SlideShare une entreprise Scribd logo
1  sur  35
Télécharger pour lire hors ligne
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


MED RESUMOS
NETTO, Arlindo Ugulino.
CARDIOLOGIA

                                                 ELETROCARDIOGRAMA
                                         (Professor Jorge Fonseca e Mario Toscano)

         O eletrocardiograma (ECG) € um exame m€dico na •rea de
cardiologia onde € feito o registro da varia‚ƒo dos potenciais el€tricos
gerados pela atividade el€trica do cora‚ƒo, garantida pelo
automatismo card„aco. Representa, em outras palavras, um valioso
registro do funcionamento da atividade el€trica card„aca.
         O aparelho que registra o eletrocardiograma € o
eletrocardiógrafo. A informa‚ƒo registrada no ECG representa os
impulsos do cora‚ƒo (isto €, o potencial elétrico das c€lulas
card„acas). Estes potenciais sƒo gerados a partir da despolariza‚ƒo e
repolariza‚ƒo das c€lulas card„acas. Normalmente, a atividade
el€trica card„aca se inicia no nodo sinusal (c€lulas auto-r„tmicas) que
induz a despolariza‚ƒo dos •trios e dos ventr„culos. Esse registro
mostra a varia‚ƒo do potencial el€trico no tempo, que gera uma
imagem linear, em ondas.
     Onda P: representa a despolariza‚ƒo atrial. A fibrilação atrial representam um defeito na contra‚ƒo do •trio que
         pode ser registrada por essa onda.
     Inervalo PR: retardo do impulso nervoso no n…do atrioventricular
     QRS: despolariza‚ƒo dos ventr„culos.
     Onda T: repolariza‚ƒo dos ventr„culos.

        Estas ondas seguem um padrƒo r„tmico, tendo denomina‚ƒo particular. Qualquer altera‚ƒo no ciclo card„aco
ser• convertida em uma anomalia nas ondas no eletrocardi…grafo. Para que isto fosse visto, foi necess•rio criar as
chamadas linhas de derivações, baseadas na padroniza‚ƒo das posi‚†es de eletrodos na pele do paciente a ser
avaliado.


HIST•RICO E EVOLU‚ƒO DO E LETROCARDIOGRAMA
     Augustus Waller (1887): obteu os primeiros registros da atividade
       el€trica do cora‚ƒo usando eletrosc…pio capilar com eletrodos precordiais.
     Willeim Einthoven (1903): fez uso de galvan‡metro e cria‚ƒo do
       eletrocardiograma moderno (com deriva‚†es bipolares). Por€m, sua
       in€rcia e o tempo necess•rio na corre‚ƒo matem•tica das curvas exigiam
       aperfei‚oamentos. Por isso, Einthoven dedicou-se ao estudo do
       galvan‡metro de bobina de Ader e calculou que as caracter„sticas do
       aparelho melhorariam o seu desempenho para o objetivo visado. O
       galvan‡metro de corda, criado por ele possu„a uma superioridade t€cnica
       incontest•vel sobre o aparelho elaborado por Ader. Einthoven passou a
       usar as trˆs deriva‚†es hoje ainda empregadas como padrƒo. Apesar de
       seu aparelho ter o inconveniente do peso e tamanho, prosseguiu seus
       estudos. Einthoven estudou a influˆncia dos movimentos respirat…rios e
       das mudan‚as de posi‚ƒo do corpo sobre o ECG. Esses trabalhos
       levaram-no ‰ concep‚ƒo do chamado esquema do triŠngulo equil•tero:
       obteve deriva‚†es bipolares dos membros (I, II e III) usando eletrodos
       perif€ricos, em que o cora‚ƒo estaria no centro desse triangulo. Seu
       ‹ltimo aperfei‚oamento do aparelho foi a cria‚ƒo do galvan‡metro de
       corda de v•cuo, com o qual levou ao m•ximo a sensibilidade do
       instrumento. Em 23 de outubro de 1924 foi-lhe concedido o Prˆmio Nobel
       de Fisiologia e Medicina daquele ano, por sua descoberta do mecanismo
       do ECG. Foi dada por ele a nomenclatura das ondas P, QRS e T.
     Wilson (1934): desenvolveu a central terminal de potencial zero e as
       deriva‚†es unipolares (deriva‚oes V).
     American Heart Association – Cardiac Society of Great Britain and
       Ireland (1938): realizou a padroniza‚ƒo das deriva‚†es precordiais V1-6.
     Kossan e Johnson (1935): descobriu as deriva‚†es VR, VL e VF.
     Golberger (1942): desenvolveu as deriva‚†es aVR, aVL e aVF.



                                                                                                                               1
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


N O‚„ES A N…TOMO -FISIOL•GICAS DO C ORA‚ƒO

POTENCIAL ELÉTRICO CELULAR CARDÍACO
          No músculo cardíaco, o potencial de ação é provocado pela abertura de dois tipos de
canais: (1) os mesmos canais rápidos de sódio, como no músculo estriado esquelético, e (2) outra
população, inteiramente diferente, de canais lentos de cálcio (canais cálcio-sódio). Essa segunda
população, tem uma abertura mais lenta e, o que é mais importante, permanecem abertos por
vários décimos de segundo. Durante esse tempo, grande quantidade de íons cálcio e sódio flui, por
esses canais, para o interior da fibra muscular cardíaca, o que mantém o período prolongado de
despolarização, causando o potencial de Platô do potencial de ação.
          Em resumo, na despolarização, ocorre a abertura de canais rápidos de sódio, associado à
abertura dos canais lentos de cálcio. O influxo de cálcio inicia após o fechamento dos canais de
sódio e perdura por 0,2 a 0,3 segundos. Este influxo de cálcio inibe a abertura dos canais de
potássio retardando a repolarização por 0,2 a 0,3 segundos, que é o tempo de duração do Platô.
Após este tempo, os canais lentos de cálcio se fecham e a repolarização procede normalmente,
através do efluxo de íons potássio. A membrana não se repolariza imediatamente após a
despolarização, permanecendo a despolarização em um platô por alguns milissegundos, antes que
se inicie a repolarização (Músculo atrial  platô de 0.2 s; Músculo ventricular  platô 0.3 s).
          O potencial de platô regula a contração cardíaca fazendo com que os átrios se contraiam
antes que os ventrículos. O platô, em resumo, é responsável por:
      Aumentar a duração do tempo da contração muscular de 3 a 15 vezes mais do que no
          músculo esquelético.
      Permitir que os átrios se contraiam antes da contração dos ventrículos.
      Manter uma assincronia entre a sístole atrial e a sístole ventricular

Fases do potencial de ação.
                                                         Fase 0: Fase inicial de rápida despolarização. Representa a abertura dos
                                                          canais rápidos de Na+ com grande influxo para o interior da célula. É
                                                          representada por uma linha vertical ascendente.
                                                         Fase 1: É uma pequena e rápida repolarização. Representa o
                                                          fechamento dos canais rápidos de Na+ e abertura do canais lentos de K+
                                                          com um efluxo de K+ para o exterior da célula. É representada por uma
                                                          pequena linha vertical descendente.
                                                         Fase 2: Representa a abertura dos canais lentos de Ca+ com grande
                                                          influxo de Ca+ para o interior da célula. Representada por uma linha
                                                          horizontal representando a duração da contração muscular (Platô).
                                                          Ocorre durante a fase do platô um efluxo lento de K+ para o exterior da
                                                          célula. Mesmo com a reserva de cálcio existente no retículo
                                                          sarcoplasmático, a concentração muscular cardíaca necessita de uma
                                                          demanda de cálcio extracelular a mais, que é transportada pelos túbulos
                                                          T.
                                                         Fase 3: Início da Fase de repolarização. Representa a abertura dos
                                                          canais lentos de K+ com grande efluxo de K+ para o exterior da célula.
                                                          Restabelece a diferença de potencial elétrico.
                                                         Fase 4: Fase final da repolarização. Retorno ao potencial negativo de
                                                          repouso, onde as concentrações iônicas são restabelecidas.

FISIOLOGIA DO MÚSCULO CARDÍACO
          O coração é formado por três tipos principais de musculo cardíaco: músculo atrial, músculo ventricular e fibras
musculares especializadas excitat†rias e condutoras.
          O musculo do tipo atrial e ventricular contraem-se de forma muito semelhante à do
musculo esquelético, exceto que a velocidade de contração é bem maior. A fibra muscular cardíaca
corresponde à célula do músculo cardíaco, que esta dividido nas seguintes camadas (de fora para
dentro): epimísio, perimísio e endomísio. Ela é uma fibra estriada devido à organização dos
miofilamentos (actina e miosina), sendo separadas uma das outras por discos intercalados (GAP
Juncion), que se originam de invaginações da membrana da fibra. As fibras musculares organizam-
se como treliças, em que as fibras se dividem e se recombinam. A membrana celular une-se uma
as outras formando junções abertas, que permitem a passagem de íons de uma célula para a outra
com facilidade.
          O músculo cardíaco é formado por muitas células individuais conectadas em série,
formando um sincício atrial e ventricular. O potencial de ação se propaga de uma célula para outra
com facilidade, através dos discos intercalados.
          Por outro lado, as fibras excitatórias e condutoras contraem-se muito fracamente, pois
apresentam poucas fibrilas contráteis de miosina (são as chamadas células P, que servem apenas
para conduzir estúmulos); porém, exibem ritmicidade e velocidade de condução variável, formando
um sistema excitatório que controla a ritmicidade da contração cardíaca, formando um sistema
excitatório (sistema de condução) que controla a ritmicidade da contração cardíaca.


                                                                                                                                2
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


                                                        Este sistema de condu‚ƒo card„aca € formado pelo nó sinusal ou
                                               sinuatrial (o chamado marca-passo natural do cora‚ƒo), feixes internodais
                                               (localizados entre os dois nodos princiais do cora‚ƒo, sendo respons•veis ainda
                                               pela excita‚ƒo atrial), nó atrioventricular (tem a importante fun‚ƒo de retardar o
                                               impulso el€trico que nele chega para que os ventr„culos se encham de sangue e se
                                               esvaziem em tempos diferentes com rela‚ƒo aos •trios), feixe de His (que conduz
                                               o potencial el€trico para toda a musculatura ventricular) e as fibras de Purkinje
                                               (ramifica‚†es do feixe de His respons•veis por distribuir de forma uniforme os
                                               impulsos el€tricos nas paredes ventriculares). Conhecem-se, hoje, trˆs vias gerais
                                               de condu‚ƒo auricular: os feixes internodais anterior, m€dio e posterior (via de
                                               Thorel).
                                                        Como veremos logo a seguir, nƒo existe conexƒo direta entre as fibras
                                               musculares atriais e ventriculares devido ao anel valvar fibroso que isola dos dois
                                               sinc„cios – a ‹nica forma de passagem de est„mulos se faz pelo n… AV e pelo feixe
                                               de His.
      Emboram sejam estruturalmente semelhantes, existem diferen‚as eletrofisiol…gicas importantes entre as c€lulas que
comp†em o n… sinusal e a c€lula muscular.
    As c€lulas do n… AV sƒo consideradas células de resposta rápida que, no repouso, como qualquer c€lula, apresenta seu
      interior negativo (com cerca de -60 mV) e exterior positivo. Quando € excitada, passa a receber grandes concetra‚†es de
      s…dio, que fazem com que o potencial interno da membrana fique cada vez mais positivo; at€ que mais canais de s…dio
      sejam ativados, aumentem o influxo de s…dio e debelem o potencial de a‚ƒo celular, fazendo com que a c€lula se contraia e
      envie o est„mulo nervoso. Neste momento, o pot•ssio come‚a a deixar a c€lula no intuito de negativar a face interna da
      membrana. Isto faz com que a c€lula repolarize. Todo este mecanismo ocorre de forma autom•tica e r•pida, da„ a
      considera‚ƒo de marca-passo card„aco ao n…do sinusal.
    A célula de resposta lenta, por sua vez, que € representada pela fibra muscular card„aca, apresenta um potencial
      intramembranar de -50 mV. Quando excitada, o s…dio faz com que ela despolarize mais facilmente. No momento da
      repolariza‚ƒo, al€m da sa„da do pot•ssio, ocorre a entrada de c•lcio (por se tratar de uma fibra muscular). Como o c•lcio €
      um „on positivo, a c€lula mant€m um plat‡ positivo, o que nƒo ocorre nas c€lulas de condu‚ƒo. Portanto, o „on c•lcio serve
      para manter a repolariza‚ƒo celular e para contra‚ƒo da pr…pria fibra muscular, at€ que o pot•ssio e o c•lcio deixem a c€lula,
      repolarizando a c€lula muscular por completo.

SINCÍCIO MUSCULAR
         Diferentemente de qualquer outro …rgƒo, as fibras que comp†e o cora‚ƒo devem funcionar de maneira uniforme e regulada.
Dessa maneira, o cora‚ƒo € considerado um sinc„cio, formado por v•rias c€lulas musculares card„acas, no qual as c€lulas card„acas
estƒo inteconectadas de tal modo que, quando uma dessas c€lulas € excitada, o potencial de a‚ƒo se propaga para todas as demais,
passando de c€lula para c€lula por toda a treli‚a de interconex†es.
         Na verdade o cora‚ƒo € formado por dois sinc„cios: o sincício atrial, que forma as paredes dos dois •trios, e o sincício
ventricular, que forma as paredes dos dois ventr„culos. Os •trios estƒo separados dos ventr„culos por um tecido fibroso que circunda
as aberturas das valvas atrioventriculares (AV) entre os •trios e os ventr„culos. Quando o impulso € criado no nodo sinuatrial
(localizado no •trio direito), normalmente, ele nƒo € passado diretamente para o sinc„cio ventricular. Ao contr•rio, somente sƒo
conduzidos do sinc„cio atrial para o ventricular por meio de um sistema especializado de condu‚ƒo chamado feixe AV. Essa divisƒo
permite que os •trios se contraiam pouco antes de acontecer a contra‚ƒo ventricular, o que € importante para a eficiˆncia do
bombeamento card„aco.

ELETROFISIOLOGIA
          A c€lula mioc•rdica em repouso (polarizada) tem elevada concentra‚ƒo de pot•ssio, e apresenta-se negativa em rela‚ƒo ao
meio externo que tem elevada concentra‚ƒo de s…dio. • medida que se propaga a ativa‚ƒo celular, ocorrem trocas i‡nicas e h• uma
tendˆncia progressiva da c€lula ser positiva, enquanto que o meio extracelular ficar• gradativamente negativo. A c€lula totalmente
despolarizada fica com sua polaridade invertida. A repolariza‚ƒo far• com que a c€lula volte ‰s condi‚†es basais.
          Uma onda progressiva de despolariza‚ƒo pode ser considerada como onda m…vel de cargas positivas. Assim, quando a onda
positiva de despolariza‚ƒo move-se em dire‚ƒo a um eletrodo na pele (eletrodo positivo), registra-se no ECG como uma deflexƒo
positiva (para cima). Por outro lado, quando a onda tiver sentido contr•rio, ou seja, quando a onda de despolariza‚ƒo vai se afastando
do eletrodo, tem-se uma deflexƒo negativa no ECG (Teoria do Dipolo; vide OBS3). Quando nƒo ocorrer nenhuma atividade el€trica, a
linha fica isoel€trica, ou seja, nem positiva nem negativa.
          O n…dulo sinusal localizado no •trio direito € a origem do est„mulo de despolariza‚ƒo card„aca. Quando o impulso el€trico se
difunde em ambos os •trios, de forma concˆntrica, em todas as dire‚†es, produz a onda P no ECG. Assim, a onda P representa a
atividade el€trica sendo captada pelos eletrodos exploradores sensitivos cutŠneos e, ‰ medida que essa onda de despolariza‚ƒo
passa atrav€s dos •trios, produz uma onda de contra‚ƒo atrial.
          A seguir, a onda de despolariza‚ƒo dirige-se ao n…dulo atriventricular (AV), onde ocorre uma pausa de 1/10 de segundo,
antes do impulso estimular verdadeiramente o n…dulo, o que permite que o sangue entre completamente nos ventr„culos. Este
intervalo no gr•fico € representado pelo segmento PR.
          Ap…s essa pausa, o impulso alcan‚a o n…dulo AV, que € um retransmissor do impulso el€trico para os ventr„culos, atrav€s do
feixe de His, com seus ramos direito e esquerdo, e das fibras de Purkinje, tendo como consequˆncia a contra‚ƒo dos ventr„culos.
Essa despolariza‚ƒo forma v•rias ondas, chamadas de “complexo QRS”.
          Existe uma pausa ap…s o complexo QRS, representado pelo segmento ST, de grande importŠncia na identifica‚ƒo de
isquemias e, ap…s essa pausa, ocorre a repolariza‚ƒo do ventr„culo e, consequentemente, relaxamento ventricular, formando a onda
T. A repolariza‚ƒo atrial nƒo tem expressƒo eletrocardiogr•fica, pois est• mascarada sob a despolariza‚ƒo ventricular que,
eletricamente, tem uma voltagem maior em rela‚ƒo ‰ outra.

                                                                                                                                    3
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


ONDAS   DE   D ESPOLARIZA‚ƒO   E DE   REPOLARIZA‚ƒO   NO   ECG

ONDAS DE DESPOLARIZAÇÃO
  1. Como vimos, a c€lula encontra-se em repouso quando ela est•
     polarizada, em que a face interna de sua membrana apresenta cargas
     negativas e a face externa cargas positivas. O potencial de membrana
     de repouso € perdido quando h• um est„mulo, fazendo com que as
     cargas el€tricas se invertam: a c€lula torna-se positiva dentro e negativa
     no exterior. Veja a fibra ao lado (A), em que metade esquerda encontra-
     se despolarizada e a metade direita polarizada. A corrente el€trica flui da
     •rea despolarizada para a •rea polarizada. O eletrodo direito est• sobre
     a •rea negativa e o eletrodo esquerdo sobre a •rea positiva, causando
     uma diferen‚a de potencial. O ECG registra uma onda positiva
     afastando-se na linha de base.
  2. Quando toda a fibra foi despolarizada (B), os eletrodos direito e esquerdo
     estƒo sobre uma •rea negativa, sem DDP, retornando a onda de
     despolariza‚ƒo para a linha de base. O ECG, nesse momento, registra
     uma onda positiva retornando ‰ linha de base.

ONDAS DE REPOLARIZAÇÃO
  1. O potencial de a‚ƒo retornar• ao potencial de repouso, tornando a c€lula negativa no interior e positiva no
     exterior. Metade direita da fibra (C) fica repolarizada e metade esquerda continua despolarizada. O eletrodo
     direito est• sobre uma •rea positiva e o eletrodo esquerdo sobre uma •rea negativa, causando uma DDP. O
     ECG registra uma onda negativa afastando-se da linha de base.
  2. Quando toda a fibra for repolarizada (D), os eletrodos direito e esquerdo estarƒo sobre uma •rea positiva, sem
     DDP entre eles, fazendo com que a onda da despolariza‚ƒo retorne ‰ linha de base. O ECG registra, nesse
     momento, uma onda negativa retornando ‰ linha de base.


RELA‚ƒO ENTRE     O   P OTENCIAL DE A ‚ƒO MONOF…SICO E  AS ONDAS QRS E T
                                                        Antes que a contra‚ƒo do m‹sculo possa ocorrer, a despolariza‚ƒo
                                                deve se propagar pelo m‹sculo, para iniciar os processos qu„micos da
                                                contra‚ƒo. Por tanto, a onda P ocorre no in„cio da contra‚ƒo dos •trios, e o
                                                complexo QRS ocorre no inicio da contra‚ƒo dos ventr„culos. Os
                                                ventr„culos permanecem contra„dos durante alguns milissegundos ap…s ter
                                                percorrido a repolariza‚ƒo, isto €, depois do termino da onda T.
                                                        Os •trios repolarizam cerca 0,2s ap…s a onda P. Isso ocorre no
                                                instante preciso que o complexo QRS come‚a a ser registrado no ECG. A
                                                onda P nƒo € representada no potencial de a‚ƒo monof•sico pois a massa
                                                ventricular e sua atividade el€trica € bem maior que a atrial, a ponto de
                                                mascar•-la.
                                                        A onda de repolariza‚ƒo ventricular € a onda T do ECG normal.
                                                     Fase ascendente do Potencial de A‚ƒo – Despolariza‚ƒo – QRS;
                                                     Fase descendente do Potencial de A‚ƒo – Repolariza‚ƒo –
                                                        segmento ST e onda T.

PAPEL DE REGISTRO DO ECG E CALIBRA‚ƒO DO ELETROCARDI•GRAFO
        Todos os registros do ECG sƒo feitos com linhas de calibra‚ƒo
apropriadas, no papel de registro. Estas linhas de calibra‚ƒo j• estƒo impressas
no papel. O papel € milimetrado, contendo quadrados pequenos (1mm x 1mm)
inseridos em quadrados grandes (5mm x 5mm), contendo 25 quadrados
pequenos cada quadrado grande. Cada mil„metro na horizontal equivale ‰ 0,04s
e cada mil„metro da vertical equivale a 0,1mv.
        As linhas verticais de calibra‚ƒo estƒo dispostas de modo que 10
divis†es pequenas, para cima e para baixo, no eletrocardiograma padrƒo
representam 1mV com positividade para cima e negatividade para baixo. As
linhas horizontais no eletrocardiograma sƒo linhas de calibra‚ƒo do tempo.
    1
OBS : Ao calibrar o aparelho ao papel, € registrado um gr•fico de padrƒo como representado na figura a cima, de forma
que ela atinja o espa‚o equivalente a dois quadrados grandes. Isso mostra que o ECG deve ser calibrado em 10 mm (N
 calibra‚ƒo normal), isto €, 1 mV.
OBS²: A velocidade padrƒo de impressƒo do registro € de 25 mm/s.

                                                                                                                             4
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1




REGISTROS DO ELETROCARDIOGRAMA N ORMAL
        • medida que o impulso el€trico se difunde ao
longo das fibras musculares card„acas, os eletrodos
de superf„cie cutŠnea realizam o registro gr•fico desta
atividade el€trica do cora‚ƒo na forma de ondas,
complexos (conjunto de v•rias ondas), segmentos
(linhas isoel€tricas) e intervalos (conjunto de
segmentos e ondas).
      Onda P: € devida aos potenciais el€tricos
        gerados durante a despolariza‚ƒo dos •trios
        antes de se contrair.
      Intervalo PR: do in„cio da contra‚ƒo atrial ao
        in„cio da contra‚ƒo ventricular (0,12 a 0,20 s).
      Segmento PR: fim da contra‚ƒo atrial ao in„cio
        da contra‚ƒo ventricular. Nƒo se estende at€
        a onda R, mas at€ a onda Q. Convencionou-
        se esta denomina‚ƒo pela simples questƒo da
        existˆncia da onda R em qualquer deriva‚ƒo.
      Complexo QRS: potenciais el€tricos gerados
        na despolariza‚ƒo dos ventr„culos.
      Segmento ST: fim da contra‚ƒo ventricular ao in„cio da repolariza‚ƒo ventricular.
      Onda T: potenciais el€tricos gerados na repolariza‚ƒo dos ventr„culos.
      Intervalo QT: mesma dura‚ƒo da contra‚ƒo ventricular (0,30 a 0,46s).
      Onda U: presente em casos de hipopotassemia, por exemplo.
      Intervalo RR: intervalo entre duas contra‚†es ventriculares. Pode ser chamada de intervalo RR ou Ciclo RR. • o
        intervalo entre duas ondas R. Corresponde a frequˆncia de despolariza‚ƒo ventricular, ou simplesmente
        freq‘ˆncia ventricular.

RELAÇÃO ENTRE A CONTRAÇÃO MUSCULAR E AS ONDAS DO ELETROCARDIOGRAMA
    Onda P – in„cio da contra‚ƒo atrial.
    Complexo QRS – in„cio da contra‚ƒo ventricular
    Onda T – onda de repolariza‚ƒo ventricular (0,20 a 0,35s ap…s o in„cio da despolariza‚ƒo
     ventricular).
    Onda T atrial – 0,15 a 0,20s ap…s a contra‚ƒo atrial (obscurecida pelo QRS).

