SlideShare une entreprise Scribd logo
1  sur  63
Télécharger pour lire hors ligne
!quot;   #&
     $'
      %
!
       potential to deliver beams of several MW
       drivers for a large variety of applications:
                                                                          Power     Energy
   Condensed matter                   spallation neutrons                ~ 1 MW     ~ 1 GeV
   materials irradiation              neutrons from stripping reaction   2 x 5 MW   40 MeV
   RIBs for nuclear & astro-physics   with neutrons                       4 MW      ~ 1 GeV
   secondary beams for particle
                                      muon, neutrino production           4 MW      5 GeV
   physics
   hybrid subcritical reactors for
                                      demonstrator                        5 MW        0.6
   transmutation


Note: superconducting (SRF) technology
higher gradient capabilities & lower operational costs wrt. NC
  adopted in most of the designs for the major part of the linac
*           !5

     quot;# $ ) *
          '%             &+
                         $)           * ')
                                         ,         *


      #)
      (          )       -    .!
                              *
          ), # ) * # )
               '$
          '*                              *    )       *
&*
     '&   ) *+&          quot;)           * , #)
                                       &
          '                                +       *
          " &
            -)                            & ')
                     *            )!
                                  $*         $         */
                                                        //
     *.       /#                  /       '
     quot;# $0       quot;) % *                1) *
                     0                  '
 *
     ' ')        #
                 +           *1       !       2quot;
          2          .            32 4
     +&    &# )              *&       $)!2)
                                       $*                    *

                                                                 (
!5
     4       5       4/   !
         ∝       ×     5.




                              3
6
!7!




                7




%   &   $   6
%   &$
   8     9                5.             :8 8 <
                                            ;
                                       & : =>? <
quot;  25
9      :



             
9;     (5     )5
              6                    <    (= 2*
>    !       2)
              3   2                    *
9  .    /5
         6
%       6 :-
       6( ?
>      (;  < ); <              3        2       .*
                                                     %
        9                          9

                =    =-        -8      *


                                                         quot;
                    =- !B
                      0            @ - !B
                                    A




                                                             8
%   &$
             %&   .     @




         C
                               quot;B
                                A




    quot;B
     A
              5       5D . )        *
%     &$
+? 2
  &        !          <   5   5%
     8quot;    E          2 .( 5
 (;
  <               5
                                           .        )    *
 /<       5%
     -quot;      E3       2 .6 5
    (( ;
       <          5
      < 5%




                                   7   .!
                                        55     !F   5.


                              &    !   .
                              3→   2           .    B
'
      ,           9                              &            9
     B            !       E                1 BG 1 (
                                               A          2)& 1
                                                           % C*           2quot; B
                                                                            A
     :            !       E quot;B
                           8A              ;                  5         5   2           2
Particle                  Proton
Max Beam Energy           100 MeV
                                                            2                     ,%$
Operation Mode            Pulsed
                                                      )    . !! *
Max. Peak Current         20 mA
RF Frequency              350 MHz                          .  ;
Max Repetition Rate       120 Hz / 60 Hz
Max Pulse Length          2 ms / 1.33 ms
Max Beam Duty             24% / 8%

                      .                     .                        ..       .




                      100 MeV Beam Lines                  20 MeV Beam Lines
'->     <quot;



               LEBT
                                          20 MeV DTL

   Injector
                            3 MeV RFQ
50 keV 40 mA

H (6   :- 3 4   !
H    5   .
  3              !
       .      .    -
H
                                        H3   ;   6quot;A
                                        H         I5
                                        H          <,
                                        H &quot;
                                           &quot;
'->       <6



                    '        6
                    H        .     %B
                                   &
                    H % .!         !




 *
8>
>    <2 quot;
8 ; )/ 5*
     8
         &quot;
          &quot;
D.    E
                                           β3
    . ./ A86            5.   9&9        4 !) / *
     .
*.     /
#   /  '




               (
$&#            quot;
                                     %=
                                      /      !
      5 * $&#                            6
    quot;!$      .             5*
                                                                                         5 kW
•       !         .    J      K.
    4                      6 =2 !
                                                                                      160 kW
    quot;# $0                            .
    quot;    quot;1 9                                                   60 kW
                  9        )quot; *
                           A % 5.
                                                                                       400 kW
                  ) > quot; $ ' $> *
                  $B $ % B
                  .
        *C    *
•             .                  .
    4        55                          !
            !   .
                                                 LP-SPL: (Low Power) SPL
                                                 PS2: High Energy PS (~ 5 to 50 GeV – 0.3 Hz)
                      5ν
         5                   !                   SPS+: Superconducting SPS (50 to1000 GeV)
                                                 SLHC: “Superluminosity” LH (up to 1035 cm-2s-1)
                                                 DLHC: “Double energy” LHC


                                                                                              3
5 9 #$
                quot;  0

               LINAC4 (160 MeV) 352.2 MHz                              9   $
                                                                     4     35
H- source   RFQ              DTL
                  chopper               CCDTL     PIMS              I6;<  . / /?
                                                                           /
                                                                   )
                                                                   .    . . / ?*
                                                                           /
                  3                50       102          160 MeV




  Length ~ 80 m
   4 different accel. structures
  (352 MHz)
  19 klystrons
  Focusing provided by
  111 PM Quadrupoles
   33 EM Quadrupoles


                                                                             6
quot;# $0
!D            :- &4 5
                %                 .4              5 :D      5       36 ;2
)L
 3                   :-
                      *
&* ' E         .(    *        ) 5*
                              (                     .                (      2
$             ) 5*
              (/      D.              (                         .
2         quot;     3quot;
                 24                       6    2(       ;   5
)              .         D        .           95             C       .          ) C*
                                                                                9
$ $    *2                quot;    3$ quot;
                              $2 4                          56                  2
   ;)(           *             65
5D .             .       .       ;)               9C                     .      ;*
π       *       3   4                         5              2
        ;)8      *                    5
                                              $2quot;
                                               $
&         !    5D .




    8     5.    4 !(6        :-
5    9quot;              quot;         5          9!            quot;

                       LINAC4 (160 MeV)                         SC-Linac (4/5 GeV)
                            352.2 MHz                                704.4 MHz
H- source   RFQ     chopper      DTL        CCDTL        PIMS          =0.65              =1
                   3                            102                            643 MeV
                                       50                       180 MeV                        4/5 GeV

                                                LP-SPL                     HP-SPL
                  Energy (GeV)                       4           2.5 or 5       2.5 + 5
                  Beam power (MW)                   0.16          3 or 6            4+4
                                                    ≤2
                  Rep. Frequency (Hz)                                50             50
                  Protons/pulse (x 1014)            1.5              1.5            2+1
                  Av. Pulse Current (mA)            20               20             40
                  Pulse duration (ms)               1.2              1.2       0.8 + 0.4

                                                                     %G
                                                                      $             %G
                                                                                     $
   overall length = 460 m                                                            .
                                                                 0             0
   (was 690m for 2.2 GeV in previous version)



                                                                                                   8
quot;
6             .          37
                         '? 5                  4
                          5 / .5                /'
                                                 &                   /!
                                             high-frequency
         SPL type                nominal                         spoke option
                                                 option
         frequency [MHz]          704.4           1408.8         352.2/1408.8
         beta families           0.65/0.92     0.6/0.76/0.94     0.67/0.8/0.94
         cells/cavity              5/5            40063             39937
         trans. energies [MeV]   160/581       160/357/884       160/392/758
         output energy [MeV]       5122           5144              5075
         gradients [MV/m]        18.7*/24*   17.5*/21.3*/24.2*   8.5/9.5/24.2*
         cavities p. module        6/8            4/4/8              3/4/8
         cavities p. period        3/8            2/4/8              3/4/8
         cavities p. family       42/200        30/40/208         27/24/216
         cavities in total         239             278               267
         length [m]                445             499               485



    &'                        5 / > !B
                               .A0                          *-,
quot;


        *                  .        *    E         E
     5. 5
       !           .           4        5               @
!5    E        .       E           4         5

                              ! β≥ /*
          .4                   )                   4
     .D        5           4! ! ) 4! 5
                                  (              *! .
5
&quot;
'              5
                            .      !5 .
)B;
A              35          45 .
                            #       .D .         !5 .   *
=/
The Intensity Frontier: Project X
( National Project with International Collaboration )


                                                 Tevatron Collider
                     200 kW at 8 GeV for
                     precision measurements
NOvA
           >2 MW at 60-120 GeV
           for neutrinos

