiales compuestos
Materiales compuestosMateriales compuestos
Materiales compuestos
 
Poliacrilonitrilo
PoliacrilonitriloPoliacrilonitrilo
Poliacrilonitrilo
 

En vedette

Materiales compuestos (1)
Materiales compuestos (1)Materiales compuestos (1)
Materiales compuestos (1)ivan_antrax
 
Exposicion cmc kevlar
Exposicion cmc kevlarExposicion cmc kevlar
Exposicion cmc kevlarfilosofia101a
 
Materiales Compuestos
Materiales CompuestosMateriales Compuestos
Materiales Compuestosmaricarmentb
 
08. materiales compuestos (compositos)
08. materiales compuestos (compositos)08. materiales compuestos (compositos)
08. materiales compuestos (compositos)Ferney De La Hoz
 
Stephanie Kwolek
Stephanie KwolekStephanie Kwolek
Stephanie KwolekCEIPLIM
 
Universidad tecnologica nacional presentacion
Universidad tecnologica nacional presentacionUniversidad tecnologica nacional presentacion
Universidad tecnologica nacional presentacionjoaquin
 
MI TRABAJO DE CMC (KEVLAR)
MI TRABAJO DE CMC (KEVLAR)MI TRABAJO DE CMC (KEVLAR)
MI TRABAJO DE CMC (KEVLAR)sergicacicedo
 
Presentación materiales compuestos Ing Felipe Giralgo
Presentación materiales compuestos Ing Felipe GiralgoPresentación materiales compuestos Ing Felipe Giralgo
Presentación materiales compuestos Ing Felipe GiralgoDiseño e Ingeniería
 
Acondicionamiento acustico, térmico y de video.
Acondicionamiento acustico, térmico y de video.Acondicionamiento acustico, térmico y de video.
Acondicionamiento acustico, térmico y de video.adriana
 
Fibra De Vidrio
Fibra De VidrioFibra De Vidrio
Fibra De Vidriolissim
 
Trabajo sobre las tecnologias y los materiales ( xbox one )
Trabajo sobre las tecnologias y los materiales ( xbox one )Trabajo sobre las tecnologias y los materiales ( xbox one )
Trabajo sobre las tecnologias y los materiales ( xbox one )gettsuker
 

En vedette (20)

Materiales compuestos (1)
Materiales compuestos (1)Materiales compuestos (1)
Materiales compuestos (1)
 
Exposicion cmc kevlar
Exposicion cmc kevlarExposicion cmc kevlar
Exposicion cmc kevlar
 
Materiales Compuestos
Materiales CompuestosMateriales Compuestos
Materiales Compuestos
 
El Kevlar
El KevlarEl Kevlar
El Kevlar
 
Kevlar
KevlarKevlar
Kevlar
 
08. materiales compuestos (compositos)
08. materiales compuestos (compositos)08. materiales compuestos (compositos)
08. materiales compuestos (compositos)
 
Copia de stephanie kwolek
Copia de stephanie kwolekCopia de stephanie kwolek
Copia de stephanie kwolek
 
Stephanie Kwolek
Stephanie KwolekStephanie Kwolek
Stephanie Kwolek
 
El kevlar
El kevlarEl kevlar
El kevlar
 
Universidad tecnologica nacional presentacion
Universidad tecnologica nacional presentacionUniversidad tecnologica nacional presentacion
Universidad tecnologica nacional presentacion
 
MI TRABAJO DE CMC (KEVLAR)
MI TRABAJO DE CMC (KEVLAR)MI TRABAJO DE CMC (KEVLAR)
MI TRABAJO DE CMC (KEVLAR)
 
Fibras de vidrio
Fibras de vidrioFibras de vidrio
Fibras de vidrio
 
Presentación materiales compuestos Ing Felipe Giralgo
Presentación materiales compuestos Ing Felipe GiralgoPresentación materiales compuestos Ing Felipe Giralgo
Presentación materiales compuestos Ing Felipe Giralgo
 
Acondicionamiento acustico, térmico y de video.
Acondicionamiento acustico, térmico y de video.Acondicionamiento acustico, térmico y de video.
Acondicionamiento acustico, térmico y de video.
 
