SlideShare une entreprise Scribd logo
1  sur  63
Télécharger pour lire hors ligne
Tutorial of
Topological Data Analysis
Tran Quoc Hoan
@k09hthaduonght.wordpress.com/
Hasegawa lab., Tokyo
The University of Tokyo
Part I - Basic Concepts
My TDA = Topology Data Analysis ’s road
TDA Road 2
Part I - Basic concepts &
applications
Part II - Advanced computation
Part III - Mapper Algorithm
Part V - Applications in…
Part VI - Applications in…
Part IV - Software Roadmap
He is following me
Outline
TDA - Basic Concepts 3
1. Topology and holes
3. Definition of holes
5. Some of applications
2. Simplicial complexes
4. Persistent homology
Outline
TDA - Basic Concepts 4
1. Topology and holes
5. Some of applications
2. Simplicial complexes
4. Persistent homology
3. Definition of holes
Topology
I - Topology and Holes 5
The properties of space that are preserved under continuous
deformations, such as stretching and bending, but not tearing or
gluing
⇠= ⇠= ⇠=
⇠= ⇠= ⇠=
⇠=
Invariant
6
Question: what are invariant things in topology?
⇠= ⇠= ⇠=
⇠= ⇠=
⇠=
⇠=
Connected

Component Ring Cavity
1 0 0
2 0 0
1 1 0
1 10
Number of
I - Topology and Holes
Holes and dimension
7
Topology: consider the continuous deformation under the
same dimensional hole
✤ Concern to forming of shape: connected component, ring, cavity
• 0-dimensional “hole” = connected component
• 1-dimensional “hole” = ring
• 2-dimensional “hole” = cavity
How to define “hole”?
Use “algebraic” Homology group
I - Topology and Holes
Homology group
8
✤ For geometric object X, homology Hl satisfied:
k0 : number of connected components
k1 : number of rings
k2 : number of cavities
kq : number of q-dimensional holes
Betti-numbers
I - Topology and Holes
Image source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Outline
TDA - Basic Concepts 9
1. Topology and holes
5. Some of applications
2. Simplicial complexes
4. Persistent homology
3. Definition of holes
Simplicial complexes
10
Simplicial complex:
A set of vertexes, edges, triangles, tetrahedrons, … that are closed
under taking faces and that have no improper intersections
vertex

(0-dimension)
edge

(1-dimension)
triangle

(2-dimension)
tetrahedron

(3-dimension)
simplicial
complex
not simplicial
complex
2 - Simplicial complexes
k-simplex
Simplicial
11
n-simplex:
The “smallest” convex hull of n+1 affinity independent points
vertex