                               Main Injector
2    9;? <! quot;   =F>
      quot;       *     .    *  &'      5.
      !   *      *    quot;$   .   *
!           *     '       &.
!G     **       H         **    *   53
                                     .                  5 F 8 >? <
                                                           >-     4
   6    *       &.         ;? <   5
Front End Linac
     Project X
360 kW 8GeV Linac                             325 MHz 0-10 MeV                                                         2.5 MW JPARC Modulator
                                                                                                        Modulator
                                                                                                                       Klystron
                                                 1 Klystron (JPARC 2.5 MW)
                                                 16 RT Cavities
     20 Klystrons (2 types)                                                                                                Multi-Cavity Fan-out
                                                                                                                        Phase and Amplitude Control
                                              325 MHz 10-120 MeV
     436 SC Cavities
                                                 1 Klystron (JPARC 2.5 MW)  H- RFQ RT SSR1 SSR1 SSR2 SSR2 SSR2
     56 Cryomodules                              51 Single Spoke Resonators
                                                                                          β=0.22         β=0.4
                                                 5 Cryomodules                         9 cavities/CM 11 cavities/CM

                                                   Modulator                     Modulator                    Modulator
325 MHz            0.12-0.42 GeV
  3 Klystrons (JPARC 2.5 MW)
  42 Triple Spoke Resonators
                                              TSR     TSR     TSR         TSR        TSR      TSR       TSR
  7 Cryomodules
                                                                       β=0.6        6 Cavites-6 quads / Cryomodule




                                                                     ILC LINAC
1300 MHz            0.42-1.2 GeV
 2 Klystrons (ILC 10 MW MBK)
 56 Squeezed ILC Cavities ( β=0.81)
                                                                                                                     Modulator           Modulator
                                            Modulator              Modulator                   Modulator
 7 Cryomodules (8 cav, 4 quads)

1300 MHz             1.2-8.0 GeV
  13 Klystrons (ILC 10 MW MBK)
                                         β=0.8 β=0.8 β=0.8 β=0.8 β=0.8 β=0.8 β=0.8 ILC1 ILC1 ILC1 ILC1 ILC1 ILC1 ILC1 ILC1
  287 ILC-identical Cavities
  37 ILC-like Cryomodules                                                                                                        7 Cavities-2 quads / Cryomodule
                                                         8 Cavities - 4 quads/ Cryomodule

   Modulator    Modulator    Modulator    Modulator     Modulator          Modulator         Modulator         Modulator Modulator               Modulator




ILC1 ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC
                                                                                                     8 Cavities-1 quad / 21
                               HB2008 – Project X for Intensity Frontier Physics                                         Cryomodule
1   $       ..
             5
             &




                             &




                       quot;$
                       $     .
E   B* quot; $
         $    .
                        β :8
    β :>;
        78
1

!5           .#                      3 #4
                                     !        5        5           ->
                                                                    >I
            :            *                *           1quot;

     $ '$    %$<
                    5/
                     6           2
        5       5                     ;   4
                 5               2
                .        )*           ;           ) %%
                                                    *&
 &          !           .             .       7 !!
                                                 55            5
 :          .)          *    5            /
                                          6    2
 '                            ;!       .4 5                        4
                 %4
                 &           5.                   5    .   .




                                                                         (
!# &2
        H
         ! # =- !B& (
               I   '    &         *H $ .




!#   $      $   .
                            Solenoid Magnet



                                     25
                                      #




                                              3
! # & 2 3 '*
             H&                            4
       J              .        .       K   5
                4!                 .   ;.
                                       #         .%&              !5
                %&       !5
                          F                       .
                       7!     4                ..% &
                7      4 )&
                         %  *
       J                               .   K     5
                           !   ..                        !7
                                                         )/           9B   %*
                                                                           0
               .5
               !                       4
       15

:$ %
 0A          4 ! .2            .      >
                                   4 !A    4

13 dB Amplitude Control
with Vector Modulator                             High-power
6 kW 3.5 ms RF Pulse                                Vector
                                                  Modulator
red trace: cavity RF Amp
blue & yellow: vector                               HINS Room
modulator bias currents                          Temperature Cavity



                                                                                6
&*
7         45   7
               .     5             !
               .    4           5 )$*
                                  %G
     4




                            '5
                            %G
                             $  . .!    5                  /
                            A  .  4          .    .    /
                               . ! 5E        !F   4!       !



     quot;9                         quot;
%G
 $    .   .!                    5
              ;    /A       .           .
              -.        .         .     ./
     .!    5E !
             4                  4.
' &3 4
        ?

**    *    E  *   *
     *.5    .




                      !quot;




                      !quot;




                           8
'&
                                         =- !B
                                           I



                                                Beam energy                70 MeV
• ECR proton source & LEBT
                                                Beam current (op.)         35 mA
• RFQ (4-rod)
                                                Beam current (design)      70 mA
• 6 Pairs of Coupled CH-DTL                     Beam pulse length           36 µs
• 2 Bunchers                                    Repetition rate               4 Hz
                                                Rf-frequency            325.224 MHz
• 14 Magnetic Triplet
                                                Tot. hor emit (norm.)   2.1 / 4.2 µm
• Beam power = 4.9 MW (peak)
                                                                               10-3
                                                Tot. mom. spread




                                                                             ¡
                                                                              ¡
                                                                             ¡¡
                 710 W (average)
                                                Linac length                 35 m
• RF power =     11 MW (peak)
                 1600 W (average)

  H A =$9                      M        .           .:     .     4
     5                        , 0 G 5quot; 5
                               >'     !
  HA      5                                 :       $     !
       B0 3
        $                     0
  H                                 55          (
+&        quot;           $> )
                               B              *    !
     8? < 0
         /                               5
     8? < 8 >
         />                    *    5         RIB
                                              production




               Driver
-? <=! GG    *           5
- > <*
 I                   3         4

            Post-Accelerator

                                        Beam preparation
+&          quot;
              !   &




                           $0 . 4
                           9>       5           0;
    %&!
      B   N                         N



                  5 . 5N                        <G 5
                                            !   4             -
$                                                3   <:   5



     +&   quot;2      9   *        /*       *   .   *
                              *             .

                                                              (
'&
'   .   &                   )   +
                    - )quot;%        *


% .4 B
 &              3    ;<      5
     .               !
                       2 →3
    '       5           #      2#
                       2→ = 2
    9




                                     (
&quot;-
               :0>   <6I   :- >
                             >
       *




                                  3




                                       (&
                                      ; !B
                                       ;


% C )#E #
 &D            #
               (*
    :- B 6 5
       M

                                         (
&'
              E           *&                                    '       .
                                                         H    !%     6O3      2
$0>      <*           quot;         />
                                ;
                                                         H     5
!   &8 I !B
      A
                                                         H&   !5 .
                        General Design:
                                                         H&             .      (
                        • Houses 6 HWR and 3
                          superconducting solenoids
                        • Very compact design in         N/P
                                                          M         4       )5 .    *
                          longitudinal direction
                                                         N /6 P (
                                                          M         4       )5 .
                                                                            3       *
                        • Cavity vacuum and insulation
                          vacuum separated




       M. Pekeler, LINAC 2006
      ACCEL Instruments GmbH




                                                                                   ((
#




    (3
5*

                                                 2   *
 * .>-
     7                                       quot;5

    *    5    3> ;
              ->4




                          +5 *



                                          +5 *
L+ 5 *  38    4
  ..   I( = 2%    .! ;           ;
       5 $$       2!
                                     4
L+ 5 *  3I
         -      4
                                     5       +%
                                             9           !
  ..         2B      .%               !              !
     5           7                   .7

                                                             (6
quot;         2            5

              (3   :-               (3   :-        3     8     :-

   $           %C
                &                    quot;B
                                      A                    B                     B
        BGA                GA
              (    2                      86   2                         2                    2


                                                                                     -.
MEBT:    2 options (MCG type / solenoid-triplet type)
                                                                             .       .!
DTL:     4 tanks at 19.40, 37.68, 56.43 & 74.8 MeV, 6          cells
CCL:     At 972 MHz: > 60, 14 cell cavities, 3.5       separations, spoke option ?
SPL:     ~ 70, 4/6 cell cavities, doublet focusing, ~ 23         cells


         Beam power for 2 MW, 30 Hz, 3.2 GeV RCS                  0.5 MW
         Beam pulse current before MEBT chopping                  43.0 mA
         Beam pulse current after MEBT chopping                   30.0 mA
         Number of injected turns for a 370 m RCS                 ~500 turns
         Beam pulse duration at the 30 Hz rep rate                ~700.0 s
         Duty cycle for the extent of the beam pulse              ~2.1 %



