SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
Genotype to Phenotype: Investigating Eye
Color Mutations Using Chromatography
By Tara C. Thiemann, Truman State University (B.S. Honors Biology - 2001)
Background
It probably was in one of your very first biology classes when you learned that DNA is a genetic map and that DNA
determines phenotype. Not long after this you learned that, through the processes of transcription and translation,
DNA codes for the production of proteins. Both of these concepts are conceivable alone, but perhaps their
relationship has eluded you. How can the production of proteins determine phenotype? The answer is enzymes. In
the 1940’s, George W. Beadle and Edward L. Tatum, while working with the mold Neurospora, determined that
DNA regulates cellular chemical reactions by controlling the synthesis of enzymes. Beadle and Tatum’s one-gene-
one-enzyme hypothesis suggested that the information for the production of one enzyme comes from one gene and
that a mutation of this gene may render the enzyme inactive. Without an active enzyme, the biochemistry and thus
the phenotype of an organism is altered.
It often takes several enzymes working
together in an elaborate biochemical
pathway to produce a substance that
alters phenotype. In Drosphila two
such pathways contribute to the eye
color of the flies. The ommochrome
pathway produces the brown eye
pigments, and the pteridine pathway
produces the yellow, red, and ultra-
violet pigments. This lab will focus
mainly on the 7 products of the
pteridine pathway, which are shown in
Figure 5.1.
“Despite the many investigations
carried out over many years, a real
understanding of the interactions
leading to the production of the wild
type eye color phenotype in Drosophila
melanogaster remains elusive.”
(Reaume, Knecht and Chovnick,
1991). In other words, the exact
mechanisms of the pteridine and
ommochrome pathways are not known by your Biology 107 instructor — or by anyone else! However, researchers
have built a working model (Figure 6.2) that seems to yield reasonably accurate predictions for how the two
pathways work.
Figure 5.1 — Seven pigments produced by the pteridine pathway.
The actual pteridine and ommochrome pathways are substantially more complex than the model suggests. For
example, some individual arrows actually represent a series of several reactions catalyzed by different genes. (Refer
to the background section of the enzyme lab to become more familiar with the action of enzymes.) The following is
a specific example of an enzyme-catalyzed reaction in the pteridine pathway.
PDA Synthase
6-pyruvoyl [sepia] Pyrimidodiazepine
tetrahydropterin (PDA)
Figure 5.3 – Enzyme-catalyzed reaction.
The gene sepia codes for the production of the enzyme PDA synthase. Since PDA is a precursor to the drosopterins
(Figure 5.2), a mutation in sepia prevents the production of these red eye pigments and increases the production of
the yellow pigment sepiapterin. The gene is named sepia because of the eye color resulting from its mutation.
Similarly, the genes vermilion and scarlet code for enzymes involved in the ommochrome pathway. Mutations in
these genes prevent the production of the brown pigment xanthommatin, resulting in bright red eyes.
Not all mutations that affect eye color affect enzymes in the pigment pathways. For eye pigments to be made,
several steps must occur. First, the starting substrate must be transported into the cell. Second, the pigments must
be made within the cell using the enzyme pathway. Third, the pigments must be transported to the pigment
granules, which are similar to lysosomes. The protein encoded by the brown gene affects the transport of the
starting substrate (GTP) into the cell. The white gene affects the transport of both GTP (starting substrate for
pteridine production) and tryptophan (starting substrate for ommochrome production). These proteins belong to a
larger class of transport proteins whose other members include the Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) and multidrug resistance proteins in cancer cells. The CFTR protein is involved in the transport
of Cl-
ions, and the multidrug resistance proteins transport hydrophobic drugs out of cells, making them resistant to
the effects of these drugs.
Figure 5.2 — Current model of the pteridine and ommochrome pathways. Genes (pink) encode transport
proteins (orange) and enzymes (green rectangles). Enzymes catalyze specific reactions (green arrows) that
convert chemical precursors into pigments. Pigment colors are shown in parentheses; underlining denotes
pigments visible only under UV light.
The pteridines can be separated using a paper chromatography method developed by Hadorn and his research
partner Herschel Mitchell in 1951. According to this method, the fruit flies are crushed onto a piece of filter paper
that is in turn placed into a solvent mixture of propyl alcohol and ammonia. The capillary action of the paper pulls
the solvent upward, and as the solvent passes through the crushed flies, the pteridines are dissolved. Since the
structures of the various pteridines differ, they have distinct chemical and physical properties. These distinct
properties allow the pigments to be carried different distances in the paper, thus separating the pigments.
In this lab you will use chromatography to analyze the number and amount of pteridines found in homozygous wild
(w+), white (w), brown (bw), scarlet (sc), sepia (se), and vermilion (ve) flies.
Isosepiapterin
(Yellow)
Beaker Biopterin
(Blue)
2-Amino-4-Hydroxypteridine
(Blue)
Filter Paper
Sepiapterin
(Yellow)
Xanthopterin
(Green-Blue)
Crushed Fly
Isoxanthopterin
(Violet-Blue)
Solvent
Drosopterins
(Red-Orange)
Figure 5.4 – Diagram of Hadorn and Mitchell’s chromatography method.