Fibra de vidrio
Fibra de vidrioFibra de vidrio
Fibra de vidrio
 
Aislamiento termico
Aislamiento termicoAislamiento termico
Aislamiento termico
 
Fibra De Vidrio
Fibra De VidrioFibra De Vidrio
Fibra De Vidrio
 
Trabajo sobre las tecnologias y los materiales ( xbox one )
Trabajo sobre las tecnologias y los materiales ( xbox one )Trabajo sobre las tecnologias y los materiales ( xbox one )
Trabajo sobre las tecnologias y los materiales ( xbox one )
 
Interfase de materiales compuestos
Interfase de  materiales compuestosInterfase de  materiales compuestos
Interfase de materiales compuestos
 
Materiales compuestos
Materiales compuestosMateriales compuestos
Materiales compuestos
 

Similaire à Materiales compuestos

Similaire à Materiales compuestos (20)

Fibras
FibrasFibras
Fibras
 
Fibras
FibrasFibras
Fibras
 
Informe de-resina-poliester (2)
Informe de-resina-poliester (2)Informe de-resina-poliester (2)
Informe de-resina-poliester (2)
 
MATERIALES COMPUESTOS
MATERIALES COMPUESTOSMATERIALES COMPUESTOS
MATERIALES COMPUESTOS
 
Hormigon con fibras de aramida (alberto moral)
Hormigon con fibras de aramida (alberto moral)Hormigon con fibras de aramida (alberto moral)
Hormigon con fibras de aramida (alberto moral)
 
Folleto 2
Folleto 2Folleto 2
Folleto 2
 
Materialescompuestos
MaterialescompuestosMaterialescompuestos
Materialescompuestos
 
Materiales compuestos.prezi
Materiales compuestos.preziMateriales compuestos.prezi
Materiales compuestos.prezi
 
Fibra de carbono
Fibra de carbonoFibra de carbono
Fibra de carbono
 
Fibra de Vidrio VS Fibra de Carbono-1.pptx
Fibra de Vidrio VS Fibra de Carbono-1.pptxFibra de Vidrio VS Fibra de Carbono-1.pptx
Fibra de Vidrio VS Fibra de Carbono-1.pptx
 
l
ll
l
 
Polimeros
PolimerosPolimeros
Polimeros
 
POLIMEROS
POLIMEROSPOLIMEROS
POLIMEROS
 
Materiales empleados en la construccion de goletas transoceanicas
Materiales empleados en la construccion de goletas transoceanicasMateriales empleados en la construccion de goletas transoceanicas
Materiales empleados en la construccion de goletas transoceanicas
 
Termoplasticos y Materiales Compuestos
Termoplasticos y Materiales CompuestosTermoplasticos y Materiales Compuestos
Termoplasticos y Materiales Compuestos
 
Introducción a ciencia de los materianes
Introducción a ciencia de los materianesIntroducción a ciencia de los materianes
Introducción a ciencia de los materianes
 
Polimerosjesus
PolimerosjesusPolimerosjesus
Polimerosjesus
 
Fibras de carbono
Fibras de carbonoFibras de carbono
Fibras de carbono
 
Plasticos
PlasticosPlasticos
Plasticos
 
Materiales aislantes solidos
Materiales aislantes solidosMateriales aislantes solidos
Materiales aislantes solidos
 

Plus de Brianith Navarro

Introducción a los Métodos Numéricos
Introducción a los Métodos NuméricosIntroducción a los Métodos Numéricos
Introducción a los Métodos NuméricosBrianith Navarro
 
Diagrama Causa-Efecto y Paretto
Diagrama Causa-Efecto y ParettoDiagrama Causa-Efecto y Paretto
Diagrama Causa-Efecto y ParettoBrianith Navarro
 
Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.
Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.
Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.Brianith Navarro
 
