SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
SON and the Art of War - Small Cell System Design Issues for Self-Organising
Networks
Posted by kitkilgour Jun 4, 2012


“Successful Deployment is a result of Close Co-operation” – SON Tzu

This is a humorous pseudo-quote put out on Twitter a month or so ago, parodying what the ancient
Chinese military strategy master Sun Tzu, perhaps most famous for his book “The Art of War”, might
have said about modern cellular network deployment.

Self Organising Networks (SON) is an over-abused term with many products claiming to support it, and
there is much information on the web as to what it is, or might be, so I will only outline various aspects
of it and then focus on some small cell aspects. SON can come in a number of forms that broadly relate
to different stages in the deployment of a network, but the drivers remain keeping operator costs under
control as the demands on improving the user experience get tougher.

1. Self Configuration – 'Zero Touch' Plug and Play, when a cell and network is first being set up. This
involves doing things like
             o listening to the radio environment (and later mobile device measurements) to
                determine the neighbouring cells for handover purposes,
             o spot conflicts and errors in other cells' configurations,
             o automatically select certain operating values such as its frequency channel and
                scrambling code (for 3G).
             o Automatically connect to a provisioning server and then to the correct hierarchical
                elements in the network
Femtocells were the pioneers in this approach, with the anticipated scale of their deployment
demanding automation, with the AT&T Microcell from Cisco and ip.access being the leader in Zero
Touch operation, whilst the ip.access nanoGSM 2G picocell has been listening out for over a decade
now. The introduction of LTE has standardised many functions to assist with this, including getting
measurements from the handset to discover neightbours, known as ANR (automatic neighbor relation)

2. Self Optimisation - This is the continued fine tuning of a network when things are up and
running. Examples include improving key performance indicators such as call drop, or reducing ping-
pong handover between two cells

3. Self Healing - this is where a network automatically moves to compensate for an event such as a cell
shutting down.

Focusing on Self Optimisation for a while: as mentioned above one of the key things to try and prevent
is call drop during a handover between two cells. One of the standards terms given for improving this is
Mobility Robustness Optimisation (MRO). There are a whole range of things that can affect a handover,
but one could be that the source cell just didn’t have enough downlink coverage in a particular region
due to lack of power, whilst another could be that some of the handover parameters such as how long
to wait before handing over after the signal in the source cell becomes much weaker than the target.
The solutions could be different depending on the precise cause: one could lead to increasing the
transmit power of certain channels on the source cell (or the targeted cell), the other could be tweaking
the parameters in the source cell to handover earlier. In 3GPP certain parameters being used when the
radio link fails are put into a Radio Link Failure message when the mobile device re-connects to the
network, and sent back to the source cell.

The precise way that optimisation is decided isn’t specified, but there are a couple of points: if both cells
are ‘greedy’ and don’t cooperate then they could both try and increase transmission power up to their
maximum limits, solving nothing and just creating more interference for other cells nearby, and any
“solution” could have a knock-on effect nearby. So, one takeout is that a single cell cannot alone
completely optimise its own handover performance although it may be able to get some way, but in a
dense deployment of different cells of different sizes and technologies, there can, and there needs to
be, some higher level function making sure that one local approach or set of algorithms doesn't go off at
a tangent and damage achieving overall network goals. The same need for an addtional level or an
overall 'holistic' controller comes up again when you consider optimisation between different layers
(small cell, macrocell) or different radio access technologies (2G, 3G, LTE, and possibly WiFi).

Hybrid Model

For this reason the model of SON deployment and control that the industry seems to be adopting is a
hybrid model, where responsibility is devolved to the level where it can be dealt with most effectively.