(0-dimension)
edge

(1-dimension)
triangle

(2-dimension)
tetrahedron

(3-dimension)
n-simplex
= |v0v1...vn| = { 0v0 + 1v1 + ... + nvn| 0 + ... + n = 1, i 0}
A m-face of σ is the convex hull τ = |vi0…vim| of a non-empty subset
of {v0, v1, …, vn} (and it is proper if the subset is not the entire set)
⌧
2 - Simplicial complexes
Simplicial
12
Direction of simplicial:
The same direction with permutation <i0i1…in>
1-simplex
2-simplex
3-simplex
2 - Simplicial complexes
Simplicial complex
13
Definition:
A simplicial complex is a finite collection of simplifies K such that
(1) If 2 K and for all face ⌧ then ⌧ 2 K
(2) If , ⌧ 2 K and  ⌧ 6= ? then  ⌧ and  ⌧ ⌧
The maximum dimension of simplex in K is the dimension of K
K2 = {|v0v1v2|, |v0v1|, |v0v2|, |v1v2|, |v0|, |v1|, |v2|}
K = K2 [ {|v3v4|, |v3|, |v4|}
NOT YES
2 - Simplicial complexes
Simplicial complexes
14
Hemoglobin
simplicial complex
Image source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
2 - Simplicial complexes
✤ Let be a covering of
Nerve
15
= {Bi|i = 1, ..., m} X = [m
i=1Bi
✤ The nerve of is a simplicial complex N( ) = (V, ⌃)
2 - Simplicial complexes
Nerve theorem
16
✤ If is covered by a collection of convex closed
sets then X and are
homotopy equivalent
X ⊂ RN
= {Bi|i = 1, ..., m} N( )
2 - Simplicial complexes
Cech complex
17
P = {xi 2 RN
|i = 1, ..., m}
Br(xi) = {x 2 RN
| ||x xi||  r}
✤ The Cech complex C(P, r) is the nerve of
✤
= {Br(xi)| xi 2 P}
✤ From nerve theorem: C(P, r)
Xr = [m
i=1Br(xi) ' C(P, r)
✤ Filtration
ball with radius r
2 - Simplicial complexes
Cech complex
18
✤ The weighted Cech complex C(P, R) is the nerve of
✤ Computations to check the intersections of balls are not easy
ball with different radius= {Bri
(xi)| xi 2 P}
Alpha complex
2 - Simplicial complexes
Voronoi diagrams and Delaunay complex
19
✤ P = {xi 2 RN
|i = 1, ..., m}
Vi = {x 2 RN
| ||x xi||  ||x xj||, j 6= i}
RN
= [m
i=1Vi
Voronoi cell
✤ = {Vi|i = 1, ..., m}
D(P) = N( )
Voronoi decomposition
Delaunay complex
2 - Simplicial complexes
General position
20
✤ is in a general position, if there is no
✤ If all combination of N+2 points in P is in a general
position, then P is in a general position
x1, ..., xN+2 2 RN
x 2 RN
s.t.||x x1|| = ... = ||x xN+2||
✤ If P is in a general position then
The dimensions of Delaunay simplexes <= N
Geometric representation of D(P) can be
embedded in RN
2 - Simplicial complexes
Alpha complex
21
✤
✤
✤ The alpha complex is the nerve of
↵(P, r) = N( )
✤ From Nerve theorem:
Xr ' ↵(P, r)
2 - Simplicial complexes
Alpha complex
22
✤
✤
✤ The weighted alpha complex is defined
with different radius
if P is in a general position
filtration of alpha complexes
2 - Simplicial complexes
Alpha complex
23
✤ Computations are much easier than Cech complexes
✤ Software: CGAL
• Construct alpha complexes of points clouds data in RN with
N <= 3
Filtration of alpha complex
Image source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
2 - Simplicial complexes
Outline
TDA - Basic Concepts 24
1. Topology and holes
3. Definition of holes
5. Some of applications
2. Simplicial complexes
4. Persistent homology
Definition of holes
25
Simplicial
complex
Chain
complex
Homology

group
Algebraic Holes
Geometrical
object
Algebraic
object
3 - Definition of Holes
What is hole?
26
✤ 1-dimensional hole: ring
not ring have ring
boundary
without
ring
without
boundary
Ring = 

1-dimensional graph without boundary?
However, NOT
1-dimensional graph without 

boundary but is 2-dimensional graph
’s boundary
Ring = 1-dimensional graph without boundary and is not boundary
of 2-dimensional graph
3 - Definition of Holes
What is hole?
27
✤ 2-dimensional hole: cavity
not cavity have cavity
boundary
without
cavity
without
boundary
However, NOT
2-dimensional graph without 

boundary but is 3-dimensional graph
’s boundary
Cavity = 2-dimensional graph without boundary and is not boundary
of 3-dimensional graph
Cavity = 