II Ley Termodinámica Y Motores Termicos
II Ley Termodinámica Y Motores TermicosII Ley Termodinámica Y Motores Termicos
II Ley Termodinámica Y Motores TermicosBrianith Navarro
 
Resumen Historia de la TERMODINAMICA
Resumen Historia de la TERMODINAMICAResumen Historia de la TERMODINAMICA
Resumen Historia de la TERMODINAMICABrianith Navarro
 
Practicas de Instrumentos de Medición
Practicas de Instrumentos de MediciónPracticas de Instrumentos de Medición
Practicas de Instrumentos de MediciónBrianith Navarro
 
Prácticas de Instrumentos de Medición
Prácticas de Instrumentos de MediciónPrácticas de Instrumentos de Medición
Prácticas de Instrumentos de MediciónBrianith Navarro
 
Querido Amigo Científico.
Querido Amigo Científico.Querido Amigo Científico.
Querido Amigo Científico.Brianith Navarro
 

Plus de Brianith Navarro (9)

Introducción a los Métodos Numéricos
Introducción a los Métodos NuméricosIntroducción a los Métodos Numéricos
Introducción a los Métodos Numéricos
 
Diagrama Causa-Efecto y Paretto
Diagrama Causa-Efecto y ParettoDiagrama Causa-Efecto y Paretto
Diagrama Causa-Efecto y Paretto
 
Distribución normal
Distribución normalDistribución normal
Distribución normal
 
Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.
Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.
Dilatación de sólidos y líquidos y Comportamiento anómalo del agua.
 
II Ley Termodinámica Y Motores Termicos
II Ley Termodinámica Y Motores TermicosII Ley Termodinámica Y Motores Termicos
II Ley Termodinámica Y Motores Termicos
 
Resumen Historia de la TERMODINAMICA
Resumen Historia de la TERMODINAMICAResumen Historia de la TERMODINAMICA
Resumen Historia de la TERMODINAMICA
 
Practicas de Instrumentos de Medición
Practicas de Instrumentos de MediciónPracticas de Instrumentos de Medición
Practicas de Instrumentos de Medición
 
Prácticas de Instrumentos de Medición
Prácticas de Instrumentos de MediciónPrácticas de Instrumentos de Medición
Prácticas de Instrumentos de Medición
 
Querido Amigo Científico.
Querido Amigo Científico.Querido Amigo Científico.
Querido Amigo Científico.
 

Dernier

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIIsauraImbrondone
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdfenelcielosiempre
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdfDemetrio Ccesa Rayme
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoJosDanielEstradaHern
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSYadi Campos
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dstEphaniiie
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 

Dernier (20)

PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA IIAFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
AFICHE EL MANIERISMO HISTORIA DE LA ARQUITECTURA II
 
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática5    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática5    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática5 MPG 2024 Ccesa007.pdf
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
plan de capacitacion docente AIP 2024 clllll.pdf
plan de capacitacion docente  AIP 2024          clllll.pdfplan de capacitacion docente  AIP 2024          clllll.pdf
plan de capacitacion docente AIP 2024 clllll.pdf
 
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
Programacion Anual Matemática4    MPG 2024  Ccesa007.pdfProgramacion Anual Matemática4    MPG 2024  Ccesa007.pdf
Programacion Anual Matemática4 MPG 2024 Ccesa007.pdf
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
actividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° gradoactividades comprensión lectora para 3° grado
actividades comprensión lectora para 3° grado
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VSOCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
OCTAVO SEGUNDO PERIODO. EMPRENDIEMIENTO VS
 
Dinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes dDinámica florecillas a María en el mes d
Dinámica florecillas a María en el mes d
 