RELAÇÃO ENTRE O POTENCIAL DE AÇÃO E AS ONDAS QRS E T
    Complexo QRS – aparece no in„cio do PA monof•sico (despolariza‚ƒo).
    Onda T – aparece no final do potencial de a‚ƒo monof•sico (repolariza‚ƒo).
    Linha isoel€trica – ausˆncia de potencial no ventr„culo totalmente despolarizado e
     totalmente polarizado.



                                                                                                                        5
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


   Serƒo definidas e detalhadas agora cada onda, complexo, intervalo e segmento do ECG normal.




ONDA P
        A onda P € devida aos potenciais el€tricos gerados durante a despolarização
dos dois átrios, antes de se contrair. A sua primeira metade representa a despolariza‚ƒo
do •trio direito e a segunda metade, do •trio esquerdo. A amplitude da onda P €, em
m€dia, de 0.25 mV, apresentando um tamanho normal de 2,5mm de altura.
    Duração: em DII, de 0,08 a 0,10 segundos (2 quadradinhos e meio).
    Morfologia: onda arredonda e monof•sica, podendo apresentar pequenos entalhes (depressƒo pr…ximo ao seu
        v€rtice) devido ‰ diferen‚a relativamente normal da contra‚ƒo dos dois •trios. Na taquicardia, apresenta-se
        pontiaguda.
    Amplitude: em DII, de 2,5 a 3,0 mm (0,25 a 0,3mV).
    Polaridade: Positiva em DI, DII e DIII. Negativa em aVR.

         Como vimos, cada metade da onda P representa um •trio. Por esta razƒo,
algumas patologias envolvendo os •trios de forma isolada podem ser facilmente
detectadas no ECG.
    A estenose mitral (redu‚ƒo do diŠmetro da valva atriovetrnciular esquerda) pode
    ser causada pela cardite p…s-estreptoc…cica, como manifesta‚ƒo tardia da febre
    reum•tica. Esta condi‚ƒo faz com que se acumule cada vez mais sangue no atrio
    esquerdo, aumentando a sua sobrecarga e, a longo prazo, o seu tamanho. A
    hipertrofia atrial esquerda produz um alongando a onda P no ECG.
    A hipertrofia atrial direita pode ocorrer em casos de hipertensƒo pulmonar, que
    reflete na insuficiˆncia ventricular direita e, tardiamente, na insuficiˆncia atrial
    direita, a qual cursa com uma hipertrofia atrial que se mostra, no ECG, na forma
    de uma onda P espiculada na sua primeira metade.
    Na estenose aortica, devido ‰ pouca sa„da de sangue do ventr„culo, h• um refluxo do mesmo para o •trio, o que
    tamb€m aumenta as suas fibras. Isso ocorre por exemplo em pacientes hipertensos (PA maior que 140/90). Nesse
    caso, haver• altera‚ƒo tamb€m na onda QRS.
    Em casos de comunicação interatrial (CIA) – doen‚a congˆnita em que nƒo h• a oclusƒo do forame oval
    embrion•rio – a onda P € prolongada devido ao aumento de carga sangu„nea a ser bombeada pelos atrios.

       Em resumo, devemos considerar os seguintes parŠmetros da onda P:
      Onda P negativa em DI, DII e/ou DIII representa dextrocardia (cora‚ƒo do lado direito) ou mau posicionamento
       dos eletrodos (causa mais comum).
      Quando o •trio direito est• crescido (devido a estenose tric‹spide ou estenose pulmonar), faz a onda P crescer
       em amplitude.
      Quando o •trio esquerdo est• crescido faz com que a onda P cres‚a em dura‚ƒo.




                                                                                                                        6
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


INTERVALO PR
         • o intervalo que corresponde desde o in„cio da onda P at€ in„cio do complexo QRS, ou seja, in„cio da contra‚ƒo
atrial ao in„cio da contra‚ƒo ventricular. Significa o registro gr•fico da despolariza‚ƒo de praticamente todo o sistema de
condu‚ƒo: transmissƒo do impulso desde o n… sinuatrial at€ os ramos do feixe de His e de Purkinje (por se tratar de um
pequeno contigente de fibras em compara‚ƒo ao m‹sculo card„aco, se mostra na forma de uma linha isoel€trica).
         • um indicativo da velocidade de condu‚ƒo entre os •trios e os ventr„culos e corresponde ao tempo de condu‚ƒo
do impulso el€trico desde o n…do atrio-ventricular at€ aos ventr„culos. Este intervalo € necess•rio para manter o ritmo
card„aco necess•rio para que os •trios e ventr„culos se contraiam em tempos diferentes.
      Duração: de 0,12 a 0,20s (3 a 5 quadradinhos).
              o Maior que 0,20s: Bloqueio atrio ventricular de est„mulo de 1’ grau (BAV 1’)
              o Menor que 0,12s: S„ndrome de Pr€-excita‚ƒo; S„ndrome de Wolf-Parkinson-White (causada por uma
                  fibra que conecta previamente as fibras de condu‚ƒo dos •trios com os ventriculos).

    A Síndrome de Wolff-Parkinson-White € caracterizada por uma arritmia card„aca causada por um sistema de
    condu‚ƒo el€trico an‡malo, que faz com que os impulsos el€tricos sejam conduzidos ao longo de uma via acess…ria
    das aur„culas at€ os ventr„culos, diminuindo o retardo que ocorreria no n… AV. • tambem uma forma de taquicardia,
    formada por uma condu‚ƒo atrioventricular adicional que impede condu‚ƒo normal do est„mulo do •trio at€ o n…dulo
    atrioventricular, causando o que chamamos de taquicardia supraventricular. A corre‚ƒo € cir‹rgica, sendo necess•ria
    a abla‚ƒo deste segmento acess…rio.

       O intervalo PR € assim chamado, mesmo nƒo compreendendo a pr…pria onda R (mas sim o in„cio da onda Q),
pois nem todas as deriva‚†es possuem a onda Q, mas todas possuem a onda R.

SEGMENTO PR
        Linha isoel€trica correspondente entre o fim da onda P e o in„cio do complexo QRS, representando o atraso
normal que acontece quando o est„mulo el€trico do cora‚ƒo alcan‚a o n… AV. Este atraso, como j• vimos, € necess•rio
para que haja a contra‚ƒo ventricular logo depois de completada a contra‚ƒo atrial, isto €: para que haja uma harmonia
de contra‚ƒo entre os dois sinc„cios card„acos. Tem dura‚ƒo m€dia de 0,08s (2 quadradinhos).

COMPLEXO QRS
       Complexo, como vimos, € um conjunto de ondas. O complexo QRS consiste na representa‚ƒo gr•fica da
despolariza‚ƒo ventricular, ou seja, da contra‚ƒo dos ventr„culos. • maior que a onda P em amplitude pois a massa
muscular dos ventr„culos € maior que a dos •trios. Anormalidades no sistema de condu‚ƒo geram complexos QRS
alargados e representam situa‚†es de emergˆncia.
     Duração: 0,10 a 0,12 segundos. Maior que 0,12s  Bloqueio de um ramo D ou E do Feixe de His. Nestes
       casos, apresenta entalhes importantes.
     Polaridade: depende da orienta‚ƒo do vetor S“QRS (que representa o vetor de despolariza‚ƒo ventricular).
       Vale salientar que, no complexo QRS, a primeira onda positiva sempre ser• a onda R, independente da
       deriva‚ƒo; a primeira onda negativa antes do R € a onda Q; a primeira onda negativa depois de R € a onda S.
     Morfologia normal: de V1 a V6, nesta ondem, a onda R aumenta e a onda S diminui em amplitude (r, rS, rS’, Q,
       qR, qRs).
     Amplitude: baixa voltagem: 5mm; R+S em V2 ≤ 9mm.

    A doença de Chagas causa bloqueio atrioventricular total (BAVT), causando um bloqueio no sistema de condu‚ƒo
    do impulso entre o •trio e o ventr„culo, alargando o complexo QRS.

         Se o complexo QRS estiver alargado, isso representa algum bloqueio no ramo direto ou esquerdo do Feixe de
His, ou a pr…rpia ausˆncia desse ramo. Isso faz com que o impulso, para ser propagado a todo o ventr„culo, seja
passado de c€lula em c€lula, a ponto de que o ventr„culo se contraia de forma errada e ineficiente, alargando o
complexo QRS devido a demora de propaga‚ƒo do impulso a toda a massa muscular. 5% da popula‚ƒo nasce com o
ramo direito do Feixe de His bloqueado.
         A repolariza‚ƒo auricular nƒo costuma ser registrada, pois € encoberta pela despolariza‚ƒo ventricular
(registrada pelo complexo QRS), evento el€trico concomitante e mais potente.

SEGMENTO ST
        O segmento ST € a linha isoel€trica que representa o intervalo entre o fim do complexo QRS (Ponto J) e o in„cio
da onda T. Corresponde ao per„odo entre fim da contra‚ƒo ventricular e o in„cio da repolariza‚ƒo ventricular, sendo
representada por uma linha isoel€trica.
        O desnivelamento do segmento ST € aceit•vel em at€ 1 mm; mais do que isso, podemos suspeitar das
seguintes altera‚†es, que devem ser diferenciadas por meio da cl„nica do paciente ou por marcadores bioqu„micos.



                                                                                                                           7
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


       Altera‚†es prim•rias da repolariza‚ƒo ventricular: sƒo as altera‚†es causadas por doen‚as coronarianas. Um
        infradesnivelamento nessa linha (mais que 1mm) € sinal de isquemia subendoc€rdica; um supradesnivelamento nessa
        linha € sinal de infarto agudo do mioc•rdio (isquemia subepic€rdica).
       Altera‚†es secund•rias da repolariza‚ƒo ventricular: caracterizada por uma sobrecarga ventricular. A sobrecarga do
        ventr„culo direito ou um bloqueio de ramo pode provocar um infradesnivelamento do segmento ST; j• o supradesnivelamento
        € sugestivo de sobrecarga ventricular esquerda.

ONDA T
      Onda arredondada que representa o final da repolariza‚ƒo ventricular, correspondendo, portanto, ao fim do
segmento ST. O seu parŠmetro mais importante € a morfologia.
    Dura•‚o: a medida est• inclusa no intervalo QT.
    Morfologia: € arredondada e assim€trica, em que a primeira por‚ƒo € mais lenta.
          o Sim€trica, pontiaguda e positiva  hiperpotassemia, isquemia subendocardica.
          o Sim€trica, pontiaguda e negativa  isquemia subepic•rdica.
    Amplitude: menor do que a amplitude do QRS.
    Polaridade: positiva na maioria das deriva‚†es: DIII, aVR, V1 e em crian‚as: V1, V2 e V3.

INTERVALO QT
         In„cio da contra‚ƒo ventricular at€ o fim da repolariza‚ƒo ventricular. Corresponde ao in„cio do complexo QRS
at€ o fim da onda T. O aumento em dura‚ƒo da onda QT significa aumento da repolariza‚ƒo, o que predisp†e ‰ arritmia.
     Dura•‚o: entre o in„cio do QRS e o fim da onda T normal: 0,30 – 0,46 seg. A dura‚ƒo do intervalo QT pode ser
         calculada pela f…rmula de Bazett (QT corrigido): QTcorrigido = QTmedido / √R-R.
         QT > 0,46  S„ndrome do QT longo, morte s‹bita, SMSI.

    O prolongamento do intervalo QT (S„ndrome do QT Longo Congˆnita) € um fator de risco para morte s‹bita independentemente
    da idade do paciente, de hist…ria de infarto do mioc•rdio, da freq‘ˆncia card„aca e de hist…ria de uso de drogas; os pacientes com
    intervalo QTc de > 0,44s tˆm 2 a 3 vezes maior risco de morte s‹bita que aqueles com intervalo QTc < 0,44s. A taxa de
    mortalidade em pacientes com SQTL nƒo tratados varia de 1 a 2% por ano. A incidˆncia de morte s‹bita varia de fam„lia para
    fam„lia como uma fun‚ƒo do gen…tipo.


DERIVA‚„ES ELETROCARDIOGR…FICAS
        Na superf„cie do corpo existem diferen‚as de
potencial consequentes aos fen‡menos el€tricos gerados
durante a excita‚ƒo card„aca. Estas diferen‚as podem ser
medidas e registradas. Para isto sƒo utilizados
galvan‡metros de tipo particular que constituem as
unidades fundamentais dos eletrocardi…grafos.
        Os pontos do corpo a serem explorados sƒo
ligados ao aparelho de registro por meio de fios
condutores (eletrodos). Dessa forma, obtˆm-se as
chamadas deriva•„es que podem ser definidas de
acordo com a posi‚ƒo dos eletrodos.
        A id€ia b•sica € observar o cora‚ƒo em diferentes
Šngulos, ou seja, cada deriva‚ƒo, representada por um
par de eletrodos (um positivo e um negativo), registra
uma vista diferente da mesma atividade card„aca. As
deriva‚†es podem ser definidas de acordo com a posi‚ƒo
dos eletrodos (chamados eletrodos exploradores) no
plano frontal (formando as deriva‚†es perif€ricas –
bipolares ou unipolares) e no plano horizontal (formando
as deriva‚†es precordiais, unipolares).

                                         OBS3: Teoria do Dipolo. O ECG € o registro gr•fico da proje‚ƒo dos vetores de ativa‚ƒo
                                         el€trica do cora‚ƒo, em linhas de deriva‚ƒo. Dipolo € o fen‡meno el€trico resultante de
                                         dois pontos justapostos e de cargas contr•rias. Chama-se de dipolo ao conjunto formado
                                         por duas cargas de mesmo m…dulo, por€m de sinais contr•rios, separadas por uma
                                         distŠncia d. O dipolo como grandeza vetorial apresenta: m…dulo (produto de uma das
                                         cargas pela distŠncia entre elas), dire•‚o (eixo do dipolo, linha unindo os dois p…los) e
                                         sentido (do p…lo negativo para o p…lo positivo).
                                         O eletrodo positivo do ECG que “olha” para a ponta da seta vetorial (resultante da
                                         despolariza‚ƒo card„aca) registra uma onda positiva. O eletrodo positivo que “olha” para a
                                         cauda da seta registra uma onda negativa.
OBS4: O sentido de despolariza‚ƒo do cora‚ƒo se d• de cima para baixo e da esquerda para a direita.
                                                                                                                                    8
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1



       Logo, todo ECG € composto por 12 deriva‚†es que permitem uma visƒo tridimensional do potencial de a‚ƒo
card„aco, de forma que as ondas sejam as mesmas para todas elas.
       Para conseguir estudar o cora‚ƒo de forma tridimensional, devemos dividir as deriva‚†es em dois planos:
     Derivações no Plano Frontal (Derivações de Membros ou Periféricas). Medem a diferen‚a de potencial entre
        os membros (bipolares) ou entre certas partes do corpo e o cora‚ƒo (unipolares). Coloca-se um eletrodo em
        cada bra‚o (direito/esquerdo) e um na perna esquerda, formando um triŠngulo (conhecido como triângulo de
        Einthoven). Na perda direita, coloca-se o fio terra, para estabilizar o tra‚ado. Deslocam-se as trˆs linhas de
        referˆncia, cruzando com precisƒo o t…rax (cora‚ƒo) e obt€m-se uma intersec‚ƒo, formando as deriva‚†es
        bipolares DI, DII e DIII. Em seguida, acrescentam-se outras trˆs linhas de referˆncia nesta intersec‚ƒo, com
        Šngulos de 30’ entre si e obt€m-se as deriva‚†es unipolares dos membros: aVR (direita), aVL (esquerda) e aVF
        (p€). Neste caso, usa-se “eletrodos de presilhas”.

      Derivações no plano horizontal (Derivações precordiais). Tˆm-se, com elas, uma visƒo como em um corte
       transversal do cora‚ƒo. Sƒo as deriva‚†es V1, V2, V3, V4, V5 e V6. Neste caso, usa-se “eletrodos de suc‚ƒo”.
       Medem a diferen‚a de potencial entre o t…rax e o centro el€trico do cora‚ƒo (n…dulo AV), e vƒo desde V1 (4’
       espa‚o intercostal, na linha paraesternal direita) a V6 (5’ espa‚o intercostal, na linha axilar m€dia esquerda). Em
       todas essas deriva‚†es, considera-se positivo o eletrodo explorador colocado nas seis posi‚†es diferentes sobre
       o t…rax, sendo o p…lo negativo situado no dorso do indiv„duo, por meio da proje‚ƒo das deriva‚†es a partir do
       n…dulo AV.


                                               DERIVAÇÕES BIPOLARES DO PLANO FRONTAL
                                                   DI: bra‚o direito (-) e bra‚o esquerdo (+).
                                                   DII: bra‚o direito (-) e perna esquerda (+).
                                                   DIII: bra‚o esquerdo (-) e perna esquerda (+).

                                               DERIVAÇÕES UNIPOLARES DO PLANO FRONTAL
                                                   aVR: eletrodo no bra‚o direito.
                                                   aVL: eletrodo no bra‚o esquerdo.
                                                   aVF: eletrodo na perna esquerda.

                                               DERIVAÇÕES DO PLANO HORIZONTAL
                                                   V1: 4’ Espa‚o intercostal direito, justaesternal. Avalia o cora‚ƒo direito.
                                                   V2: 4’ Espa‚o intercostal esquerdo, justaesternal. Avalia o cora‚ƒo
                                                     direito.
                                                   V3: Entre V2 e V4. Avalia uma regiƒo intermedi•ria.
                                                   V4: 5’ Espa‚o intercostal esquerdo, na linha hemiclavicular. Avalia uma
                                                     regiƒo intermedi•ria.
                                                   V5: 5’ Espa‚o intercostal esquerdo, na linha axilar anterior. Avalia o
                                                     cora‚ƒo esquerdo.
                                                   V6: 5’ Espa‚o intercostal esquerdo, na linha axilar m€dia. Avalia o
                                                     cora‚ƒo esquerdo.




                                                                                                                             9
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


AN…LISE DOS T RA‚ADOS
        As •reas mais importantes a serem consideradas depois de obtido o gr•fico do ECG sƒo: frequˆncia card„aca,
ritmo card„aco, eixo card„aco (QRS), sobrecarga de cŠmaras card„acas (e hipertrofia) e infarto.
        No eletrocardiograma normal, esperamos os seguintes achados:
     ParŠmetros t€cnicos: antes de mais nada, devemos avaliar se os eletrodos estƒo posicionados corretamente.
        Para isso, a onda P deve estar positiva em DI, DII e DIII e negativa em aVR.
     Frequˆncia card„aca: 70 – 100 bpm.
     Ritmo card„aco: sinusal.
     Eixo QRS: entre -30’ e +100’.
     Intervalo PR: 0,12 – 0,20.
     Intervalo QRS: menor que 0,12 s.
     Progressƒo do tamanho da onda R, ao longo das deriva‚†es V1 a V6.
     Intervalo QT: 0,30 – 0,46.
     Ausˆncia de: inversƒo de onda T, altera‚ƒo de segmento ST, Q patol…gica.


DETERMINAÇÃO DA FREQUENCIA CARDÍACA
       A frequência cardíaca € o n‹mero de vezes que o cora‚ƒo bate por minuto. O controle da Freq‘ˆncia card„aca
depende de v•rios fatores, entre eles: n„vel de atividade do sistema nervoso aut‡nomo; a‚†es hormonais;
automaticidade card„aca.
     O cora‚ƒo humano bate entre 60 e 100 vezes por minuto.
     Quando o n‹mero de batimentos € abaixo de 60 vezes por minuto, excluindo o valor 60, por conven‚ƒo tem-se a
       chamada bradicardia.
     Quando o n‹mero de batimentos € acima de 100 vezes por minuto, incluindo o 100, por conven‚ƒo tem-se a
       chamada taquicardia.

        A medi‚ƒo correta da frequˆncia card„aca por meio do ECG deve ser feita por meio dos seguintes passos:
     a) Método Correto: 1500/n’ de quadrados pequenos entre duas ondas R (intervalo RR), sabendo que 1 minuto
        tem 1500 quadrados pequenos (0,04 segundos x 1500 = 60 segundos).

     b) Método Prático: 300/n’ de quadrados grandes entre duas ondas R, sabendo que 1 minuto tem 300 quadrados
        grandes (0,20 x 300 = 60 segundos).


     c) Método por observação das linhas verticais e a onda R: € um modo que se leva em considera‚ƒo as linhas
        escuras verticais que delimitam um lado do quadrado grande e a onda R. Esse m€todo € feito da seguinte forma:
        primeiramente deve-se procurar no eletrocardiograma uma onda R que coincida exatamente na linha vertical
        escura. Achado a linha escura rente a onda
        R, marca-se as linhas escuras adiante delas
        com n‹meros decrescentes: 300 – 150 –
        100 – 75 – 60 – 50, que correspondem ao
        n‹mero de batimentos card„acos por
        minuto. Caso a pr…xima onda R coincidir na
        linha vertical escura (como na figura, 50),
        siginfica a frequˆncia card„aca do cora‚ƒo
        no momento do registro (como na figura, 50
        bpm). Caso nƒo haja uma rela‚ƒo direta
        entre a onda R e a linha, faz-se uma
        aproxima‚ƒo.


     d) Regra de Três: Cada intervalo RR corresponde a um batimento. Para facilitar o c•lculo, o papel € composto
        tamb€m de “quadrad†es”, que possuem cinco “quadradinhos” de 1 mm cada. Logo, 5 X 0,04 s = 0,2 s. A onda
        percorre o “quadradƒo” em 0,2 s. Precisamos saber a distŠncia em “quadradinhos” ou “quadrad†es” do intervalo
        RR. Imaginemos uma distŠncia entre o intervalo RR sendo de, aproximadamente, 4 quadrad†es, ou 4 X 0,2 s =
        0,8 s. Se eu sei que um batimento (intervalo RR) gasta 0,8 s, quantos batimentos eu terei em um minuto (60s)?
                                                  1 batimento ---- 0,8 s
                                                  x batimentos ---- 60 s
                                               x = 60/0,8 = 75 batimentos




                                                                                                                       10
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


DETERMINA†‡O DO RITMO CARDˆACO – ARRITMIAS
        A determina‚ƒo do ritmo card„aco € fundamental para avaliar se a ativa‚ƒo el€trica das fibras card„acas se faz
de maneira r„tmica, harm‡nica, ou se acontece na forma de uma arritmia.
        O termo arritmia cardŠaca define uma situa‚ƒo caracterizada por uma altera‚ƒo na frequˆncia, na regularidade
e no local de origem do est„mulo el€trico ou por um dist‹rbio na condu‚ƒo deste est„mulo (seja ao longo do •trio, dos
ventr„culos ou entre ambos). Qualquer uma destas altera‚†es € respons•vel por causar arritmias.
        Sabe-se que, o cora‚ƒo € composto por unidades celulares que tˆm a propriedade da excitabilidade. O
respons•vel por comandar todo o funcionamento el€trico do cora‚ƒo € o n… sinuatrial. Contudo, quando h• falhas nesta
ativa‚ƒo ou na condu‚ƒo do est„mulo el€trico (feita pelas c€lulas card„acas), imediatamente, outros focos de ativa‚ƒo
surgem na sequˆncia. A origem destes focos segue, logicamente, a sequˆncia do que viria a ser o sentido de condu‚ƒo
do est„mulo el€trico: primeiramente se formam focos ect…picos atriais, focos funcionais e, finalmente, focos ventriculares.
        Para a determina‚ƒo do ritmo card„aco, € fundamental a observa‚ƒo da onda P. Ela define se o ritmo € sinusal
ou se € consequente a focos ect…picos. Al€m disso, deve-se medir sempre o intervalo PR e o complexo QRS. Apesar de
o n…dulo sinoatrial ser o marca-passo do cora‚ƒo, qualquer outra •rea do sistema de condu‚ƒo ou do mioc•rdio pode
assumir o comando, temporariamente ou definitivamente, provocando arritmias.
        De um modo geral, temos:
     Ritmo sinusal (regular): caracteriza-se pela existˆncia de uma sequˆncia ritmada de ciclos card„acos entre 60 e
        100 bpm. Isto significa que, no ritmo card„aco normal, h• uma constante distŠncia entre ondas semelhantes.
        Para determinar se realmente o ritmo card„aco € sinusal, devemos seguir os passos logo adiante:
                1. Avaliar a existˆncia da onda P: esta deve ser arredondada e com frequˆncia de registro regular.
                2. Avaliar a existˆncia do complexo QRS: estes devem ser normais, estreitos e com frequˆncia regular.
                3. Avaliar a existˆncia de uma correla‚ƒo entre onda P e complexo QRS de 1:1, isto €: deve haver uma
                     onda P para cada complexo QRS.