2-dimensional graph without boundary?
3 - Definition of Holes
Hole and boundary
28
q-dimensional hole
q-dimensional graph without boundary and
is not boundary of (q+1)-dimensional graph=
We try to make it clear by “Algebraic” language
3 - Definition of Holes
Chain complexes
29
Let K be a simplicial complex with dimension n. The group of q-
chains is defined as below:
The element of Cq(K) is called q chain.
Definition:
Cq(K) := {
X
↵i
⌦
vi0
...viq
↵
|↵i 2 R,
⌦
vi0
...viq
↵
: q simplicial in K}
0  q  nif
Cq(K) := 0, if q < 0 or q > n
3 - Definition of Holes
Boundary
30
Boundary of a q-simplex is the sum of its (q-1)-dimensional faces.
Definition:
vil is omitted
@|v0v1v2| := |v0v1| + |v1v2| + |v0v2|
3 - Definition of Holes
Boundary
31
Fundamental lemma
@q 1 @q = 0
@2 @1
For q = 2
In general
• For a q - simplex τ, the boundary ∂qτ, consists of all (q-1) faces of τ.
• Every (q-2)-face of τ belongs to exactly two (q-1)-faces, with different direction
@q 1@q⌧ = 0
3 - Definition of Holes
Hole and boundary
32
q-dimensional hole
q-dimensional graph without boundary and is
not boundary of (q+1)-dimensional graph
(1)
(2)
(1)
(2)
:= ker @q
:= im@q+1
(cycles group)
(boundary group)
Bq(K) ⇢ Zq(K) ⇢ Cq(K)
@q @q+1 = 0
3 - Definition of Holes
Hole and boundary
33
q-dimensional hole
q-dimensional graph without boundary and is
not boundary of (q+1)-dimensional graph
(1)
(2)
Elements in Zq(K) remain after make Bq(K) become zero
This operator is defined as Q
=
:= ker @q := im@q+1
Q(z0
) = Q(z) + Q(b) = Q(z)
(z and z’ are equivalent in
with respect to )
q-dimensional hole = an equivalence
class of vectors
ker @q
im @q+1
For z0
= z + b, z, z0
2 ker @q, b 2 im @q+1
3 - Definition of Holes
Homology group
34
Homology groups
The qth
Homology Group Hq is defined as Hq = Ker@q/Im@q+1
= {z + Im@q+1 | z 2 Ker@q } = {[z]|z 2 Ker@q}
Divided in groups with operator [z] + [z’] = [z + z’]
Betti Numbers
The qth
Betti Number is defined as the dimension of Hq
bq = dim(Hq)
H0(K): connected component H1(K): ring H2(K): cavity
3 - Definition of Holes
Computing Homology
35
v0
v1 v2
v3
All vectors in the column space of Ker@0 are equivalent with respect to Im@1
b0 = dim(H0) = 1
Im@2 has only the zero vector
b1 = dim(H1) = 1
H1 = { (|v0v1| + |v1v2| + |v2v3| + |v3v0|)}
3 - Definition of Holes
Computing Homology
36
v0
v1 v2
v3
H1 = { (hv0v1i + hv1v2i + hv2v3i hv0v3i)}
All vectors in the column space of Ker@0 are equivalent with respect to Im@1
b0 = dim(H0) = 1
Im@2 has only the zero vector
b1 = dim(H1) = 1
3 - Definition of Holes
Outline
TDA - Basic Concepts 37
1. Topology and holes
3. Definition of holes
5. Some of applications
2. Simplicial complexes
4. Persistent homology
Persistent Homology
Persistent homology 38
✤ Consider filtration of finite type
K : K0
⇢ K1
⇢ ... ⇢ Kt
⇢ ...
9 ⇥ s.t. Kj
= K⇥
, 8j ⇥
✤ : total simplicial complexK = [t 0Kt
Kk
Kt
k
T( ) = t 2 Kt
 Kt 1
: all k-simplexes in K
: all k-simplexes in K at time t
: birth time of the simplex
time
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Persistent Homology
39
✤ Z2 - vector space
✤ Z2[x] - graded module
✤ Inclusion map
✤ is a free Z2[x] module with the baseCk(K)
Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Persistent Homology
40
✤ Boundary map
✤ From the graded structure
✤ Persistent homology
(graded homomorphism)
face of σ
Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Persistent Homology
41
✤ From the structure theorem of Z2[x] (PID)
✤ Persistent interval
✤ Persistent diagram
Ii(b): inf of Ii, Ii(d): sup of Ii
Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Persistent Homology
42
birth time
death time
✤ “Hole” appears close to the
diagonal may be the “noise”
✤ “Hole” appears far to the
diagonal may be the “noise”
✤ Detect the “structure hole”
Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Outline
TDA - Basic Concepts 43
1. Topology and holes
3. Definition of holes
5. Some of applications
2. Simplicial complexes
4. Persistent homology
see more at part2 of tutorial
Applications
5 - Some of applications 44
• Persistence to Protein compressibility
Marcio Gameiro et. al. (Japan J. Indust. Appl. Math (2015) 32:1-17)
Protein Structure
Persistence to protein compressibility 45
amino acid 1 amino acid 2
3-dim structure of hemoglobin
1-dim structure of protein
folding
peptide bond
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Protein Structure
Persistence to protein compressibility 46
✤ Van der Waals radius of an atom
H: 1.2, C: 1.7, N: 1.55 (A0)
O: 1.52, S: 1.8, P: 1.8 (A0)
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Van der Waals ball model of hemoglobin
Alpha Complex for Protein Modeling
Persistence to protein compressibility 47
✤
✤
✤
: position of atoms
: radius of i-th atom