La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 

Materiales compuestos

  • 1. Materiales Compuestos  Fibra de Vidrio, carbono y Kevlar. Julio del 2011
  • 2. INTRODUCCIÓN De acuerdo con el diccionario Webster, los materiales son sustancias con las que algo está compuesto o hecho, aunque esta sea una definición muy amplia, desde la perspectiva de ingeniería trasciende el hecho de cómo son utilizados, de esta forma y con años de investigación se han logrado clasificar gracias al estudio microscópico de su estructura la composición de estos obteniendo así sus propiedades y dependiendo de ellas, la familia a la que pertenecen: Metales, cerámicos, polímeros, compuestos.
  • 3. MATERIALES COMPUESTOS Se entiende por materiales compuestos aquellos formados por dos o más materiales distintos sin que se produzca reacción química entre ellos. En todo material compuesto se distinguen dos componentes:   La MATRIZ, componente que se presenta en fase continua, actuando como ligante El REFUERZO, en fase discontinua, que es el elemento resistente.
  • 4. CLASIFICACIÓN TIPO MATRIZ: Materiales compuestos de matriz METÁLICA o MMC (METAL MATRIX COMPOSITES) Materiales compuestos de matriz CERÁMICA o CMC (CERAMIC MATRIX COMPOSITES) Materiales compuestos de matriz de CARBON Materiales compuestos de matriz ORGÁNICA o RP (REINFORCED PLASTICS). TIPO RESINA: FIBRAS, elementos en forma de hilo en las que la relación. CARGAS, el resto, utilizadas en elementos de poca responsabilidad estructural.
  • 5. Matrices organicas CARACTERISTICAS: Dar estabilidad al conjunto, transfiriendo las cargas al refuerzo. Proteger al refuerzo del deterioro mecánico y químico. Evitar la propagación de grietas. Las matrices orgánicas (más vulgarmente conocidas como plásticos) pueden ser: TERMOPLÁSTICOS, usadas en aplicaciones de bajos requisitos, aunque se están empezando a emplear termoplásticos avanzados para altas prestaciones. ELASTOMEROS, utilizadas en neumáticos y cintas transportadoras. DUROPLASTICOS o TERMOESTABLES, las más empleadas en materiales compuestos de altas prestaciones.
  • 6. MATRICES ORGÁNICAS RESINAS: EPOXIS, que son las de uso más general en altas prestaciones, con una temperatura máxima de uso en torno a los 170'. Como ejemplo, podemos citar la M18 de CIBA (HEXCEL). BISMALEIMIDAS (BMI), para altas temperaturas (hasta 250º), utilizada, por ejemplo en los bordes de ataque de las alas del Eurofighter-2000. Ejemplo: 5250 de CYTEC. POLlAMIDAS (P1), también para aplicaciones de altas temperaturas, en el entorno de los 300º. FENOLICAS, resistentes al fuego. Utilizadas, por ejemplo, en mamparas contra incendios y paneles interiores de aviones. POLIÉSTERES, poco usados por sus bajas características mecánicas. Además, absorben mucha agua y se contraen al curar. CIANOESTERES, utilizadas en aplicaciones radioeléctricas (antenas), ya que presentan baja absorción de humedad y buena "tangente de pérdidas" (característica radioeléctrica de los materiales).
  • 7. fibras En Estados Unidos se usan tres tipos principales de fibras sinéticas para reforzar materiales plásticos: vidrio, aramida (que se conoce como Kevlar) y carbono. El vidrio es, por amplio margen, la fibra de refuerzo que se usa más y a menudo la de menor costo. Las fibras de aramida y de carbono tienen alta resistencia y baja densidad, por lo cual se usan en muchas aplicaciones, sobre todo aeroespaciales, a pesar de tener un costo más alto.
  • 8. Presentación de las fibras HILOS, conjunto de fibras asociadas en un cilindro de diámetro uniforme y longitud indefinida. Dos o más hilos se pueden retorcer sobre sí mismos y formar hilos más gruesos. Su densidad se expresa como el peso en gramos de 9.000 metros de hilo (DERNIER). Su resistencia, denominada tenacidad, se mide en gramos por DERNIER. CINTAS ("TAPES'), hilos dispuestos paralelos en forma unidireccional. Sólo se presentan en forma de preimpregnados, en los que el refuerzo viene impregnado en resina sin polimerizar en estado semilíquido y sirve como ligante de los hilos. FIELTROS, hilos continuos o cortados depositados de forma multidireccional, aleatoriamente.   TEJIDOS ("FABRICS),productos en los que los hilos se entrelazan perpendicularmente.