Objectives
1. Think about the role of enzymes in the production of pteridines, and understand how this relates genotype
to phenotype.
2. Identify the pteridine pigments found in Drosophila with various eye-color mutations.
3. Gain experience using paper chromatography to separate organic molecules.
Experimental Procedures
Week 1
Because the sepia gene codes for an enzyme that converts A into B, we might reasonably predict that a mutation in
this gene would increase the concentration of A while decreasing the concentration of B. We might also expect this
same mutation to decrease the concentration of all pigments that are downstream of B in the metabolic pathway.
1. Using (diagrams X), predict the effect of each eye color mutation (w, bw, sc, se, vm) on the concentration of each
pigment. Record your predictions in Table 5.1, using the following symbols:
++ : Much more than wild-type
+ : More than wild-type
= : The same as wild-type
– : Less than wild-type
–– : Much less than wild-type
Table 5.1 — PREDICTED concentration of pteridine pigments in Drosophila with different eye colors.
Pigment Color Wild White Brown Scarlet Sepia Vermilion
Isosepiapterin Yellow =
Biopterin Blue =
2-amino-4-
hydroxypteridine
Blue =
Sepiapterin Yellow =
Xanthopterin Green-blue =
Isoxanthopterin Blue-violet =
Drosopterins Orange =
2. Cut a rectangle of Whatman No. 1 filter paper 15 × 20 cm in
size. Draw a line in pencil parallel to and 2 cm away from one
of the long edges. Mark this line at 3-cm intervals, making a
total of 6 marks. (See Figure 5.5, at right.)
3. Etherize 4 flies of the same eye color. With the aid of a
dissecting microscope, decapitate the flies with a razor blade.
Crush the 4 heads onto one of the marks on the filter paper
using a glass rod. Wash the rod with n-propyl alcohol.
Discard the bodies in the fly morgue at the front of the lab.
4. Repeat Step 2 for each of the five remaining eye colors. To
avoid contaminating your sample, wash the glass rod with
solvent between each crushing, and do not touch the filter
paper with your fingers. Let the spots dry for 5-10 minutes.
5. Staple the ends of the filter paper together so that it forms a cylinder with the Drosophila heads making a ring
(facing out) around the bottom. The ends of the filter paper should not overlap. Place the cylinder into a 1000-
ml jar with the heads down, and carefully note the height of the Drosophila heads with respect to the jar. Then
remove the filter paper from the jar.
Figure 5.5 — Chromatogram Setup.
Perform the following steps in the fume hood.
6. Dispense 50-75 ml of the solvent into the jar. The level of solvent should be about 1 cm lower than the noted
position of the crushed heads. Place the lid on the jar and let the solution sit for about 5 minutes to build up
vapor pressure within the jar.
7. Remove the lid and place the cylinder (heads down) into the jar. The paper must not touch the sides of the jar,
and the solvent must not touch the heads. If the solvent does touch the heads, remove the filter paper, dump the
contaminated solvent, add new solvent to the jar, and replace the filter paper.
8. Place the lid on the jar and wrap foil around the entire jar to prevent light from damaging the pteridines.
9. Allow the chromatography to run for approximately 6 hours. Remove the paper from the jar and let the
chromatogram dry in a well-ventilated area for several minutes. The chromatogram will be kept in the dark prior
to viewing in next week’s lab.
Week 2
1. View the chromatogram with UV light. For each pigment listed in Table 5.2, record whether that pigment is
present in your wild-type flies.
2. Compare the observed concentration of each pigment in the five eye-color mutant lines (white, brown, scarlet,
sepia, and vermilion) to the concentration in the wild-type flies. Record your observations in Table 5.2, using
the same symbols as in Table 5.1.
3. Compare your predictions in Table 5.1 to your observations in Table 5.2. Evaluate how accurately the pathway
model shown in Figure 5.2 allows you to predict the effects of each mutation.
Table 5.2 — OBSERVED concentration of pteridine pigments in Drosophila with different eye colors.
4. Explain why flies that produce high concentrations of bluish pigments do not show any trace of blue in their eye
color. (Hint: Do these pigments appear blue when viewed under visible light?)
5. Explain why flies that produce almost exactly the same amount of each pteridine pigment may nonetheless have
dramatically different eye colors.
Pigment Color Wild White Brown Scarlet Sepia Vermilion
Isosepiapterin Yellow
Biopterin Blue
2-amino-4-
hydroxypteridine
Blue
Sepiapterin Yellow
Xanthopterin Green-blue
Isoxanthopterin Blue-violet
Drosopterins Orange
References
Dreesen, T.D., D.H. Johnson and S. Henikoff, 1988. The Brown Protein of Drosophila melanogaster Is Similar to
the White Protein and to Components of Active Transport Complexes. Molecular and Cellular Biology 8:5206-
5215.
Ewart, G.D., D. Cannell, G.B. Cox and A.J. Howells, 1994. Mutational Analysis of the Traffic ATPase (ABC)
Transporters Involved in Uptake of Eye Pigment Precursors in Drosophila melanogaster. The Journal of
Biological Chemistry 269:10370-10377.
Hadorn, E., 1962. Fractionating the Fruit Fly. Scientific American 206:100-110.
Higgins, C.F., 1992. ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology 8:67-
113.
Phillips, J.P. and H.S. Forrest, 1980. Ommochromes and Pteridines, pp. 596-609 in The Genetics and Biology of
Drosophila, Vol. 2d, edited by M. Ashburner and T.R.F. Wright. Academic Press, New York.
Reaume, A.G., D.A. Knecht and A. Chovnick, 1991. The rosy Locus in Drosophila melanogaster: Xantine
Dehydrogenase and Eye Pigments. Genetics 129: 1099-1109