       Arritmias: as arritmias, j• definidas, podem ser classificadas em dois grandes grupos: as bradiarritmias e as
        taquiarritmias. As bradiarritmias sƒo arritmias card„acas que se caracterizam por uma tendˆncia a reduzir a
        frequˆncia card„aca. Sƒo comumente causadas por doen‚as do n… sinuatrial e pelas doen‚as do n… •trio-
        ventricular. As taquiarritmias, por sua vez, fazem com que o cora‚ƒo experimente uma frequˆncia maior.
        Podem ser divididas em taquiarritmias supra-ventriculares (produzidas por dist‹rbios acima dos ventr„culos e do
        n… •trio-ventricular; podem ser subdivididas em atriais e •trio-nodais) e em taquiarritmias ventriculares (cuja
        origem se d• no pr…prio ventr„culo, obtendo um ritmo um pouco mais lento). Quanto as subdivis†es das
        arritmias, podemos destacar quatro grandes grupos que, em resumo, sƒo:
             o Ritmo vari€vel: arritmia sinusal, marca-passo migrat…rio e fibrila‚ƒo atrial.
                      Arritmia sinusal: verifica-se a existˆncia de ondas P idˆnticas no tra‚ado, demonstrado que o
                         in„cio do foco € no •trio, precisamente no n…dulo sinusal, por€m em ritmos diferenciados. Pode
                         indicar doen‚a coronariana.
                      Marca-passo migrat…rio (errante): caracteriza-se por ondas P de forma vari•vel, demonstrando
                         que o in„cio do foco € no •trio, por€m nƒo precisamente no n…dulo sinusal. • um ritmo causado
                         por diferentes posi‚†es do comando.
                      Fibrila‚ƒo atrial: apresenta um desenho todo “arrepiado”, cheio de ondas P min‹sculas,
                         causadas pela descarga de focos atriais m‹ltiplos. Nƒo h• um impulso que despolarize os •trios
                         de maneira completa, e somente por acaso de um impulso atravessa o n…dulo AV e de forma
                         arr„tmica.

            o   Batimentos suplementares e pausas: extra-s„stole, batimentos de escape e parada sinusal.
                     Extra-s„stole: € uma estimula‚ƒo prematura, proveniente de um foco ect…pico. Pode ser:
                          e) Extra-s„stole atrial: estimula‚ƒo prematura, proveniente de um foco atrial (nƒo o n…dulo
                              sinusal). Produz uma onda P anormal antes do tempo previsto.
                          f) Extra-s„stole nodal (juncional): estimula‚ƒo prematura, que se origina de uma descarga
                              ect…pica no n…dulo AV, de modo que o impulso caminha normalmente para baixo nos
                              ramos do feixe de His (nƒo apresenta onda P e o QRS € idˆntico aos demais).
                          g) Extra-s„stole ventricular (ESV): origina-se de um foco ect…pico ventricular, sem onda P e
                              com um QRS diferenciado (aberrante).




                                                                                                                          11
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1



           Batimentos de escape: ocorrem quando o marca-passo principal nƒo consegue produzir est„mulo
            durante um ou mais ciclos, surgindo no ECG uma •rea sem ondas. Pode ser um escape atrial,
            nodal ou ventricular.
           Parada sinusal: ocorre quando o marca-passo nƒo envia os est„mulos de comando e, ap…s uma
            pausa, um outro centro de comando assume a atividade com ritmo regular, mas em sua pr…pria
            frequˆncia, geralmente diferente da anterior.

o   Ritmos rápidos: taquicardia parox„stica, flutter e fibrila‚ƒo.
         Taquicardia parox„stica: significa frequˆncia card„aca r•pida, de in„cio s‹bito, originando-se,
           geralmente, de foco ect…pico. A frequ6encia pode variar de 150 a 250 bpm.
               a) Atrial: sequˆncia normal de ondas. Onda P pode nƒo aparecer.
               b) Nodal: originada no n…dulo AV, logo, nƒo h• ondas P.
               c) Ventricular: semelhante a uma sucessƒo r•pida de ESV.
          As taquicardias atriais e nodais sƒo chamadas de taquicardias supraventriculares.
         Flutter: taquicardia cuja frequˆncia card„aca encontra-se entre 200 a 300 bpm. Pode ser:
             a) Flutter atrial: se origina em um foco atrial ect…pico, com as ondas P apresentam-se em
                 sucessƒo r•pida, cont„nuas e idˆnticas.
             b) Flutter ventricular: € produzido por um ‹nico foco ventricular ect…pico, com aspecto
                 sinus…ide regular. O flutter ventricular quase invariavelmente evolui para a fibrila‚ƒo
                 ventricular, necessitando de uma desfibrila‚ƒo e ressuscita‚ƒo cardiopulmonar.




           Fibrila‚ƒo: taquicardia acima de 300 bpm. Pode ser:
              a) Fibrila‚ƒo atrial: numerosas deflex†es atriais ect…picas dando uma linha de base irregular.
                   Nƒo h• um impulso que despolarize os •trios de maneira completa, e somente por acaso
                   um impulso atravessa o n…dulo AV de forma r„tmica.
              b) Fibrila‚ƒo ventricular: € causada por muitos focos ect…picos disparados em freq‘ˆncias
                   diferentes, produzindo um ritmo ca…tico, irregular (aberrante) e fatal. Isto porque, na
                   fibrila‚ƒo ventricular, o cora‚ƒo nƒo € mais capaz de bombear sangue, caracterizando
                   uma parada card„aca) – uma condi‚ƒo de emergˆncia extrema.




o   Bloqueios cardíacos: bloqueio sinusal, bloqueio •trio-ventricular e bloqueio de ramo.
        Bloqueio sinusal (SA): o marca-passo card„aco p•ra temporariamente por um ou mais ciclos
           completos, mas retoma em seguida sua atividade de estimula‚ƒo.
        Bloqueio de AV (nodal): cria um retardo do impulso (atrial) em n„vel do n…dulo AV, produzindo
           uma pausa maior que a normal para estimula‚ƒo dos ventr„culos. Pode ser:
             a) BAV de 1’ grau: caracteriza-se por um intervalo PR maior que 0,2 segundos (equivalente a um
                 quadrado grande);
             b) BAV de 2’ grau: sƒo necess•rios dois ou mais impulsos atriais para estimular a resposta ventricular,
                 ou o intervalo PR aumenta progressivamente at€ nƒo haver mais resposta QRS (chamado fen‡meno
                 de Wenckebach);
             c) BAV de 3’ grau: bloqueio AV total, causando frequˆncias atriais e ventriculares independentes, com
                 frequˆncia ventricular, geralmente, entre 20 a 40 bpm.
        Bloqueio de ramo: tem como causa o bloqueio de um dos ramos do feixe de His, seja o direito ou
           o esquerdo. Assim, um ventr„culo se despolariza pouco depois do outro, fazendo com que dois
           QRS se juntem. Neste caso, o QRS € largo e observam-se duas ondas R (R e R’). Determina-se
           o lado bloqueado atrav€s das deriva‚†es V1 e V2 para o lado direito e V5 e V6 para o lado
           esquerdo.
                                                                                                                12
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


        De um modo geral, os dist‹rbios relacionados com as arritmias estƒo localizados nos principais s„tios de
bloqueio de condu‚ƒo que seguem: n… sinuatrial, n… atrioventricular e no pr…prio feixe de His (seja por bloqueio de um de
seus ramos ou dos dois – bloqueio completo). As altera‚†es que ocorrem na altura destes s„tios serƒo nossos focos de
estudo neste momento.

Bradiarritmias.
         As bradiarritmias, por princ„pio, sƒo definidas pela frequˆncia card„aca menor que 60 bpm. Ela € considerada
fisiol…gica durante o sono (por predom„nio noturno do sistema nervoso parassimp•tico, tanto a frequˆncia card„aca como
a pressƒo arterial sistˆmica diminuem neste per„odo). As causas patol…gicas podem ser classificadas em cardíacas ou
não-cardíacas.
        Bradiarritmias de etiologia card„aca: sƒo causadas, sobretudo, por infarto agudo do mioc•rdio (principalmente
           por falˆncia da A. coron•ria direita, respons•vel por irrigar, entre outras estruturas, os dois principais n…s
           card„acos: o n… sinuatrial e o n… atrioventricular), por doen‚a do n… sinusal, etc. De uma forma geral, os
           principais eventos que promovem as bradiarritmias envolvem, fundamentalmente, os n… sunusal e o n…
           atrioventricular.
        Bradiarritmias por causas nƒo-card„acas: hipotireoidismo, hipertensƒo intracraniana, hipotermia, etc.

        De uma forma geral, a classifica‚ƒo das bradiarritmias pode ser feita da seguinte maneira:
           1. Bradiarritmia sinusal: comum em indiv„duos considerados normais (atletas, por exemplo) ou nas
              seguintes causas: hipersensibilidade do seio carot„deo; disfun‚ƒo do n… sunusal; s„ndrome da
              braditaquicardia.
           2. Dist‹rbios da condu‚ƒo do est„mulo card„aco: podem acontecer por Bloqueios do n… atrioventricular
              (BAV) e por Bloqueios intraventricualres (BIV). Os BAV podem ser subdivididos em: BAV de 1’ grau;
              BAV de 2’ grau do tipo I, do tipo II ou do tipo 2:1; e BAV de 3’ grau.


     1. Bradiarritmia sinusal
         O ECG mostra um gr•fico com ritmo
sinusal, frequentemente. Contudo, a frequˆncia
card„aca € menor do que 60. Como j• vimos, €
fisiol…gica durante o sono ou no cora‚ƒo de um
atleta (considerado normal at€ 40 bpm,
aproximadamente). Contudo, pode ocorrer tamb€m
em condi‚†es patol…gicas, tais como: IAM do
ventr„culo direito (principal causa) e outras diversas
(idade avan‚ada, drogas, etc.).

        1.1. Doença do nó sinusal
        Algumas condi‚†es patol…gicas (principalmente, doen‚as auto-imune) ou idiop•ticas (como ocorre com
indiv„duos idosos) podem cursar com edema cr‡nico da regiƒo do n… sinuatrial, causando tal anormalidade card„aca. As
principais patologias relacionadas com a doen‚a do n… sinusal sƒo:
     Amiloidose                                                 Infiltra‚ƒo tumoral
     L‹pus eritematoso sistˆmico                                Doen‚a de Chagas
     Esclerodermia                                              Cirurgia card„aca
     Insuficiˆncia coronariana                                  Vagal
     Pericardite                                                Drogas

      Nesta condi‚ƒo, ocorre a elimina‚ƒo da onda P ou onda P invertida, de modo que o n… atrio-venticular assume o
comando da ritmicidade do cora‚ƒo.




       1.2. Distúrbios da condução do estímulo cardíaco
       Falando agora nƒo de dist‹rbios da produ‚ƒo do est„mulo el€trico do cora‚ƒo no n… sinusal, os dist‹rbios da
condu‚ƒo do est„mulo card„aco podem acontecer por disfun‚ƒo do n… atrioventricular (Bloqueio do n… atrioventricular ou
BAV) ou por disfun‚ƒo do feixe de His (Bloqueio intraventricular ou BIV).

                                                                                                                         13
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


        1.2.1. Bloqueio atrioventricular (BAV)
        O BAV acontece quando ocorre algum tipo de dificuldade na passagem do est„mulo do n… sinusal para os
ventr„culos. Consiste em um tipo de bloqueio extremamente frequente, presente em boa dos pacientes idosos (pois com
a idade, o tecido respons•vel por transmitir a condu‚ƒo dos •trios para os ventr„culos torna-se mais fibroso, al€m do
pr…prio retardo fisiológico da condução j• existente, que dura em torno de 0,12 – 0,20 segundos).
        Podemos classificar as BAV em:
     BAV de 1º grau: o crit€rio para o diagn…stico de BAV 1’ grau € a presen‚a de apenas um retardo na condu‚ƒo
         •trio-ventricular maior do que o fisiol…gico (isto €: PR > 0,20 segundos, com manuten‚ƒo das ondas P e QRS). A
         despolariza‚ƒo atrial € seguida de uma despolariza‚ƒo ventricular, por€m a condu‚ƒo € lenta. Nesta condi‚ƒo,
         sempre veremos onda P e complexo QRS; contudo, estarƒo mais afastados do que o normal.
         O BAV de 1’ grau nƒo € importante isoladamente, mas pode ser um sinal de cardiopatia isquˆmica, cardite
         reum•tica ou intoxica‚ƒo digit•lica.
         Para os pacientes h„gidos que apresentam BAV de 1’ grau, devemos prover um acompanhamento regular,
         realizando ECG a cada 6 meses. Se o dist‹rbio de condu‚ƒo progredir (isto €, evoluir para o 2’ grau ou para o 3’
         grau), ser• necess•ria uma interven‚ƒo m€dica; no entanto, enquanto o BAV se manter est•vel, apenas o
         acompanhamento € necess•rio.

       BAV de 2º grau: € caracterizado por uma falha intermitente fazendo com que o impulso nƒo atinja os ventr„culos
        (no ECG, caracteriza-se, portanto, por uma onda P sem QRS). Essa falha pode ocorrer no n… AV ou no feixe de
        His. O BAV de 2’ grau pode ser classificado em Mobitz tipo I (ou tipo Wenckebach), Mobitz tipo II e tipo 2:1.
            o Mobitz tipo I (ou fen‡meno de Wenckebach): ocorre um retardo progressivo na passagem do est„mulo do •trio para
                o ventr„culo, isto €, o intervalo PR aumenta progressivamente a cada batimento, at€ que haja uma interrup‚ƒo total,
                de modo que uma onda P falha em conduzir o est„mulo aos ventr„culos. Acontece, por exemplo, que o intervalo PR
                se apresenta com dura‚ƒo de 0,26, 0,28 e 0,32, nesta sequˆncia e, entƒo, deixa de existir, visto que o complexo
                QRS nƒo foi formado. A evolu‚ƒo natural desta condi‚ƒo pode culminar na forma‚ƒo de um BAV de 3’ grau.
            o Mobitz tipo II: caracterizado por uma sequˆncia normal e constante de transmissƒo do impulso que, de repente, €
                interrompida (€ neste momento que o QRS deixa de existir). Em outras palavras, a maioria dos batimentos originada
                no n… sinuatrial € normalmente conduzida, mas ocasionalmente, uma onda P nƒo € seguida por um complexo QRS.
                Diferentemente do BAV de 2’ grau tipo I, nƒo ocorre aumento progressivo do intervalo PR: no Mobitz tipo II, os
                intervalos PR se apresentam com a mesma dura‚ƒo e, de repente, deixa de existir pela nƒo-forma‚ƒo de um
                complexo QRS. Tamb€m pode evoluir para um bloqueio complexo e, por esta razƒo, deve ser criteriosamente
                acompanhado para evitar esta evolu‚ƒo, que pode complicar com arritmias graves (taquiarritmias, inclusive) e
                s„ndrome de Stokes-Adams (tontura, s„ncope por qualquer esfor‚o e queda).
            o BAV tipo 2:1: caracterizado por ondas P alternadas que nƒo sƒo conduzidas aos ventr„culos, tra‚ando um gr•fico
                caracter„stico: P-QRS-P—P-QRS-P—P-QRS-P, na razƒo de 2 ondas P para cada complexo QRS. O n… AV que
                apresenta tal bloqueio apresenta instabilidade muito grande, de forma que pode evoluir para um bloqueio total. Por
                esta razƒo, deve ser criteriosamente avaliado e acompanhado.

       BAV de 3º grau (BAV Total): nenhuma onda P passa ou nƒo tem sincronia alguma com o complexo QRS. Em
        outras palavras, caracteriza-se pela nƒo propaga‚ƒo da onda de despolariza‚ƒo do n… sinuatrial para o m‹sculo
        ventricular, o que gera onda P nƒo seguida de QRS. Com isso, os •trios deixam de apresentar qualquer rela‚ƒo
        de harmonia com os ventr„culos do ponto de vista el€trico: as ondas P geralmente se apresentam em uma
        frequˆncia bem regular, mas sƒo absolutamente independentes do QRS.
        Quando isso acontece, os ventr„culos sƒo excitados por um mecanismo de escape lento. Quando o escape se
        d• pelo feixe de His, o complexo QRS se apresenta estreito; quando o escape ocorre nas fibras de Purkinje, o
        QRS se mostra alargado.




                                                                                                                               14
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1



    5
OBS : Marca-passos (MP). Quando se tem BAV de 3º grau, podem existir complicações incompatíveis com a vida,
podendo complicar com síncope (por déficit de sangue para o cérebro). Para solucionar tal quadro, devemos implantar
marca-passos para realizar a estimulação artificial do coração em uma sequência compatível com a vida (em torno de 60
bpm). Os marca-passos são aparelhos que liberam impulsos elétricos para o coração através de eletrodos, causando
despolarização elétrica e subsequente contração cardíaca. No ECG, os marca-passos produzem complexos QRS
alargados. Estão disponíveis aparelhos de dois tipos:
     Provisório (transvenoso, esofagiano, transcutâneo). As indicações de marca-passo provisório estão sumarizadas
        abaixo:
           Como terapia inicial para implante de MP definitivo em bradicardias sintomáticas como: BAV de 3º grau
              (BAVT); Disfunção do nódulo sinusal sintomática (DNS) caracterizada por: bradicardia, parada sinusal,
              bloqueio sinuatrial e taquicardia paroxística (Síndrome Bradi-taqui).
           Bradicardias temporárias sintomáticas relacionadas a drogas: digoxina, diltiazem, B- bloqueador,
              amiodarona.
           Infarto agudo do miocárdio (IAM): IAM anterior com: surgimento de bloqueio de ramo direito (BRD) e PR >
              0,20s (200ms), Bloqueio de ramo direito (BRD) com hemibloqueio anterior esquerdo (HBAE), BRE agudo,
              BAV 2° grau Mobitz 2 (isto é: PR constante que de repente interrompe), BAVT; IAM inferior com: BAVT ou
              BAV 2°grau com instabilidade hemodinâmica, IAM de VD, com instabilidade hemodinâmica e BAVT,
              frequentemente necessitando de implante de MP dupla câmara para estimulo AV sequencial.
           Pós-operatório de cirurgia cardíaca: marcapasso epicárdico (eletrodos instalados durante cirurgia
              cardíaca).
           Controle de taquiarritmia com overdrive como: QT longo, Extra-sistolia atrial bloqueada, Taquicardia
              ventricular incessante, Taquicardia ventricular induzida por extra-sístole ventricular, Taquiarritmia
              ventricular dependente de bradicardia.
           Pós-operatório: história de Stokes-Adams, BAVT ou Mobitz II, Pausa sinoatrial prolongada.
           Bradicardia refratária durante ressuscitação ou choque hipovolêmico.
           Parada cardíaca em assístolia.
           Disfunção de MP definitivo.

       Definitivo: O MP pode ser indicado como um recurso terapêutico definitivo. O MP definitivo consiste em uma
        ferramenta fundamental para melhorar a qualidade de vida do idoso. A American Heart Association junto com o
        American College of Cardiology determinaram as indicações de MP definitivo de acordo com os trabalhos
        existentes na literatura atual em classes, conforme será descrito a seguir.
            o Classes I: todas as condições em que há concordância para colocação de um MP;
            o Classes II: condições em que pode ser indicada a colocação do MP, porém há discordância sobre a
                 necessidade do uso.
            o Classe III: condição em que existe uma concordância da não colocação da MP.


         1.2.2. Bloqueio da condução intraventricular
         Como sabemos, ao longo da massa ventricular, o estímulo cardíaco viaja por intermédio das fibras do Feixe de
His. O feixe de His conduz a onda de despolarização normalmente, mas em um dos seus ramos o impulso elétrico é
bloqueado. O complexo QRS torna-se, então, alargado devido ao retardo da onda de despolarização no ventrículo que
teve seu ramo bloqueado.
         Com o atraso da condução pelo
ramo direito, a ativação ventricular
esquerda é realizada normalmente,
através do ramo esquerdo da esquerda
para direita. Quando a ativação
ventricular esquerda está próxima da
finalização, o impulso passa da
esquerda para direita através do septo
interventricular   (ativação  transeptal
transmiocárdica), desencadeando a
ativação lenta e anormal do lado direito
do septo interventricular e parede livre
do ventrículo direito. O contrário
também é verdadeiro para o bloqueio do
ramo esquerdo do feixe de His.
         Tais alterações podem, portanto, serem avaliadas da seguinte maneira no ECG, optando pela análise das
derivações V1 (para ventrículo direito e vetor septal) e V6 (para ventrículo esquerdo). Em ambos, o complexo se
mostrará mais alargado.

                                                                                                                       15
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1



      Bloqueio de ramo direito do feixe de His: pode ser bem avaliado por meio das
       seguintes caracter„sticas:
          o Nas deriva‚†es precordiais direitas (V1) teremos o seguinte padrƒo:
               Padrƒo RSR’: o que seria “complexo QRS” no ECG aparece com uma
                   grande quilha na onda R, formando duas grandes ondas positivas: R e
                   R’.
               Onda T assim€trica e em sentido oposto ao QRS.
          o Nas deriva‚†es precordiais esquerdas (V6) e DI: padrƒo QRS com onda S
               ampla e arrastada.
          o Eixo el€trico do cora‚ƒo (S“QRS): vari•vel, tendendo desvio para a
               direita.

      Bloqueio de ramo esquerdo do feixe de His: ocorre quando h• bloqueio do
       tronco do ramo esquerdo antes da sua bifurca‚ƒo em fasc„culos Šntero-superior
       e p…stero-inferior ou o bloqueio dos dois fasc„culos ao mesmo tempo. Sua
       etiologia pode estar relacionada com: hipertensƒo arterial sistˆmica, doen‚a
       das art€rias coron•rias, doen‚as valvulares, isquemia, esclerose, fatores
       mecŠnicos, em conseq‘ˆncia da hipertrofia ventricular esquerda, etc.
            o Complexo QRS alargado (> 0,12 segundos).
            o Na avalia‚ƒo das deriva‚†es precordiais esquerdas (V5 e V6):
                    Ausˆncia de ondas q iniciais.
                    Ondas R alargadas e monof•sicas, apresentando entalhes
                       (aspecto em torre) e empastamentos.
                    Segmento ST infradesnivelado.
                    Onda T negativa.
                    Altera‚†es da repolariza‚ƒo.
           o Na avalia‚ƒo das precordiais direitas (V1 e V2):
                    Ausˆncia da onda r inicial.
                    QRS negativo.

        De um modo geral, no bloqueio de ramo esquerdo (BRE), a “orelha de coelho” no complexo QRS em V6
representa o atraso entre a despolariza‚ƒo do septo para o ventr„culo esquerdo. J• no bloqueio de ramo direito (BRD), a
“orelha de colho” em V1 representa o atraso entre a despolariza‚ƒo do septo para o ventr„culo direito.
        Em resumo, temos:




                                                                                                                        16
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


    2. Taquiarritmias
        Sƒo arritmias card„acas caracterizadas por uma frequˆncia maior que 100 bpm. Pode ser um achado normal do
ECG, principalmente quando o paciente tem realizado algum esfor‚o f„sico vigoroso ou por descarga de adrenalina por
nervosismo, por exemplo. Contudo, pode estar relacionada com a presen‚a de doen‚a card„aca de base e de reflexos
cardiovasculares.
        O aumento da frequˆncia card„aca tem relevŠncia cl„nica importante a partir do momento que h• um
comprometimento do fluxo coronariano. Como se sabe, o enchimento das art€rias coron•rias acontece durante a
di•stole; contudo, como na taquicardia h• muito pouco tempo para que o ventr„culo relaxe, a pressƒo coron•ria cai de
uma forma importante. Indiv„duos que j• apresentem algum tipo de obstru‚ƒo em coron•ria e apresenta taquicardia
apresentam maior predisposi‚ƒo a desenvolver infarto no curso desta arritmia.
        As taquiarritmias (TA) podem ser classificadas em TA supra-ventriculares e TA ventriculares.