                                                                                          (
/quot; 5                        D    !       .   5   :99
     /=                    .
     (/&          .                  $$


       5
     5 6 :-
     (  2




     5
                           :M ) 5                 9
             E:                       56      *
 quot;       E        B       !G 5 A
 &( :
  'E                    .!       )
                                 (   2( 3   :-
                                             *
 $    E!
      2                 .O
                         )             *
             42 5
     5
A OG D       $
             5        O $$ O <   ;    /1 '
                                       )  *


                                                            (8
$#




H ( 3 :- &B
         %
H    )( * 2   ;       (5
H9               .
H %C
   &        ! .4
             )     .  quot;  .*
                          !
H    4     quot; B3)
            A (* ;
  &quot;         / D . )9% ! *
             5/     +




                              (
#
           :G            )                    *QR
                                                                                                        To Ring

                 402.5 MHz                                 805 MHz
                                                                                                 HEBT
                  MEBT
                             DTL          CCL
           RFQ                                        SCL, ß=0.61        SCL, ß=0.81
                                                                                                        Linac dump

Injector         2.5 MeV           86.8 MeV     186 MeV        391 MeV                 1 GeV
                                                β =0.55        β =0.71                 β =0.87


           Length ~260 m, 96 independently phased RF cavity/tanks
           Normal conducting linac from the H- ion source to 186 MeV
           Superconducting linac from 186 MeV to 1 GeV
           Beam commissioning of the SCL began in August 2005
           Achieved the design repetition rate 60 Hz, maximum beam
           energy 1.01 GeV, peak beam current 40 mA, pulse length 1 ms,
           beam power on the mercury target 520 kW.


                                                                                                                  (
->
>-
                                        A                    #
                                                             6                  :-0                  5
                    60 mA
           LP

          SP
                                                  Funnel

                                                             CCDTL         CCL1               CCL2
     IS    RFQ     Chopper      DTL

                                                                                                       114 mA
                                            2 x 57 mA
          SP
                                                                       100 MeV 252 MeV                      1 334 MeV
                    60 mA
                                  2.5 MeV               20 MeV
           LP
                     280 MHz                                                    560 MHz

                                                770 m




                                        A (6 # 3
                                             8                                  :-                   5
                    60 mA
           LP
                        RFQ
                              Chopper
          SP
                                                  Funnel
                                  RFQ
                                          DTL
                                                                 DTL                 SCL1
                                                                            CCL                 SCL2
                        RFQ     DTL
                LP H+
                                                                                     114 mA

                                            2 x 57 mA
          SP
                                                                       85 MeV   185 MeV   450 MeV    1 334 MeV
                                  5 MeV
                        2 MeV
                                                    20 MeV
           LP
                     352 MHz                                                    704 MHz

                                                430 m




                                                                                                                 3
->
    >=   *




         68 5




H    #
     6    :-    5           .
H    )5
     68         .   3( 5*



                                3
#   .    5               8F7F !B
$            =-A0
             IC>    !B $
    G.   5           +$
               .→ B0 3 )
         &         $       6       2*
                 →
         :      !        9B
             7 72quot; . $
                                    β∼>
                                    β∼ 7= >
                    5/
                     .         *           7I


                                                3
''
                                        Test Modules

                G
     -68-I      2$      0>    <




                                    A!          E
Accelerator based neutron source    8B . *8G   B . *8G   B A3:
                                      )         )         )*
using the D-Li stripping reaction
                                    G5        B
  intense neutron flux with the
                                     5 . 76 5
appropriate energy spectrum
                                    )= 5*
                                      <#

                                                            3(
2.

                                              5          !
   5
1. Injector                                 3. DTL



                   O. Delferriere (Cea)                           N. Chauvin (Cea)

                                                                                     IFMIF
                                                                                     accelerator



                                          PROTOTYPE accelerator

                                                     Simulations all along the linac
                                                     from source to target/beam dump

          2. RFQ    5

                                          4. HEBT
                                            5            -
                                            57       .       Gquot;
                                                                           C. Oliver (Ciemat)
                   M. Comunian (Infn)

                                                                                                33
quot;9$             .


                    #$
                    %         &
    •
5        *         8>>   <*
    5         .3
               80>       4
             .3 7- π7
    5E        >I         7    *4
         *         &(
                    '
    5          .




                                   36
$&                      *design based on SILHI H+ source
     )       !       %         *               5
                                              -?
                                              70I !B
 .          .     /
                  //
H7     ! 5)   5                quot;*
H       .  )5   :2              5*
H      .    .                                                        3   .
                                                                 7       !5

H    5    ;55      S            T



         4-electrode system
         Emax = 101 kV/cm

                                     $                 7         /
                                                                 //
                                           1
                                      35quot;       86 5       5
                                     ) 1 ? quot; 1 6? quot; 1 6?*
                                     quot;               (
                                      7 F>     quot;5            5
                                     U    .)  3*       V ) 55*

                                                                              3
quot;           5.
        H:              !   5                      .
                            5

B GA    5               0    . .4           .                              5
                        → % 5 .quot;                W;
    55                                                5
 LEBT to RFQ beam matching             high focusing & short line

             solenoid         solenoid
                                                   RFQ
                                                                    krypton 4.10-5 hPa
                    Particle density
   %$
                                                                    0.25 π.mm.mrad




                                                                                    38
quot; 9# # quot;5
                      '


             &*       E   .(       *
         •
     5                *
         •                         >78     I   <
         5            3        4
                  5                    *

             0<



!5
$



                                                   3
RFQ Beam Dynamics
    2   5
                                                &('
$     !       ;2
                      H   .       .           )/ 5* F               5
>      !6       2
                      H    5                    % &C .
$        (    5
         /6 π 55/ .   $                   (        4
$  5             5
                      H       !                 4               5
&D  !    86    :-
9  ./
    4         .# 5
                      •B
              .# 5
                          .                               !
                      • 9!                     XX55     =G.
                         !                        5   5
                           4                   5    .     5
                      •:                          G;        5
                                                          .
                      •9;                          .5 .
                                      4          /7 ,    ;

                                                    B = qVλ2 mc 2 r02

                                                                    3
RFQ Mechanical Design
        5. )/5*   .
         5. 5.        ;



                                     D
                                                     4
                                                 4       5


        59
                                           f
B5           E                       -0.52 KHz

                                                 vane tip
4   5                                            4,6 m




                  $   5E        ..   4     F           4! ;
                           5   .5    . ;.         D         !
                               .%&               .


                                                                6
RFQ - beam losses
           9             7       45              5
H%&C   5       I/)6?             5E         .            *
HB     4       2;            4

                                        .

                             “best case”    “worst case”
                             waterbag           gaussian
                         0.25 π mm mrad 0.30 π mm mrad

               : @ 7IN
                  ;                                  : @ 78 N
                                                        -
?




                /5
                                                             6
quot;9$         .
    $   A#


                  2          quot;
        •
5                      8-I       $
        0>   <    ''
         @   <      .
                  5              H
             B5        /




                                     6
n.c. DTL replaced by s.c. HWR DTL
                                 MS       4 cryomodules
        LEBT

                                                                                              Li
                                                                                          Target
                                      s.c. HWR Linac
Ion source          RFQ
                                      G               55       .
    *        5                            !
H   5        *     O 8>
H                     5O F
H   5        6    .H         .
                                                                           0     .     *
H                  5.            *
    6        5      H   *
                                                                   -
H
             5H
            .                         Cryomodules                    1           2      3&4
                                      Cavity β                     0.094       0.094   0.166
                                      Cavity length (mm)            180         180     280
                                      Beam aperture (mm)             40          40      48
                                      Nb cavities / cryostat       1x8         2x5      3x4
                                      Nb solenoids                   8           5        4
        .          .      P 3/ 25
                             6  #     Cryostat length (m)          4.64        4.30     6.03
                                      Output energy (MeV)             9        14.5    26 / 40
    B                     P 3 6 55

                                                                                             6(
$                   *     5&                  H
           4      !R
                                             peak surface fields sufficiently reduced
                    Geometry optimisation
                    (determine the maximum reachable accelerating field)
                            Ep/Eacc=4.4 & Bp/Eacc=10.1
                    Tuning method chosen: plunger at the opposite of the coupler port,
                    in a region of high electric field (tuning range easily achieved)



                                                                 Tuning system actuator
                            beam




Cavity with Helium vessel                                               Power coupler


                                                                                          63
$                     *       5              .             *
          Vacuum tank

 He phase separator



Tuning system
                                                                                                Collecting volume:
                                                                                               large enough to well
                                                                                              separate gas and liquid