: weighted Voronoi Decomposition
: power distance
: ball with radius ri
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Alpha Complex for Protein Modeling
Persistence to protein compressibility 48
✤
✤
✤
Alpha complex nerve
k - simplex
Nerve lemma
Changing radius
to form a filtration (by w)
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Topology of Ovalbumin
Persistence to protein compressibility 49
birth time
deathtime
birth time
deathtime
1st betti
plot
2nd betti
plot
PD1 PD2
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Compressibility
Persistence to protein compressibility 50
3-dim structureFunctionality
Softness
Compressibility
Experiments Quantification
Persistence diagrams
(Difficult)
…..…..
Select generators and fitting parameters
with experimental compressibility
holes
Denoising
Persistence to protein compressibility 51
birth time
deathtime
✤ Topological noise
✤ Non-robust topological features depend on a status of
fluctuations
✤ The quantification should not be dependent on a
status of fluctuations
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Holes with Sparse or Dense Boundary
Persistence to protein compressibility 52
✤ A sparse hole structure is deformable to a much larger
extent than the dense hole → greater compressibility
✤ Effective sparse holes
: van der Waals ball
: enlarged ball
birth time
deathtime
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
# of generators v.s. compressibility
Persistence to protein compressibility 53
# of generators v.s. compressibility
Topological Measurement Cp
Compressibility
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Applications
5 - Some of applications 54
• Persistence to Phylogenetic Trees
Protein Phylogenetic Tree
Persistence to Phylogenetic Trees 55
✤ Phylogenetic tree is defined by a distance matrix for a
set of species (human, dog, frog, fish,…)
✤ The distance matrix is calculated by a score function
based on similarity of amino acid sequences
amino acid sequences
fish hemoglobin
frog hemoglobin
human hemoglobin
distance matrix of
hemoglobin
fish
frog
human
dog
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Persistence Distance and Classification of Proteins
Persistence to Phylogenetic Trees 56
✤ The score function based on amnio acid sequences does not
contain information of 3-dim structure of proteins
✤ Wasserstein distance (of degree p)
Cohen-Steiner, Edelsbrunner, Harer, and Mileyko, FCM, 2010
on persistence diagrams reflects similarity of persistence
diagram (3-dim structures) of proteins
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Persistence Distance and Classification of Proteins
Persistence to Phylogenetic Trees 57
birth time
deathtime
birth time
birth time
deathtime
deathtimeWasserstein distance
Bijection
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Distance between persistence diagrams
Persistence to Phylogenetic Trees 58
Persistence of sub level sets
Stability Theorem (Cohen-Steiner et al., 2010)
birth time
deathtime
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Phylogenetic Tree by Persistence
Persistence to Phylogenetic Trees 59
✤ Apply the distance on persistence diagrams to classify
proteins
Persistence diagram used the noise band same as
in the computations of compressibility
3DHT
3D1A
1QPW
3LQD
1FAW
1C40
2FZB
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Future work
TDA - Basic Concepts 60
✤ Principle to de-noise fluctuations in persistence diagrams (NMR
experiments)
✤ Finding minimum generators to identify specific regions in a
protein (e.g., a region inducing high compressibility, hereditarily
important regions)
✤ Zigzag persistence for robust topological features among a
specific group of proteins (quiver representation)
✤ Multi-dimensional persistence (PID → Grobner basic)
Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
Applications more in part … of tutorials
5 - Some of applications 61
✤ Robotics
✤ Computer Visions
✤ Sensor network
✤ Concurrency & database
✤ Visualization
Prof. Robert Ghrist
Department of Mathematics
University of Pennsylvania
One of pioneers in applications
Michael Farber Edelsbrunner
Mischaikow Gaucher Bubenik
Zomorodian
Carlsson
Software
TDA - Basic Concepts 62
• Alpha complex by CGAL
http://www.cgal.org/
• Persistence diagrams by Perseus (coded by Vidit Nanda)
http://www.sas.upenn.edu/~vnanda/perseus/index.html
http://chomp.rutgers.edu/Project.html
• CHomP project
Reference links
TDA - Basic Concepts 63
• Yasuaki Hiraoka associate professor homepage
http://www2.math.kyushu-u.ac.jp/~hiraoka/site/About_Me.html
http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
www.msys.sys.i.kyoto-u.ac.jp/~kazunori/paper/nist20081219.pdf
• Applications in sensor network