    2.1. Taquiarritmias supra-ventriculares (TASV)
        Sƒo arritmias causadas por disfun‚†es em s„tios localizados acima do n… atrioventricular, o que inclui o •trio
(acometido pela fibrila‚ƒo atrial e flutter atrial), a taquicardia atrial, a taquicardia sinusal, a taquicardia juncional (que
ocorre na jun‚ƒo entre o •trio e o ventr„culo), taquicardia reentrante nodal e a taquicardia reentrante atrioventricular
(Síndrome de Wolf-Parkinson-White).
        Na an•lise das taquicardias supra-ventriculares, € sempre necess•rio examinar os seguintes parŠmetros:
        Frequˆncia atrial;
        Frequˆncia ventricular;
        Regularidade ventricular (RR): o QRS € regular na taquicardia reentrante nodal, da taquicardia reentrante
           atrioventricular (S„ndrome de WPW), flutter atrial e na taquicardia atrial; € irregular na fibrila‚ƒo atrial e,
           enventualmente, no flutter e na taquicardia atrial.
        Identificar morfologia da ativa‚ƒo atrial (P, F, f);
        Avaliar rela‚ƒo P:QRS. A onda P pode nƒo existir e, caracteristicamente, o QRS mant€m seu padrƒo normal
           de ondas, mas se mostra estreitado (diferentemente da taquicardia ventricular, onde o QRS € alargado e
           bizarro).
        Importante: nas arritmias supraventriculares o QRS se mostra estreitado (< 0,12 segundos), visto que o
           dist‹rbio de condu‚ƒo se d• acima do n… AV. Os dois ventr„culos se ativam ao mesmo tempo. A presen‚a de
           um QRS largo (> 120 ms) significa alguma aberrŠncia, isto €: uma situa‚ƒo anormal.

        Os principais tipos de taquiarritmias supra-ventriculares atriais sƒo:
       Taquicardia sinusal: caracterizada pelos
        seguintes parŠmetros:
             Ondas P de morfologia normal;
             Frequˆncia atrial de 100 a 200 bpm;
             Frequˆncia ventricular de 100 a 200
                bpm;
             RR regular
             P:QRS – 1:1.

       Fibrilação atrial: condi‚ƒo em que a musculatura card„aca atrial passa a apresentar, por algum fator
        desencadeante, uma atividade el€trica absolutamente ca…tica. • a arritmia mais comum (0,4% a 1% na
        popula‚ƒo adulta) e eleva 2 vezes o potencial de mortalidade (que aumenta mais ainda com a idade). A
        fibrila‚ƒo atrial € caracterizada por nƒo configurar onda P regular no tra‚ado gr•fico, nƒo apresentar uma
        contra‚ƒo atrial efetiva e pela irregularidade da passagem do est„mulo do •trio para o ventr„culo (ou seja, hora
        passa, hora nƒo passa, de forma aleat…ria).
        As principais causas sƒo: doen‚a valvar mitral, doen‚a
        coronariana, cardiomiopatias, HAS. As demais causas sƒo:
        excesso de consumo alco…lico, S„ndrome de WPW, pericardite,
        DPOC com hipoxemia.
        Pacientes com fibrila‚ƒo atrial devem ser tratados como um grupo
        especial, isto porque a sua condi‚ƒo predisp†e a forma‚ƒo de
        trombos, que podem desgarrar-se da cavidade atrial, ganhar a
        circula‚ƒo e causar, entre outros comemorativos, a necrose de
        extremidades ou AVCi. Por esta razƒo, prescrevem-se
        anticoagulantes para estes pacientes.
        De uma forma geral, os objetivos do tratamento da fibrila‚ƒo atrial consistem em:
               Controle da frequencia card„aca;
               Reversƒo para ritmo sinusal;
               Manuten‚ƒo para ritmo sinusal;
               Profilaxia de tromboembolismo.

                                                                                                                            17
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


   Flutter atrial: a incidência geral do flutter atrial é de 0,09% da população, dos quais 58% também apresentam
    fibrilação atrial. O flutter se caracteriza por ondas atriais não-sinuais (pois não configuram uma onda P) que
    ocorrem com frequência muito rápida. O gráfico traçado se assemelha a dentes de serra.
    O tratamento de eleição para seu tratamento é a cardioversão elétrica (95 a 100%).




   Taquicardia reentrante nodal (TRN): fenômeno que envolve o nó AV. É mais frequente em mulheres (2:1), na
    3ª a 5ª décadas de vida, sendo muito raro abaixo dos 2 anos de idade. Os sinais clínicos se manifestam na
    forma de batimento evidente em fúrcula esternal e síncope.
    O tratamento emergencial consiste em:
         Cardioversão elétrica (100 J): se houver instabilidade hemodinâmica;
         Compressão do seio carotídeo;
         Adenosina (6/12/18 mg IV);
         Verapamil (até 15 mg IV).
         Na presença de sintomas severos ou por falência de tratamento clínico, optar pela ablação por cateter.

   Taquicardia       reentrante       atrioventricular
    (Síndrome de Wolf-Parkinson-White): síndrome
    caracterizada pela presença de uma via acessória
    anômala que promove um estímulo ventricular
    precoce.
    No ECG, observamos um QRS alargado com a
    presença marcante da chamada onda Delta, logo
    no início do complexo. O alargamento do QRS
    acontece porque o estímulo se propaga pelo feixe
    de His e depois retorna por esta via acessória (o
    que não deveria acontecer). Tais características do
    QRS podem ser vistas em DI, aVL, V4, V5 e V6.
    Podemos perceber ainda uma diminuição do
    intervalo PR devido à excitação precoce dos
    ventrículos (síndrome de pré-excitação). Na
    realidade, do ponto de vista gráfico, o QRS se
    alarga as custas desta redução do intervalo PR.
    A FC se mostra muito alta e a onda P inexistente.




    O tratamento pode ser feito por ablação por cateter de radiofrequência introduzido pela via acessória.


                                                                                                                      18
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1



    2.2. Taquicardia ventricular
        • a ocorrˆncia de 3 ou mais batimentos de origem ventricular com frequˆncia acima de 100 bpm, sendo
sustentada se a dura‚ƒo € maior ou igual a 30 segundos e nƒo-sustentada se a dura‚ƒo € menor. Geralmente, est•
associada a cardiopatias graves.
        Seu quadro cl„nico € caracterizado por:
     A repercussƒo ir• depender da disfun‚ƒo mioc•rdica pr€-existente e da frequˆncia ventricular;
     Pode levar a fibrila‚ƒo ventricular.
     O exame f„sico € caracterizado por FC em torno de 160 spm, ritmo regular ou discretamente irregular.

       O ECG da taquicardia ventricular mostra FC entre 100 e 220 spm, com ritmo regular ou discretamente regular. A
morfologia do tra‚ado € absolutamente inespec„fica, sem padr†es. A onda P, na FC alta, nƒo € vista e, quando presente,
nƒo tem rela‚ƒo harmoniosa com o complexo QRS. Este tem a mesma morfologia das extra-s„stoles ventriculares,
mostrando-se largo e bizarro.




         O tratamento da taquicardia ventricular sustentada, quando o paciente estiver inst•vel, consiste na cardioversƒo
el€trica, de imediato. Se o paciente estiver est•vel, bem monitorado e internado em UTI, € poss„vel optar pelo tratamento
medicamentoso (Amiodarona 150 IV em bolus em 10 minutos ou Lidoca„na 0,75 mg/kg IV em bolus).

    2.3.Fibrilação ventricular (FV)
         Situa‚ƒo em que a atividade contr•til dos ventr„culos deixa de ser efetiva, e o cora‚ƒo apenas tremula, sem
capacidade de ejetar sangue. Por esta razƒo, o d€bito card„aco € zero, nƒo h• pulso, nem batimento card„aco
(caracterizando uma parada cardíaca, sendo considerada a maior trag€dia dentro da cardiologia abaixo apenas da
assistolia).
         No ECG temos um ritmo irregular e absolutamente ca…tico, sem ondas P, QRS ou T. Note que, diferentemente
da taquicardia ventricular, as ondas sƒo extremamente assincr‡nicas.




                                           O ‹nico tratamento efetivo para a fibrila‚ƒo ventricular € a cardioversão
                                   elétrica (recomenda‚ƒo m•xima). Nenhum outro tratamento pode reverter o quadro.
                                           Pacientes cardiopatas, que apresentam miocardiopatias dilatadas, podem
                                   apresentar FV frequentemente. Tais pacientes sƒo candidatos ao implante de um
                                   cardioversor desfibrilador implantável (CDI). Tal procedimento € respons•vel por
                                   prover a preven‚ƒo prim•ria e secund•ria da morte s‹bita card„aca (MSC) em
                                   pacientes com cardiopatia estrutural.
                                           Sƒo indica‚†es para o implante de CDI:
                                        Pacientes refrat•rios ‰ terapia medicamentosa;
                                        BRE – dissincronismo intra e interventricular por retardo do VE em rela‚ƒo
                                           ao VD ou por abertura e fechamento tardios da valva a…rtica em rela‚ƒo a
                                           mitral.
    6
OBS : Classificação de interferência eletromagnética sobre os dispositivos cardio-elétricos implantáveis (DCEI),
conforme o grau de risco e recomendação para proteção.
    Risco aceit•vel:
           Eletrodom€sticos em geral;
           Escadas rolantes e portas autom•ticas;
           Autom…veis, ‡nibus, avi†es, motocicletas.

                                                                                                                         19
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1



        Aceitável com riscos:
              Colchões magnéticos e mini-imãs;
              Telefones celulares, telefones sem fio, blue tooth, walkie talkie, wireless, Wi-fi, iPod;
              Antenas de telefonia celular;
              Eletrocautério;
              Radiação terapêutica;
              Desfibrilação externa.
              Ablação por radiofrequência (RF) e mapeamento eletro-anatômico magnético;
              Litotripsia;
              Aparelhos que produzem vibração mecânica;
              Sistemas de detecção de metais e anti-furto;
              Estimulação transcutânea, eletro-acumputura;
              Radares de navegação, radares militares;
              Campos eletromagnéticos, amplificadores de som e caixas acústicas;
              Profissional da área de montagem de televisores e uso de equipamentos de solda por radiofrequência.

        Inaceitável:
              Ressonância nuclear magnética;
              Medidor de gordura corporal.
     7
OBS : O termo assistolia consiste na cessação de qualquer atividade elétrica ou mecânica dos ventrículos. No ECG se
caracteriza pela ausência de qualquer atividade elétrica ventricular observada em pelo menos 2 derivações, se
mostrando com um desenho de gráfico em linha reta.




Cerca de 80% das paradas cardiorrespiratórias são advindas de arritmias ventriculares e a presença de assistolia se
reveste de um prognóstico sombrio para o paciente. Afirmar corretamente que o ritmo em tratamento é de fato assistolia
passa a ser um diagnóstico que necessita uma absoluta certeza.
Ao visualizarmos um monitor com um gráfico sem ondas em qualquer momento do atendimento deve se proceder uma
série de medidas que visam certificar-se do diagnóstico, o que será chamado de protocolo da "linha reta".
       1º medida: confira o cabeamento da monitorização eletrocardiográfica - verifique se a fiação está conectada no paciente e no
       aparelho.
       2º medida: aumente o ganho da derivação ao máximo que o aparelho permitir - ondulações muito finas podem parecer linha
       reta e com um ganho podemos passar a ver a fibrilação.
       3º medida: mude as derivações do monitor - mude sequencialmente o seletor de derivações, pois a ausência de ondas numa
       derivação pode não se confirmar em outra. No caso da ação primária, onde usamos as pás do desfibrilador como derivação
       devemos rapidamente modificar a posição, passando a pá do apex para o terço superior do tórax e a pá direita para o bordo
       costal inferior direito, invertendo em 90º o eixo pesquisado.

Se após as 3 ações o monitor persistir com linha reta, de fato estamos vendo um padrão de assistolia, passando ao
tratamento específico dessa condição. O uso de choques de forma empírica no paciente em assistolia é formalmente
contra-indicado (Recomendação Classe III). Basicamente, devemos proceder da seguinte forma:
      Realizar ABC: Garantir uma boa ventilação e suplementação de oxigênio.
      Drogas para assistolia:
            o Epinefrina: EV/IO: 0,01mg/Kg (0,1ml/Kg - 1:10.000); ET: 0,1mg/Kg (0,1ml/Kg - 1:1.000); Repetir a cada 3 minutos,
                mesma dose.
            o Atropina: A evidência do benefício é pequena (Recomendação IIb) - 1mg EV a cada 3 min até a dose máxima de
                0,04mg / Kg
            o Bicarbonato de Na: A indicação do Bicarbonato na PCR é restrita aos casos de acidose preexistente e conhecida
                (Classe I) e na overdose de antidepressivos tricíclicos (Classe IIa). O uso durante manobras prolongadas é de
                recomendação IIb.

A maior parte dos pacientes em assistolia não sobrevive. Freqüentemente a assistolia deverá ser vista como a
confirmação do diagnóstico de morte e não como um ritmo a ser tratado. A assistolia persistente representa isquemia e
danos extensos ao miocárdio, decorrentes de períodos prolongados de perfusão coronariana inadequada.

                                                                                                                               20
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


DETERMINAÇÃO DO EIXO CARDÍACO
       O eixo se refere à direção da despolarização que se difunde através do coração para estimular a contração
miocárdica. A direção dessa despolarização é representada por um vetor resultante principal (vetor médio do QRS ou
eixo elétrico cardíaco) que nos mostra por onde a maior parte do estímulo elétrico está caminhando. Normalmente,
esse vetor se dirige de cima para baixo e da direita para a esquerda, com relação ao próprio indivíduo: a origem do vetor
médio do QRS é sempre o nódulo AV e, como os vetores que representam a despolarização do ventrículo esquerdo são
maiores, o vetor médio do QRS aponta levemente para o ventrículo esquerdo.
       O vetor médio do QRS, de forma mais específica, é resultante de três importante vetores de ativação ventricular:
     Vetor septal (primeiro vetor): aponta da esquerda para direita, de cima para baixo e de trás para frente. Nas
        derivações unipolares do precórdio, o vetor septal desenha uma onda r (R pequena) nas derivações precordiais
        direitas (V1 e V2) e, também, uma onda q (Q pequena) em V5 e V6. Em casos de necrose ou bloqueio do ramo
        esquerdo de His (BRE), haverá ausência do vetor septal (V1 e V2 sem onda R e V5 e V6 sem onda Q).
     Vetor de parede livre (segundo vetor): é o mais importante da ativação ventricular por apresentar grande
        magnitude (é 10 vezes maior que o vetor septal). Daí, quando determinamos na clínica o eixo elétrico do
        coração, estamos nos referindo ao vetor de parede livre. Tem sua direção apontada para esquerda e para trás,
        podendo ser para cima nos corações horizontais ou para baixo nos verticais. O vetor de parede livre é
        responsável pelo aparecimento da onda S grande em V1 e V2 e R grande em V5 e V6.
     Vetor basal (terceiro vetor): a última parte dos ventrículos a ser ativada é a sua região basal; quase
        simultaneamente, dá-se a despolarização da base do septo e da região basal das paredes ventriculares. A soma
        do potencial elétrico elaborado nesta fase é chamada de vetor basal de ativação ventricular. Embora resultando
        de todas as forças basais, este vetor é de pequena grandeza (semelhante ou ligeiramente maior que o primeiro
        vetor) e dirigido para a direita, para cima e para trás. Quando a região superior e posterior do septo direito é
        dominante, o terceiro vetor aponta para cima e para trás; quando domina a anterior e superior, esta dirige-se
        também para cima, porém para a frente. Esse vetor será responsável pelo surgimento da onda S pequena nas
        derivações esquerdas, colaborando no final da onda S grande nas precordiais direitas. O terceiro vetor é
        identificado pela onda R da derivação aVR e pela onda S de V5 e V6.

       O eixo serve para verificar se a movimentação de ondas do coração está no sentido normal. Se o indivíduo tem
um infarto em uma determinada área, há um espaço morto naquele local. Neste caso, a onda não repercute neste
espaço e se desvia, desviando o eixo como um todo.
       Para uma melhor interpretação da posição do eixo vetorial cardíaco, devemos
considerar alguns conceitos que foram apenas citados anteriormente, mas que serão
necessários neste momento.
    O triângulo de Einthoven nada mais é que a representação vetorial dos sentidos das
        derivações bipolares do plano frontal (DI, DII e DIII). Se deslocarmos todos os lados
        deste triângulo para um centro comum, formaremos um sistema de três eixos.
    Se considerarmos agora todas as linhas de derivações do plano frontal para o centro
        do triângulo de Einthoven, formamos um sistema de eixos hexa-axial (a chamada
        rosa-dos-ventos do ECG), de forma que o centro do sistema representa o nódulo AV
        (local de origem do vetor médio de QRS).




                                                                                                                         21
Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1


        Para determina‚ƒo do eixo, o procedimento b•sico inicial € observar as deriva‚†es DI e aVF, que sƒo as
deriva‚†es que estƒo direcionadas para o sentido normal da despolariza‚ƒo card„aca. Se o QRS for positivo (isto €,
estiver voltado para cima) em DI, o vetor aponta para o lado positivo (isto €, lado esquerdo do indiv„duo). Se QRS for
positivo em aVF, o vetor aponta para baixo na metade positiva da esfera. Neste caso, a localiza‚ƒo do vetor resultante
principal ser• na faixa normal entre 0 a 90’. Qualquer situa‚ƒo diferente desta, haver• um desvio de eixo. Al€m disso,
caso o QRS seja negativo em V2, o vetor aponta para tr•s (situa‚ƒo normal).
        A partir das deriva‚†es DI e aVF – que sƒo perpendiculares entre si – podemos criar quatro quadrantes. A
simples avalia‚ƒo da polaridade do QRS em DI e aVF (se o QRS est• voltado para cima – positivo – ou para baixo –
negativo – no ECG a ser avaliado) pode determinar o quadrante onde estar• localizado o eixo el€trico do cora‚ƒo. Para
detalhar ainda mais a localiza‚ƒo do eixo el€trico, podemos lan‚ar mƒo do seguinte parŠmetro: o eixo el€trico vai estar
mais pr…ximo, isto €, com uma angula‚ƒo menor, ‰ deriva‚ƒo que estiver mais positiva (ou mais negativa, se por ventura
o eixo estiver fora do quadrante normal – que € o inferior direito): se DI estiver mais positivo que aVF, o eixo card„aco
                                                                                o
estar• no quadrante inferior direito, mas estar• mais pr…ximo ao angulo de 0 . Para detalhar mais ainda o intervalo de
angula‚ƒo onde estar• o eixo el€trico do cora‚ƒo, precisaremos observar as demais deriva‚†es do ECG, o que ser•
detalhado melhor em exemplos, ainda nesta se‚ƒo.




       Em resumo, a localiza‚ƒo do eixo m€dio do QRS pode ser facilmente obtido seguindo os seguintes passos:
    1. Observar a polaridade do complexo QRS nas deriva‚†es DI e aVF.
    2. Determinar o quadrante do vetor de ativa‚ƒo.
    3. Procurar uma deriva‚ƒo isoel€trica (+/-).
    4. O eixo estar• na deriva‚ƒo perpendicular ‰ deriva‚ƒo isoel€trica:
            DI ∟ aVF (DI € perpendicular a aVF)
            DII ∟ aVL (DII € perpendicular a aVL)
            DIII ∟ aVR (DIII € perpendicular a aVR)
    5. Caso nƒo haja deriva‚ƒo isoel€trica, deve-se observar as deriva‚†es que cruzam por fora do quadrante
       determinado no passo 2 e selecionar o eixo perpendicular a ele que estiver mais pr…ximo da polaridade de DI ou
       aVF no tra‚ado do ECG. Por exemplo:
            Determinado que o eixo est• no quadrante entre 0’ a 90’ (DI+ e aVF+) e o ECG nƒo mostrou nenhum
               QRS isoel€trico em nenhuma deriva‚ƒo, devemos:
            Olhar DIII (sempre optar por observar DIII primeiro)
                Em caso de DIII (-): o eixo estar• acima de aVR (+30’ e 0’).
                Em caso de DIII (+/-): o eixo estar• sobre aVR (+30’).
                Em caso de DIII (+): o eixo estar• abaixo de aVR (+30’ e +90’). Em caso de DIII positivo, devemos
                   observar aVL (e seu vetor perpendicular DII).
            Olhar aVL
                Em caso de aVL (+): o eixo estar• acima de DII (+60’ e 30’). Em caso de aVL positivo, devemos
                   observar DIII (e seu vetor perpendicular aVR).
                Em casos de aVL (+/-): o eixo estar• sobre DII (+60’).
                Em caso de aVL (-): o eixo estar• abaixo de DII (+60’ e 90’).

         Os exemplos a seguir ajudarƒo a fundamentar o conhecimento.




                                                                                                                         22
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca
Eletrocardiograma: um registro da atividade elétrica cardíaca

Contenu connexe

Tendances

Ecg básico
Ecg básicoEcg básico
Ecg básicodapab
 
Aula 3 arritmias
Aula 3  arritmiasAula 3  arritmias
Aula 3 arritmiasprofsempre
 
Infarto agudo do miocárdio (IAM)
Infarto agudo do miocárdio   (IAM)Infarto agudo do miocárdio   (IAM)
Infarto agudo do miocárdio (IAM)Shirley Rodrigues
 
Acidente Vascular Encefálico
Acidente Vascular EncefálicoAcidente Vascular Encefálico
Acidente Vascular EncefálicoBrenda Lahlou
 
Aula de Farmacologia sobre Fármacos anti-hipertensivos
Aula de Farmacologia sobre Fármacos anti-hipertensivosAula de Farmacologia sobre Fármacos anti-hipertensivos
Aula de Farmacologia sobre Fármacos anti-hipertensivosJaqueline Almeida
 
Acidente Vascular Encefálico (AVE)
Acidente Vascular Encefálico (AVE)Acidente Vascular Encefálico (AVE)
Acidente Vascular Encefálico (AVE)Matheus Oliveira
 
Semiologia das arritmias 2019
Semiologia das arritmias 2019Semiologia das arritmias 2019
Semiologia das arritmias 2019pauloalambert
 
Arritimias cardíacas
Arritimias cardíacasArritimias cardíacas
Arritimias cardíacasdapab
 
Insuficiência Cardíaca Congestiva - ICC
Insuficiência Cardíaca Congestiva - ICCInsuficiência Cardíaca Congestiva - ICC
Insuficiência Cardíaca Congestiva - ICCCíntia Costa
 
Anatomia e fisiologia cardíaca
Anatomia e fisiologia cardíacaAnatomia e fisiologia cardíaca
Anatomia e fisiologia cardíacaresenfe2013
 
Insuficiência cardíaca 2017
Insuficiência cardíaca 2017Insuficiência cardíaca 2017
Insuficiência cardíaca 2017pauloalambert
 
INFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICO
INFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICOINFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICO
INFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICODouglas Tedesco
 
Insuficiência cardíaca
Insuficiência cardíacaInsuficiência cardíaca
Insuficiência cardíacadapab
 
Cardiopatias congenitas
Cardiopatias congenitasCardiopatias congenitas
Cardiopatias congenitasdapab
 
Eletrocardiograma - Revisão e implicações de Enfermagem
Eletrocardiograma - Revisão e implicações de EnfermagemEletrocardiograma - Revisão e implicações de Enfermagem
Eletrocardiograma - Revisão e implicações de EnfermagemJosé Augusto Casagrande
 
Insuficiência Cardiaca - Tulio Frazão (DX,TX)
Insuficiência Cardiaca - Tulio Frazão (DX,TX)Insuficiência Cardiaca - Tulio Frazão (DX,TX)
Insuficiência Cardiaca - Tulio Frazão (DX,TX)Caio Valle
 
Semiologia 03 semiologia do aparelho respiratório aplicada
Semiologia 03   semiologia do aparelho respiratório aplicadaSemiologia 03   semiologia do aparelho respiratório aplicada
Semiologia 03 semiologia do aparelho respiratório aplicadaJucie Vasconcelos
 

Tendances (20)

Choque
Choque Choque
Choque
 
Ecg básico
Ecg básicoEcg básico
Ecg básico
 
Aula 3 arritmias
Aula 3  arritmiasAula 3  arritmias
Aula 3 arritmias
 
Arritmias..
Arritmias..Arritmias..
Arritmias..
 