Contenu connexe

Tendances

Polytypic species concept
Polytypic species conceptPolytypic species concept
Polytypic species conceptManideep Raj
 
Variation & Evolution
Variation & EvolutionVariation & Evolution
Variation & EvolutionBeth Lee
 
Air sacs of bird(blue rock pigeon)
Air sacs of bird(blue rock pigeon)Air sacs of bird(blue rock pigeon)
Air sacs of bird(blue rock pigeon)Jaleelkabdul Jaleel
 
Macro n megaevolution
Macro n megaevolutionMacro n megaevolution
Macro n megaevolutionmah neem mah
 
Metamorphosis in insects
Metamorphosis in insectsMetamorphosis in insects
Metamorphosis in insectsTaniya07
 
X inactivation in mammals
X  inactivation in mammalsX  inactivation in mammals
X inactivation in mammalsrana alhakimi
 
EARLY MAMMALIAN DEVELOPMENT
EARLY MAMMALIAN DEVELOPMENTEARLY MAMMALIAN DEVELOPMENT
EARLY MAMMALIAN DEVELOPMENTAhmad Raza
 
BIOCHEMICAL MUTATION/GENETICS
BIOCHEMICAL MUTATION/GENETICSBIOCHEMICAL MUTATION/GENETICS
BIOCHEMICAL MUTATION/GENETICSKRISHNA VERMA
 
Chromosomal theory of heredity. Genetics of a sex
Chromosomal theory of heredity. Genetics of a sexChromosomal theory of heredity. Genetics of a sex
Chromosomal theory of heredity. Genetics of a sexEneutron
 
Variation in taxonomic and systematic characters
Variation in taxonomic and systematic charactersVariation in taxonomic and systematic characters
Variation in taxonomic and systematic charactersNoor Zada
 
Adaptive Radiations
Adaptive RadiationsAdaptive Radiations
Adaptive Radiationsuog
 

Tendances (20)

Polytypic species concept
Polytypic species conceptPolytypic species concept
Polytypic species concept
 
Variation & Evolution
Variation & EvolutionVariation & Evolution
Variation & Evolution
 
Onychophora A detailed note
Onychophora A detailed noteOnychophora A detailed note
Onychophora A detailed note
 
Air sacs of bird(blue rock pigeon)
Air sacs of bird(blue rock pigeon)Air sacs of bird(blue rock pigeon)
Air sacs of bird(blue rock pigeon)
 
Peroxisome
PeroxisomePeroxisome
Peroxisome
 
Sexual selection
Sexual selectionSexual selection
Sexual selection
 
Macro n megaevolution
Macro n megaevolutionMacro n megaevolution
Macro n megaevolution
 
Protostomes and deuterostomes
Protostomes and deuterostomesProtostomes and deuterostomes
Protostomes and deuterostomes
 
Metamorphosis in insects
Metamorphosis in insectsMetamorphosis in insects
Metamorphosis in insects
 
X inactivation in mammals
X  inactivation in mammalsX  inactivation in mammals
X inactivation in mammals
 
EARLY MAMMALIAN DEVELOPMENT
EARLY MAMMALIAN DEVELOPMENTEARLY MAMMALIAN DEVELOPMENT
EARLY MAMMALIAN DEVELOPMENT
 
BIOCHEMICAL MUTATION/GENETICS
BIOCHEMICAL MUTATION/GENETICSBIOCHEMICAL MUTATION/GENETICS
BIOCHEMICAL MUTATION/GENETICS
 
Mutation
MutationMutation
Mutation
 
Chromosomal theory of heredity. Genetics of a sex
Chromosomal theory of heredity. Genetics of a sexChromosomal theory of heredity. Genetics of a sex
Chromosomal theory of heredity. Genetics of a sex
 
Genetic drift
Genetic driftGenetic drift
Genetic drift
 
Variation in taxonomic and systematic characters
Variation in taxonomic and systematic charactersVariation in taxonomic and systematic characters
Variation in taxonomic and systematic characters
 
Adaptive Radiations
Adaptive RadiationsAdaptive Radiations
Adaptive Radiations
 
Integumentary System
Integumentary SystemIntegumentary System
Integumentary System
 
Microevolution
MicroevolutionMicroevolution
Microevolution
 
Skull typpes
Skull typpesSkull typpes
Skull typpes
 

En vedette

Trabajando con más de un gen color ojos drosophila
Trabajando con más de un gen color ojos drosophilaTrabajando con más de un gen color ojos drosophila
Trabajando con más de un gen color ojos drosophilaCiberGeneticaUNAM
 
The genetics eye color drosohila 15 pollock
The genetics eye color drosohila 15 pollockThe genetics eye color drosohila 15 pollock
The genetics eye color drosohila 15 pollockCiberGeneticaUNAM
 
Moscas drosophilas
Moscas drosophilasMoscas drosophilas
Moscas drosophilasAlejhuve
 
4946 4950.output
4946 4950.output4946 4950.output
4946 4950.outputj1075017
 
Barroso. Hipertroffia muscular
Barroso. Hipertroffia muscularBarroso. Hipertroffia muscular
Barroso. Hipertroffia muscularCiberGeneticaUNAM
 
Citogenética chapulín Universidad Autónoma de Madrid
Citogenética chapulín Universidad Autónoma de MadridCitogenética chapulín Universidad Autónoma de Madrid
Citogenética chapulín Universidad Autónoma de MadridCiberGeneticaUNAM
 
Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...
Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...
Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...CiberGeneticaUNAM
 
Genetic experiment on the offspring of drosophila melanogaster
Genetic experiment on the offspring of drosophila melanogasterGenetic experiment on the offspring of drosophila melanogaster
Genetic experiment on the offspring of drosophila melanogasterJoniqua Christopher
 
Drugs induce changes in feces , urine and laboratory values
Drugs induce changes in feces , urine and laboratory valuesDrugs induce changes in feces , urine and laboratory values
Drugs induce changes in feces , urine and laboratory valuesmostafa hosni
 