  • 9. Uno o más filamentos continuos Filamento no continuo o fibras cortadas Filamento continuo, unido sin torsión Hilos simples o doblados, retorcidos juntos Muchos hilos doblados juntos.
  • 10. Tafetán (A) Esterilla (B) Semiesterila (C) Sarga (D) Raso (E) Satén De Espiguilla (F)
  • 11. Fibra de vidrio La fibra de vidrio (del inglés fiberglass) es un material fibroso obtenido al hacer fluir vidrio fundido a través de una pieza de agujeros muy finos (espinerette) y al solidificarse tiene suficiente flexibilidad para ser usado como fibra. Sus principales propiedades son:   Buen aislamiento térmico Inerte ante ácidos Soporta altas temperaturas.
  • 12. PRODUCCIÓN DE FIBRAS DE VIDRIO Las fibras de vidrio se producen extrayendo monofilamentos de vidrio de un horno que contiene vidrio fundido y reuniendo un gran número de esos filamentos se tuercen para formar un hilo de fibras de vidrio. Los hilos se usan entonces para formar madejas de fibras de vidrio llamadas “rovings”, las cuales están formadas por haces de filamentos continuos. Los rovings pueden presentarse como hilos continuos o también como hilos entretejidos, para fabricar los rovings tejidos.
  • 13.
  • 14. FIBRAS DE VIDRIO PARA REFORZAR RESINAS DE PLÁSTICO. Las fibras de vidrio se usan como refuerzo de matrices de plástico para formar compuestos estructurales y compuestos de molde. Los materiales compuestos de plástico con fibra de vidrio tienen las siguientes características favorables: Alta relación entre Resistencia y Peso. Buena estabilidad dimensional. Buena resistencia al calor, el frío y la corrosión. Buenas propiedades de aislamiento eléctrico. Facilidad de fabricación y costo relativamente bajo.
  • 15. FIBRA DE VIDRIO E Fibras hechas de vidrio E (eléctrico), que es un vidrio de borosilicato1 del cual se fabrican más comúnmente fibras para el reforzamiento de plásticos con fibra de vidrio. El vidrio E es el que se usa más comúnmente en fibras continuas, en esencia, el vidrio E está hecho de Cal, aluminio y borosilicato con niveles de sodio y potasio ulos o bajos. La composición básica del vidrio E fluctúa entre 52% y 56% SiO2, 12 y 16% Al2O3, 16 a 25% CaO y de 8 a 13% B2O3. El vidrio E tiene una resistencia a la tensión de 500 ksi (3.44 GPa).
  • 16. FIBRA DE VIDRIO S Fibras hechas de vidrio S, que es un vidrio de silicato de magnesia-alúminica cuyas fibras se usan en plásticos reforzados con fibra de vidrio cuando requiere una resistencia especialmente en las fibras. El vidrio S tiene una relación entre Resistencia y Peso más alta y es más caro que el vidrio E; se usa sobretodo en aplicaciones militares y aeroespaciales. La resistencia a la tensión del vidrio S es superior a 660 ksi (4.48 GPa) y su modulo de elasticidad es de 200.4 msi (85.4 Gpa), aproximadamente. Una composición típica del vidrio S es de cerca de 65% SiO2, 25% Al2O3, y 10% MgO.
  • 17. OTRAS FIBRAS Fibras de Vidrio C Para estabilidad química. Fibras de Vidrio M Para muy alta rigidez. Fibras de Vidrio D Para muy baja constante dieléctrica.
  • 18. RESINAS DE POLIÉSTER REFORZADAS CON FIBRA DE VIDRIO. La resistencia de los plásticos reforzados con fibra de vidrio depende sobre todo del contenido de vidrio del material y del arreglo de la fibra de vidrio. En general, mientras más alto es el porcentaje en peso del vidrio en el compuesto, tanto más resistente es el plástico reforzado. Cuando hay hilos de vidrio en dirección paralela, como puede ocurrir en el caso del embobinado de los filamentos, el contenido de fibra de vidrio puede ser hasta del 80% en peso, lo cual conduce a valor de resistencia muy altos para el material compuesto.