                                                                                                  Exhaust pipes :
                                                                                                  diameter & path for
                                                                                                  He 2-phase flow
Cavity                                                    Supply pipe + tank :
                                                         minimum pressure drop
   Support
                                     Coupler             Horizontal supply pipe:
                                                       diameter large enough to be
                                                       quasi isobaric on its length
 Solenoid magnetic design with passive shielding


                                                                                      !                         quot;
                                               On-axis field profile
                                               with passive shielding




                                                                                 !        quot;


                                                                                                               66
B E$           A
                            •
       $         A#       #,      0
                                                                                 .          E/
                                                                                             9         .-
&'            .                                        150
                                                                 Cavity Power (kW)
                                                       125
<             quot;B
               A
                                                   ! 100
%9
 &            !5                     .
                                                        75

    * *B                 9.        %&                                                       Resonator index
                                                        50
                                                             0           10    20       30           40
.    5    )& G
          %C       :*
                    <%
  .   %&       E 78 I
                   >                                    .( 7- >
                                                             >
! ! 3 ; :9 ) .
       <2        7  ;<                                  7 6; %
                                                            <&                              *

                     8 x 200 kW   2 x 105 kW      8 x 105 kW                  12 x 200 kW
                     RF Chains     RF Chains      RF Chains                    RF Chains
     175 MHz
     INJ               RFQ           MS            CM 1                         CM 4

           100 keV                        5 MeV                  9 MeV                  40 MeV


                                                                                                       6
RF System implementation
        A       5-       5   45         .4                                                                  !
.               *    .       5  .    54  5.
    .           5    5
    5       F
                                        quot; & 9 25
                                         quot;'        $            *
                                        9$       quot;     quot;    .& =
                                                              9
                                           &     .    quot;     4
                                     )& $* .'
                                      %    &         4    )
                                                          quot;    %*
                                                                &
                                    A5    ! 5 E 6 : )8 1 *
                                                       -6
                                    .     4      !     -.    .
                                             :-;.          D
                                          195MHz                                                                                                           175MHz
                                                                                                   Timing Systems
                                                                                                  (Digital + Analog)            Vacuum & Arcs Interlocks
                                                              Host PC Windows
                                                                                                   80 MHz
                                                                                                                                                            Pin
                                                                                                                                      Digital I/O
                                                                    cPCI Bus                                                                               Switch
                                                                                                      Digital Board




                                                                                                                                                              Analog
                                      Analog
                                                                                                      FPGA                                                   Front End
                                                                                                                                      8 DACs
                                     Front End                    8 ADCs
                                                                                          Digital IQ Demodulation         IQ Ctrl     80 MHz DC
                                                                  80 MHz                                                                                                 175 MHz
                                                                                                                                                               Up
                                                                                            and Control Loops
                                      Down
                                                                                                                                                            Conversion
                                    Conversion
                                                                                                  Tuning Loop
                                                     IF
                                                                                                                                                                     175 MHz
                                                              RF Reflected Circulator Voltage 1 (175MHz)
                                                          RF Reflected Cavity Voltage 1 (175MHz)
                                                      RF Forward Cavity Voltage 1 (175 MHz)

                                                                                                                       CAVITY
                                                  RF Cavity Voltage 1 (175 MHz)

                                                     RF Reflected Circulator Voltage 2 (175MHz)
                                                  RF Reflected Cavity Voltage 2 (175MHz)
                                              RF Forward Cavity Voltage 2 (175 MHz)


                                                                                                                 CAVITY
                                          RF Cavity Voltage 2 (175 MHz)




                                                                                                                                                                         68
HEBT & Beam Dump - P. A.
                      B E$    A
H25                      5         -
H -P*
   >            5       4.
              ;  5
H ;E *
     55            F7   .
Beam Dump      @     < 88 I
                        7-                                             G 5quot; 5
H        *5 VM( 5B / 5
                  M6
             1! /      VM(5
                                       movable Gamma shield
H           5
        4  F   55       !
          ) 55
          5        *
H        5.
    7                 5.
                                                                         cooling system
                              Beam
   4!   .
  AM Y M           4 65#
                   S
                                                                      Water shield tank
                              γ*
H   *5E            ; *F
                    )         )
                                                       Beam Dump Cartridge

                                                                                   6
Beam Instrumentation
                      B    E$         A#

Objectives
  linac tuning & commissioning
  beam loss minimization
  beam characterization (emit, energy)

Current, Position, Profile monitors
Beam Loss, Halo, bunchlength

Diagnostics Plate
                                                             Detector : microstrips, grid
specific beamline for a set of diags                  resistors for uniform electric field
installed at 2 different locations
(downstream RFQ and downstream DTL)
Beam Transverse Profilers
2 types are developed (ionization & fluorescence) R&D started

                                                                                     6
3      B      4

                                                                    beam intensity : 125 mA
                                                                    resolution ~ 0.1-0.3 mm
                                                                        non interceptive diag
                                                                      residual gas ionization

                                                                      Detector : microstrips, grid
                                                               resistors for uniform electric field




                                            beam profile
1st proto test on Silihi source at Saclay
Eproton = 75 - 95 keV                                        1 s (32 pads = 40 mm)
I < 100 mA (cw or pulsed - test < 12 mA)
                                            trigger signal
the P.A. of the EVEDA phase
             '      B''
                    8 .    *         *
    H               *          &




•   Ion Source & LEBT
•   RFQ & MS
•   Cryomodule
•   transport line to
•   1.12 MW beam dump
•   175 MHz RF system
•   Cryogenic plant
•   beam instrumentation
IFMIF/EVEDA accelerator status

    Z!                                                        .       4
                        .           5        .               $$
                                                             &&       E
    %C
     &     ;                    .                    5
            5           5       5           quot;B
                                             A           .            !
                    !
     5          .               %!5
                                &                .       4       %5
                                                                 &
A        5. 5
           !                .       4                                     5
     ;                                  5                .   5    /
A      5                            !
    %C
     &      %&          !5              .        quot;B
                                                  A
    5                   /
            5               .                                             ;
           55               .               %;
                                             ;
Conclusions


H                                       )9 *
                                        :9
        4
H             .E.          4              .
         5   5  )7 %
                 E&                !    .! *
                       !       !
HA                                 55
  )0      .+ % *
             9
H         5.5                           )
                                        B   3
               9& $ $ 2 quot;
                 9& &       *
H        $$ 99
         && B       [     5
    .    ./
          //


                                                (

Contenu connexe

Tendances

LAMP_TRAINING_SESSION_6
LAMP_TRAINING_SESSION_6LAMP_TRAINING_SESSION_6
LAMP_TRAINING_SESSION_6umapst
 
LAMP_TRAINING_SESSION_7
LAMP_TRAINING_SESSION_7LAMP_TRAINING_SESSION_7
LAMP_TRAINING_SESSION_7umapst
 
Banco de dados apostila
Banco de dados apostilaBanco de dados apostila
Banco de dados apostilafabiobelem7
 
Combined presentation.key
Combined presentation.keyCombined presentation.key
Combined presentation.keyshortsweetgal01
 
6thoralmucosaldiseases 2010
6thoralmucosaldiseases 20106thoralmucosaldiseases 2010
6thoralmucosaldiseases 2010LE HAI TRIEU
 
نوطة تعليمية لبرنامج Sap2000
نوطة تعليمية لبرنامج Sap2000نوطة تعليمية لبرنامج Sap2000
نوطة تعليمية لبرنامج Sap2000Ali Ishaqi
 
Bokers listings july 2011
Bokers listings   july 2011Bokers listings   july 2011
Bokers listings july 2011Chris Fyvie
 
12052455271 installation et_configuration_du_pbx_asterisk
12052455271 installation et_configuration_du_pbx_asterisk12052455271 installation et_configuration_du_pbx_asterisk
12052455271 installation et_configuration_du_pbx_asteriskKarim Fares
 
9t rainforest menus
9t rainforest menus9t rainforest menus
9t rainforest menusAshleigh100
 
The Even Darker Art Of Rails Engines Presentation
The Even Darker Art Of Rails Engines PresentationThe Even Darker Art Of Rails Engines Presentation
The Even Darker Art Of Rails Engines Presentationrailsconf
 
Connectix webserver
Connectix webserverConnectix webserver
Connectix webserversteveheer
 

Tendances (17)