Citogenética cromosomas politénicos y chapulín
Citogenética cromosomas politénicos y chapulínCitogenética cromosomas politénicos y chapulín
Citogenética cromosomas politénicos y chapulínCiberGeneticaUNAM
 
Sulphonamaides and cotrimoxazole
Sulphonamaides and cotrimoxazoleSulphonamaides and cotrimoxazole
Sulphonamaides and cotrimoxazoleNarasimha Kumar G V
 
Aportaciones drosophila modelo y proyecto de clase
Aportaciones drosophila modelo y proyecto de claseAportaciones drosophila modelo y proyecto de clase
Aportaciones drosophila modelo y proyecto de claseCiberGeneticaUNAM
 
Sex linked inheritance aand interaction of genes
Sex linked inheritance aand interaction of genesSex linked inheritance aand interaction of genes
Sex linked inheritance aand interaction of genesNethravathi Siri
 
Ejercicio de conejos. Damián Juárez Christian
Ejercicio de conejos. Damián Juárez ChristianEjercicio de conejos. Damián Juárez Christian
Ejercicio de conejos. Damián Juárez ChristianCiberGeneticaUNAM
 
A Presentation on Enzymes & Co-Enzymes
A Presentation on Enzymes & Co-EnzymesA Presentation on Enzymes & Co-Enzymes
A Presentation on Enzymes & Co-EnzymesProtic Jodder
 

En vedette (20)

Trabajando con más de un gen color ojos drosophila
Trabajando con más de un gen color ojos drosophilaTrabajando con más de un gen color ojos drosophila
Trabajando con más de un gen color ojos drosophila
 
The genetics eye color drosohila 15 pollock
The genetics eye color drosohila 15 pollockThe genetics eye color drosohila 15 pollock
The genetics eye color drosohila 15 pollock
 
Moscas drosophilas
Moscas drosophilasMoscas drosophilas
Moscas drosophilas
 
4946 4950.output
4946 4950.output4946 4950.output
4946 4950.output
 
Barroso. Hipertroffia muscular
Barroso. Hipertroffia muscularBarroso. Hipertroffia muscular
Barroso. Hipertroffia muscular
 
Pendientes grupo 5182
Pendientes grupo 5182Pendientes grupo 5182
Pendientes grupo 5182
 
Citogenética chapulín Universidad Autónoma de Madrid
Citogenética chapulín Universidad Autónoma de MadridCitogenética chapulín Universidad Autónoma de Madrid
Citogenética chapulín Universidad Autónoma de Madrid
 
Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...
Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...
Revista de la SECA no 1. Pág. 17-23. Las moscas de la fruta por Miguel Guerre...
 
Serotonin
SerotoninSerotonin
Serotonin
 
Genetic experiment on the offspring of drosophila melanogaster
Genetic experiment on the offspring of drosophila melanogasterGenetic experiment on the offspring of drosophila melanogaster
Genetic experiment on the offspring of drosophila melanogaster
 
Drugs induce changes in feces , urine and laboratory values
Drugs induce changes in feces , urine and laboratory valuesDrugs induce changes in feces , urine and laboratory values
Drugs induce changes in feces , urine and laboratory values
 
Citogenética cromosomas politénicos y chapulín
Citogenética cromosomas politénicos y chapulínCitogenética cromosomas politénicos y chapulín
Citogenética cromosomas politénicos y chapulín
 
Sulphonamaides and cotrimoxazole
Sulphonamaides and cotrimoxazoleSulphonamaides and cotrimoxazole
Sulphonamaides and cotrimoxazole
 
Aportaciones drosophila modelo y proyecto de clase
Aportaciones drosophila modelo y proyecto de claseAportaciones drosophila modelo y proyecto de clase
Aportaciones drosophila modelo y proyecto de clase
 
Sex linked inheritance aand interaction of genes
Sex linked inheritance aand interaction of genesSex linked inheritance aand interaction of genes
Sex linked inheritance aand interaction of genes
 
Ejercicio de conejos. Damián Juárez Christian
Ejercicio de conejos. Damián Juárez ChristianEjercicio de conejos. Damián Juárez Christian
Ejercicio de conejos. Damián Juárez Christian
 
Methotrexate
MethotrexateMethotrexate
Methotrexate
 
A Presentation on Enzymes & Co-Enzymes
A Presentation on Enzymes & Co-EnzymesA Presentation on Enzymes & Co-Enzymes
A Presentation on Enzymes & Co-Enzymes
 
One carbon metabolism
One carbon metabolism One carbon metabolism
One carbon metabolism
 
folic acid B9 MUHAMMAD MUSTANSAR
folic acid  B9  MUHAMMAD MUSTANSARfolic acid  B9  MUHAMMAD MUSTANSAR
folic acid B9 MUHAMMAD MUSTANSAR
 

Similaire à Eye color mutations chromatography drosophila

Molecular_Biology_Sivakumar_Krishnan-Final
Molecular_Biology_Sivakumar_Krishnan-FinalMolecular_Biology_Sivakumar_Krishnan-Final
Molecular_Biology_Sivakumar_Krishnan-FinalSivakumar Krishnan
 
CJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docx
CJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docxCJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docx
CJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docxgordienaysmythe
 
this is all of the information that I have please help Lab 5 In.pdf
this is all of the information that I have please help  Lab 5 In.pdfthis is all of the information that I have please help  Lab 5 In.pdf
this is all of the information that I have please help Lab 5 In.pdfambikacomputer4301
 
The Fabrication And Modification Of T Cuas With Cellulose...
The Fabrication And Modification Of T Cuas With Cellulose...The Fabrication And Modification Of T Cuas With Cellulose...
The Fabrication And Modification Of T Cuas With Cellulose...Christy Hunt
 