Contenu connexe

Tendances

Topological Data Analysis of Complex Spatial Systems
Topological Data Analysis of Complex Spatial SystemsTopological Data Analysis of Complex Spatial Systems
Topological Data Analysis of Complex Spatial SystemsMason Porter
 
Introduction to graph theory (All chapter)
Introduction to graph theory (All chapter)Introduction to graph theory (All chapter)
Introduction to graph theory (All chapter)sobia1122
 
Buku kalkulus peubah banyak
Buku kalkulus peubah banyakBuku kalkulus peubah banyak
Buku kalkulus peubah banyakHapizahFKIP
 
Soal soal non rutin
Soal soal non rutinSoal soal non rutin
Soal soal non rutinJoe Zidane
 
graceful dan harmonis.pptx
graceful dan harmonis.pptxgraceful dan harmonis.pptx
graceful dan harmonis.pptxdianekaWijayanti
 
Order dari Elemen Grup
Order dari Elemen GrupOrder dari Elemen Grup
Order dari Elemen Grupwahyuhenky
 
Fungsi Kompleks (pada bilangan kompleks)
Fungsi Kompleks (pada bilangan kompleks)Fungsi Kompleks (pada bilangan kompleks)
Fungsi Kompleks (pada bilangan kompleks)Ridha Zahratun
 
Makalah geseran (translasi)
Makalah geseran (translasi)Makalah geseran (translasi)
Makalah geseran (translasi)Nia Matus
 
1. konsep bilangan berpangkat, bentuk akar dan logaritma
1.    konsep bilangan berpangkat, bentuk akar dan logaritma1.    konsep bilangan berpangkat, bentuk akar dan logaritma
1. konsep bilangan berpangkat, bentuk akar dan logaritmadarmawati20
 
Rpp 6 trigonometri kd 3.7
Rpp 6 trigonometri kd 3.7Rpp 6 trigonometri kd 3.7
Rpp 6 trigonometri kd 3.7RiaSocan
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphismNaliniSPatil
 
Program tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajib
Program tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajibProgram tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajib
Program tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajibazrilliansyah sulaiman
 
Deret fourier
Deret fourierDeret fourier
Deret fourierPIO2021
 
A course on integral calculus
A course on integral calculusA course on integral calculus
A course on integral calculusGAURAV SAHA
 