Aunty help
Aunty helpAunty help
Aunty help
 
LAMP_TRAINING_SESSION_6
LAMP_TRAINING_SESSION_6LAMP_TRAINING_SESSION_6
LAMP_TRAINING_SESSION_6
 
LAMP_TRAINING_SESSION_7
LAMP_TRAINING_SESSION_7LAMP_TRAINING_SESSION_7
LAMP_TRAINING_SESSION_7
 
Banco de dados apostila
Banco de dados apostilaBanco de dados apostila
Banco de dados apostila
 
Bra
BraBra
Bra
 
Combined presentation.key
Combined presentation.keyCombined presentation.key
Combined presentation.key
 
Plasmapheresis
PlasmapheresisPlasmapheresis
Plasmapheresis
 
6thoralmucosaldiseases 2010
6thoralmucosaldiseases 20106thoralmucosaldiseases 2010
6thoralmucosaldiseases 2010
 
Thailand ICT Market Survey 2008
Thailand ICT Market Survey 2008Thailand ICT Market Survey 2008
Thailand ICT Market Survey 2008
 
Bhaarya akkato
Bhaarya akkatoBhaarya akkato
Bhaarya akkato
 
نوطة تعليمية لبرنامج Sap2000
نوطة تعليمية لبرنامج Sap2000نوطة تعليمية لبرنامج Sap2000
نوطة تعليمية لبرنامج Sap2000
 
Bokers listings july 2011
Bokers listings   july 2011Bokers listings   july 2011
Bokers listings july 2011
 
12052455271 installation et_configuration_du_pbx_asterisk
12052455271 installation et_configuration_du_pbx_asterisk12052455271 installation et_configuration_du_pbx_asterisk
12052455271 installation et_configuration_du_pbx_asterisk
 
9t rainforest menus
9t rainforest menus9t rainforest menus
9t rainforest menus
 
Layouts
LayoutsLayouts
Layouts
 
The Even Darker Art Of Rails Engines Presentation
The Even Darker Art Of Rails Engines PresentationThe Even Darker Art Of Rails Engines Presentation
The Even Darker Art Of Rails Engines Presentation
 
Connectix webserver
Connectix webserverConnectix webserver
Connectix webserver
 

Similaire à ESS-Bilbao Initiative Workshop. Overview of Multi-MW Accelerator Projects

Plastic Bags
Plastic BagsPlastic Bags
Plastic Bagstjokke
 
Innovation in Affordable CD4 Enumeration Diagnostics
Innovation in Affordable CD4 Enumeration DiagnosticsInnovation in Affordable CD4 Enumeration Diagnostics
Innovation in Affordable CD4 Enumeration Diagnosticsguest63898d
 
Science Fiction Sensor Networks
Science Fiction Sensor NetworksScience Fiction Sensor Networks
Science Fiction Sensor NetworksDiego Pizzocaro
 
Data Vault automation conference - all presentations
Data Vault automation conference - all presentationsData Vault automation conference - all presentations
Data Vault automation conference - all presentationsPrudenza B.V
 
自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて
自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて
自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについてNaoyuki Yamagishi
 
Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012
Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012 Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012
Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012 Hossam Karim
 

Similaire à ESS-Bilbao Initiative Workshop. Overview of Multi-MW Accelerator Projects (20)

Plastic Bags
Plastic BagsPlastic Bags
Plastic Bags
 
GLT Vol.15 yamaguchiintlab-J
GLT Vol.15 yamaguchiintlab-JGLT Vol.15 yamaguchiintlab-J
GLT Vol.15 yamaguchiintlab-J
 
Innovation in Affordable CD4 Enumeration Diagnostics
Innovation in Affordable CD4 Enumeration DiagnosticsInnovation in Affordable CD4 Enumeration Diagnostics
Innovation in Affordable CD4 Enumeration Diagnostics
 
Javaee glassfish jcertif2010
Javaee glassfish jcertif2010Javaee glassfish jcertif2010
Javaee glassfish jcertif2010
 
Science Fiction Sensor Networks
Science Fiction Sensor NetworksScience Fiction Sensor Networks
Science Fiction Sensor Networks
 
Seeding Bugs To Find Bugs
Seeding Bugs To Find BugsSeeding Bugs To Find Bugs
Seeding Bugs To Find Bugs
 
OpenSSO Microsoft Interop
OpenSSO Microsoft InteropOpenSSO Microsoft Interop
OpenSSO Microsoft Interop
 
what is clean technology
what is clean technologywhat is clean technology
what is clean technology
 
Data Vault automation conference - all presentations
Data Vault automation conference - all presentationsData Vault automation conference - all presentations
Data Vault automation conference - all presentations
 
Coanda Effect UAV
Coanda Effect UAVCoanda Effect UAV
Coanda Effect UAV
 
Stylists Wanted Media Kit
Stylists Wanted Media KitStylists Wanted Media Kit
Stylists Wanted Media Kit
 
ESWC 2009 Lightning Talks
ESWC 2009 Lightning TalksESWC 2009 Lightning Talks
ESWC 2009 Lightning Talks
 
自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて
自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて
自然エネルギー政策と関連する電力・エネルギー政策における論点とそれへの考えについて
 
Solutions4SME
Solutions4SMESolutions4SME
Solutions4SME
 
Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012
Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012 Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012
Time Travel - Predicting the Future and Surviving a Parallel Universe - JDC2012
 
2 Graph Theory
2 Graph Theory2 Graph Theory
2 Graph Theory
 
Informe skoool
Informe skooolInforme skoool
Informe skoool
 
Norma une 21.186
Norma une 21.186Norma une 21.186
Norma une 21.186
 
Envases para competir
Envases para competirEnvases para competir
Envases para competir
 
Leng 15
Leng 15Leng 15
Leng 15
 

Plus de ESS BILBAO

22 05 09 El Economista
22 05 09   El Economista22 05 09   El Economista
22 05 09 El EconomistaESS BILBAO
 
ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.
ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.
ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS BILBAO
 
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...
ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...
ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...
ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...
ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...
ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...
ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...
ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...
ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...ESS BILBAO
 
ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...
ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...
ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.ESS BILBAO
 
ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...
ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...
ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...ESS BILBAO
 
ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...
ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...
ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. High duty cycle RF Power Couplers
ESS-Bilbao Initiative Workshop. High duty cycle RF Power CouplersESS-Bilbao Initiative Workshop. High duty cycle RF Power Couplers
ESS-Bilbao Initiative Workshop. High duty cycle RF Power CouplersESS BILBAO
 
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Front Ends for High Intensity
ESS-Bilbao Initiative Workshop. Front Ends for High IntensityESS-Bilbao Initiative Workshop. Front Ends for High Intensity
ESS-Bilbao Initiative Workshop. Front Ends for High IntensityESS BILBAO
 
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...ESS BILBAO
 
ESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacs
ESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacsESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacs
ESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacsESS BILBAO
 
ESS-Bilbao Initiative Workshop. SNS Linac experience
ESS-Bilbao Initiative Workshop. SNS Linac experienceESS-Bilbao Initiative Workshop. SNS Linac experience
ESS-Bilbao Initiative Workshop. SNS Linac experienceESS BILBAO
 
ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...
ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...
ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...ESS BILBAO
 

Plus de ESS BILBAO (20)

22 05 09 El Economista
22 05 09   El Economista22 05 09   El Economista
22 05 09 El Economista
 
ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.
ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.
ESS-Bilbao Initiative Workshop. SNS Studies towards a rotating solid target.
 
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton acceleratorsESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
ESS-Bilbao Initiative Workshop. Overview of cryo-modules for proton accelerators
 
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...
ESS-Bilbao Initiative Workshop. Pulse forming devices for high duty factor op...
 
ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...
ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...
ESS-Bilbao Initiative Workshop. The CSNS rotating target concept and test pro...
 
ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...
ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...
ESS-Bilbao Initiative Workshop. Spokes vs. Elliptical cavities for medium-hig...
 
ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...
ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...
ESS-Bilbao Initiative Workshop. Concept and Technology of the PbBi-Target for...
 
ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...
ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...
ESS-Bilbao Initiative Workshop. Design concepts of and lessons learned from t...
 
ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...
ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...
ESS-Bilbao Initiative Workshop.Pulse forming devices for high duty factor ope...
 
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
ESS-Bilbao Initiative Workshop. Status of JSNS and R&D on mercury target.
 
ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...
ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...
ESS-Bilbao Initiative Workshop. PSI experience with high power beam handling,...
 
ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...
ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...
ESS-Bilbao Initiative Workshop.Review of SC spokes cavities for low-medium en...
 
ESS-Bilbao Initiative Workshop. High duty cycle RF Power Couplers
ESS-Bilbao Initiative Workshop. High duty cycle RF Power CouplersESS-Bilbao Initiative Workshop. High duty cycle RF Power Couplers
ESS-Bilbao Initiative Workshop. High duty cycle RF Power Couplers
 
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
ESS-Bilbao Initiative Workshop. RF structure comparison for low energy accele...
 