Infarto agudo do miocárdio (IAM)
Infarto agudo do miocárdio   (IAM)Infarto agudo do miocárdio   (IAM)
Infarto agudo do miocárdio (IAM)
 
Acidente Vascular Encefálico
Acidente Vascular EncefálicoAcidente Vascular Encefálico
Acidente Vascular Encefálico
 
Aula de Farmacologia sobre Fármacos anti-hipertensivos
Aula de Farmacologia sobre Fármacos anti-hipertensivosAula de Farmacologia sobre Fármacos anti-hipertensivos
Aula de Farmacologia sobre Fármacos anti-hipertensivos
 
Acidente Vascular Encefálico (AVE)
Acidente Vascular Encefálico (AVE)Acidente Vascular Encefálico (AVE)
Acidente Vascular Encefálico (AVE)
 
Semiologia das arritmias 2019
Semiologia das arritmias 2019Semiologia das arritmias 2019
Semiologia das arritmias 2019
 
Arritmias
ArritmiasArritmias
Arritmias
 
Arritimias cardíacas
Arritimias cardíacasArritimias cardíacas
Arritimias cardíacas
 
Insuficiência Cardíaca Congestiva - ICC
Insuficiência Cardíaca Congestiva - ICCInsuficiência Cardíaca Congestiva - ICC
Insuficiência Cardíaca Congestiva - ICC
 
Anatomia e fisiologia cardíaca
Anatomia e fisiologia cardíacaAnatomia e fisiologia cardíaca
Anatomia e fisiologia cardíaca
 
Insuficiência cardíaca 2017
Insuficiência cardíaca 2017Insuficiência cardíaca 2017
Insuficiência cardíaca 2017
 
INFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICO
INFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICOINFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICO
INFARTO AGUDO DO MIOCARDIO TRATAMENTO FARMACOLÓGICO
 
Insuficiência cardíaca
Insuficiência cardíacaInsuficiência cardíaca
Insuficiência cardíaca
 
Cardiopatias congenitas
Cardiopatias congenitasCardiopatias congenitas
Cardiopatias congenitas
 
Eletrocardiograma - Revisão e implicações de Enfermagem
Eletrocardiograma - Revisão e implicações de EnfermagemEletrocardiograma - Revisão e implicações de Enfermagem
Eletrocardiograma - Revisão e implicações de Enfermagem
 
Insuficiência Cardiaca - Tulio Frazão (DX,TX)
Insuficiência Cardiaca - Tulio Frazão (DX,TX)Insuficiência Cardiaca - Tulio Frazão (DX,TX)
Insuficiência Cardiaca - Tulio Frazão (DX,TX)
 
Semiologia 03 semiologia do aparelho respiratório aplicada
Semiologia 03   semiologia do aparelho respiratório aplicadaSemiologia 03   semiologia do aparelho respiratório aplicada
Semiologia 03 semiologia do aparelho respiratório aplicada
 

Similaire à Eletrocardiograma: um registro da atividade elétrica cardíaca

Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01PortalEnf Empregos
 
Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01Ricardo Pereira
 
6 ARRITMIAS CARDIACAS 2006.ppt
6 ARRITMIAS CARDIACAS 2006.ppt6 ARRITMIAS CARDIACAS 2006.ppt
6 ARRITMIAS CARDIACAS 2006.pptgreygranaditas
 
Fisiologia Humana 5 - Sistema Cardiovascular
Fisiologia Humana 5 - Sistema CardiovascularFisiologia Humana 5 - Sistema Cardiovascular
Fisiologia Humana 5 - Sistema CardiovascularHerbert Santana
 
Aula 2 material complementar
Aula 2 material complementarAula 2 material complementar
Aula 2 material complementardidicadoida
 
FISIOLOGIA CARDÍACA 1
FISIOLOGIA CARDÍACA 1FISIOLOGIA CARDÍACA 1
FISIOLOGIA CARDÍACA 1Paulo Cardoso
 
Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco
Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco
Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco Pedro Miguel
 
Biofísica da Circulação
Biofísica da CirculaçãoBiofísica da Circulação
Biofísica da CirculaçãoSonynhaRegis
 
Fisiologia do Coração
Fisiologia do CoraçãoFisiologia do Coração
Fisiologia do CoraçãoPaulo Teixeira
 
Neurofisiologia: potencial de repouso e ação
Neurofisiologia: potencial de repouso e açãoNeurofisiologia: potencial de repouso e ação
Neurofisiologia: potencial de repouso e açãoVanessa Cunha
 
fisio_cardiovascular_fisioenutri2022.pptx
fisio_cardiovascular_fisioenutri2022.pptxfisio_cardiovascular_fisioenutri2022.pptx
fisio_cardiovascular_fisioenutri2022.pptxeduardoadelino3
 
Distúrbios cardiológicos
Distúrbios cardiológicosDistúrbios cardiológicos
Distúrbios cardiológicosgisa_legal
 

Similaire à Eletrocardiograma: um registro da atividade elétrica cardíaca (20)

Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01
 
Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01Eletrocardiogramacompleto 140114115428-phpapp01
Eletrocardiogramacompleto 140114115428-phpapp01
 
Bomba cardiaca
Bomba cardiacaBomba cardiaca
Bomba cardiaca
 
6 ARRITMIAS CARDIACAS 2006.ppt
6 ARRITMIAS CARDIACAS 2006.ppt6 ARRITMIAS CARDIACAS 2006.ppt
6 ARRITMIAS CARDIACAS 2006.ppt
 
ECG
ECGECG
ECG
 
Fisiologia Humana 5 - Sistema Cardiovascular
Fisiologia Humana 5 - Sistema CardiovascularFisiologia Humana 5 - Sistema Cardiovascular
Fisiologia Humana 5 - Sistema Cardiovascular
 
Eletrocardiograma
EletrocardiogramaEletrocardiograma
Eletrocardiograma
 
Aula 2 material complementar
Aula 2 material complementarAula 2 material complementar
Aula 2 material complementar
 
FISIOLOGIA CARDÍACA 1
FISIOLOGIA CARDÍACA 1FISIOLOGIA CARDÍACA 1
FISIOLOGIA CARDÍACA 1
 
Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco
Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco
Sistema Nervoso Periférico Motor e Potencial de Ação Cardiaco
 
Biofísica da Circulação
Biofísica da CirculaçãoBiofísica da Circulação
Biofísica da Circulação
 
Cardiovascular
CardiovascularCardiovascular
Cardiovascular
 
Fisiologia do Coração
Fisiologia do CoraçãoFisiologia do Coração
Fisiologia do Coração
 
Neurofisiologia: potencial de repouso e ação
Neurofisiologia: potencial de repouso e açãoNeurofisiologia: potencial de repouso e ação
Neurofisiologia: potencial de repouso e ação
 
Ecg
EcgEcg
Ecg
 
fisio_cardiovascular_fisioenutri2022.pptx
fisio_cardiovascular_fisioenutri2022.pptxfisio_cardiovascular_fisioenutri2022.pptx
fisio_cardiovascular_fisioenutri2022.pptx
 
Eletrocardiogram
EletrocardiogramEletrocardiogram
Eletrocardiogram
 
MEMBRANAS.pdf
MEMBRANAS.pdfMEMBRANAS.pdf
MEMBRANAS.pdf
 
ecg.pptx
ecg.pptxecg.pptx
ecg.pptx
 
Distúrbios cardiológicos
Distúrbios cardiológicosDistúrbios cardiológicos
Distúrbios cardiológicos
 

Dernier

ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresLilianPiola
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxOsnilReis1
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfIedaGoethe
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfIedaGoethe
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxBiancaNogueira42
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 anoAdelmaTorres2
 
Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.Susana Stoffel
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasRicardo Diniz campos
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniCassio Meira Jr.
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxLuizHenriquedeAlmeid6
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024Sandra Pratas
 

Dernier (20)

ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolaresALMANANHE DE BRINCADEIRAS - 500 atividades escolares
ALMANANHE DE BRINCADEIRAS - 500 atividades escolares
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdf
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdf
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
 
Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.Família de palavras.ppt com exemplos e exercícios interativos.
Família de palavras.ppt com exemplos e exercícios interativos.
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecas
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e TaniModelos de Desenvolvimento Motor - Gallahue, Newell e Tani
Modelos de Desenvolvimento Motor - Gallahue, Newell e Tani
 
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptxSlides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
Slides Lição 03, Central Gospel, O Arrebatamento, 1Tr24.pptx
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
 