VD-108 klmpk 5: Operasi Biner dan Grup
VD-108 klmpk 5: Operasi Biner dan GrupVD-108 klmpk 5: Operasi Biner dan Grup
VD-108 klmpk 5: Operasi Biner dan GrupSholiha Nurwulan
 

Tendances (20)

Topological Data Analysis of Complex Spatial Systems
Topological Data Analysis of Complex Spatial SystemsTopological Data Analysis of Complex Spatial Systems
Topological Data Analysis of Complex Spatial Systems
 
Introduction to graph theory (All chapter)
Introduction to graph theory (All chapter)Introduction to graph theory (All chapter)
Introduction to graph theory (All chapter)
 
Buku kalkulus peubah banyak
Buku kalkulus peubah banyakBuku kalkulus peubah banyak
Buku kalkulus peubah banyak
 
Abstract Algebra
Abstract AlgebraAbstract Algebra
Abstract Algebra
 
Soal soal non rutin
Soal soal non rutinSoal soal non rutin
Soal soal non rutin
 
graceful dan harmonis.pptx
graceful dan harmonis.pptxgraceful dan harmonis.pptx
graceful dan harmonis.pptx
 
DM-unit-3.ppt
DM-unit-3.pptDM-unit-3.ppt
DM-unit-3.ppt
 
Order dari Elemen Grup
Order dari Elemen GrupOrder dari Elemen Grup
Order dari Elemen Grup
 
Fungsi Kompleks (pada bilangan kompleks)
Fungsi Kompleks (pada bilangan kompleks)Fungsi Kompleks (pada bilangan kompleks)
Fungsi Kompleks (pada bilangan kompleks)
 
Makalah geseran (translasi)
Makalah geseran (translasi)Makalah geseran (translasi)
Makalah geseran (translasi)
 
1. konsep bilangan berpangkat, bentuk akar dan logaritma
1.    konsep bilangan berpangkat, bentuk akar dan logaritma1.    konsep bilangan berpangkat, bentuk akar dan logaritma
1. konsep bilangan berpangkat, bentuk akar dan logaritma
 
Rpp 6 trigonometri kd 3.7
Rpp 6 trigonometri kd 3.7Rpp 6 trigonometri kd 3.7
Rpp 6 trigonometri kd 3.7
 
Group homomorphism
Group homomorphismGroup homomorphism
Group homomorphism
 
Aturan rantai 2 variable
Aturan rantai 2 variableAturan rantai 2 variable
Aturan rantai 2 variable
 
Program tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajib
Program tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajibProgram tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajib
Program tahunan-matematika-sma-kelas-xi-kurikulum-2013-wajib
 
Deret fourier
Deret fourierDeret fourier
Deret fourier
 
A course on integral calculus
A course on integral calculusA course on integral calculus
A course on integral calculus
 
Group theory
Group theoryGroup theory
Group theory
 
VD-108 klmpk 5: Operasi Biner dan Grup
VD-108 klmpk 5: Operasi Biner dan GrupVD-108 klmpk 5: Operasi Biner dan Grup
VD-108 klmpk 5: Operasi Biner dan Grup
 
Struktur aljabar-2
Struktur aljabar-2Struktur aljabar-2
Struktur aljabar-2
 

Similaire à Tutorial of topological_data_analysis_part_1(basic)

engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiKundan Kumar
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06bikram ...
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06bikram ...
 
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...Panchal Anand
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent LinesLeo Crisologo
 
Dimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptxDimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptxRohanBorgalli
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdfGARRYB4
 
Kolmogorov complexity and topological arguments
Kolmogorov complexity and topological argumentsKolmogorov complexity and topological arguments
Kolmogorov complexity and topological argumentsshenmontpellier
 
parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph MotifAMR koura
 
Applied III Chapter 4(1).pdf
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdfDawitThomas
 
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...Kasun Ranga Wijeweera
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2tutulk
 

Similaire à Tutorial of topological_data_analysis_part_1(basic) (20)

engineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-iiengineeringmathematics-iv_unit-ii
engineeringmathematics-iv_unit-ii
 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
 
Mtc ssample05
Mtc ssample05Mtc ssample05
Mtc ssample05
 
Mtc ssample05
Mtc ssample05Mtc ssample05
Mtc ssample05
 
Core 2 revision notes
Core 2 revision notesCore 2 revision notes
Core 2 revision notes
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
 
Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
 
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
GTU LAVC Line Integral,Green Theorem in the Plane, Surface And Volume Integra...
 