2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)Prisca Diala
 
Brassica Rapa Lab Report
Brassica Rapa Lab ReportBrassica Rapa Lab Report
Brassica Rapa Lab ReportJohn Kozlosky
 
Research/ International Drug Discovery Science and Technology Conference 2017
Research/ International Drug Discovery Science and Technology Conference 2017Research/ International Drug Discovery Science and Technology Conference 2017
Research/ International Drug Discovery Science and Technology Conference 2017Green-book
 
Lab Report Green Fluorescent Protein
Lab Report Green Fluorescent ProteinLab Report Green Fluorescent Protein
Lab Report Green Fluorescent ProteinTina Jordan
 
science research paper 2012-2013
science research paper 2012-2013science research paper 2012-2013
science research paper 2012-2013Tiffany Zhu
 
Biology 110 Online Evolution lab Student Directions 1.    Go to htt.docx
Biology 110 Online Evolution lab Student Directions 1.    Go to htt.docxBiology 110 Online Evolution lab Student Directions 1.    Go to htt.docx
Biology 110 Online Evolution lab Student Directions 1.    Go to htt.docxlascellesjaimie
 
Biology homework help
Biology homework helpBiology homework help
Biology homework helppowellabril
 
Biology homework help
Biology homework helpBiology homework help
Biology homework helpgaryantione
 
Biology homework help
Biology homework helpBiology homework help
Biology homework helpalicalland
 
1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docx1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docxmercysuttle
 
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...iosrjce
 
Biology homework help
Biology homework helpBiology homework help
Biology homework helproman nnelson
 
Biology homework help
Biology homework helpBiology homework help
Biology homework helpandrey_milev
 

Similaire à Eye color mutations chromatography drosophila (20)

Molecular_Biology_Sivakumar_Krishnan-Final
Molecular_Biology_Sivakumar_Krishnan-FinalMolecular_Biology_Sivakumar_Krishnan-Final
Molecular_Biology_Sivakumar_Krishnan-Final
 
CJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docx
CJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docxCJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docx
CJ 317 CJ StatisticsChapter 5 – NIBRS ExercisesLet’s work wi.docx
 
this is all of the information that I have please help Lab 5 In.pdf
this is all of the information that I have please help  Lab 5 In.pdfthis is all of the information that I have please help  Lab 5 In.pdf
this is all of the information that I have please help Lab 5 In.pdf
 
The Fabrication And Modification Of T Cuas With Cellulose...
The Fabrication And Modification Of T Cuas With Cellulose...The Fabrication And Modification Of T Cuas With Cellulose...
The Fabrication And Modification Of T Cuas With Cellulose...
 
2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)2015 SURP Poster Presentation (Final)
2015 SURP Poster Presentation (Final)
 
490poster_Jake_F
490poster_Jake_F490poster_Jake_F
490poster_Jake_F
 
Brassica Rapa Lab Report
Brassica Rapa Lab ReportBrassica Rapa Lab Report
Brassica Rapa Lab Report
 
Poster_05022016
Poster_05022016Poster_05022016
Poster_05022016
 
Research/ International Drug Discovery Science and Technology Conference 2017
Research/ International Drug Discovery Science and Technology Conference 2017Research/ International Drug Discovery Science and Technology Conference 2017
Research/ International Drug Discovery Science and Technology Conference 2017
 
Lab Report Green Fluorescent Protein
Lab Report Green Fluorescent ProteinLab Report Green Fluorescent Protein
Lab Report Green Fluorescent Protein
 
science research paper 2012-2013
science research paper 2012-2013science research paper 2012-2013
science research paper 2012-2013
 
Biology 110 Online Evolution lab Student Directions 1.    Go to htt.docx
Biology 110 Online Evolution lab Student Directions 1.    Go to htt.docxBiology 110 Online Evolution lab Student Directions 1.    Go to htt.docx
Biology 110 Online Evolution lab Student Directions 1.    Go to htt.docx
 
Biology homework help
Biology homework helpBiology homework help
Biology homework help
 
Biology homework help
Biology homework helpBiology homework help
Biology homework help
 
Biology homework help
Biology homework helpBiology homework help
Biology homework help
 
Biology homework help
Biology homework helpBiology homework help
Biology homework help
 
1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docx1 Objectives Genetically transform bacteria with for.docx
1 Objectives Genetically transform bacteria with for.docx
 
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
Genotyping and subgenotyping of Trichophyton rubrum isolated from dermatophyt...
 
Biology homework help
Biology homework helpBiology homework help
Biology homework help
 
Biology homework help
Biology homework helpBiology homework help
Biology homework help
 

Plus de CiberGeneticaUNAM

Convocatoria CONCURSO GENÉTICA I 2021
Convocatoria CONCURSO GENÉTICA I 2021Convocatoria CONCURSO GENÉTICA I 2021
Convocatoria CONCURSO GENÉTICA I 2021CiberGeneticaUNAM
 
El nuevo horizonte del alzheimer
El nuevo horizonte del alzheimerEl nuevo horizonte del alzheimer
El nuevo horizonte del alzheimerCiberGeneticaUNAM
 
Presentación Intersemestral Genética 2020 Ciencias. UNAM.
Presentación Intersemestral Genética 2020 Ciencias. UNAM.Presentación Intersemestral Genética 2020 Ciencias. UNAM.
Presentación Intersemestral Genética 2020 Ciencias. UNAM.CiberGeneticaUNAM
 
TOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogaster
TOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogasterTOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogaster
TOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogasterCiberGeneticaUNAM
 
¿Quién es Antonio Lazcano Araujo?
¿Quién es Antonio Lazcano Araujo?¿Quién es Antonio Lazcano Araujo?
¿Quién es Antonio Lazcano Araujo?CiberGeneticaUNAM
 