Eletrocardiograma: um registro da atividade elétrica cardíaca

  • 1. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 MED RESUMOS NETTO, Arlindo Ugulino. CARDIOLOGIA ELETROCARDIOGRAMA (Professor Jorge Fonseca e Mario Toscano) O eletrocardiograma (ECG) € um exame m€dico na •rea de cardiologia onde € feito o registro da varia‚ƒo dos potenciais el€tricos gerados pela atividade el€trica do cora‚ƒo, garantida pelo automatismo card„aco. Representa, em outras palavras, um valioso registro do funcionamento da atividade el€trica card„aca. O aparelho que registra o eletrocardiograma € o eletrocardiógrafo. A informa‚ƒo registrada no ECG representa os impulsos do cora‚ƒo (isto €, o potencial elétrico das c€lulas card„acas). Estes potenciais sƒo gerados a partir da despolariza‚ƒo e repolariza‚ƒo das c€lulas card„acas. Normalmente, a atividade el€trica card„aca se inicia no nodo sinusal (c€lulas auto-r„tmicas) que induz a despolariza‚ƒo dos •trios e dos ventr„culos. Esse registro mostra a varia‚ƒo do potencial el€trico no tempo, que gera uma imagem linear, em ondas.  Onda P: representa a despolariza‚ƒo atrial. A fibrilação atrial representam um defeito na contra‚ƒo do •trio que pode ser registrada por essa onda.  Inervalo PR: retardo do impulso nervoso no n…do atrioventricular  QRS: despolariza‚ƒo dos ventr„culos.  Onda T: repolariza‚ƒo dos ventr„culos. Estas ondas seguem um padrƒo r„tmico, tendo denomina‚ƒo particular. Qualquer altera‚ƒo no ciclo card„aco ser• convertida em uma anomalia nas ondas no eletrocardi…grafo. Para que isto fosse visto, foi necess•rio criar as chamadas linhas de derivações, baseadas na padroniza‚ƒo das posi‚†es de eletrodos na pele do paciente a ser avaliado. HIST•RICO E EVOLU‚ƒO DO E LETROCARDIOGRAMA  Augustus Waller (1887): obteu os primeiros registros da atividade el€trica do cora‚ƒo usando eletrosc…pio capilar com eletrodos precordiais.  Willeim Einthoven (1903): fez uso de galvan‡metro e cria‚ƒo do eletrocardiograma moderno (com deriva‚†es bipolares). Por€m, sua in€rcia e o tempo necess•rio na corre‚ƒo matem•tica das curvas exigiam aperfei‚oamentos. Por isso, Einthoven dedicou-se ao estudo do galvan‡metro de bobina de Ader e calculou que as caracter„sticas do aparelho melhorariam o seu desempenho para o objetivo visado. O galvan‡metro de corda, criado por ele possu„a uma superioridade t€cnica incontest•vel sobre o aparelho elaborado por Ader. Einthoven passou a usar as trˆs deriva‚†es hoje ainda empregadas como padrƒo. Apesar de seu aparelho ter o inconveniente do peso e tamanho, prosseguiu seus estudos. Einthoven estudou a influˆncia dos movimentos respirat…rios e das mudan‚as de posi‚ƒo do corpo sobre o ECG. Esses trabalhos levaram-no ‰ concep‚ƒo do chamado esquema do triŠngulo equil•tero: obteve deriva‚†es bipolares dos membros (I, II e III) usando eletrodos perif€ricos, em que o cora‚ƒo estaria no centro desse triangulo. Seu ‹ltimo aperfei‚oamento do aparelho foi a cria‚ƒo do galvan‡metro de corda de v•cuo, com o qual levou ao m•ximo a sensibilidade do instrumento. Em 23 de outubro de 1924 foi-lhe concedido o Prˆmio Nobel de Fisiologia e Medicina daquele ano, por sua descoberta do mecanismo do ECG. Foi dada por ele a nomenclatura das ondas P, QRS e T.  Wilson (1934): desenvolveu a central terminal de potencial zero e as deriva‚†es unipolares (deriva‚oes V).  American Heart Association – Cardiac Society of Great Britain and Ireland (1938): realizou a padroniza‚ƒo das deriva‚†es precordiais V1-6.  Kossan e Johnson (1935): descobriu as deriva‚†es VR, VL e VF.  Golberger (1942): desenvolveu as deriva‚†es aVR, aVL e aVF. 1
  • 2. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 N O‚„ES A N…TOMO -FISIOL•GICAS DO C ORA‚ƒO POTENCIAL ELÉTRICO CELULAR CARDÍACO No músculo cardíaco, o potencial de ação é provocado pela abertura de dois tipos de canais: (1) os mesmos canais rápidos de sódio, como no músculo estriado esquelético, e (2) outra população, inteiramente diferente, de canais lentos de cálcio (canais cálcio-sódio). Essa segunda população, tem uma abertura mais lenta e, o que é mais importante, permanecem abertos por vários décimos de segundo. Durante esse tempo, grande quantidade de íons cálcio e sódio flui, por esses canais, para o interior da fibra muscular cardíaca, o que mantém o período prolongado de despolarização, causando o potencial de Platô do potencial de ação. Em resumo, na despolarização, ocorre a abertura de canais rápidos de sódio, associado à abertura dos canais lentos de cálcio. O influxo de cálcio inicia após o fechamento dos canais de sódio e perdura por 0,2 a 0,3 segundos. Este influxo de cálcio inibe a abertura dos canais de potássio retardando a repolarização por 0,2 a 0,3 segundos, que é o tempo de duração do Platô. Após este tempo, os canais lentos de cálcio se fecham e a repolarização procede normalmente, através do efluxo de íons potássio. A membrana não se repolariza imediatamente após a despolarização, permanecendo a despolarização em um platô por alguns milissegundos, antes que se inicie a repolarização (Músculo atrial  platô de 0.2 s; Músculo ventricular  platô 0.3 s). O potencial de platô regula a contração cardíaca fazendo com que os átrios se contraiam antes que os ventrículos. O platô, em resumo, é responsável por:  Aumentar a duração do tempo da contração muscular de 3 a 15 vezes mais do que no músculo esquelético.  Permitir que os átrios se contraiam antes da contração dos ventrículos.  Manter uma assincronia entre a sístole atrial e a sístole ventricular Fases do potencial de ação.  Fase 0: Fase inicial de rápida despolarização. Representa a abertura dos canais rápidos de Na+ com grande influxo para o interior da célula. É representada por uma linha vertical ascendente.  Fase 1: É uma pequena e rápida repolarização. Representa o fechamento dos canais rápidos de Na+ e abertura do canais lentos de K+ com um efluxo de K+ para o exterior da célula. É representada por uma pequena linha vertical descendente.  Fase 2: Representa a abertura dos canais lentos de Ca+ com grande influxo de Ca+ para o interior da célula. Representada por uma linha horizontal representando a duração da contração muscular (Platô). Ocorre durante a fase do platô um efluxo lento de K+ para o exterior da célula. Mesmo com a reserva de cálcio existente no retículo sarcoplasmático, a concentração muscular cardíaca necessita de uma demanda de cálcio extracelular a mais, que é transportada pelos túbulos T.  Fase 3: Início da Fase de repolarização. Representa a abertura dos canais lentos de K+ com grande efluxo de K+ para o exterior da célula. Restabelece a diferença de potencial elétrico.  Fase 4: Fase final da repolarização. Retorno ao potencial negativo de repouso, onde as concentrações iônicas são restabelecidas. FISIOLOGIA DO MÚSCULO CARDÍACO O coração é formado por três tipos principais de musculo cardíaco: músculo atrial, músculo ventricular e fibras musculares especializadas excitat†rias e condutoras. O musculo do tipo atrial e ventricular contraem-se de forma muito semelhante à do musculo esquelético, exceto que a velocidade de contração é bem maior. A fibra muscular cardíaca corresponde à célula do músculo cardíaco, que esta dividido nas seguintes camadas (de fora para dentro): epimísio, perimísio e endomísio. Ela é uma fibra estriada devido à organização dos miofilamentos (actina e miosina), sendo separadas uma das outras por discos intercalados (GAP Juncion), que se originam de invaginações da membrana da fibra. As fibras musculares organizam- se como treliças, em que as fibras se dividem e se recombinam. A membrana celular une-se uma as outras formando junções abertas, que permitem a passagem de íons de uma célula para a outra com facilidade. O músculo cardíaco é formado por muitas células individuais conectadas em série, formando um sincício atrial e ventricular. O potencial de ação se propaga de uma célula para outra com facilidade, através dos discos intercalados. Por outro lado, as fibras excitatórias e condutoras contraem-se muito fracamente, pois apresentam poucas fibrilas contráteis de miosina (são as chamadas células P, que servem apenas para conduzir estúmulos); porém, exibem ritmicidade e velocidade de condução variável, formando um sistema excitatório que controla a ritmicidade da contração cardíaca, formando um sistema excitatório (sistema de condução) que controla a ritmicidade da contração cardíaca. 2
  • 3. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 Este sistema de condu‚ƒo card„aca € formado pelo nó sinusal ou sinuatrial (o chamado marca-passo natural do cora‚ƒo), feixes internodais (localizados entre os dois nodos princiais do cora‚ƒo, sendo respons•veis ainda pela excita‚ƒo atrial), nó atrioventricular (tem a importante fun‚ƒo de retardar o impulso el€trico que nele chega para que os ventr„culos se encham de sangue e se esvaziem em tempos diferentes com rela‚ƒo aos •trios), feixe de His (que conduz o potencial el€trico para toda a musculatura ventricular) e as fibras de Purkinje (ramifica‚†es do feixe de His respons•veis por distribuir de forma uniforme os impulsos el€tricos nas paredes ventriculares). Conhecem-se, hoje, trˆs vias gerais de condu‚ƒo auricular: os feixes internodais anterior, m€dio e posterior (via de Thorel). Como veremos logo a seguir, nƒo existe conexƒo direta entre as fibras musculares atriais e ventriculares devido ao anel valvar fibroso que isola dos dois sinc„cios – a ‹nica forma de passagem de est„mulos se faz pelo n… AV e pelo feixe de His. Emboram sejam estruturalmente semelhantes, existem diferen‚as eletrofisiol…gicas importantes entre as c€lulas que comp†em o n… sinusal e a c€lula muscular.  As c€lulas do n… AV sƒo consideradas células de resposta rápida que, no repouso, como qualquer c€lula, apresenta seu interior negativo (com cerca de -60 mV) e exterior positivo. Quando € excitada, passa a receber grandes concetra‚†es de s…dio, que fazem com que o potencial interno da membrana fique cada vez mais positivo; at€ que mais canais de s…dio sejam ativados, aumentem o influxo de s…dio e debelem o potencial de a‚ƒo celular, fazendo com que a c€lula se contraia e envie o est„mulo nervoso. Neste momento, o pot•ssio come‚a a deixar a c€lula no intuito de negativar a face interna da membrana. Isto faz com que a c€lula repolarize. Todo este mecanismo ocorre de forma autom•tica e r•pida, da„ a considera‚ƒo de marca-passo card„aco ao n…do sinusal.  A célula de resposta lenta, por sua vez, que € representada pela fibra muscular card„aca, apresenta um potencial intramembranar de -50 mV. Quando excitada, o s…dio faz com que ela despolarize mais facilmente. No momento da repolariza‚ƒo, al€m da sa„da do pot•ssio, ocorre a entrada de c•lcio (por se tratar de uma fibra muscular). Como o c•lcio € um „on positivo, a c€lula mant€m um plat‡ positivo, o que nƒo ocorre nas c€lulas de condu‚ƒo. Portanto, o „on c•lcio serve para manter a repolariza‚ƒo celular e para contra‚ƒo da pr…pria fibra muscular, at€ que o pot•ssio e o c•lcio deixem a c€lula, repolarizando a c€lula muscular por completo. SINCÍCIO MUSCULAR Diferentemente de qualquer outro …rgƒo, as fibras que comp†e o cora‚ƒo devem funcionar de maneira uniforme e regulada. Dessa maneira, o cora‚ƒo € considerado um sinc„cio, formado por v•rias c€lulas musculares card„acas, no qual as c€lulas card„acas estƒo inteconectadas de tal modo que, quando uma dessas c€lulas € excitada, o potencial de a‚ƒo se propaga para todas as demais, passando de c€lula para c€lula por toda a treli‚a de interconex†es. Na verdade o cora‚ƒo € formado por dois sinc„cios: o sincício atrial, que forma as paredes dos dois •trios, e o sincício ventricular, que forma as paredes dos dois ventr„culos. Os •trios estƒo separados dos ventr„culos por um tecido fibroso que circunda as aberturas das valvas atrioventriculares (AV) entre os •trios e os ventr„culos. Quando o impulso € criado no nodo sinuatrial (localizado no •trio direito), normalmente, ele nƒo € passado diretamente para o sinc„cio ventricular. Ao contr•rio, somente sƒo conduzidos do sinc„cio atrial para o ventricular por meio de um sistema especializado de condu‚ƒo chamado feixe AV. Essa divisƒo permite que os •trios se contraiam pouco antes de acontecer a contra‚ƒo ventricular, o que € importante para a eficiˆncia do bombeamento card„aco. ELETROFISIOLOGIA A c€lula mioc•rdica em repouso (polarizada) tem elevada concentra‚ƒo de pot•ssio, e apresenta-se negativa em rela‚ƒo ao meio externo que tem elevada concentra‚ƒo de s…dio. • medida que se propaga a ativa‚ƒo celular, ocorrem trocas i‡nicas e h• uma tendˆncia progressiva da c€lula ser positiva, enquanto que o meio extracelular ficar• gradativamente negativo. A c€lula totalmente despolarizada fica com sua polaridade invertida. A repolariza‚ƒo far• com que a c€lula volte ‰s condi‚†es basais. Uma onda progressiva de despolariza‚ƒo pode ser considerada como onda m…vel de cargas positivas. Assim, quando a onda positiva de despolariza‚ƒo move-se em dire‚ƒo a um eletrodo na pele (eletrodo positivo), registra-se no ECG como uma deflexƒo positiva (para cima). Por outro lado, quando a onda tiver sentido contr•rio, ou seja, quando a onda de despolariza‚ƒo vai se afastando do eletrodo, tem-se uma deflexƒo negativa no ECG (Teoria do Dipolo; vide OBS3). Quando nƒo ocorrer nenhuma atividade el€trica, a linha fica isoel€trica, ou seja, nem positiva nem negativa. O n…dulo sinusal localizado no •trio direito € a origem do est„mulo de despolariza‚ƒo card„aca. Quando o impulso el€trico se difunde em ambos os •trios, de forma concˆntrica, em todas as dire‚†es, produz a onda P no ECG. Assim, a onda P representa a atividade el€trica sendo captada pelos eletrodos exploradores sensitivos cutŠneos e, ‰ medida que essa onda de despolariza‚ƒo passa atrav€s dos •trios, produz uma onda de contra‚ƒo atrial. A seguir, a onda de despolariza‚ƒo dirige-se ao n…dulo atriventricular (AV), onde ocorre uma pausa de 1/10 de segundo, antes do impulso estimular verdadeiramente o n…dulo, o que permite que o sangue entre completamente nos ventr„culos. Este intervalo no gr•fico € representado pelo segmento PR. Ap…s essa pausa, o impulso alcan‚a o n…dulo AV, que € um retransmissor do impulso el€trico para os ventr„culos, atrav€s do feixe de His, com seus ramos direito e esquerdo, e das fibras de Purkinje, tendo como consequˆncia a contra‚ƒo dos ventr„culos. Essa despolariza‚ƒo forma v•rias ondas, chamadas de “complexo QRS”. Existe uma pausa ap…s o complexo QRS, representado pelo segmento ST, de grande importŠncia na identifica‚ƒo de isquemias e, ap…s essa pausa, ocorre a repolariza‚ƒo do ventr„culo e, consequentemente, relaxamento ventricular, formando a onda T. A repolariza‚ƒo atrial nƒo tem expressƒo eletrocardiogr•fica, pois est• mascarada sob a despolariza‚ƒo ventricular que, eletricamente, tem uma voltagem maior em rela‚ƒo ‰ outra. 3
  • 4. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 ONDAS DE D ESPOLARIZA‚ƒO E DE REPOLARIZA‚ƒO NO ECG ONDAS DE DESPOLARIZAÇÃO 1. Como vimos, a c€lula encontra-se em repouso quando ela est• polarizada, em que a face interna de sua membrana apresenta cargas negativas e a face externa cargas positivas. O potencial de membrana de repouso € perdido quando h• um est„mulo, fazendo com que as cargas el€tricas se invertam: a c€lula torna-se positiva dentro e negativa no exterior. Veja a fibra ao lado (A), em que metade esquerda encontra- se despolarizada e a metade direita polarizada. A corrente el€trica flui da •rea despolarizada para a •rea polarizada. O eletrodo direito est• sobre a •rea negativa e o eletrodo esquerdo sobre a •rea positiva, causando uma diferen‚a de potencial. O ECG registra uma onda positiva afastando-se na linha de base. 2. Quando toda a fibra foi despolarizada (B), os eletrodos direito e esquerdo estƒo sobre uma •rea negativa, sem DDP, retornando a onda de despolariza‚ƒo para a linha de base. O ECG, nesse momento, registra uma onda positiva retornando ‰ linha de base. ONDAS DE REPOLARIZAÇÃO 1. O potencial de a‚ƒo retornar• ao potencial de repouso, tornando a c€lula negativa no interior e positiva no exterior. Metade direita da fibra (C) fica repolarizada e metade esquerda continua despolarizada. O eletrodo direito est• sobre uma •rea positiva e o eletrodo esquerdo sobre uma •rea negativa, causando uma DDP. O ECG registra uma onda negativa afastando-se da linha de base. 2. Quando toda a fibra for repolarizada (D), os eletrodos direito e esquerdo estarƒo sobre uma •rea positiva, sem DDP entre eles, fazendo com que a onda da despolariza‚ƒo retorne ‰ linha de base. O ECG registra, nesse momento, uma onda negativa retornando ‰ linha de base. RELA‚ƒO ENTRE O P OTENCIAL DE A ‚ƒO MONOF…SICO E AS ONDAS QRS E T Antes que a contra‚ƒo do m‹sculo possa ocorrer, a despolariza‚ƒo deve se propagar pelo m‹sculo, para iniciar os processos qu„micos da contra‚ƒo. Por tanto, a onda P ocorre no in„cio da contra‚ƒo dos •trios, e o complexo QRS ocorre no inicio da contra‚ƒo dos ventr„culos. Os ventr„culos permanecem contra„dos durante alguns milissegundos ap…s ter percorrido a repolariza‚ƒo, isto €, depois do termino da onda T. Os •trios repolarizam cerca 0,2s ap…s a onda P. Isso ocorre no instante preciso que o complexo QRS come‚a a ser registrado no ECG. A onda P nƒo € representada no potencial de a‚ƒo monof•sico pois a massa ventricular e sua atividade el€trica € bem maior que a atrial, a ponto de mascar•-la. A onda de repolariza‚ƒo ventricular € a onda T do ECG normal.  Fase ascendente do Potencial de A‚ƒo – Despolariza‚ƒo – QRS;  Fase descendente do Potencial de A‚ƒo – Repolariza‚ƒo – segmento ST e onda T. PAPEL DE REGISTRO DO ECG E CALIBRA‚ƒO DO ELETROCARDI•GRAFO Todos os registros do ECG sƒo feitos com linhas de calibra‚ƒo apropriadas, no papel de registro. Estas linhas de calibra‚ƒo j• estƒo impressas no papel. O papel € milimetrado, contendo quadrados pequenos (1mm x 1mm) inseridos em quadrados grandes (5mm x 5mm), contendo 25 quadrados pequenos cada quadrado grande. Cada mil„metro na horizontal equivale ‰ 0,04s e cada mil„metro da vertical equivale a 0,1mv. As linhas verticais de calibra‚ƒo estƒo dispostas de modo que 10 divis†es pequenas, para cima e para baixo, no eletrocardiograma padrƒo representam 1mV com positividade para cima e negatividade para baixo. As linhas horizontais no eletrocardiograma sƒo linhas de calibra‚ƒo do tempo. 1 OBS : Ao calibrar o aparelho ao papel, € registrado um gr•fico de padrƒo como representado na figura a cima, de forma que ela atinja o espa‚o equivalente a dois quadrados grandes. Isso mostra que o ECG deve ser calibrado em 10 mm (N  calibra‚ƒo normal), isto €, 1 mV. OBS²: A velocidade padrƒo de impressƒo do registro € de 25 mm/s. 4
  • 5. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 REGISTROS DO ELETROCARDIOGRAMA N ORMAL • medida que o impulso el€trico se difunde ao longo das fibras musculares card„acas, os eletrodos de superf„cie cutŠnea realizam o registro gr•fico desta atividade el€trica do cora‚ƒo na forma de ondas, complexos (conjunto de v•rias ondas), segmentos (linhas isoel€tricas) e intervalos (conjunto de segmentos e ondas).  Onda P: € devida aos potenciais el€tricos gerados durante a despolariza‚ƒo dos •trios antes de se contrair.  Intervalo PR: do in„cio da contra‚ƒo atrial ao in„cio da contra‚ƒo ventricular (0,12 a 0,20 s).  Segmento PR: fim da contra‚ƒo atrial ao in„cio da contra‚ƒo ventricular. Nƒo se estende at€ a onda R, mas at€ a onda Q. Convencionou- se esta denomina‚ƒo pela simples questƒo da existˆncia da onda R em qualquer deriva‚ƒo.  Complexo QRS: potenciais el€tricos gerados na despolariza‚ƒo dos ventr„culos.  Segmento ST: fim da contra‚ƒo ventricular ao in„cio da repolariza‚ƒo ventricular.  Onda T: potenciais el€tricos gerados na repolariza‚ƒo dos ventr„culos.  Intervalo QT: mesma dura‚ƒo da contra‚ƒo ventricular (0,30 a 0,46s).  Onda U: presente em casos de hipopotassemia, por exemplo.  Intervalo RR: intervalo entre duas contra‚†es ventriculares. Pode ser chamada de intervalo RR ou Ciclo RR. • o intervalo entre duas ondas R. Corresponde a frequˆncia de despolariza‚ƒo ventricular, ou simplesmente freq‘ˆncia ventricular. RELAÇÃO ENTRE A CONTRAÇÃO MUSCULAR E AS ONDAS DO ELETROCARDIOGRAMA  Onda P – in„cio da contra‚ƒo atrial.  Complexo QRS – in„cio da contra‚ƒo ventricular  Onda T – onda de repolariza‚ƒo ventricular (0,20 a 0,35s ap…s o in„cio da despolariza‚ƒo ventricular).  Onda T atrial – 0,15 a 0,20s ap…s a contra‚ƒo atrial (obscurecida pelo QRS). RELAÇÃO ENTRE O POTENCIAL DE AÇÃO E AS ONDAS QRS E T  Complexo QRS – aparece no in„cio do PA monof•sico (despolariza‚ƒo).  Onda T – aparece no final do potencial de a‚ƒo monof•sico (repolariza‚ƒo).  Linha isoel€trica – ausˆncia de potencial no ventr„culo totalmente despolarizado e totalmente polarizado. 5
  • 6. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 Serƒo definidas e detalhadas agora cada onda, complexo, intervalo e segmento do ECG normal. ONDA P A onda P € devida aos potenciais el€tricos gerados durante a despolarização dos dois átrios, antes de se contrair. A sua primeira metade representa a despolariza‚ƒo do •trio direito e a segunda metade, do •trio esquerdo. A amplitude da onda P €, em m€dia, de 0.25 mV, apresentando um tamanho normal de 2,5mm de altura.  Duração: em DII, de 0,08 a 0,10 segundos (2 quadradinhos e meio).  Morfologia: onda arredonda e monof•sica, podendo apresentar pequenos entalhes (depressƒo pr…ximo ao seu v€rtice) devido ‰ diferen‚a relativamente normal da contra‚ƒo dos dois •trios. Na taquicardia, apresenta-se pontiaguda.  Amplitude: em DII, de 2,5 a 3,0 mm (0,25 a 0,3mV).  Polaridade: Positiva em DI, DII e DIII. Negativa em aVR. Como vimos, cada metade da onda P representa um •trio. Por esta razƒo, algumas patologias envolvendo os •trios de forma isolada podem ser facilmente detectadas no ECG. A estenose mitral (redu‚ƒo do diŠmetro da valva atriovetrnciular esquerda) pode ser causada pela cardite p…s-estreptoc…cica, como manifesta‚ƒo tardia da febre reum•tica. Esta condi‚ƒo faz com que se acumule cada vez mais sangue no atrio esquerdo, aumentando a sua sobrecarga e, a longo prazo, o seu tamanho. A hipertrofia atrial esquerda produz um alongando a onda P no ECG. A hipertrofia atrial direita pode ocorrer em casos de hipertensƒo pulmonar, que reflete na insuficiˆncia ventricular direita e, tardiamente, na insuficiˆncia atrial direita, a qual cursa com uma hipertrofia atrial que se mostra, no ECG, na forma de uma onda P espiculada na sua primeira metade. Na estenose aortica, devido ‰ pouca sa„da de sangue do ventr„culo, h• um refluxo do mesmo para o •trio, o que tamb€m aumenta as suas fibras. Isso ocorre por exemplo em pacientes hipertensos (PA maior que 140/90). Nesse caso, haver• altera‚ƒo tamb€m na onda QRS. Em casos de comunicação interatrial (CIA) – doen‚a congˆnita em que nƒo h• a oclusƒo do forame oval embrion•rio – a onda P € prolongada devido ao aumento de carga sangu„nea a ser bombeada pelos atrios. Em resumo, devemos considerar os seguintes parŠmetros da onda P:  Onda P negativa em DI, DII e/ou DIII representa dextrocardia (cora‚ƒo do lado direito) ou mau posicionamento dos eletrodos (causa mais comum).  Quando o •trio direito est• crescido (devido a estenose tric‹spide ou estenose pulmonar), faz a onda P crescer em amplitude.  Quando o •trio esquerdo est• crescido faz com que a onda P cres‚a em dura‚ƒo. 6
  • 7. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 INTERVALO PR • o intervalo que corresponde desde o in„cio da onda P at€ in„cio do complexo QRS, ou seja, in„cio da contra‚ƒo atrial ao in„cio da contra‚ƒo ventricular. Significa o registro gr•fico da despolariza‚ƒo de praticamente todo o sistema de condu‚ƒo: transmissƒo do impulso desde o n… sinuatrial at€ os ramos do feixe de His e de Purkinje (por se tratar de um pequeno contigente de fibras em compara‚ƒo ao m‹sculo card„aco, se mostra na forma de uma linha isoel€trica). • um indicativo da velocidade de condu‚ƒo entre os •trios e os ventr„culos e corresponde ao tempo de condu‚ƒo do impulso el€trico desde o n…do atrio-ventricular at€ aos ventr„culos. Este intervalo € necess•rio para manter o ritmo card„aco necess•rio para que os •trios e ventr„culos se contraiam em tempos diferentes.  Duração: de 0,12 a 0,20s (3 a 5 quadradinhos). o Maior que 0,20s: Bloqueio atrio ventricular de est„mulo de 1’ grau (BAV 1’) o Menor que 0,12s: S„ndrome de Pr€-excita‚ƒo; S„ndrome de Wolf-Parkinson-White (causada por uma fibra que conecta previamente as fibras de condu‚ƒo dos •trios com os ventriculos). A Síndrome de Wolff-Parkinson-White € caracterizada por uma arritmia card„aca causada por um sistema de condu‚ƒo el€trico an‡malo, que faz com que os impulsos el€tricos sejam conduzidos ao longo de uma via acess…ria das aur„culas at€ os ventr„culos, diminuindo o retardo que ocorreria no n… AV. • tambem uma forma de taquicardia, formada por uma condu‚ƒo atrioventricular adicional que impede condu‚ƒo normal do est„mulo do •trio at€ o n…dulo atrioventricular, causando o que chamamos de taquicardia supraventricular. A corre‚ƒo € cir‹rgica, sendo necess•ria a abla‚ƒo deste segmento acess…rio. O intervalo PR € assim chamado, mesmo nƒo compreendendo a pr…pria onda R (mas sim o in„cio da onda Q), pois nem todas as deriva‚†es possuem a onda Q, mas todas possuem a onda R. SEGMENTO PR Linha isoel€trica correspondente entre o fim da onda P e o in„cio do complexo QRS, representando o atraso normal que acontece quando o est„mulo el€trico do cora‚ƒo alcan‚a o n… AV. Este atraso, como j• vimos, € necess•rio para que haja a contra‚ƒo ventricular logo depois de completada a contra‚ƒo atrial, isto €: para que haja uma harmonia de contra‚ƒo entre os dois sinc„cios card„acos. Tem dura‚ƒo m€dia de 0,08s (2 quadradinhos). COMPLEXO QRS Complexo, como vimos, € um conjunto de ondas. O complexo QRS consiste na representa‚ƒo gr•fica da despolariza‚ƒo ventricular, ou seja, da contra‚ƒo dos ventr„culos. • maior que a onda P em amplitude pois a massa muscular dos ventr„culos € maior que a dos •trios. Anormalidades no sistema de condu‚ƒo geram complexos QRS alargados e representam situa‚†es de emergˆncia.  Duração: 0,10 a 0,12 segundos. Maior que 0,12s  Bloqueio de um ramo D ou E do Feixe de His. Nestes casos, apresenta entalhes importantes.  Polaridade: depende da orienta‚ƒo do vetor S“QRS (que representa o vetor de despolariza‚ƒo ventricular). Vale salientar que, no complexo QRS, a primeira onda positiva sempre ser• a onda R, independente da deriva‚ƒo; a primeira onda negativa antes do R € a onda Q; a primeira onda negativa depois de R € a onda S.  Morfologia normal: de V1 a V6, nesta ondem, a onda R aumenta e a onda S diminui em amplitude (r, rS, rS’, Q, qR, qRs).  Amplitude: baixa voltagem: 5mm; R+S em V2 ≤ 9mm. A doença de Chagas causa bloqueio atrioventricular total (BAVT), causando um bloqueio no sistema de condu‚ƒo do impulso entre o •trio e o ventr„culo, alargando o complexo QRS. Se o complexo QRS estiver alargado, isso representa algum bloqueio no ramo direto ou esquerdo do Feixe de His, ou a pr…rpia ausˆncia desse ramo. Isso faz com que o impulso, para ser propagado a todo o ventr„culo, seja passado de c€lula em c€lula, a ponto de que o ventr„culo se contraia de forma errada e ineficiente, alargando o complexo QRS devido a demora de propaga‚ƒo do impulso a toda a massa muscular. 5% da popula‚ƒo nasce com o ramo direito do Feixe de His bloqueado. A repolariza‚ƒo auricular nƒo costuma ser registrada, pois € encoberta pela despolariza‚ƒo ventricular (registrada pelo complexo QRS), evento el€trico concomitante e mais potente. SEGMENTO ST O segmento ST € a linha isoel€trica que representa o intervalo entre o fim do complexo QRS (Ponto J) e o in„cio da onda T. Corresponde ao per„odo entre fim da contra‚ƒo ventricular e o in„cio da repolariza‚ƒo ventricular, sendo representada por uma linha isoel€trica. O desnivelamento do segmento ST € aceit•vel em at€ 1 mm; mais do que isso, podemos suspeitar das seguintes altera‚†es, que devem ser diferenciadas por meio da cl„nica do paciente ou por marcadores bioqu„micos. 7