Timeliness, Scalability and Cost
Effectiveness has to include timeliness as well as scalability and cost. For timeliness, this can range for a
cell shutting down suddenly - where neighbours should start compensating by increasing coverage
immediately - to the handover optimisation that I illustrated earlier, where many days could be needed
to gather the necessary data to make a decision. Scalability is an issue that particularly affects the small
cell space: if you have 1 Million small cells deployed then unplanned real-time communication with a
single management node handling everything requires careful handling, but which can be alleviated by
adding an extra layer to aggregate messages - the issue is more likely to affect already-deployed macro
equipment rather than small cell network equipment which was designed from scratch with scalability in
mind. A small macro 3G RNC might handle a few hundred cells and so expect to have to deal with
accumulating radio link failure messages from, say up to 1000 cells neighbouring its coverage area. If
each macro cell had 10 or 100 small cells in its area of coverage, then then the number of links to be
maintained suddenly gets a lot bigger.

From the cost perspective small cells are, well, small(er), expected to scale, and be much more
numerous than macrocells. Predictions have them being more numerous than macrocells worldwide in
less than 5 years. Consequently there has to some focus on keeping their costs down and think carefully
about the case for adding new functionality to the largest number of devices. There is a clearly a case for
this when the device operates autonomously, as this can save backhaul signalling and limit the peak
demand - the backhaul is an increasing consideration in both network deployment business and
technical models. As noted above, things that have to happen nearly immediately should be dealt with
as locally to the trigger problem as possible, and there is a case for doing more where gains can be
shown.

The figure below illustrates a way of going about handling the issues, but, like devolved government, it is
not the only way and many people will have views about it.




              Figure 1: Illustrative multi-layer SON control architecture (click to enlarge)

One of the advantages of being a system provider rather than supplying a single element is that you
have more choice in where to put the functionality and are better able to design it where the best
engineering option. In the case shown, there is going always going to be some intelligence in a 3G HNB,
at a minimum to carry out the initial self-configuration and detect when neighbouring cells undergo
significant changes (like going offline or accidentally deploying clashing radio parameters). At the next
level, if there is a dense deployment of small cells such as in an enterpris, or where an operator has
decided to have major focus on small cell coverage, possibly because of the large costs of deploying
macrocells, then some form of local cluster controller can be introduced as in region A - located either
geographically close, or virtualised as part of a controller for the whole network. The cluster controller
will aggregate messaging and talk to a higher layer control, as well as receive guidelines on how to
optimise from it. In region B there isn't yet a dense small cell deployment, although there is potential
inter-RAT optimisation. Consequently, apart from having a SON agent, would need to make its data
available in the correct format to the macro-system or the main RAT / inter-RAT SON control. Clearly, as
the deployment got denser, the case for a local controller becomes stronger.

In conclusion, SON is a key part of a mobile service provider's armoury in keeping the customer
experience good whilst seeking to keep operational and capital expenditure under control. It has great
prospects, but also many dimensions of deployment, and these will need to be addressed with careful
system design. The innovations that small cells bring also create oppotunities for large scale self-
organising networks and put the need for scalable, cost-effective system design into the limelight.

      For more discussion on everything mobile, visit the Service Provider Mobility Community at
                               www.cisco.com/go/mobilitycommunity.

Contenu connexe

Plus de Cisco Service Provider Mobility

Wi-Fi–Enabled Value-Added Services: Gain Insights from Cisco Mobile Customer...
Wi-Fi–Enabled Value-Added  Services: Gain Insights from Cisco Mobile Customer...Wi-Fi–Enabled Value-Added  Services: Gain Insights from Cisco Mobile Customer...
Wi-Fi–Enabled Value-Added Services: Gain Insights from Cisco Mobile Customer...Cisco Service Provider Mobility
 
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White PaperSimulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White PaperCisco Service Provider Mobility
 
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)Cisco Service Provider Mobility
 
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)Cisco Service Provider Mobility
 
IP Network Control Turning an Art into a Science (Customer Case Study)
IP Network Control Turning an Art into a Science (Customer Case Study)IP Network Control Turning an Art into a Science (Customer Case Study)
IP Network Control Turning an Art into a Science (Customer Case Study)Cisco Service Provider Mobility
 
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)Cisco Service Provider Mobility
 