Circles and Tangent Lines
Circles and Tangent LinesCircles and Tangent Lines
Circles and Tangent Lines
 
Mathematics
MathematicsMathematics
Mathematics
 
Circunfêrencia 3
Circunfêrencia 3Circunfêrencia 3
Circunfêrencia 3
 
ME Reference.pdf
ME Reference.pdfME Reference.pdf
ME Reference.pdf
 
Dimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptxDimension Reduction Introduction & PCA.pptx
Dimension Reduction Introduction & PCA.pptx
 
maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
 
Kolmogorov complexity and topological arguments
Kolmogorov complexity and topological argumentsKolmogorov complexity and topological arguments
Kolmogorov complexity and topological arguments
 
parameterized complexity for graph Motif
parameterized complexity for graph Motifparameterized complexity for graph Motif
parameterized complexity for graph Motif
 
Applied III Chapter 4(1).pdf
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdf
 
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
Convex Partitioning of a Polygon into Smaller Number of Pieces with Lowest Me...
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 
Lecture_note2.pdf
Lecture_note2.pdfLecture_note2.pdf
Lecture_note2.pdf
 

Plus de Ha Phuong

QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapHa Phuong
 
CCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embeddingCCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embeddingHa Phuong
 
SIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionSIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionHa Phuong
 
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...Ha Phuong
 
017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing MachinesHa Phuong
 
016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise FilteringHa Phuong
 
015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex NetworksHa Phuong
 
Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)Ha Phuong
 
011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_mapHa Phuong
 
010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian ProcessHa Phuong
 
009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain NetworksHa Phuong
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodHa Phuong
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Ha Phuong
 
008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain AdaptationHa Phuong
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium ThermodynamicsHa Phuong
 
006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive WriterHa Phuong
 
005 20151130 adversary_networks
005 20151130 adversary_networks005 20151130 adversary_networks
005 20151130 adversary_networksHa Phuong
 
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamicsHa Phuong
 
003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfasterHa Phuong
 
002 20151019 interconnected_network
002 20151019 interconnected_network002 20151019 interconnected_network
002 20151019 interconnected_networkHa Phuong
 

Plus de Ha Phuong (20)

QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
 
CCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embeddingCCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embedding
 
SIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase TransitionSIAM-AG21-Topological Persistence Machine of Phase Transition
SIAM-AG21-Topological Persistence Machine of Phase Transition
 
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
 
017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines
 
016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering
 
015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks
 
Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)Tutorial of topological data analysis part 3(Mapper algorithm)
Tutorial of topological data analysis part 3(Mapper algorithm)
 
011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map
 
010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process
 
009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling Method
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
 
008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
 
006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer
 
005 20151130 adversary_networks
005 20151130 adversary_networks005 20151130 adversary_networks
005 20151130 adversary_networks
 
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
 
003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster
 
002 20151019 interconnected_network
002 20151019 interconnected_network002 20151019 interconnected_network
002 20151019 interconnected_network
 

Dernier

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)Areesha Ahmad
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)Areesha Ahmad
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Dernier (20)

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)GBSN - Microbiology (Unit 1)
GBSN - Microbiology (Unit 1)
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)GBSN - Biochemistry (Unit 1)
GBSN - Biochemistry (Unit 1)
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 

Tutorial of topological_data_analysis_part_1(basic)