  • 8. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1  Altera‚†es prim•rias da repolariza‚ƒo ventricular: sƒo as altera‚†es causadas por doen‚as coronarianas. Um infradesnivelamento nessa linha (mais que 1mm) € sinal de isquemia subendoc€rdica; um supradesnivelamento nessa linha € sinal de infarto agudo do mioc•rdio (isquemia subepic€rdica).  Altera‚†es secund•rias da repolariza‚ƒo ventricular: caracterizada por uma sobrecarga ventricular. A sobrecarga do ventr„culo direito ou um bloqueio de ramo pode provocar um infradesnivelamento do segmento ST; j• o supradesnivelamento € sugestivo de sobrecarga ventricular esquerda. ONDA T Onda arredondada que representa o final da repolariza‚ƒo ventricular, correspondendo, portanto, ao fim do segmento ST. O seu parŠmetro mais importante € a morfologia.  Dura•‚o: a medida est• inclusa no intervalo QT.  Morfologia: € arredondada e assim€trica, em que a primeira por‚ƒo € mais lenta. o Sim€trica, pontiaguda e positiva  hiperpotassemia, isquemia subendocardica. o Sim€trica, pontiaguda e negativa  isquemia subepic•rdica.  Amplitude: menor do que a amplitude do QRS.  Polaridade: positiva na maioria das deriva‚†es: DIII, aVR, V1 e em crian‚as: V1, V2 e V3. INTERVALO QT In„cio da contra‚ƒo ventricular at€ o fim da repolariza‚ƒo ventricular. Corresponde ao in„cio do complexo QRS at€ o fim da onda T. O aumento em dura‚ƒo da onda QT significa aumento da repolariza‚ƒo, o que predisp†e ‰ arritmia.  Dura•‚o: entre o in„cio do QRS e o fim da onda T normal: 0,30 – 0,46 seg. A dura‚ƒo do intervalo QT pode ser calculada pela f…rmula de Bazett (QT corrigido): QTcorrigido = QTmedido / √R-R. QT > 0,46  S„ndrome do QT longo, morte s‹bita, SMSI. O prolongamento do intervalo QT (S„ndrome do QT Longo Congˆnita) € um fator de risco para morte s‹bita independentemente da idade do paciente, de hist…ria de infarto do mioc•rdio, da freq‘ˆncia card„aca e de hist…ria de uso de drogas; os pacientes com intervalo QTc de > 0,44s tˆm 2 a 3 vezes maior risco de morte s‹bita que aqueles com intervalo QTc < 0,44s. A taxa de mortalidade em pacientes com SQTL nƒo tratados varia de 1 a 2% por ano. A incidˆncia de morte s‹bita varia de fam„lia para fam„lia como uma fun‚ƒo do gen…tipo. DERIVA‚„ES ELETROCARDIOGR…FICAS Na superf„cie do corpo existem diferen‚as de potencial consequentes aos fen‡menos el€tricos gerados durante a excita‚ƒo card„aca. Estas diferen‚as podem ser medidas e registradas. Para isto sƒo utilizados galvan‡metros de tipo particular que constituem as unidades fundamentais dos eletrocardi…grafos. Os pontos do corpo a serem explorados sƒo ligados ao aparelho de registro por meio de fios condutores (eletrodos). Dessa forma, obtˆm-se as chamadas deriva•„es que podem ser definidas de acordo com a posi‚ƒo dos eletrodos. A id€ia b•sica € observar o cora‚ƒo em diferentes Šngulos, ou seja, cada deriva‚ƒo, representada por um par de eletrodos (um positivo e um negativo), registra uma vista diferente da mesma atividade card„aca. As deriva‚†es podem ser definidas de acordo com a posi‚ƒo dos eletrodos (chamados eletrodos exploradores) no plano frontal (formando as deriva‚†es perif€ricas – bipolares ou unipolares) e no plano horizontal (formando as deriva‚†es precordiais, unipolares). OBS3: Teoria do Dipolo. O ECG € o registro gr•fico da proje‚ƒo dos vetores de ativa‚ƒo el€trica do cora‚ƒo, em linhas de deriva‚ƒo. Dipolo € o fen‡meno el€trico resultante de dois pontos justapostos e de cargas contr•rias. Chama-se de dipolo ao conjunto formado por duas cargas de mesmo m…dulo, por€m de sinais contr•rios, separadas por uma distŠncia d. O dipolo como grandeza vetorial apresenta: m…dulo (produto de uma das cargas pela distŠncia entre elas), dire•‚o (eixo do dipolo, linha unindo os dois p…los) e sentido (do p…lo negativo para o p…lo positivo). O eletrodo positivo do ECG que “olha” para a ponta da seta vetorial (resultante da despolariza‚ƒo card„aca) registra uma onda positiva. O eletrodo positivo que “olha” para a cauda da seta registra uma onda negativa. OBS4: O sentido de despolariza‚ƒo do cora‚ƒo se d• de cima para baixo e da esquerda para a direita. 8
  • 9. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 Logo, todo ECG € composto por 12 deriva‚†es que permitem uma visƒo tridimensional do potencial de a‚ƒo card„aco, de forma que as ondas sejam as mesmas para todas elas. Para conseguir estudar o cora‚ƒo de forma tridimensional, devemos dividir as deriva‚†es em dois planos:  Derivações no Plano Frontal (Derivações de Membros ou Periféricas). Medem a diferen‚a de potencial entre os membros (bipolares) ou entre certas partes do corpo e o cora‚ƒo (unipolares). Coloca-se um eletrodo em cada bra‚o (direito/esquerdo) e um na perna esquerda, formando um triŠngulo (conhecido como triângulo de Einthoven). Na perda direita, coloca-se o fio terra, para estabilizar o tra‚ado. Deslocam-se as trˆs linhas de referˆncia, cruzando com precisƒo o t…rax (cora‚ƒo) e obt€m-se uma intersec‚ƒo, formando as deriva‚†es bipolares DI, DII e DIII. Em seguida, acrescentam-se outras trˆs linhas de referˆncia nesta intersec‚ƒo, com Šngulos de 30’ entre si e obt€m-se as deriva‚†es unipolares dos membros: aVR (direita), aVL (esquerda) e aVF (p€). Neste caso, usa-se “eletrodos de presilhas”.  Derivações no plano horizontal (Derivações precordiais). Tˆm-se, com elas, uma visƒo como em um corte transversal do cora‚ƒo. Sƒo as deriva‚†es V1, V2, V3, V4, V5 e V6. Neste caso, usa-se “eletrodos de suc‚ƒo”. Medem a diferen‚a de potencial entre o t…rax e o centro el€trico do cora‚ƒo (n…dulo AV), e vƒo desde V1 (4’ espa‚o intercostal, na linha paraesternal direita) a V6 (5’ espa‚o intercostal, na linha axilar m€dia esquerda). Em todas essas deriva‚†es, considera-se positivo o eletrodo explorador colocado nas seis posi‚†es diferentes sobre o t…rax, sendo o p…lo negativo situado no dorso do indiv„duo, por meio da proje‚ƒo das deriva‚†es a partir do n…dulo AV. DERIVAÇÕES BIPOLARES DO PLANO FRONTAL  DI: bra‚o direito (-) e bra‚o esquerdo (+).  DII: bra‚o direito (-) e perna esquerda (+).  DIII: bra‚o esquerdo (-) e perna esquerda (+). DERIVAÇÕES UNIPOLARES DO PLANO FRONTAL  aVR: eletrodo no bra‚o direito.  aVL: eletrodo no bra‚o esquerdo.  aVF: eletrodo na perna esquerda. DERIVAÇÕES DO PLANO HORIZONTAL  V1: 4’ Espa‚o intercostal direito, justaesternal. Avalia o cora‚ƒo direito.  V2: 4’ Espa‚o intercostal esquerdo, justaesternal. Avalia o cora‚ƒo direito.  V3: Entre V2 e V4. Avalia uma regiƒo intermedi•ria.  V4: 5’ Espa‚o intercostal esquerdo, na linha hemiclavicular. Avalia uma regiƒo intermedi•ria.  V5: 5’ Espa‚o intercostal esquerdo, na linha axilar anterior. Avalia o cora‚ƒo esquerdo.  V6: 5’ Espa‚o intercostal esquerdo, na linha axilar m€dia. Avalia o cora‚ƒo esquerdo. 9
  • 10. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 AN…LISE DOS T RA‚ADOS As •reas mais importantes a serem consideradas depois de obtido o gr•fico do ECG sƒo: frequˆncia card„aca, ritmo card„aco, eixo card„aco (QRS), sobrecarga de cŠmaras card„acas (e hipertrofia) e infarto. No eletrocardiograma normal, esperamos os seguintes achados:  ParŠmetros t€cnicos: antes de mais nada, devemos avaliar se os eletrodos estƒo posicionados corretamente. Para isso, a onda P deve estar positiva em DI, DII e DIII e negativa em aVR.  Frequˆncia card„aca: 70 – 100 bpm.  Ritmo card„aco: sinusal.  Eixo QRS: entre -30’ e +100’.  Intervalo PR: 0,12 – 0,20.  Intervalo QRS: menor que 0,12 s.  Progressƒo do tamanho da onda R, ao longo das deriva‚†es V1 a V6.  Intervalo QT: 0,30 – 0,46.  Ausˆncia de: inversƒo de onda T, altera‚ƒo de segmento ST, Q patol…gica. DETERMINAÇÃO DA FREQUENCIA CARDÍACA A frequência cardíaca € o n‹mero de vezes que o cora‚ƒo bate por minuto. O controle da Freq‘ˆncia card„aca depende de v•rios fatores, entre eles: n„vel de atividade do sistema nervoso aut‡nomo; a‚†es hormonais; automaticidade card„aca.  O cora‚ƒo humano bate entre 60 e 100 vezes por minuto.  Quando o n‹mero de batimentos € abaixo de 60 vezes por minuto, excluindo o valor 60, por conven‚ƒo tem-se a chamada bradicardia.  Quando o n‹mero de batimentos € acima de 100 vezes por minuto, incluindo o 100, por conven‚ƒo tem-se a chamada taquicardia. A medi‚ƒo correta da frequˆncia card„aca por meio do ECG deve ser feita por meio dos seguintes passos: a) Método Correto: 1500/n’ de quadrados pequenos entre duas ondas R (intervalo RR), sabendo que 1 minuto tem 1500 quadrados pequenos (0,04 segundos x 1500 = 60 segundos). b) Método Prático: 300/n’ de quadrados grandes entre duas ondas R, sabendo que 1 minuto tem 300 quadrados grandes (0,20 x 300 = 60 segundos). c) Método por observação das linhas verticais e a onda R: € um modo que se leva em considera‚ƒo as linhas escuras verticais que delimitam um lado do quadrado grande e a onda R. Esse m€todo € feito da seguinte forma: primeiramente deve-se procurar no eletrocardiograma uma onda R que coincida exatamente na linha vertical escura. Achado a linha escura rente a onda R, marca-se as linhas escuras adiante delas com n‹meros decrescentes: 300 – 150 – 100 – 75 – 60 – 50, que correspondem ao n‹mero de batimentos card„acos por minuto. Caso a pr…xima onda R coincidir na linha vertical escura (como na figura, 50), siginfica a frequˆncia card„aca do cora‚ƒo no momento do registro (como na figura, 50 bpm). Caso nƒo haja uma rela‚ƒo direta entre a onda R e a linha, faz-se uma aproxima‚ƒo. d) Regra de Três: Cada intervalo RR corresponde a um batimento. Para facilitar o c•lculo, o papel € composto tamb€m de “quadrad†es”, que possuem cinco “quadradinhos” de 1 mm cada. Logo, 5 X 0,04 s = 0,2 s. A onda percorre o “quadradƒo” em 0,2 s. Precisamos saber a distŠncia em “quadradinhos” ou “quadrad†es” do intervalo RR. Imaginemos uma distŠncia entre o intervalo RR sendo de, aproximadamente, 4 quadrad†es, ou 4 X 0,2 s = 0,8 s. Se eu sei que um batimento (intervalo RR) gasta 0,8 s, quantos batimentos eu terei em um minuto (60s)? 1 batimento ---- 0,8 s x batimentos ---- 60 s x = 60/0,8 = 75 batimentos 10
  • 11. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 DETERMINA†‡O DO RITMO CARDˆACO – ARRITMIAS A determina‚ƒo do ritmo card„aco € fundamental para avaliar se a ativa‚ƒo el€trica das fibras card„acas se faz de maneira r„tmica, harm‡nica, ou se acontece na forma de uma arritmia. O termo arritmia cardŠaca define uma situa‚ƒo caracterizada por uma altera‚ƒo na frequˆncia, na regularidade e no local de origem do est„mulo el€trico ou por um dist‹rbio na condu‚ƒo deste est„mulo (seja ao longo do •trio, dos ventr„culos ou entre ambos). Qualquer uma destas altera‚†es € respons•vel por causar arritmias. Sabe-se que, o cora‚ƒo € composto por unidades celulares que tˆm a propriedade da excitabilidade. O respons•vel por comandar todo o funcionamento el€trico do cora‚ƒo € o n… sinuatrial. Contudo, quando h• falhas nesta ativa‚ƒo ou na condu‚ƒo do est„mulo el€trico (feita pelas c€lulas card„acas), imediatamente, outros focos de ativa‚ƒo surgem na sequˆncia. A origem destes focos segue, logicamente, a sequˆncia do que viria a ser o sentido de condu‚ƒo do est„mulo el€trico: primeiramente se formam focos ect…picos atriais, focos funcionais e, finalmente, focos ventriculares. Para a determina‚ƒo do ritmo card„aco, € fundamental a observa‚ƒo da onda P. Ela define se o ritmo € sinusal ou se € consequente a focos ect…picos. Al€m disso, deve-se medir sempre o intervalo PR e o complexo QRS. Apesar de o n…dulo sinoatrial ser o marca-passo do cora‚ƒo, qualquer outra •rea do sistema de condu‚ƒo ou do mioc•rdio pode assumir o comando, temporariamente ou definitivamente, provocando arritmias. De um modo geral, temos:  Ritmo sinusal (regular): caracteriza-se pela existˆncia de uma sequˆncia ritmada de ciclos card„acos entre 60 e 100 bpm. Isto significa que, no ritmo card„aco normal, h• uma constante distŠncia entre ondas semelhantes. Para determinar se realmente o ritmo card„aco € sinusal, devemos seguir os passos logo adiante: 1. Avaliar a existˆncia da onda P: esta deve ser arredondada e com frequˆncia de registro regular. 2. Avaliar a existˆncia do complexo QRS: estes devem ser normais, estreitos e com frequˆncia regular. 3. Avaliar a existˆncia de uma correla‚ƒo entre onda P e complexo QRS de 1:1, isto €: deve haver uma onda P para cada complexo QRS.  Arritmias: as arritmias, j• definidas, podem ser classificadas em dois grandes grupos: as bradiarritmias e as taquiarritmias. As bradiarritmias sƒo arritmias card„acas que se caracterizam por uma tendˆncia a reduzir a frequˆncia card„aca. Sƒo comumente causadas por doen‚as do n… sinuatrial e pelas doen‚as do n… •trio- ventricular. As taquiarritmias, por sua vez, fazem com que o cora‚ƒo experimente uma frequˆncia maior. Podem ser divididas em taquiarritmias supra-ventriculares (produzidas por dist‹rbios acima dos ventr„culos e do n… •trio-ventricular; podem ser subdivididas em atriais e •trio-nodais) e em taquiarritmias ventriculares (cuja origem se d• no pr…prio ventr„culo, obtendo um ritmo um pouco mais lento). Quanto as subdivis†es das arritmias, podemos destacar quatro grandes grupos que, em resumo, sƒo: o Ritmo vari€vel: arritmia sinusal, marca-passo migrat…rio e fibrila‚ƒo atrial.  Arritmia sinusal: verifica-se a existˆncia de ondas P idˆnticas no tra‚ado, demonstrado que o in„cio do foco € no •trio, precisamente no n…dulo sinusal, por€m em ritmos diferenciados. Pode indicar doen‚a coronariana.  Marca-passo migrat…rio (errante): caracteriza-se por ondas P de forma vari•vel, demonstrando que o in„cio do foco € no •trio, por€m nƒo precisamente no n…dulo sinusal. • um ritmo causado por diferentes posi‚†es do comando.  Fibrila‚ƒo atrial: apresenta um desenho todo “arrepiado”, cheio de ondas P min‹sculas, causadas pela descarga de focos atriais m‹ltiplos. Nƒo h• um impulso que despolarize os •trios de maneira completa, e somente por acaso de um impulso atravessa o n…dulo AV e de forma arr„tmica. o Batimentos suplementares e pausas: extra-s„stole, batimentos de escape e parada sinusal.  Extra-s„stole: € uma estimula‚ƒo prematura, proveniente de um foco ect…pico. Pode ser: e) Extra-s„stole atrial: estimula‚ƒo prematura, proveniente de um foco atrial (nƒo o n…dulo sinusal). Produz uma onda P anormal antes do tempo previsto. f) Extra-s„stole nodal (juncional): estimula‚ƒo prematura, que se origina de uma descarga ect…pica no n…dulo AV, de modo que o impulso caminha normalmente para baixo nos ramos do feixe de His (nƒo apresenta onda P e o QRS € idˆntico aos demais). g) Extra-s„stole ventricular (ESV): origina-se de um foco ect…pico ventricular, sem onda P e com um QRS diferenciado (aberrante). 11
  • 12. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1  Batimentos de escape: ocorrem quando o marca-passo principal nƒo consegue produzir est„mulo durante um ou mais ciclos, surgindo no ECG uma •rea sem ondas. Pode ser um escape atrial, nodal ou ventricular.  Parada sinusal: ocorre quando o marca-passo nƒo envia os est„mulos de comando e, ap…s uma pausa, um outro centro de comando assume a atividade com ritmo regular, mas em sua pr…pria frequˆncia, geralmente diferente da anterior. o Ritmos rápidos: taquicardia parox„stica, flutter e fibrila‚ƒo.  Taquicardia parox„stica: significa frequˆncia card„aca r•pida, de in„cio s‹bito, originando-se, geralmente, de foco ect…pico. A frequ6encia pode variar de 150 a 250 bpm. a) Atrial: sequˆncia normal de ondas. Onda P pode nƒo aparecer. b) Nodal: originada no n…dulo AV, logo, nƒo h• ondas P. c) Ventricular: semelhante a uma sucessƒo r•pida de ESV. As taquicardias atriais e nodais sƒo chamadas de taquicardias supraventriculares.  Flutter: taquicardia cuja frequˆncia card„aca encontra-se entre 200 a 300 bpm. Pode ser: a) Flutter atrial: se origina em um foco atrial ect…pico, com as ondas P apresentam-se em sucessƒo r•pida, cont„nuas e idˆnticas. b) Flutter ventricular: € produzido por um ‹nico foco ventricular ect…pico, com aspecto sinus…ide regular. O flutter ventricular quase invariavelmente evolui para a fibrila‚ƒo ventricular, necessitando de uma desfibrila‚ƒo e ressuscita‚ƒo cardiopulmonar.  Fibrila‚ƒo: taquicardia acima de 300 bpm. Pode ser: a) Fibrila‚ƒo atrial: numerosas deflex†es atriais ect…picas dando uma linha de base irregular. Nƒo h• um impulso que despolarize os •trios de maneira completa, e somente por acaso um impulso atravessa o n…dulo AV de forma r„tmica. b) Fibrila‚ƒo ventricular: € causada por muitos focos ect…picos disparados em freq‘ˆncias diferentes, produzindo um ritmo ca…tico, irregular (aberrante) e fatal. Isto porque, na fibrila‚ƒo ventricular, o cora‚ƒo nƒo € mais capaz de bombear sangue, caracterizando uma parada card„aca) – uma condi‚ƒo de emergˆncia extrema. o Bloqueios cardíacos: bloqueio sinusal, bloqueio •trio-ventricular e bloqueio de ramo.  Bloqueio sinusal (SA): o marca-passo card„aco p•ra temporariamente por um ou mais ciclos completos, mas retoma em seguida sua atividade de estimula‚ƒo.  Bloqueio de AV (nodal): cria um retardo do impulso (atrial) em n„vel do n…dulo AV, produzindo uma pausa maior que a normal para estimula‚ƒo dos ventr„culos. Pode ser: a) BAV de 1’ grau: caracteriza-se por um intervalo PR maior que 0,2 segundos (equivalente a um quadrado grande); b) BAV de 2’ grau: sƒo necess•rios dois ou mais impulsos atriais para estimular a resposta ventricular, ou o intervalo PR aumenta progressivamente at€ nƒo haver mais resposta QRS (chamado fen‡meno de Wenckebach); c) BAV de 3’ grau: bloqueio AV total, causando frequˆncias atriais e ventriculares independentes, com frequˆncia ventricular, geralmente, entre 20 a 40 bpm.  Bloqueio de ramo: tem como causa o bloqueio de um dos ramos do feixe de His, seja o direito ou o esquerdo. Assim, um ventr„culo se despolariza pouco depois do outro, fazendo com que dois QRS se juntem. Neste caso, o QRS € largo e observam-se duas ondas R (R e R’). Determina-se o lado bloqueado atrav€s das deriva‚†es V1 e V2 para o lado direito e V5 e V6 para o lado esquerdo. 12
  • 13. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 De um modo geral, os dist‹rbios relacionados com as arritmias estƒo localizados nos principais s„tios de bloqueio de condu‚ƒo que seguem: n… sinuatrial, n… atrioventricular e no pr…prio feixe de His (seja por bloqueio de um de seus ramos ou dos dois – bloqueio completo). As altera‚†es que ocorrem na altura destes s„tios serƒo nossos focos de estudo neste momento. Bradiarritmias. As bradiarritmias, por princ„pio, sƒo definidas pela frequˆncia card„aca menor que 60 bpm. Ela € considerada fisiol…gica durante o sono (por predom„nio noturno do sistema nervoso parassimp•tico, tanto a frequˆncia card„aca como a pressƒo arterial sistˆmica diminuem neste per„odo). As causas patol…gicas podem ser classificadas em cardíacas ou não-cardíacas.  Bradiarritmias de etiologia card„aca: sƒo causadas, sobretudo, por infarto agudo do mioc•rdio (principalmente por falˆncia da A. coron•ria direita, respons•vel por irrigar, entre outras estruturas, os dois principais n…s card„acos: o n… sinuatrial e o n… atrioventricular), por doen‚a do n… sinusal, etc. De uma forma geral, os principais eventos que promovem as bradiarritmias envolvem, fundamentalmente, os n… sunusal e o n… atrioventricular.  Bradiarritmias por causas nƒo-card„acas: hipotireoidismo, hipertensƒo intracraniana, hipotermia, etc. De uma forma geral, a classifica‚ƒo das bradiarritmias pode ser feita da seguinte maneira: 1. Bradiarritmia sinusal: comum em indiv„duos considerados normais (atletas, por exemplo) ou nas seguintes causas: hipersensibilidade do seio carot„deo; disfun‚ƒo do n… sunusal; s„ndrome da braditaquicardia. 2. Dist‹rbios da condu‚ƒo do est„mulo card„aco: podem acontecer por Bloqueios do n… atrioventricular (BAV) e por Bloqueios intraventricualres (BIV). Os BAV podem ser subdivididos em: BAV de 1’ grau; BAV de 2’ grau do tipo I, do tipo II ou do tipo 2:1; e BAV de 3’ grau. 1. Bradiarritmia sinusal O ECG mostra um gr•fico com ritmo sinusal, frequentemente. Contudo, a frequˆncia card„aca € menor do que 60. Como j• vimos, € fisiol…gica durante o sono ou no cora‚ƒo de um atleta (considerado normal at€ 40 bpm, aproximadamente). Contudo, pode ocorrer tamb€m em condi‚†es patol…gicas, tais como: IAM do ventr„culo direito (principal causa) e outras diversas (idade avan‚ada, drogas, etc.). 1.1. Doença do nó sinusal Algumas condi‚†es patol…gicas (principalmente, doen‚as auto-imune) ou idiop•ticas (como ocorre com indiv„duos idosos) podem cursar com edema cr‡nico da regiƒo do n… sinuatrial, causando tal anormalidade card„aca. As principais patologias relacionadas com a doen‚a do n… sinusal sƒo:  Amiloidose  Infiltra‚ƒo tumoral  L‹pus eritematoso sistˆmico  Doen‚a de Chagas  Esclerodermia  Cirurgia card„aca  Insuficiˆncia coronariana  Vagal  Pericardite  Drogas Nesta condi‚ƒo, ocorre a elimina‚ƒo da onda P ou onda P invertida, de modo que o n… atrio-venticular assume o comando da ritmicidade do cora‚ƒo. 1.2. Distúrbios da condução do estímulo cardíaco Falando agora nƒo de dist‹rbios da produ‚ƒo do est„mulo el€trico do cora‚ƒo no n… sinusal, os dist‹rbios da condu‚ƒo do est„mulo card„aco podem acontecer por disfun‚ƒo do n… atrioventricular (Bloqueio do n… atrioventricular ou BAV) ou por disfun‚ƒo do feixe de His (Bloqueio intraventricular ou BIV). 13
  • 14. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 1.2.1. Bloqueio atrioventricular (BAV) O BAV acontece quando ocorre algum tipo de dificuldade na passagem do est„mulo do n… sinusal para os ventr„culos. Consiste em um tipo de bloqueio extremamente frequente, presente em boa dos pacientes idosos (pois com a idade, o tecido respons•vel por transmitir a condu‚ƒo dos •trios para os ventr„culos torna-se mais fibroso, al€m do pr…prio retardo fisiológico da condução j• existente, que dura em torno de 0,12 – 0,20 segundos). Podemos classificar as BAV em:  BAV de 1º grau: o crit€rio para o diagn…stico de BAV 1’ grau € a presen‚a de apenas um retardo na condu‚ƒo •trio-ventricular maior do que o fisiol…gico (isto €: PR > 0,20 segundos, com manuten‚ƒo das ondas P e QRS). A despolariza‚ƒo atrial € seguida de uma despolariza‚ƒo ventricular, por€m a condu‚ƒo € lenta. Nesta condi‚ƒo, sempre veremos onda P e complexo QRS; contudo, estarƒo mais afastados do que o normal. O BAV de 1’ grau nƒo € importante isoladamente, mas pode ser um sinal de cardiopatia isquˆmica, cardite reum•tica ou intoxica‚ƒo digit•lica. Para os pacientes h„gidos que apresentam BAV de 1’ grau, devemos prover um acompanhamento regular, realizando ECG a cada 6 meses. Se o dist‹rbio de condu‚ƒo progredir (isto €, evoluir para o 2’ grau ou para o 3’ grau), ser• necess•ria uma interven‚ƒo m€dica; no entanto, enquanto o BAV se manter est•vel, apenas o acompanhamento € necess•rio.  BAV de 2º grau: € caracterizado por uma falha intermitente fazendo com que o impulso nƒo atinja os ventr„culos (no ECG, caracteriza-se, portanto, por uma onda P sem QRS). Essa falha pode ocorrer no n… AV ou no feixe de His. O BAV de 2’ grau pode ser classificado em Mobitz tipo I (ou tipo Wenckebach), Mobitz tipo II e tipo 2:1. o Mobitz tipo I (ou fen‡meno de Wenckebach): ocorre um retardo progressivo na passagem do est„mulo do •trio para o ventr„culo, isto €, o intervalo PR aumenta progressivamente a cada batimento, at€ que haja uma interrup‚ƒo total, de modo que uma onda P falha em conduzir o est„mulo aos ventr„culos. Acontece, por exemplo, que o intervalo PR se apresenta com dura‚ƒo de 0,26, 0,28 e 0,32, nesta sequˆncia e, entƒo, deixa de existir, visto que o complexo QRS nƒo foi formado. A evolu‚ƒo natural desta condi‚ƒo pode culminar na forma‚ƒo de um BAV de 3’ grau. o Mobitz tipo II: caracterizado por uma sequˆncia normal e constante de transmissƒo do impulso que, de repente, € interrompida (€ neste momento que o QRS deixa de existir). Em outras palavras, a maioria dos batimentos originada no n… sinuatrial € normalmente conduzida, mas ocasionalmente, uma onda P nƒo € seguida por um complexo QRS. Diferentemente do BAV de 2’ grau tipo I, nƒo ocorre aumento progressivo do intervalo PR: no Mobitz tipo II, os intervalos PR se apresentam com a mesma dura‚ƒo e, de repente, deixa de existir pela nƒo-forma‚ƒo de um complexo QRS. Tamb€m pode evoluir para um bloqueio complexo e, por esta razƒo, deve ser criteriosamente acompanhado para evitar esta evolu‚ƒo, que pode complicar com arritmias graves (taquiarritmias, inclusive) e s„ndrome de Stokes-Adams (tontura, s„ncope por qualquer esfor‚o e queda). o BAV tipo 2:1: caracterizado por ondas P alternadas que nƒo sƒo conduzidas aos ventr„culos, tra‚ando um gr•fico caracter„stico: P-QRS-P—P-QRS-P—P-QRS-P, na razƒo de 2 ondas P para cada complexo QRS. O n… AV que apresenta tal bloqueio apresenta instabilidade muito grande, de forma que pode evoluir para um bloqueio total. Por esta razƒo, deve ser criteriosamente avaliado e acompanhado.  BAV de 3º grau (BAV Total): nenhuma onda P passa ou nƒo tem sincronia alguma com o complexo QRS. Em outras palavras, caracteriza-se pela nƒo propaga‚ƒo da onda de despolariza‚ƒo do n… sinuatrial para o m‹sculo ventricular, o que gera onda P nƒo seguida de QRS. Com isso, os •trios deixam de apresentar qualquer rela‚ƒo de harmonia com os ventr„culos do ponto de vista el€trico: as ondas P geralmente se apresentam em uma frequˆncia bem regular, mas sƒo absolutamente independentes do QRS. Quando isso acontece, os ventr„culos sƒo excitados por um mecanismo de escape lento. Quando o escape se d• pelo feixe de His, o complexo QRS se apresenta estreito; quando o escape ocorre nas fibras de Purkinje, o QRS se mostra alargado. 14