El futuro cinematográfico de la industria inalámbrica
El futuro cinematográfico de la industria inalámbrica El futuro cinematográfico de la industria inalámbrica
El futuro cinematográfico de la industria inalámbrica Cisco Service Provider Mobility
 
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)Cisco Service Provider Mobility
 
Building Accurate Traffic Matrices with Demand Deduction (White Paper)
Building Accurate Traffic Matrices with Demand Deduction (White Paper)Building Accurate Traffic Matrices with Demand Deduction (White Paper)
Building Accurate Traffic Matrices with Demand Deduction (White Paper)Cisco Service Provider Mobility
 
Small-Cell Backhaul: Industry Trends and Market Overview
Small-Cell Backhaul: Industry Trends and Market OverviewSmall-Cell Backhaul: Industry Trends and Market Overview
Small-Cell Backhaul: Industry Trends and Market OverviewCisco Service Provider Mobility
 
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...Cisco Service Provider Mobility
 
MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...
MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...
MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...Cisco Service Provider Mobility
 
Cisco Activities at Small Cell Events, London: June 2013
Cisco Activities at Small Cell Events, London: June 2013Cisco Activities at Small Cell Events, London: June 2013
Cisco Activities at Small Cell Events, London: June 2013Cisco Service Provider Mobility
 

Plus de Cisco Service Provider Mobility (20)

Wi-Fi–Enabled Value-Added Services: Gain Insights from Cisco Mobile Customer...
Wi-Fi–Enabled Value-Added  Services: Gain Insights from Cisco Mobile Customer...Wi-Fi–Enabled Value-Added  Services: Gain Insights from Cisco Mobile Customer...
Wi-Fi–Enabled Value-Added Services: Gain Insights from Cisco Mobile Customer...
 
Defining the Business Case for Carrier-Grade Wi-Fi
Defining the Business Case for Carrier-Grade Wi-FiDefining the Business Case for Carrier-Grade Wi-Fi
Defining the Business Case for Carrier-Grade Wi-Fi
 
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White PaperSimulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
Simulate IP Fast Reroute Loop-Free Alternate (LFA) White Paper
 
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
Planning and Designing Networks with the Cisco MATE Portfolio (White Paper)
 
SP Wi-Fi Monetization Thought Leadership
SP Wi-Fi Monetization Thought LeadershipSP Wi-Fi Monetization Thought Leadership
SP Wi-Fi Monetization Thought Leadership
 
Small Cells in the Enterprise
Small Cells in the EnterpriseSmall Cells in the Enterprise
Small Cells in the Enterprise
 
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
Model Complex Routing with Cisco MATE Design External Endpoints (White Paper)
 
IP Network Control Turning an Art into a Science (Customer Case Study)
IP Network Control Turning an Art into a Science (Customer Case Study)IP Network Control Turning an Art into a Science (Customer Case Study)
IP Network Control Turning an Art into a Science (Customer Case Study)
 
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
Forecasting Traffic Growth and Impact with Cisco MATE Design (White Paper)
 
5G: Your Questions Answered
5G: Your Questions Answered5G: Your Questions Answered
5G: Your Questions Answered
 
El futuro cinematográfico de la industria inalámbrica
El futuro cinematográfico de la industria inalámbrica El futuro cinematográfico de la industria inalámbrica
El futuro cinematográfico de la industria inalámbrica
 
MATE Design (Data Sheet)
MATE Design (Data Sheet)MATE Design (Data Sheet)
MATE Design (Data Sheet)
 
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
Architecture for Mobile Data Offload over Wi-Fi Access Networks (White Paper)
 
Building Accurate Traffic Matrices with Demand Deduction (White Paper)
Building Accurate Traffic Matrices with Demand Deduction (White Paper)Building Accurate Traffic Matrices with Demand Deduction (White Paper)
Building Accurate Traffic Matrices with Demand Deduction (White Paper)
 
Small-Cell Backhaul: Industry Trends and Market Overview
Small-Cell Backhaul: Industry Trends and Market OverviewSmall-Cell Backhaul: Industry Trends and Market Overview
Small-Cell Backhaul: Industry Trends and Market Overview
 
Evolving Mobile Data Application Services With SDN
Evolving Mobile Data Application Services With SDNEvolving Mobile Data Application Services With SDN
Evolving Mobile Data Application Services With SDN
 
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
MTC: Cuando las máquinas hablan (Otra moda que define la industria) - also av...
 
MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...
MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...
MTC: When Machines Communicate (A New Hot Topic Taking Over the Industry) - a...
 
The Mobile Paradox
The Mobile ParadoxThe Mobile Paradox
The Mobile Paradox
 
Cisco Activities at Small Cell Events, London: June 2013
Cisco Activities at Small Cell Events, London: June 2013Cisco Activities at Small Cell Events, London: June 2013
Cisco Activities at Small Cell Events, London: June 2013
 

Dernier

Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusZilliz
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdflior mazor
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 

Dernier (20)

Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
A Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source MilvusA Beginners Guide to Building a RAG App Using Open Source Milvus
A Beginners Guide to Building a RAG App Using Open Source Milvus
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

Son and the Art of War: Small Cell System Design Issues For Self-Organising networks

  • 1. SON and the Art of War - Small Cell System Design Issues for Self-Organising Networks Posted by kitkilgour Jun 4, 2012 “Successful Deployment is a result of Close Co-operation” – SON Tzu This is a humorous pseudo-quote put out on Twitter a month or so ago, parodying what the ancient Chinese military strategy master Sun Tzu, perhaps most famous for his book “The Art of War”, might have said about modern cellular network deployment. Self Organising Networks (SON) is an over-abused term with many products claiming to support it, and there is much information on the web as to what it is, or might be, so I will only outline various aspects of it and then focus on some small cell aspects. SON can come in a number of forms that broadly relate to different stages in the deployment of a network, but the drivers remain keeping operator costs under control as the demands on improving the user experience get tougher. 1. Self Configuration – 'Zero Touch' Plug and Play, when a cell and network is first being set up. This involves doing things like o listening to the radio environment (and later mobile device measurements) to determine the neighbouring cells for handover purposes, o spot conflicts and errors in other cells' configurations, o automatically select certain operating values such as its frequency channel and scrambling code (for 3G). o Automatically connect to a provisioning server and then to the correct hierarchical elements in the network Femtocells were the pioneers in this approach, with the anticipated scale of their deployment demanding automation, with the AT&T Microcell from Cisco and ip.access being the leader in Zero Touch operation, whilst the ip.access nanoGSM 2G picocell has been listening out for over a decade now. The introduction of LTE has standardised many functions to assist with this, including getting measurements from the handset to discover neightbours, known as ANR (automatic neighbor relation) 2. Self Optimisation - This is the continued fine tuning of a network when things are up and running. Examples include improving key performance indicators such as call drop, or reducing ping- pong handover between two cells 3. Self Healing - this is where a network automatically moves to compensate for an event such as a cell shutting down. Focusing on Self Optimisation for a while: as mentioned above one of the key things to try and prevent is call drop during a handover between two cells. One of the standards terms given for improving this is Mobility Robustness Optimisation (MRO). There are a whole range of things that can affect a handover,
  • 2. but one could be that the source cell just didn’t have enough downlink coverage in a particular region due to lack of power, whilst another could be that some of the handover parameters such as how long to wait before handing over after the signal in the source cell becomes much weaker than the target. The solutions could be different depending on the precise cause: one could lead to increasing the transmit power of certain channels on the source cell (or the targeted cell), the other could be tweaking the parameters in the source cell to handover earlier. In 3GPP certain parameters being used when the radio link fails are put into a Radio Link Failure message when the mobile device re-connects to the network, and sent back to the source cell. The precise way that optimisation is decided isn’t specified, but there are a couple of points: if both cells are ‘greedy’ and don’t cooperate then they could both try and increase transmission power up to their maximum limits, solving nothing and just creating more interference for other cells nearby, and any “solution” could have a knock-on effect nearby. So, one takeout is that a single cell cannot alone completely optimise its own handover performance although it may be able to get some way, but in a dense deployment of