ESS-Bilbao Initiative Workshop. Front Ends for High Intensity
ESS-Bilbao Initiative Workshop. Front Ends for High IntensityESS-Bilbao Initiative Workshop. Front Ends for High Intensity
ESS-Bilbao Initiative Workshop. Front Ends for High Intensity
 
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
ESS-Bilbao Initiative Workshop. Low Energy Transport and space-charge compens...
 
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
ESS-Bilbao Initiative Workshop. Beam Dynamics Codes: Availability, Sophistica...
 
ESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacs
ESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacsESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacs
ESS-Bilbao Initiative Workshop. Beam dynamics: Simulations of high power linacs
 
ESS-Bilbao Initiative Workshop. SNS Linac experience
ESS-Bilbao Initiative Workshop. SNS Linac experienceESS-Bilbao Initiative Workshop. SNS Linac experience
ESS-Bilbao Initiative Workshop. SNS Linac experience
 
ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...
ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...
ESS-Bilbao Initiative Workshop. Charge to working group: accelerator componen...
 

Dernier

Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 

Dernier (20)

Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 

ESS-Bilbao Initiative Workshop. Overview of Multi-MW Accelerator Projects

  • 1. !quot; #& $' %
  • 2. ! potential to deliver beams of several MW drivers for a large variety of applications: Power Energy Condensed matter spallation neutrons ~ 1 MW ~ 1 GeV materials irradiation neutrons from stripping reaction 2 x 5 MW 40 MeV RIBs for nuclear & astro-physics with neutrons 4 MW ~ 1 GeV secondary beams for particle muon, neutrino production 4 MW 5 GeV physics hybrid subcritical reactors for demonstrator 5 MW 0.6 transmutation Note: superconducting (SRF) technology higher gradient capabilities & lower operational costs wrt. NC adopted in most of the designs for the major part of the linac
  • 3. * !5 quot;# $ ) * '% &+ $) * ') , * #) ( ) - .! * ), # ) * # ) '$ '* * ) * &* '& ) *+& quot;) * , #) & ' + * &quot; & -) & ') * )! $* $ */ // *. /# / ' quot;# $0 quot;) % * 1) * 0 ' * ' ') # + *1 ! 2quot; 2 . 32 4 +& &# ) *& $)!2) $* * (
  • 4. !5 4 5 4/ ! ∝ × 5. 3
  • 5. 6
  • 6. !7! 7 % & $ 6
  • 7. % &$ 8 9 5. :8 8 < ; & : =>? < quot; 25 9 :   9; (5 )5 6 < (= 2* > ! 2) 3 2 * 9 . /5 6 % 6 :- 6( ? > (; < ); < 3 2 .* % 9 9 = =- -8 * quot; =- !B 0 @ - !B A 8
  • 8. % &$ %& . @ C quot;B A quot;B A 5 5D . ) *
  • 9. % &$ +? 2 & ! < 5 5% 8quot; E 2 .( 5 (; < 5 . ) * /< 5% -quot; E3 2 .6 5 (( ; < 5 < 5% 7 .! 55 !F 5. & ! . 3→ 2 . B
  • 10. ' , 9 & 9 B ! E 1 BG 1 ( A 2)& 1 % C* 2quot; B A : ! E quot;B 8A ; 5 5 2 2 Particle Proton Max Beam Energy 100 MeV 2 ,%$ Operation Mode Pulsed ) . !! * Max. Peak Current 20 mA RF Frequency 350 MHz . ; Max Repetition Rate 120 Hz / 60 Hz Max Pulse Length 2 ms / 1.33 ms Max Beam Duty 24% / 8% . . .. . 100 MeV Beam Lines 20 MeV Beam Lines
  • 11. '-> <quot; LEBT 20 MeV DTL Injector 3 MeV RFQ 50 keV 40 mA H (6 :- 3 4 ! H 5 . 3 ! . . - H H3 ; 6quot;A H I5 H <, H &quot; &quot;
  • 12. '-> <6 ' 6 H . %B & H % .! ! * 8> > <2 quot; 8 ; )/ 5* 8 &quot; &quot; D. E β3 . ./ A86 5. 9&9 4 !) / * .
  • 13. *. / # / ' (
  • 14. $&# quot; %= / ! 5 * $&# 6 quot;!$ . 5* 5 kW • ! . J K. 4 6 =2 ! 160 kW quot;# $0 . quot; quot;1 9 60 kW 9 )quot; * A % 5. 400 kW ) > quot; $ ' $> * $B $ % B . *C * • . . 4 55 ! ! . LP-SPL: (Low Power) SPL PS2: High Energy PS (~ 5 to 50 GeV – 0.3 Hz) 5ν 5 ! SPS+: Superconducting SPS (50 to1000 GeV) SLHC: “Superluminosity” LH (up to 1035 cm-2s-1) DLHC: “Double energy” LHC 3
  • 15. 5 9 #$ quot; 0 LINAC4 (160 MeV) 352.2 MHz 9 $ 4 35 H- source RFQ DTL chopper CCDTL PIMS I6;< . / /? / ) . . . / ?* / 3 50 102 160 MeV Length ~ 80 m 4 different accel. structures (352 MHz) 19 klystrons Focusing provided by 111 PM Quadrupoles 33 EM Quadrupoles 6
  • 16. quot;# $0 !D :- &4 5 % .4 5 :D 5 36 ;2 )L 3 :- * &* ' E .( * ) 5* ( . ( 2 $ ) 5* (/ D. ( . 2 quot; 3quot; 24 6 2( ; 5 ) . D . 95 C . ) C* 9 $ $ *2 quot; 3$ quot; $2 4 56 2 ;)( * 65 5D . . . ;) 9C . ;* π * 3 4 5 2 ;)8 * 5 $2quot; $ & ! 5D . 8 5. 4 !(6 :-
  • 17. 5 9quot; quot; 5 9! quot; LINAC4 (160 MeV) SC-Linac (4/5 GeV) 352.2 MHz 704.4 MHz H- source RFQ chopper DTL CCDTL PIMS =0.65 =1 3 102 643 MeV 50 180 MeV 4/5 GeV LP-SPL HP-SPL Energy (GeV) 4 2.5 or 5 2.5 + 5 Beam power (MW) 0.16 3 or 6 4+4 ≤2 Rep. Frequency (Hz) 50 50 Protons/pulse (x 1014) 1.5 1.5 2+1 Av. Pulse Current (mA) 20 20 40 Pulse duration (ms) 1.2 1.2 0.8 + 0.4 %G $ %G $ overall length = 460 m . 0 0 (was 690m for 2.2 GeV in previous version) 8
  • 18. quot; 6 . 37 '? 5 4 5 / .5 /' & /! high-frequency SPL type nominal spoke option option frequency [MHz] 704.4 1408.8 352.2/1408.8 beta families 0.65/0.92 0.6/0.76/0.94 0.67/0.8/0.94 cells/cavity 5/5 40063 39937 trans. energies [MeV] 160/581 160/357/884 160/392/758 output energy [MeV] 5122 5144 5075 gradients [MV/m] 18.7*/24* 17.5*/21.3*/24.2* 8.5/9.5/24.2* cavities p. module 6/8 4/4/8 3/4/8 cavities p. period 3/8 2/4/8 3/4/8 cavities p. family 42/200 30/40/208 27/24/216 cavities in total 239 278 267 length [m] 445 499 485 &' 5 / > !B .A0 *-,
  • 19. quot; * . * E E 5. 5 ! . 4 5 @ !5 E . E 4 5 ! β≥ /* .4 ) 4 .D 5 4! ! ) 4! 5 ( *! . 5 &quot; ' 5 . !5 . )B; A 35 45 . # .D . !5 . *
  • 20. =/ The Intensity Frontier: Project X ( National Project with International Collaboration ) Tevatron Collider 200 kW at 8 GeV for precision measurements NOvA >2 MW at 60-120 GeV for neutrinos Main Injector 2 9;? <! quot; =F> quot; * . * &' 5. ! * * quot;$ . * ! * ' &. !G ** H ** * 53 . 5 F 8 >? < >- 4 6 * &. ;? < 5