  • 15. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 5 OBS : Marca-passos (MP). Quando se tem BAV de 3º grau, podem existir complicações incompatíveis com a vida, podendo complicar com síncope (por déficit de sangue para o cérebro). Para solucionar tal quadro, devemos implantar marca-passos para realizar a estimulação artificial do coração em uma sequência compatível com a vida (em torno de 60 bpm). Os marca-passos são aparelhos que liberam impulsos elétricos para o coração através de eletrodos, causando despolarização elétrica e subsequente contração cardíaca. No ECG, os marca-passos produzem complexos QRS alargados. Estão disponíveis aparelhos de dois tipos:  Provisório (transvenoso, esofagiano, transcutâneo). As indicações de marca-passo provisório estão sumarizadas abaixo:  Como terapia inicial para implante de MP definitivo em bradicardias sintomáticas como: BAV de 3º grau (BAVT); Disfunção do nódulo sinusal sintomática (DNS) caracterizada por: bradicardia, parada sinusal, bloqueio sinuatrial e taquicardia paroxística (Síndrome Bradi-taqui).  Bradicardias temporárias sintomáticas relacionadas a drogas: digoxina, diltiazem, B- bloqueador, amiodarona.  Infarto agudo do miocárdio (IAM): IAM anterior com: surgimento de bloqueio de ramo direito (BRD) e PR > 0,20s (200ms), Bloqueio de ramo direito (BRD) com hemibloqueio anterior esquerdo (HBAE), BRE agudo, BAV 2° grau Mobitz 2 (isto é: PR constante que de repente interrompe), BAVT; IAM inferior com: BAVT ou BAV 2°grau com instabilidade hemodinâmica, IAM de VD, com instabilidade hemodinâmica e BAVT, frequentemente necessitando de implante de MP dupla câmara para estimulo AV sequencial.  Pós-operatório de cirurgia cardíaca: marcapasso epicárdico (eletrodos instalados durante cirurgia cardíaca).  Controle de taquiarritmia com overdrive como: QT longo, Extra-sistolia atrial bloqueada, Taquicardia ventricular incessante, Taquicardia ventricular induzida por extra-sístole ventricular, Taquiarritmia ventricular dependente de bradicardia.  Pós-operatório: história de Stokes-Adams, BAVT ou Mobitz II, Pausa sinoatrial prolongada.  Bradicardia refratária durante ressuscitação ou choque hipovolêmico.  Parada cardíaca em assístolia.  Disfunção de MP definitivo.  Definitivo: O MP pode ser indicado como um recurso terapêutico definitivo. O MP definitivo consiste em uma ferramenta fundamental para melhorar a qualidade de vida do idoso. A American Heart Association junto com o American College of Cardiology determinaram as indicações de MP definitivo de acordo com os trabalhos existentes na literatura atual em classes, conforme será descrito a seguir. o Classes I: todas as condições em que há concordância para colocação de um MP; o Classes II: condições em que pode ser indicada a colocação do MP, porém há discordância sobre a necessidade do uso. o Classe III: condição em que existe uma concordância da não colocação da MP. 1.2.2. Bloqueio da condução intraventricular Como sabemos, ao longo da massa ventricular, o estímulo cardíaco viaja por intermédio das fibras do Feixe de His. O feixe de His conduz a onda de despolarização normalmente, mas em um dos seus ramos o impulso elétrico é bloqueado. O complexo QRS torna-se, então, alargado devido ao retardo da onda de despolarização no ventrículo que teve seu ramo bloqueado. Com o atraso da condução pelo ramo direito, a ativação ventricular esquerda é realizada normalmente, através do ramo esquerdo da esquerda para direita. Quando a ativação ventricular esquerda está próxima da finalização, o impulso passa da esquerda para direita através do septo interventricular (ativação transeptal transmiocárdica), desencadeando a ativação lenta e anormal do lado direito do septo interventricular e parede livre do ventrículo direito. O contrário também é verdadeiro para o bloqueio do ramo esquerdo do feixe de His. Tais alterações podem, portanto, serem avaliadas da seguinte maneira no ECG, optando pela análise das derivações V1 (para ventrículo direito e vetor septal) e V6 (para ventrículo esquerdo). Em ambos, o complexo se mostrará mais alargado. 15
  • 16. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1  Bloqueio de ramo direito do feixe de His: pode ser bem avaliado por meio das seguintes caracter„sticas: o Nas deriva‚†es precordiais direitas (V1) teremos o seguinte padrƒo:  Padrƒo RSR’: o que seria “complexo QRS” no ECG aparece com uma grande quilha na onda R, formando duas grandes ondas positivas: R e R’.  Onda T assim€trica e em sentido oposto ao QRS. o Nas deriva‚†es precordiais esquerdas (V6) e DI: padrƒo QRS com onda S ampla e arrastada. o Eixo el€trico do cora‚ƒo (S“QRS): vari•vel, tendendo desvio para a direita.  Bloqueio de ramo esquerdo do feixe de His: ocorre quando h• bloqueio do tronco do ramo esquerdo antes da sua bifurca‚ƒo em fasc„culos Šntero-superior e p…stero-inferior ou o bloqueio dos dois fasc„culos ao mesmo tempo. Sua etiologia pode estar relacionada com: hipertensƒo arterial sistˆmica, doen‚a das art€rias coron•rias, doen‚as valvulares, isquemia, esclerose, fatores mecŠnicos, em conseq‘ˆncia da hipertrofia ventricular esquerda, etc. o Complexo QRS alargado (> 0,12 segundos). o Na avalia‚ƒo das deriva‚†es precordiais esquerdas (V5 e V6):  Ausˆncia de ondas q iniciais.  Ondas R alargadas e monof•sicas, apresentando entalhes (aspecto em torre) e empastamentos.  Segmento ST infradesnivelado.  Onda T negativa.  Altera‚†es da repolariza‚ƒo. o Na avalia‚ƒo das precordiais direitas (V1 e V2):  Ausˆncia da onda r inicial.  QRS negativo. De um modo geral, no bloqueio de ramo esquerdo (BRE), a “orelha de coelho” no complexo QRS em V6 representa o atraso entre a despolariza‚ƒo do septo para o ventr„culo esquerdo. J• no bloqueio de ramo direito (BRD), a “orelha de colho” em V1 representa o atraso entre a despolariza‚ƒo do septo para o ventr„culo direito. Em resumo, temos: 16
  • 17. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 2. Taquiarritmias Sƒo arritmias card„acas caracterizadas por uma frequˆncia maior que 100 bpm. Pode ser um achado normal do ECG, principalmente quando o paciente tem realizado algum esfor‚o f„sico vigoroso ou por descarga de adrenalina por nervosismo, por exemplo. Contudo, pode estar relacionada com a presen‚a de doen‚a card„aca de base e de reflexos cardiovasculares. O aumento da frequˆncia card„aca tem relevŠncia cl„nica importante a partir do momento que h• um comprometimento do fluxo coronariano. Como se sabe, o enchimento das art€rias coron•rias acontece durante a di•stole; contudo, como na taquicardia h• muito pouco tempo para que o ventr„culo relaxe, a pressƒo coron•ria cai de uma forma importante. Indiv„duos que j• apresentem algum tipo de obstru‚ƒo em coron•ria e apresenta taquicardia apresentam maior predisposi‚ƒo a desenvolver infarto no curso desta arritmia. As taquiarritmias (TA) podem ser classificadas em TA supra-ventriculares e TA ventriculares. 2.1. Taquiarritmias supra-ventriculares (TASV) Sƒo arritmias causadas por disfun‚†es em s„tios localizados acima do n… atrioventricular, o que inclui o •trio (acometido pela fibrila‚ƒo atrial e flutter atrial), a taquicardia atrial, a taquicardia sinusal, a taquicardia juncional (que ocorre na jun‚ƒo entre o •trio e o ventr„culo), taquicardia reentrante nodal e a taquicardia reentrante atrioventricular (Síndrome de Wolf-Parkinson-White). Na an•lise das taquicardias supra-ventriculares, € sempre necess•rio examinar os seguintes parŠmetros:  Frequˆncia atrial;  Frequˆncia ventricular;  Regularidade ventricular (RR): o QRS € regular na taquicardia reentrante nodal, da taquicardia reentrante atrioventricular (S„ndrome de WPW), flutter atrial e na taquicardia atrial; € irregular na fibrila‚ƒo atrial e, enventualmente, no flutter e na taquicardia atrial.  Identificar morfologia da ativa‚ƒo atrial (P, F, f);  Avaliar rela‚ƒo P:QRS. A onda P pode nƒo existir e, caracteristicamente, o QRS mant€m seu padrƒo normal de ondas, mas se mostra estreitado (diferentemente da taquicardia ventricular, onde o QRS € alargado e bizarro).  Importante: nas arritmias supraventriculares o QRS se mostra estreitado (< 0,12 segundos), visto que o dist‹rbio de condu‚ƒo se d• acima do n… AV. Os dois ventr„culos se ativam ao mesmo tempo. A presen‚a de um QRS largo (> 120 ms) significa alguma aberrŠncia, isto €: uma situa‚ƒo anormal. Os principais tipos de taquiarritmias supra-ventriculares atriais sƒo:  Taquicardia sinusal: caracterizada pelos seguintes parŠmetros:  Ondas P de morfologia normal;  Frequˆncia atrial de 100 a 200 bpm;  Frequˆncia ventricular de 100 a 200 bpm;  RR regular  P:QRS – 1:1.  Fibrilação atrial: condi‚ƒo em que a musculatura card„aca atrial passa a apresentar, por algum fator desencadeante, uma atividade el€trica absolutamente ca…tica. • a arritmia mais comum (0,4% a 1% na popula‚ƒo adulta) e eleva 2 vezes o potencial de mortalidade (que aumenta mais ainda com a idade). A fibrila‚ƒo atrial € caracterizada por nƒo configurar onda P regular no tra‚ado gr•fico, nƒo apresentar uma contra‚ƒo atrial efetiva e pela irregularidade da passagem do est„mulo do •trio para o ventr„culo (ou seja, hora passa, hora nƒo passa, de forma aleat…ria). As principais causas sƒo: doen‚a valvar mitral, doen‚a coronariana, cardiomiopatias, HAS. As demais causas sƒo: excesso de consumo alco…lico, S„ndrome de WPW, pericardite, DPOC com hipoxemia. Pacientes com fibrila‚ƒo atrial devem ser tratados como um grupo especial, isto porque a sua condi‚ƒo predisp†e a forma‚ƒo de trombos, que podem desgarrar-se da cavidade atrial, ganhar a circula‚ƒo e causar, entre outros comemorativos, a necrose de extremidades ou AVCi. Por esta razƒo, prescrevem-se anticoagulantes para estes pacientes. De uma forma geral, os objetivos do tratamento da fibrila‚ƒo atrial consistem em:  Controle da frequencia card„aca;  Reversƒo para ritmo sinusal;  Manuten‚ƒo para ritmo sinusal;  Profilaxia de tromboembolismo. 17
  • 18. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1  Flutter atrial: a incidência geral do flutter atrial é de 0,09% da população, dos quais 58% também apresentam fibrilação atrial. O flutter se caracteriza por ondas atriais não-sinuais (pois não configuram uma onda P) que ocorrem com frequência muito rápida. O gráfico traçado se assemelha a dentes de serra. O tratamento de eleição para seu tratamento é a cardioversão elétrica (95 a 100%).  Taquicardia reentrante nodal (TRN): fenômeno que envolve o nó AV. É mais frequente em mulheres (2:1), na 3ª a 5ª décadas de vida, sendo muito raro abaixo dos 2 anos de idade. Os sinais clínicos se manifestam na forma de batimento evidente em fúrcula esternal e síncope. O tratamento emergencial consiste em:  Cardioversão elétrica (100 J): se houver instabilidade hemodinâmica;  Compressão do seio carotídeo;  Adenosina (6/12/18 mg IV);  Verapamil (até 15 mg IV).  Na presença de sintomas severos ou por falência de tratamento clínico, optar pela ablação por cateter.  Taquicardia reentrante atrioventricular (Síndrome de Wolf-Parkinson-White): síndrome caracterizada pela presença de uma via acessória anômala que promove um estímulo ventricular precoce. No ECG, observamos um QRS alargado com a presença marcante da chamada onda Delta, logo no início do complexo. O alargamento do QRS acontece porque o estímulo se propaga pelo feixe de His e depois retorna por esta via acessória (o que não deveria acontecer). Tais características do QRS podem ser vistas em DI, aVL, V4, V5 e V6. Podemos perceber ainda uma diminuição do intervalo PR devido à excitação precoce dos ventrículos (síndrome de pré-excitação). Na realidade, do ponto de vista gráfico, o QRS se alarga as custas desta redução do intervalo PR. A FC se mostra muito alta e a onda P inexistente. O tratamento pode ser feito por ablação por cateter de radiofrequência introduzido pela via acessória. 18
  • 19. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 2.2. Taquicardia ventricular • a ocorrˆncia de 3 ou mais batimentos de origem ventricular com frequˆncia acima de 100 bpm, sendo sustentada se a dura‚ƒo € maior ou igual a 30 segundos e nƒo-sustentada se a dura‚ƒo € menor. Geralmente, est• associada a cardiopatias graves. Seu quadro cl„nico € caracterizado por:  A repercussƒo ir• depender da disfun‚ƒo mioc•rdica pr€-existente e da frequˆncia ventricular;  Pode levar a fibrila‚ƒo ventricular.  O exame f„sico € caracterizado por FC em torno de 160 spm, ritmo regular ou discretamente irregular. O ECG da taquicardia ventricular mostra FC entre 100 e 220 spm, com ritmo regular ou discretamente regular. A morfologia do tra‚ado € absolutamente inespec„fica, sem padr†es. A onda P, na FC alta, nƒo € vista e, quando presente, nƒo tem rela‚ƒo harmoniosa com o complexo QRS. Este tem a mesma morfologia das extra-s„stoles ventriculares, mostrando-se largo e bizarro. O tratamento da taquicardia ventricular sustentada, quando o paciente estiver inst•vel, consiste na cardioversƒo el€trica, de imediato. Se o paciente estiver est•vel, bem monitorado e internado em UTI, € poss„vel optar pelo tratamento medicamentoso (Amiodarona 150 IV em bolus em 10 minutos ou Lidoca„na 0,75 mg/kg IV em bolus). 2.3.Fibrilação ventricular (FV) Situa‚ƒo em que a atividade contr•til dos ventr„culos deixa de ser efetiva, e o cora‚ƒo apenas tremula, sem capacidade de ejetar sangue. Por esta razƒo, o d€bito card„aco € zero, nƒo h• pulso, nem batimento card„aco (caracterizando uma parada cardíaca, sendo considerada a maior trag€dia dentro da cardiologia abaixo apenas da assistolia). No ECG temos um ritmo irregular e absolutamente ca…tico, sem ondas P, QRS ou T. Note que, diferentemente da taquicardia ventricular, as ondas sƒo extremamente assincr‡nicas. O ‹nico tratamento efetivo para a fibrila‚ƒo ventricular € a cardioversão elétrica (recomenda‚ƒo m•xima). Nenhum outro tratamento pode reverter o quadro. Pacientes cardiopatas, que apresentam miocardiopatias dilatadas, podem apresentar FV frequentemente. Tais pacientes sƒo candidatos ao implante de um cardioversor desfibrilador implantável (CDI). Tal procedimento € respons•vel por prover a preven‚ƒo prim•ria e secund•ria da morte s‹bita card„aca (MSC) em pacientes com cardiopatia estrutural. Sƒo indica‚†es para o implante de CDI:  Pacientes refrat•rios ‰ terapia medicamentosa;  BRE – dissincronismo intra e interventricular por retardo do VE em rela‚ƒo ao VD ou por abertura e fechamento tardios da valva a…rtica em rela‚ƒo a mitral. 6 OBS : Classificação de interferência eletromagnética sobre os dispositivos cardio-elétricos implantáveis (DCEI), conforme o grau de risco e recomendação para proteção.  Risco aceit•vel:  Eletrodom€sticos em geral;  Escadas rolantes e portas autom•ticas;  Autom…veis, ‡nibus, avi†es, motocicletas. 19
  • 20. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1  Aceitável com riscos:  Colchões magnéticos e mini-imãs;  Telefones celulares, telefones sem fio, blue tooth, walkie talkie, wireless, Wi-fi, iPod;  Antenas de telefonia celular;  Eletrocautério;  Radiação terapêutica;  Desfibrilação externa.  Ablação por radiofrequência (RF) e mapeamento eletro-anatômico magnético;  Litotripsia;  Aparelhos que produzem vibração mecânica;  Sistemas de detecção de metais e anti-furto;  Estimulação transcutânea, eletro-acumputura;  Radares de navegação, radares militares;  Campos eletromagnéticos, amplificadores de som e caixas acústicas;  Profissional da área de montagem de televisores e uso de equipamentos de solda por radiofrequência.  Inaceitável:  Ressonância nuclear magnética;  Medidor de gordura corporal. 7 OBS : O termo assistolia consiste na cessação de qualquer atividade elétrica ou mecânica dos ventrículos. No ECG se caracteriza pela ausência de qualquer atividade elétrica ventricular observada em pelo menos 2 derivações, se mostrando com um desenho de gráfico em linha reta. Cerca de 80% das paradas cardiorrespiratórias são advindas de arritmias ventriculares e a presença de assistolia se reveste de um prognóstico sombrio para o paciente. Afirmar corretamente que o ritmo em tratamento é de fato assistolia passa a ser um diagnóstico que necessita uma absoluta certeza. Ao visualizarmos um monitor com um gráfico sem ondas em qualquer momento do atendimento deve se proceder uma série de medidas que visam certificar-se do diagnóstico, o que será chamado de protocolo da "linha reta". 1º medida: confira o cabeamento da monitorização eletrocardiográfica - verifique se a fiação está conectada no paciente e no aparelho. 2º medida: aumente o ganho da derivação ao máximo que o aparelho permitir - ondulações muito finas podem parecer linha reta e com um ganho podemos passar a ver a fibrilação. 3º medida: mude as derivações do monitor - mude sequencialmente o seletor de derivações, pois a ausência de ondas numa derivação pode não se confirmar em outra. No caso da ação primária, onde usamos as pás do desfibrilador como derivação devemos rapidamente modificar a posição, passando a pá do apex para o terço superior do tórax e a pá direita para o bordo costal inferior direito, invertendo em 90º o eixo pesquisado. Se após as 3 ações o monitor persistir com linha reta, de fato estamos vendo um padrão de assistolia, passando ao tratamento específico dessa condição. O uso de choques de forma empírica no paciente em assistolia é formalmente contra-indicado (Recomendação Classe III). Basicamente, devemos proceder da seguinte forma:  Realizar ABC: Garantir uma boa ventilação e suplementação de oxigênio.  Drogas para assistolia: o Epinefrina: EV/IO: 0,01mg/Kg (0,1ml/Kg - 1:10.000); ET: 0,1mg/Kg (0,1ml/Kg - 1:1.000); Repetir a cada 3 minutos, mesma dose. o Atropina: A evidência do benefício é pequena (Recomendação IIb) - 1mg EV a cada 3 min até a dose máxima de 0,04mg / Kg o Bicarbonato de Na: A indicação do Bicarbonato na PCR é restrita aos casos de acidose preexistente e conhecida (Classe I) e na overdose de antidepressivos tricíclicos (Classe IIa). O uso durante manobras prolongadas é de recomendação IIb. A maior parte dos pacientes em assistolia não sobrevive. Freqüentemente a assistolia deverá ser vista como a confirmação do diagnóstico de morte e não como um ritmo a ser tratado. A assistolia persistente representa isquemia e danos extensos ao miocárdio, decorrentes de períodos prolongados de perfusão coronariana inadequada. 20
  • 21. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 DETERMINAÇÃO DO EIXO CARDÍACO O eixo se refere à direção da despolarização que se difunde através do coração para estimular a contração miocárdica. A direção dessa despolarização é representada por um vetor resultante principal (vetor médio do QRS ou eixo elétrico cardíaco) que nos mostra por onde a maior parte do estímulo elétrico está caminhando. Normalmente, esse vetor se dirige de cima para baixo e da direita para a esquerda, com relação ao próprio indivíduo: a origem do vetor médio do QRS é sempre o nódulo AV e, como os vetores que representam a despolarização do ventrículo esquerdo são maiores, o vetor médio do QRS aponta levemente para o ventrículo esquerdo. O vetor médio do QRS, de forma mais específica, é resultante de três importante vetores de ativação ventricular:  Vetor septal (primeiro vetor): aponta da esquerda para direita, de cima para baixo e de trás para frente. Nas derivações unipolares do precórdio, o vetor septal desenha uma onda r (R pequena) nas derivações precordiais direitas (V1 e V2) e, também, uma onda q (Q pequena) em V5 e V6. Em casos de necrose ou bloqueio do ramo esquerdo de His (BRE), haverá ausência do vetor septal (V1 e V2 sem onda R e V5 e V6 sem onda Q).  Vetor de parede livre (segundo vetor): é o mais importante da ativação ventricular por apresentar grande magnitude (é 10 vezes maior que o vetor septal). Daí, quando determinamos na clínica o eixo elétrico do coração, estamos nos referindo ao vetor de parede livre. Tem sua direção apontada para esquerda e para trás, podendo ser para cima nos corações horizontais ou para baixo nos verticais. O vetor de parede livre é responsável pelo aparecimento da onda S grande em V1 e V2 e R grande em V5 e V6.  Vetor basal (terceiro vetor): a última parte dos ventrículos a ser ativada é a sua região basal; quase simultaneamente, dá-se a despolarização da base do septo e da região basal das paredes ventriculares. A soma do potencial elétrico elaborado nesta fase é chamada de vetor basal de ativação ventricular. Embora resultando de todas as forças basais, este vetor é de pequena grandeza (semelhante ou ligeiramente maior que o primeiro vetor) e dirigido para a direita, para cima e para trás. Quando a região superior e posterior do septo direito é dominante, o terceiro vetor aponta para cima e para trás; quando domina a anterior e superior, esta dirige-se também para cima, porém para a frente. Esse vetor será responsável pelo surgimento da onda S pequena nas derivações esquerdas, colaborando no final da onda S grande nas precordiais direitas. O terceiro vetor é identificado pela onda R da derivação aVR e pela onda S de V5 e V6. O eixo serve para verificar se a movimentação de ondas do coração está no sentido normal. Se o indivíduo tem um infarto em uma determinada área, há um espaço morto naquele local. Neste caso, a onda não repercute neste espaço e se desvia, desviando o eixo como um todo. Para uma melhor interpretação da posição do eixo vetorial cardíaco, devemos considerar alguns conceitos que foram apenas citados anteriormente, mas que serão necessários neste momento.  O triângulo de Einthoven nada mais é que a representação vetorial dos sentidos das derivações bipolares do plano frontal (DI, DII e DIII). Se deslocarmos todos os lados deste triângulo para um centro comum, formaremos um sistema de três eixos.  Se considerarmos agora todas as linhas de derivações do plano frontal para o centro do triângulo de Einthoven, formamos um sistema de eixos hexa-axial (a chamada rosa-dos-ventos do ECG), de forma que o centro do sistema representa o nódulo AV (local de origem do vetor médio de QRS). 21
  • 22. Arlindo Ugulino Netto – CARDIOLOGIA – MEDICINA P6 – 2010.1 Para determina‚ƒo do eixo, o procedimento b•sico inicial € observar as deriva‚†es DI e aVF, que sƒo as deriva‚†es que estƒo direcionadas para o sentido normal da despolariza‚ƒo card„aca. Se o QRS for positivo (isto €, estiver voltado para cima) em DI, o vetor aponta para o lado positivo (isto €, lado esquerdo do indiv„duo). Se QRS for positivo em aVF, o vetor aponta para baixo na metade positiva da esfera. Neste caso, a localiza‚ƒo do vetor resultante principal ser• na faixa normal entre 0 a 90’. Qualquer situa‚ƒo diferente desta, haver• um desvio de eixo. Al€m disso, caso o QRS seja negativo em V2, o vetor aponta para tr•s (situa‚ƒo normal). A partir das deriva‚†es DI e aVF – que sƒo perpendiculares entre si – podemos criar quatro quadrantes. A simples avalia‚ƒo da polaridade do QRS em DI e aVF (se o QRS est• voltado para cima – positivo – ou para baixo – negativo – no ECG a ser avaliado) pode determinar o quadrante onde estar• localizado o eixo el€trico do cora‚ƒo. Para detalhar ainda mais a localiza‚ƒo do eixo el€trico, podemos lan‚ar mƒo do seguinte parŠmetro: o eixo el€trico vai estar mais pr…ximo, isto €, com uma angula‚ƒo menor, ‰ deriva‚ƒo que estiver mais positiva (ou mais negativa, se por ventura o eixo estiver fora do quadrante normal – que € o inferior direito): se DI estiver mais positivo que aVF, o eixo card„aco o estar• no quadrante inferior direito, mas estar• mais pr…ximo ao angulo de 0 . Para detalhar mais ainda o intervalo de angula‚ƒo onde estar• o eixo el€trico do cora‚ƒo, precisaremos observar as demais deriva‚†es do ECG, o que ser• detalhado melhor em exemplos, ainda nesta se‚ƒo. Em resumo, a localiza‚ƒo do eixo m€dio do QRS pode ser facilmente obtido seguindo os seguintes passos: 1. Observar a polaridade do complexo QRS nas deriva‚†es DI e aVF. 2. Determinar o quadrante do vetor de ativa‚ƒo. 3. Procurar uma deriva‚ƒo isoel€trica (+/-). 4. O eixo estar• na deriva‚ƒo perpendicular ‰ deriva‚ƒo isoel€trica:  DI ∟ aVF (DI € perpendicular a aVF)  DII ∟ aVL (DII € perpendicular a aVL)  DIII ∟ aVR (DIII € perpendicular a aVR) 5. Caso nƒo haja deriva‚ƒo isoel€trica, deve-se observar as deriva‚†es que cruzam por fora do quadrante determinado no passo 2 e selecionar o eixo perpendicular a ele que estiver mais pr…ximo da polaridade de DI ou aVF no tra‚ado do ECG. Por exemplo:  Determinado que o eixo est• no quadrante entre 0’ a 90’ (DI+ e aVF+) e o ECG nƒo mostrou nenhum QRS isoel€trico em nenhuma deriva‚ƒo, devemos:  Olhar DIII (sempre optar por observar DIII primeiro)  Em caso de DIII (-): o eixo estar• acima de aVR (+30’ e 0’).  Em caso de DIII (+/-): o eixo estar• sobre aVR (+30’).  Em caso de DIII (+): o eixo estar• abaixo de aVR (+30’ e +90’). Em caso de DIII positivo, devemos observar aVL (e seu vetor perpendicular DII).  Olhar aVL  Em caso de aVL (+): o eixo estar• acima de DII (+60’ e 30’). Em caso de aVL positivo, devemos observar DIII (e seu vetor perpendicular aVR).  Em casos de aVL (+/-): o eixo estar• sobre DII (+60’).  Em caso de aVL (-): o eixo estar• abaixo de DII (+60’ e 90’). Os exemplos a seguir ajudarƒo a fundamentar o conhecimento. 22