Regulación de la expresióngénica en procariontes
Regulación de la expresióngénica en procariontesRegulación de la expresióngénica en procariontes
Regulación de la expresióngénica en procariontesCiberGeneticaUNAM
 
Conferencia frida-diaz-barriga-arceo
Conferencia frida-diaz-barriga-arceoConferencia frida-diaz-barriga-arceo
Conferencia frida-diaz-barriga-arceoCiberGeneticaUNAM
 
Presentacion genetica i_2017-1 (gpo 5347)
Presentacion genetica i_2017-1 (gpo 5347)Presentacion genetica i_2017-1 (gpo 5347)
Presentacion genetica i_2017-1 (gpo 5347)CiberGeneticaUNAM
 
Presentacion genetica i_américa_horacio
Presentacion genetica i_américa_horacioPresentacion genetica i_américa_horacio
Presentacion genetica i_américa_horacioCiberGeneticaUNAM
 
Olimpiada Metropolitana de Biología 2015
Olimpiada Metropolitana de Biología 2015Olimpiada Metropolitana de Biología 2015
Olimpiada Metropolitana de Biología 2015CiberGeneticaUNAM
 
Convocatoria de Especializaciones Facultad de Ciencias UNAM
Convocatoria de Especializaciones Facultad de Ciencias UNAMConvocatoria de Especializaciones Facultad de Ciencias UNAM
Convocatoria de Especializaciones Facultad de Ciencias UNAMCiberGeneticaUNAM
 
Especialización en Biología para el Bachillerato
Especialización en Biología para el BachilleratoEspecialización en Biología para el Bachillerato
Especialización en Biología para el BachilleratoCiberGeneticaUNAM
 
Ejercicio sobre el grupo sanguíneo ABO
Ejercicio sobre el grupo sanguíneo ABOEjercicio sobre el grupo sanguíneo ABO
Ejercicio sobre el grupo sanguíneo ABOCiberGeneticaUNAM
 
Gametas que puede formar un triple heterocitogo
Gametas que puede formar un triple heterocitogoGametas que puede formar un triple heterocitogo
Gametas que puede formar un triple heterocitogoCiberGeneticaUNAM
 
Modelo formación de gametas 5469
Modelo formación de gametas 5469Modelo formación de gametas 5469
Modelo formación de gametas 5469CiberGeneticaUNAM
 

Plus de CiberGeneticaUNAM (20)

Convocatoria CONCURSO GENÉTICA I 2021
Convocatoria CONCURSO GENÉTICA I 2021Convocatoria CONCURSO GENÉTICA I 2021
Convocatoria CONCURSO GENÉTICA I 2021
 
El nuevo horizonte del alzheimer
El nuevo horizonte del alzheimerEl nuevo horizonte del alzheimer
El nuevo horizonte del alzheimer
 
Genes y ambiente
Genes y ambienteGenes y ambiente
Genes y ambiente
 
Presentación Intersemestral Genética 2020 Ciencias. UNAM.
Presentación Intersemestral Genética 2020 Ciencias. UNAM.Presentación Intersemestral Genética 2020 Ciencias. UNAM.
Presentación Intersemestral Genética 2020 Ciencias. UNAM.
 
TOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogaster
TOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogasterTOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogaster
TOXICIDAD Y RESISTENCIA A PESTICIDAS EN Drosophila melanogaster
 
Presentacion genetica 2017
Presentacion genetica 2017Presentacion genetica 2017
Presentacion genetica 2017
 
¿Quién es Antonio Lazcano Araujo?
¿Quién es Antonio Lazcano Araujo?¿Quién es Antonio Lazcano Araujo?
¿Quién es Antonio Lazcano Araujo?
 
Regulación de la expresióngénica en procariontes
Regulación de la expresióngénica en procariontesRegulación de la expresióngénica en procariontes
Regulación de la expresióngénica en procariontes
 
ALAG 2016
ALAG 2016ALAG 2016
ALAG 2016
 
Conferencia frida-diaz-barriga-arceo
Conferencia frida-diaz-barriga-arceoConferencia frida-diaz-barriga-arceo
Conferencia frida-diaz-barriga-arceo
 
Presentacion genetica i_2017-1 (gpo 5347)
Presentacion genetica i_2017-1 (gpo 5347)Presentacion genetica i_2017-1 (gpo 5347)
Presentacion genetica i_2017-1 (gpo 5347)
 
Milpa ritual imprescindible
Milpa ritual imprescindibleMilpa ritual imprescindible
Milpa ritual imprescindible
 
Presentacion genetica i_américa_horacio
Presentacion genetica i_américa_horacioPresentacion genetica i_américa_horacio
Presentacion genetica i_américa_horacio
 
Olimpiada Metropolitana de Biología 2015
Olimpiada Metropolitana de Biología 2015Olimpiada Metropolitana de Biología 2015
Olimpiada Metropolitana de Biología 2015
 
Especialidad presentación
Especialidad presentaciónEspecialidad presentación
Especialidad presentación
 
Convocatoria de Especializaciones Facultad de Ciencias UNAM
Convocatoria de Especializaciones Facultad de Ciencias UNAMConvocatoria de Especializaciones Facultad de Ciencias UNAM
Convocatoria de Especializaciones Facultad de Ciencias UNAM
 
Especialización en Biología para el Bachillerato
Especialización en Biología para el BachilleratoEspecialización en Biología para el Bachillerato
Especialización en Biología para el Bachillerato
 