  • 21. Front End Linac Project X 360 kW 8GeV Linac 325 MHz 0-10 MeV 2.5 MW JPARC Modulator Modulator Klystron 1 Klystron (JPARC 2.5 MW) 16 RT Cavities 20 Klystrons (2 types) Multi-Cavity Fan-out Phase and Amplitude Control 325 MHz 10-120 MeV 436 SC Cavities 1 Klystron (JPARC 2.5 MW) H- RFQ RT SSR1 SSR1 SSR2 SSR2 SSR2 56 Cryomodules 51 Single Spoke Resonators β=0.22 β=0.4 5 Cryomodules 9 cavities/CM 11 cavities/CM Modulator Modulator Modulator 325 MHz 0.12-0.42 GeV 3 Klystrons (JPARC 2.5 MW) 42 Triple Spoke Resonators TSR TSR TSR TSR TSR TSR TSR 7 Cryomodules β=0.6 6 Cavites-6 quads / Cryomodule ILC LINAC 1300 MHz 0.42-1.2 GeV 2 Klystrons (ILC 10 MW MBK) 56 Squeezed ILC Cavities ( β=0.81) Modulator Modulator Modulator Modulator Modulator 7 Cryomodules (8 cav, 4 quads) 1300 MHz 1.2-8.0 GeV 13 Klystrons (ILC 10 MW MBK) β=0.8 β=0.8 β=0.8 β=0.8 β=0.8 β=0.8 β=0.8 ILC1 ILC1 ILC1 ILC1 ILC1 ILC1 ILC1 ILC1 287 ILC-identical Cavities 37 ILC-like Cryomodules 7 Cavities-2 quads / Cryomodule 8 Cavities - 4 quads/ Cryomodule Modulator Modulator Modulator Modulator Modulator Modulator Modulator Modulator Modulator Modulator ILC1 ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC ILC 8 Cavities-1 quad / 21 HB2008 – Project X for Intensity Frontier Physics Cryomodule
  • 22. 1 $ .. 5 & & quot;$ $ . E B* quot; $ $ . β :8 β :>; 78
  • 23. 1 !5 .# 3 #4 ! 5 5 -> >I : * * 1quot; $ '$ %$< 5/ 6 2 5 5 ; 4 5 2 . )* ; ) %% *& & ! . . 7 !! 55 5 : .) * 5 / 6 2 ' ;! .4 5 4 %4 & 5. 5 . . (
  • 24. !# &2 H ! # =- !B& ( I ' & *H $ . !# $ $ . Solenoid Magnet 25 # 3
  • 25. ! # & 2 3 '* H& 4 J . . K 5 4! . ;. # .%& !5 %& !5 F . 7! 4 ..% & 7 4 )& % * J . K 5 ! .. !7 )/ 9B %* 0 .5 ! 4 15 :$ % 0A 4 ! .2 . > 4 !A 4 13 dB Amplitude Control with Vector Modulator High-power 6 kW 3.5 ms RF Pulse Vector Modulator red trace: cavity RF Amp blue & yellow: vector HINS Room modulator bias currents Temperature Cavity 6
  • 26. &* 7 45 7 . 5 ! . 4 5 )$* %G 4 '5 %G $ . .! 5 / A . 4 . . / . ! 5E !F 4! ! quot;9 quot; %G $ . .! 5 ; /A . . -. . . ./ .! 5E ! 4 4.
  • 27. ' &3 4 ? ** * E * * *.5 . !quot; !quot; 8
  • 28. '& =- !B I Beam energy 70 MeV • ECR proton source & LEBT Beam current (op.) 35 mA • RFQ (4-rod) Beam current (design) 70 mA • 6 Pairs of Coupled CH-DTL Beam pulse length 36 µs • 2 Bunchers Repetition rate 4 Hz Rf-frequency 325.224 MHz • 14 Magnetic Triplet Tot. hor emit (norm.) 2.1 / 4.2 µm • Beam power = 4.9 MW (peak) 10-3 Tot. mom. spread ¡ ¡ ¡¡ 710 W (average) Linac length 35 m • RF power = 11 MW (peak) 1600 W (average) H A =$9 M . .: . 4 5 , 0 G 5quot; 5 >' ! HA 5 : $ ! B0 3 $ 0 H 55 (
  • 29. +& quot; $> ) B * ! 8? < 0 / 5 8? < 8 > /> * 5 RIB production Driver -? <=! GG * 5 - > <* I 3 4 Post-Accelerator Beam preparation
  • 30. +& quot; ! & $0 . 4 9> 5 0; %&! B N N 5 . 5N <G 5 ! 4 - $ 3 <: 5 +& quot;2 9 * /* * . * * . (
  • 31. '& ' . & ) + - )quot;% * % .4 B & 3 ;< 5 . ! 2 →3 ' 5 # 2# 2→ = 2 9 (
  • 32. &quot;- :0> <6I :- > > * 3 (& ; !B ; % C )#E # &D # (* :- B 6 5 M (
  • 33. &' E *& ' . H !% 6O3 2 $0> <* quot; /> ; H 5 ! &8 I !B A H& !5 . General Design: H& . ( • Houses 6 HWR and 3 superconducting solenoids • Very compact design in N/P M 4 )5 . * longitudinal direction N /6 P ( M 4 )5 . 3 * • Cavity vacuum and insulation vacuum separated M. Pekeler, LINAC 2006 ACCEL Instruments GmbH ((
  • 34. # (3
  • 35. 5* 2 * * .>- 7 quot;5 * 5 3> ; ->4 +5 * +5 * L+ 5 * 38 4 .. I( = 2% .! ; ; 5 $$ 2! 4 L+ 5 * 3I - 4 5 +% 9 ! .. 2B .% ! ! 5 7 .7 (6
  • 36. quot; 2 5 (3 :- (3 :- 3 8 :- $ %C & quot;B A B B BGA GA ( 2 86 2 2 2 -. MEBT: 2 options (MCG type / solenoid-triplet type) . .! DTL: 4 tanks at 19.40, 37.68, 56.43 & 74.8 MeV, 6 cells CCL: At 972 MHz: > 60, 14 cell cavities, 3.5 separations, spoke option ? SPL: ~ 70, 4/6 cell cavities, doublet focusing, ~ 23 cells Beam power for 2 MW, 30 Hz, 3.2 GeV RCS 0.5 MW Beam pulse current before MEBT chopping 43.0 mA Beam pulse current after MEBT chopping 30.0 mA Number of injected turns for a 370 m RCS ~500 turns Beam pulse duration at the 30 Hz rep rate ~700.0 s Duty cycle for the extent of the beam pulse ~2.1 % (
  • 37. /quot; 5 D ! . 5 :99 /= . (/& . $$ 5 5 6 :- ( 2 5 :M ) 5 9 E: 56 * quot; E B !G 5 A &( : 'E .! ) ( 2( 3 :- * $ E! 2 .O ) * 42 5 5 A OG D $ 5 O $$ O < ; /1 ' ) * (8
  • 38. $# H ( 3 :- &B % H )( * 2 ; (5 H9 . H %C & ! .4 ) . quot; .* ! H 4 quot; B3) A (* ; &quot; / D . )9% ! * 5/ + (
  • 39. # :G ) *QR To Ring 402.5 MHz 805 MHz HEBT MEBT DTL CCL RFQ SCL, ß=0.61 SCL, ß=0.81 Linac dump Injector 2.5 MeV 86.8 MeV 186 MeV 391 MeV 1 GeV β =0.55 β =0.71 β =0.87 Length ~260 m, 96 independently phased RF cavity/tanks Normal conducting linac from the H- ion source to 186 MeV Superconducting linac from 186 MeV to 1 GeV Beam commissioning of the SCL began in August 2005 Achieved the design repetition rate 60 Hz, maximum beam energy 1.01 GeV, peak beam current 40 mA, pulse length 1 ms, beam power on the mercury target 520 kW. (
  • 40. -> >- A # 6 :-0 5 60 mA LP SP Funnel CCDTL CCL1 CCL2 IS RFQ Chopper DTL 114 mA 2 x 57 mA SP 100 MeV 252 MeV 1 334 MeV 60 mA 2.5 MeV 20 MeV LP 280 MHz 560 MHz 770 m A (6 # 3 8 :- 5 60 mA LP RFQ Chopper SP Funnel RFQ DTL DTL SCL1 CCL SCL2 RFQ DTL LP H+ 114 mA 2 x 57 mA SP 85 MeV 185 MeV 450 MeV 1 334 MeV 5 MeV 2 MeV 20 MeV LP 352 MHz 704 MHz 430 m 3
  • 41. -> >= * 68 5 H # 6 :- 5 . H )5 68 . 3( 5* 3
  • 42. # . 5 8F7F !B $ =-A0 IC> !B $ G. 5 +$ .→ B0 3 ) & $ 6 2* → : ! 9B 7 72quot; . $ β∼> β∼ 7= > 5/ . * 7I 3
  • 43. '' Test Modules G -68-I 2$ 0> < A! E Accelerator based neutron source 8B . *8G B . *8G B A3: ) ) )* using the D-Li stripping reaction G5 B intense neutron flux with the 5 . 76 5 appropriate energy spectrum )= 5* <# 3(