different cells of different sizes and technologies, there can, and there needs to be, some higher level function making sure that one local approach or set of algorithms doesn't go off at a tangent and damage achieving overall network goals. The same need for an addtional level or an overall 'holistic' controller comes up again when you consider optimisation between different layers (small cell, macrocell) or different radio access technologies (2G, 3G, LTE, and possibly WiFi). Hybrid Model For this reason the model of SON deployment and control that the industry seems to be adopting is a hybrid model, where responsibility is devolved to the level where it can be dealt with most effectively. Timeliness, Scalability and Cost Effectiveness has to include timeliness as well as scalability and cost. For timeliness, this can range for a cell shutting down suddenly - where neighbours should start compensating by increasing coverage immediately - to the handover optimisation that I illustrated earlier, where many days could be needed to gather the necessary data to make a decision. Scalability is an issue that particularly affects the small cell space: if you have 1 Million small cells deployed then unplanned real-time communication with a single management node handling everything requires careful handling, but which can be alleviated by adding an extra layer to aggregate messages - the issue is more likely to affect already-deployed macro equipment rather than small cell network equipment which was designed from scratch with scalability in mind. A small macro 3G RNC might handle a few hundred cells and so expect to have to deal with accumulating radio link failure messages from, say up to 1000 cells neighbouring its coverage area. If each macro cell had 10 or 100 small cells in its area of coverage, then then the number of links to be maintained suddenly gets a lot bigger. From the cost perspective small cells are, well, small(er), expected to scale, and be much more numerous than macrocells. Predictions have them being more numerous than macrocells worldwide in less than 5 years. Consequently there has to some focus on keeping their costs down and think carefully
  • 3. about the case for adding new functionality to the largest number of devices. There is a clearly a case for this when the device operates autonomously, as this can save backhaul signalling and limit the peak demand - the backhaul is an increasing consideration in both network deployment business and technical models. As noted above, things that have to happen nearly immediately should be dealt with as locally to the trigger problem as possible, and there is a case for doing more where gains can be shown. The figure below illustrates a way of going about handling the issues, but, like devolved government, it is not the only way and many people will have views about it. Figure 1: Illustrative multi-layer SON control architecture (click to enlarge) One of the advantages of being a system provider rather than supplying a single element is that you have more choice in where to put the functionality and are better able to design it where the best engineering option. In the case shown, there is going always going to be some intelligence in a 3G HNB, at a minimum to carry out the initial self-configuration and detect when neighbouring cells undergo significant changes (like going offline or accidentally deploying clashing radio parameters). At the next level, if there is a dense deployment of small cells such as in an enterpris, or where an operator has decided to have major focus on small cell coverage, possibly because of the large costs of deploying macrocells, then some form of local cluster controller can be introduced as in region A - located either geographically close, or virtualised as part of a controller for the whole network. The cluster controller will aggregate messaging and talk to a higher layer control, as well as receive guidelines on how to optimise from it. In region B there isn't yet a dense small cell deployment, although there is potential inter-RAT optimisation. Consequently, apart from having a SON agent, would need to make its data available in the correct format to the macro-system or the main RAT / inter-RAT SON control. Clearly, as the deployment got denser, the case for a local controller becomes stronger. In conclusion, SON is a key part of a mobile service provider's armoury in keeping the customer experience good whilst seeking to keep operational and capital expenditure under control. It has great
  • 4. prospects, but also many dimensions of deployment, and these will need to be addressed with careful system design. The innovations that small cells bring also create oppotunities for large scale self- organising networks and put the need for scalable, cost-effective system design into the limelight. For more discussion on everything mobile, visit the Service Provider Mobility Community at www.cisco.com/go/mobilitycommunity.