Ejercicio sobre el grupo sanguíneo ABO
Ejercicio sobre el grupo sanguíneo ABOEjercicio sobre el grupo sanguíneo ABO
Ejercicio sobre el grupo sanguíneo ABO
 
Gametas que puede formar un triple heterocitogo
Gametas que puede formar un triple heterocitogoGametas que puede formar un triple heterocitogo
Gametas que puede formar un triple heterocitogo
 
Modelo formación de gametas 5469
Modelo formación de gametas 5469Modelo formación de gametas 5469
Modelo formación de gametas 5469
 

Dernier

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationRosabel UA
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 

Dernier (20)

Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Activity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translationActivity 2-unit 2-update 2024. English translation
Activity 2-unit 2-update 2024. English translation
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 

Eye color mutations chromatography drosophila

  • 1. Genotype to Phenotype: Investigating Eye Color Mutations Using Chromatography By Tara C. Thiemann, Truman State University (B.S. Honors Biology - 2001) Background It probably was in one of your very first biology classes when you learned that DNA is a genetic map and that DNA determines phenotype. Not long after this you learned that, through the processes of transcription and translation, DNA codes for the production of proteins. Both of these concepts are conceivable alone, but perhaps their relationship has eluded you. How can the production of proteins determine phenotype? The answer is enzymes. In the 1940’s, George W. Beadle and Edward L. Tatum, while working with the mold Neurospora, determined that DNA regulates cellular chemical reactions by controlling the synthesis of enzymes. Beadle and Tatum’s one-gene- one-enzyme hypothesis suggested that the information for the production of one enzyme comes from one gene and that a mutation of this gene may render the enzyme inactive. Without an active enzyme, the biochemistry and thus the phenotype of an organism is altered. It often takes several enzymes working together in an elaborate biochemical pathway to produce a substance that alters phenotype. In Drosphila two such pathways contribute to the eye color of the flies. The ommochrome pathway produces the brown eye pigments, and the pteridine pathway produces the yellow, red, and ultra- violet pigments. This lab will focus mainly on the 7 products of the pteridine pathway, which are shown in Figure 5.1. “Despite the many investigations carried out over many years, a real understanding of the interactions leading to the production of the wild type eye color phenotype in Drosophila melanogaster remains elusive.” (Reaume, Knecht and Chovnick, 1991). In other words, the exact mechanisms of the pteridine and ommochrome pathways are not known by your Biology 107 instructor — or by anyone else! However, researchers have built a working model (Figure 6.2) that seems to yield reasonably accurate predictions for how the two pathways work. Figure 5.1 — Seven pigments produced by the pteridine pathway.
  • 2. The actual pteridine and ommochrome pathways are substantially more complex than the model suggests. For example, some individual arrows actually represent a series of several reactions catalyzed by different genes. (Refer to the background section of the enzyme lab to become more familiar with the action of enzymes.) The following is a specific example of an enzyme-catalyzed reaction in the pteridine pathway. PDA Synthase 6-pyruvoyl [sepia] Pyrimidodiazepine tetrahydropterin (PDA) Figure 5.3 – Enzyme-catalyzed reaction. The gene sepia codes for the production of the enzyme PDA synthase. Since PDA is a precursor to the drosopterins (Figure 5.2), a mutation in sepia prevents the production of these red eye pigments and increases the production of the yellow pigment sepiapterin. The gene is named sepia because of the eye color resulting from its mutation. Similarly, the genes vermilion and scarlet code for enzymes involved in the ommochrome pathway. Mutations in these genes prevent the production of the brown pigment xanthommatin, resulting in bright red eyes. Not all mutations that affect eye color affect enzymes in the pigment pathways. For eye pigments to be made, several steps must occur. First, the starting substrate must be transported into the cell. Second, the pigments must be made within the cell using the enzyme pathway. Third, the pigments must be transported to the pigment granules, which are similar to lysosomes. The protein encoded by the brown gene affects the transport of the starting substrate (GTP) into the cell. The white gene affects the transport of both GTP (starting substrate for pteridine production) and tryptophan (starting substrate for ommochrome production). These proteins belong to a larger class of transport proteins whose other members include the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and multidrug resistance proteins in cancer cells. The CFTR protein is involved in the transport of Cl- ions, and the multidrug resistance proteins transport hydrophobic drugs out of cells, making them resistant to the effects of these drugs. Figure 5.2 — Current model of the pteridine and ommochrome pathways. Genes (pink) encode transport proteins (orange) and enzymes (green rectangles). Enzymes catalyze specific reactions (green arrows) that convert chemical precursors into pigments. Pigment colors are shown in parentheses; underlining denotes pigments visible only under UV light.