  • 19. Algunas propiedades mecánicas de los compuestos de poliéster y fibra de vidrio
  • 20. MAYORES USOS La fibra de vidrio, también es usada para realizar los cables de fibra óptica utilizados en el mundo de las telecomunicaciones para transmitir señales lumínicas, producidas por láser o LEDs. También se utiliza habitualmente como aislante térmico en la construcción, en modo de mantas o paneles de unos pocos centímetros. Se recomienda utilizar fibra de vidrio para la fabricación de artículos que estén expuestos a agentes químicos y degradación por corrosión. Otro de los usos importantes de la fibra de vidrio es la Fabricación de la rejilla de fibra de vidrio, barandales, escaleras marinas, perfiles estructurales, tapas para registros.
  • 21.
  • 22. FIBRA DE CARBONO. La fibra de carbono es un material compuesto, constituido principalmente por carbono. Tiene propiedades mecánicas similares al acero y es tan ligera como la madera o el plástico. Por su dureza tiene menor resistencia al impacto que el acero. Al tratarse de un material compuesto, en la mayoría de los casos -aproximadamente un 75%- se utilizan polímeros termoestables. El polímero es habitualmente resina epoxi, de tipo termoestable aunque otros polímeros, como el poliéster o el viniléster también se usan como base para la fibra de carbono aunque están cayendo en desuso. Son fabricadas principalmente de poliacrilonitrilo (PAN) o brea que se estiran para alinear la estructura de la red fibrilar dentro de cada fibra de carbono y se calientan para eliminar el oxígeno, al nitrógeno y al hidrógeno de las fibras iniciadoras o precursoras.
  • 23. PRODUCCIÓN Estabilización.  En esta etapa, las fibras de PAN se estiran primero para alinear las redes fibrilares dentro de cada fibra en dirección paralela al eje de la misma, después se oxidan en aire a una temperatura entre 200°C y 220° C (392 a 428°F) manteniéndolas siempre en tensión.   Carbonización. En este proceso, las fibras a base de PAN estabilizadas son pirolizadas (calentadas) hasta que se transforman en fibras de carbón por la eliminación de Oxigeno, Hidrogeno y Nitrógeno de la fibra precursora. El tratamiento térmico de carbonización suele realizarse en una atmosfera inerte dentro del rango de 1000°C a 1500°C (1832 a 2732°F). En el proceso de carbonización se forman fibrillas o cintas dentro de cada fibra, que aumentan considerablemente la resistencia del material a la tensión.   Grafitización.   Se agrega cuando se desea lograr un incremento del modulo de elasticidad a expensas de la alta resistencia a la tensión. Durante este proceso se lleva a cabo por encima de los 1800°C (3272°F), se incrementa la orientación deseada de as cristalitas con apariencia de grafito dentro de cada fibra.
  • 24. Fibra de Carbono de alta resistencia Fibra de Carbono con alto modulo de elasticidad
  • 25. FIBRAS DE CARBONO PARA PLÁSTICOS REFORZADOS. Los materiales compuestos que se fabrican utilizando fibras de carbono para reforzar matrices de resina plástica, como las epóxicas, se caracterizan por tener una combinación de ligereza de peso, muy alta resistencia y elevada rigidez (módulo de elasticidad). Estas propiedades hacen que el uso de materiales compuestos de plástico con fibra de carbono sea especialmente atractivo para aplicaciones aeroespaciales. Las fibras de carbono para esos compuestos provienen principalmente de dos fuentes: el poliacrilonitrilo (PAN) y la brea, que reciben el nombre de precursores.