  • 44. 2. 5 ! 5 1. Injector 3. DTL O. Delferriere (Cea) N. Chauvin (Cea) IFMIF accelerator PROTOTYPE accelerator Simulations all along the linac from source to target/beam dump 2. RFQ 5 4. HEBT 5 - 57 . Gquot; C. Oliver (Ciemat) M. Comunian (Infn) 33
  • 45. quot;9$ . #$ % & • 5 * 8>> <* 5 .3 80> 4 .3 7- π7 5E >I 7 *4 * &( ' 5 . 36
  • 46. $& *design based on SILHI H+ source ) ! % * 5 -? 70I !B . . / // H7 ! 5) 5 quot;* H . )5 :2 5* H . . 3 . 7 !5 H 5 ;55 S T 4-electrode system Emax = 101 kV/cm $ 7 / // 1 35quot; 86 5 5 ) 1 ? quot; 1 6? quot; 1 6?* quot; ( 7 F> quot;5 5 U .) 3* V ) 55* 3
  • 47. quot; 5. H: ! 5 . 5 B GA 5 0 . .4 . 5 → % 5 .quot; W; 55 5 LEBT to RFQ beam matching high focusing & short line solenoid solenoid RFQ krypton 4.10-5 hPa Particle density %$ 0.25 π.mm.mrad 38
  • 48. quot; 9# # quot;5 ' &* E .( * • 5 * • >78 I < 5 3 4 5 * 0< !5 $ 3
  • 49. RFQ Beam Dynamics 2 5 &(' $ ! ;2 H . . )/ 5* F 5 > !6 2 H 5 % &C . $ ( 5 /6 π 55/ . $ ( 4 $ 5 5 H ! 4 5 &D ! 86 :- 9 ./ 4 .# 5 •B .# 5 . ! • 9! XX55 =G. ! 5 5 4 5 . 5 •: G; 5 . •9; .5 . 4 /7 , ; B = qVλ2 mc 2 r02 3
  • 50. RFQ Mechanical Design 5. )/5* . 5. 5. ; D 4 4 5 59 f B5 E -0.52 KHz vane tip 4 5 4,6 m $ 5E .. 4 F 4! ; 5 .5 . ;. D ! .%& . 6
  • 51. RFQ - beam losses 9 7 45 5 H%&C 5 I/)6? 5E . * HB 4 2; 4 . “best case” “worst case” waterbag gaussian 0.25 π mm mrad 0.30 π mm mrad : @ 7IN ; : @ 78 N - ? /5 6
  • 52. quot;9$ . $ A# 2 quot; • 5 8-I $ 0> < '' @ < . 5 H B5 / 6
  • 53. n.c. DTL replaced by s.c. HWR DTL MS 4 cryomodules LEBT Li Target s.c. HWR Linac Ion source RFQ G 55 . * 5 ! H 5 * O 8> H 5O F H 5 6 .H . 0 . * H 5. * 6 5 H * - H 5H . Cryomodules 1 2 3&4 Cavity β 0.094 0.094 0.166 Cavity length (mm) 180 180 280 Beam aperture (mm) 40 40 48 Nb cavities / cryostat 1x8 2x5 3x4 Nb solenoids 8 5 4 . . P 3/ 25 6 # Cryostat length (m) 4.64 4.30 6.03 Output energy (MeV) 9 14.5 26 / 40 B P 3 6 55 6(
  • 54. $ * 5& H 4 !R peak surface fields sufficiently reduced Geometry optimisation (determine the maximum reachable accelerating field) Ep/Eacc=4.4 & Bp/Eacc=10.1 Tuning method chosen: plunger at the opposite of the coupler port, in a region of high electric field (tuning range easily achieved) Tuning system actuator beam Cavity with Helium vessel Power coupler 63
  • 55. $ * 5 . * Vacuum tank He phase separator Tuning system Collecting volume: large enough to well separate gas and liquid Exhaust pipes : diameter & path for He 2-phase flow Cavity Supply pipe + tank : minimum pressure drop Support Coupler Horizontal supply pipe: diameter large enough to be quasi isobaric on its length Solenoid magnetic design with passive shielding ! quot; On-axis field profile with passive shielding ! quot; 66
  • 56. B E$ A • $ A# #, 0 . E/ 9 .- &' . 150 Cavity Power (kW) 125 < quot;B A ! 100 %9 & !5 . 75 * *B 9. %& Resonator index 50 0 10 20 30 40 . 5 )& G %C :* <% . %& E 78 I > .( 7- > > ! ! 3 ; :9 ) . <2 7 ;< 7 6; % <& * 8 x 200 kW 2 x 105 kW 8 x 105 kW 12 x 200 kW RF Chains RF Chains RF Chains RF Chains 175 MHz INJ RFQ MS CM 1 CM 4 100 keV 5 MeV 9 MeV 40 MeV 6
  • 57. RF System implementation A 5- 5 45 .4 ! . * . 5 . 54 5. . 5 5 5 F quot; & 9 25 quot;' $ * 9$ quot; quot; .& = 9 & . quot; 4 )& $* .' % & 4 ) quot; %* & A5 ! 5 E 6 : )8 1 * -6 . 4 ! -. . :-;. D 195MHz 175MHz Timing Systems (Digital + Analog) Vacuum & Arcs Interlocks Host PC Windows 80 MHz Pin Digital I/O cPCI Bus Switch Digital Board Analog Analog FPGA Front End 8 DACs Front End 8 ADCs Digital IQ Demodulation IQ Ctrl 80 MHz DC 80 MHz 175 MHz Up and Control Loops Down Conversion Conversion Tuning Loop IF 175 MHz RF Reflected Circulator Voltage 1 (175MHz) RF Reflected Cavity Voltage 1 (175MHz) RF Forward Cavity Voltage 1 (175 MHz) CAVITY RF Cavity Voltage 1 (175 MHz) RF Reflected Circulator Voltage 2 (175MHz) RF Reflected Cavity Voltage 2 (175MHz) RF Forward Cavity Voltage 2 (175 MHz) CAVITY RF Cavity Voltage 2 (175 MHz) 68
  • 58. HEBT & Beam Dump - P. A. B E$ A H25 5 - H -P* > 5 4. ; 5 H ;E * 55 F7 . Beam Dump @ < 88 I 7- G 5quot; 5 H *5 VM( 5B / 5 M6 1! / VM(5 movable Gamma shield H 5 4 F 55 ! ) 55 5 * H 5. 7 5. cooling system Beam 4! . AM Y M 4 65# S Water shield tank γ* H *5E ; *F ) ) Beam Dump Cartridge 6
  • 59. Beam Instrumentation B E$ A# Objectives linac tuning & commissioning beam loss minimization beam characterization (emit, energy) Current, Position, Profile monitors Beam Loss, Halo, bunchlength Diagnostics Plate Detector : microstrips, grid specific beamline for a set of diags resistors for uniform electric field installed at 2 different locations (downstream RFQ and downstream DTL) Beam Transverse Profilers 2 types are developed (ionization & fluorescence) R&D started 6
  • 60. 3 B 4 beam intensity : 125 mA resolution ~ 0.1-0.3 mm non interceptive diag residual gas ionization Detector : microstrips, grid resistors for uniform electric field beam profile 1st proto test on Silihi source at Saclay Eproton = 75 - 95 keV 1 s (32 pads = 40 mm) I < 100 mA (cw or pulsed - test < 12 mA) trigger signal
  • 61. the P.A. of the EVEDA phase ' B'' 8 . * * H * & • Ion Source & LEBT • RFQ & MS • Cryomodule • transport line to • 1.12 MW beam dump • 175 MHz RF system • Cryogenic plant • beam instrumentation
  • 62. IFMIF/EVEDA accelerator status Z! . 4 . 5 . $$ && E %C & ; . 5 5 5 5 quot;B A . ! ! 5 . %!5 & . 4 %5 & A 5. 5 ! . 4 5 ; 5 . 5 / A 5 ! %C & %& !5 . quot;B A 5 / 5 . ; 55 . %; ;
  • 63. Conclusions H )9 * :9 4 H .E. 4 . 5 5 )7 % E& ! .! * ! ! HA 55 )0 .+ % * 9 H 5.5 ) B 3 9& $ $ 2 quot; 9& & * H $$ 99 && B [ 5 . ./ // (