  • 3. The pteridines can be separated using a paper chromatography method developed by Hadorn and his research partner Herschel Mitchell in 1951. According to this method, the fruit flies are crushed onto a piece of filter paper that is in turn placed into a solvent mixture of propyl alcohol and ammonia. The capillary action of the paper pulls the solvent upward, and as the solvent passes through the crushed flies, the pteridines are dissolved. Since the structures of the various pteridines differ, they have distinct chemical and physical properties. These distinct properties allow the pigments to be carried different distances in the paper, thus separating the pigments. In this lab you will use chromatography to analyze the number and amount of pteridines found in homozygous wild (w+), white (w), brown (bw), scarlet (sc), sepia (se), and vermilion (ve) flies. Isosepiapterin (Yellow) Beaker Biopterin (Blue) 2-Amino-4-Hydroxypteridine (Blue) Filter Paper Sepiapterin (Yellow) Xanthopterin (Green-Blue) Crushed Fly Isoxanthopterin (Violet-Blue) Solvent Drosopterins (Red-Orange) Figure 5.4 – Diagram of Hadorn and Mitchell’s chromatography method. Objectives 1. Think about the role of enzymes in the production of pteridines, and understand how this relates genotype to phenotype. 2. Identify the pteridine pigments found in Drosophila with various eye-color mutations. 3. Gain experience using paper chromatography to separate organic molecules.
  • 4. Experimental Procedures Week 1 Because the sepia gene codes for an enzyme that converts A into B, we might reasonably predict that a mutation in this gene would increase the concentration of A while decreasing the concentration of B. We might also expect this same mutation to decrease the concentration of all pigments that are downstream of B in the metabolic pathway. 1. Using (diagrams X), predict the effect of each eye color mutation (w, bw, sc, se, vm) on the concentration of each pigment. Record your predictions in Table 5.1, using the following symbols: ++ : Much more than wild-type + : More than wild-type = : The same as wild-type – : Less than wild-type –– : Much less than wild-type Table 5.1 — PREDICTED concentration of pteridine pigments in Drosophila with different eye colors. Pigment Color Wild White Brown Scarlet Sepia Vermilion Isosepiapterin Yellow = Biopterin Blue = 2-amino-4- hydroxypteridine Blue = Sepiapterin Yellow = Xanthopterin Green-blue = Isoxanthopterin Blue-violet = Drosopterins Orange = 2. Cut a rectangle of Whatman No. 1 filter paper 15 × 20 cm in size. Draw a line in pencil parallel to and 2 cm away from one of the long edges. Mark this line at 3-cm intervals, making a total of 6 marks. (See Figure 5.5, at right.) 3. Etherize 4 flies of the same eye color. With the aid of a dissecting microscope, decapitate the flies with a razor blade. Crush the 4 heads onto one of the marks on the filter paper using a glass rod. Wash the rod with n-propyl alcohol. Discard the bodies in the fly morgue at the front of the lab. 4. Repeat Step 2 for each of the five remaining eye colors. To avoid contaminating your sample, wash the glass rod with solvent between each crushing, and do not touch the filter paper with your fingers. Let the spots dry for 5-10 minutes. 5. Staple the ends of the filter paper together so that it forms a cylinder with the Drosophila heads making a ring (facing out) around the bottom. The ends of the filter paper should not overlap. Place the cylinder into a 1000- ml jar with the heads down, and carefully note the height of the Drosophila heads with respect to the jar. Then remove the filter paper from the jar. Figure 5.5 — Chromatogram Setup.
  • 5. Perform the following steps in the fume hood. 6. Dispense 50-75 ml of the solvent into the jar. The level of solvent should be about 1 cm lower than the noted position of the crushed heads. Place the lid on the jar and let the solution sit for about 5 minutes to build up vapor pressure within the jar. 7. Remove the lid and place the cylinder (heads down) into the jar. The paper must not touch the sides of the jar, and the solvent must not touch the heads. If the solvent does touch the heads, remove the filter paper, dump the contaminated solvent, add new solvent to the jar, and replace the filter paper. 8. Place the lid on the jar and wrap foil around the entire jar to prevent light from damaging the pteridines. 9. Allow the chromatography to run for approximately 6 hours. Remove the paper from the jar and let the chromatogram dry in a well-ventilated area for several minutes. The chromatogram will be kept in the dark prior to viewing in next week’s lab. Week 2 1. View the chromatogram with UV light. For each pigment listed in Table 5.2, record whether that pigment is present in your wild-type flies. 2. Compare the observed concentration of each pigment in the five eye-color mutant lines (white, brown, scarlet, sepia, and vermilion) to the concentration in the wild-type flies. Record your observations in Table 5.2, using the same symbols as in Table 5.1. 3. Compare your predictions in Table 5.1 to your observations in Table 5.2. Evaluate how accurately the pathway model shown in Figure 5.2 allows you to predict the effects of each mutation. Table 5.2 — OBSERVED concentration of pteridine pigments in Drosophila with different eye colors. 4. Explain why flies that produce high concentrations of bluish pigments do not show any trace of blue in their eye color. (Hint: Do these pigments appear blue when viewed under visible light?) 5. Explain why flies that produce almost exactly the same amount of each pteridine pigment may nonetheless have dramatically different eye colors. Pigment Color Wild White Brown Scarlet Sepia Vermilion Isosepiapterin Yellow Biopterin Blue 2-amino-4- hydroxypteridine Blue Sepiapterin Yellow Xanthopterin Green-blue Isoxanthopterin Blue-violet Drosopterins Orange
  • 6. References Dreesen, T.D., D.H. Johnson and S. Henikoff, 1988. The Brown Protein of Drosophila melanogaster Is Similar to the White Protein and to Components of Active Transport Complexes. Molecular and Cellular Biology 8:5206- 5215. Ewart, G.D., D. Cannell, G.B. Cox and A.J. Howells, 1994. Mutational Analysis of the Traffic ATPase (ABC) Transporters Involved in Uptake of Eye Pigment Precursors in Drosophila melanogaster. The Journal of Biological Chemistry 269:10370-10377. Hadorn, E., 1962. Fractionating the Fruit Fly. Scientific American 206:100-110. Higgins, C.F., 1992. ABC Transporters: From Microorganisms to Man. Annual Review of Cell Biology 8:67- 113. Phillips, J.P. and H.S. Forrest, 1980. Ommochromes and Pteridines, pp. 596-609 in The Genetics and Biology of Drosophila, Vol. 2d, edited by M. Ashburner and T.R.F. Wright. Academic Press, New York. Reaume, A.G., D.A. Knecht and A. Chovnick, 1991. The rosy Locus in Drosophila melanogaster: Xantine Dehydrogenase and Eye Pigments. Genetics 129: 1099-1109