  • 26. RESINAS EPOXICAS REFORZADAS CON FIBRA DE CARBONO. En materiales compuestos a base de fibras de carbono, las fibras aportan las propiedades de alta rigidez y resistencia a la tensión, mientras que el aglutinante (la matriz) es el vehículo para la alineación de las fibras y aporta cierta resistencia al impacto. Las resinas epoxicas son, por amplio margen, las matrices que se usan más comúnmente para las fibras de carbono, pero en ciertas aplicaciones pueden usarse como resinas, como las polimidas, sulfuro de polifenileno o polisulfones.
  • 27. propiedades La principal ventaja de las fibras de carbono son sus altos valores de resistencia y modulo de elasticidad combinadas con su baja densidad. Por esta razón los compuestos de fibra de carbono están sustituyendo a los metales en algunas aplicaciones aeroespaciales donde el ahorro en peso es importante. Se caracterizan porque son de muy alta resistencia y rigidez, por la estructura cristalográfica del grafito. Se distinguen los siguientes tipos:   De muy alto módulo (para aplicaciones que requieran rigidez,500 GPa de Módulo elástico) De alto módulo (400 GPa) De módulo intermedio (300 GPa) De alta resistencia (200 GPa)
  • 28. KEVLAR (O Fibra de Aramida) Fibras producidas por síntesis química que se usan para el refuerzo de los de plásticos. Las fibras de aramida tienen en su estructura lineal de poliamida arimática (tipo anillo de bencenos) y los fabrica comercialmente la Du Pont Co., con el nombre comercial de Kevlar. La más utilizada es el KEVLAR @. de DUPONT (POLIARAMIDA) de fibras con las siguientes características: Muy rígidas, Coeficiente de dilatación térmica longitudinal nulo, Baja densidad, Radio transparente, Con excelente resistencia al impacto.
  • 29. FIBRAS DE ARAMIDA PARA REFORZAR RESINAS DE PLÁSTICO. Estructura química repititiva de las fibra Kevlar.
  • 30. FIBRAS DE ARAMIDA PARA REFORZAR RESINAS DE PLÁSTICO. La fibra de aramida es el nombre genérico de las fibras de poiliamida aromática. Las fibras de aramida fueron presentada comercialmente en 1972 por Du Pont con el nombre comercial de Kevlar, y en la actualidad se ofrecen en dos tipos comerciales: Kevlar 29 y 49. El kevlar 29 es una fibra aramida de baja densidad y alta resistencia, diseñada para ciertas aplicaciones como protección balística, cuerdas y cables. El kevlar 49 se caracteriza por su baja densidad y alta resistencia y modulo de elasticidad. Las propiedades del kevlar 49 hacen que sus fibras sean útiles como refuerzos de plástico en materiales compuestos para aplicaciones aeroespaciales, marítimas, automotrices y otras de tipo industrial.
  • 31. USOS La aramida de kevlar se usa en aplicaciones a base de materiales compuestos de alto rendimiento cuando el peso es liviano, la elevada resistencia y rigidez, la resistencia a daños, la resistencia a la fatiga y a la ruptura por tensión son importantes. Un hecho de especial interés es que el material keclar-epoxi se ha usado en varias partes de los transbordadores espaciales.
  • 32. OTROS USOS Cuerdas, bolsas de aire en el sistema de aterrizaje del MarsPathfinder; Hilo para coser; El blindaje antimetralla en los motores jet de avión, de protección a pasajeros en caso de explosión; Neumáticos funcionales que funcionan desinflados; Guantes contra cortes, raspones y otras lesiones; Kayaks con resistencia de impacto, sin peso adicional; Esquís, cascos y racquets fuertes, ligeros. Chaleco antibalas. Compuesto de CD / DVD por su resistencia tangencial de rotación Construcción de motores. Cascos de Fórmula 1 Botas de alta montaña Traje de Batman (en la pelicula). Alas de aviones Impermeables
  • 33. CONCLUSIONES Los materiales compuestos aprovechan las propiedades de los materiales que los componen, potenciando sus ventajas y compensando sus defectos. Las relaciones resistencia/peso y rigidez/peso de los compuestos reforzados con fibras son muy superiores a los metales estructurales.   Son muy útiles en aplicaciones donde el peso es relevante.