  • 1. Tutorial of Topological Data Analysis Tran Quoc Hoan @k09hthaduonght.wordpress.com/ Hasegawa lab., Tokyo The University of Tokyo Part I - Basic Concepts
  • 2. My TDA = Topology Data Analysis ’s road TDA Road 2 Part I - Basic concepts & applications Part II - Advanced computation Part III - Mapper Algorithm Part V - Applications in… Part VI - Applications in… Part IV - Software Roadmap He is following me
  • 3. Outline TDA - Basic Concepts 3 1. Topology and holes 3. Definition of holes 5. Some of applications 2. Simplicial complexes 4. Persistent homology
  • 4. Outline TDA - Basic Concepts 4 1. Topology and holes 5. Some of applications 2. Simplicial complexes 4. Persistent homology 3. Definition of holes
  • 5. Topology I - Topology and Holes 5 The properties of space that are preserved under continuous deformations, such as stretching and bending, but not tearing or gluing ⇠= ⇠= ⇠= ⇠= ⇠= ⇠= ⇠=
  • 6. Invariant 6 Question: what are invariant things in topology? ⇠= ⇠= ⇠= ⇠= ⇠= ⇠= ⇠= Connected
 Component Ring Cavity 1 0 0 2 0 0 1 1 0 1 10 Number of I - Topology and Holes
  • 7. Holes and dimension 7 Topology: consider the continuous deformation under the same dimensional hole ✤ Concern to forming of shape: connected component, ring, cavity • 0-dimensional “hole” = connected component • 1-dimensional “hole” = ring • 2-dimensional “hole” = cavity How to define “hole”? Use “algebraic” Homology group I - Topology and Holes
  • 8. Homology group 8 ✤ For geometric object X, homology Hl satisfied: k0 : number of connected components k1 : number of rings k2 : number of cavities kq : number of q-dimensional holes Betti-numbers I - Topology and Holes Image source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 9. Outline TDA - Basic Concepts 9 1. Topology and holes 5. Some of applications 2. Simplicial complexes 4. Persistent homology 3. Definition of holes
  • 10. Simplicial complexes 10 Simplicial complex: A set of vertexes, edges, triangles, tetrahedrons, … that are closed under taking faces and that have no improper intersections vertex
 (0-dimension) edge
 (1-dimension) triangle
 (2-dimension) tetrahedron
 (3-dimension) simplicial complex not simplicial complex 2 - Simplicial complexes k-simplex
  • 11. Simplicial 11 n-simplex: The “smallest” convex hull of n+1 affinity independent points vertex
 (0-dimension) edge
 (1-dimension) triangle
 (2-dimension) tetrahedron
 (3-dimension) n-simplex = |v0v1...vn| = { 0v0 + 1v1 + ... + nvn| 0 + ... + n = 1, i 0} A m-face of σ is the convex hull τ = |vi0…vim| of a non-empty subset of {v0, v1, …, vn} (and it is proper if the subset is not the entire set) ⌧ 2 - Simplicial complexes
  • 12. Simplicial 12 Direction of simplicial: The same direction with permutation <i0i1…in> 1-simplex 2-simplex 3-simplex 2 - Simplicial complexes
  • 13. Simplicial complex 13 Definition: A simplicial complex is a finite collection of simplifies K such that (1) If 2 K and for all face ⌧ then ⌧ 2 K (2) If , ⌧ 2 K and ⌧ 6= ? then ⌧ and ⌧ ⌧ The maximum dimension of simplex in K is the dimension of K K2 = {|v0v1v2|, |v0v1|, |v0v2|, |v1v2|, |v0|, |v1|, |v2|} K = K2 [ {|v3v4|, |v3|, |v4|} NOT YES 2 - Simplicial complexes
  • 14. Simplicial complexes 14 Hemoglobin simplicial complex Image source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf 2 - Simplicial complexes
  • 15. ✤ Let be a covering of Nerve 15 = {Bi|i = 1, ..., m} X = [m i=1Bi ✤ The nerve of is a simplicial complex N( ) = (V, ⌃) 2 - Simplicial complexes
  • 16. Nerve theorem 16 ✤ If is covered by a collection of convex closed sets then X and are homotopy equivalent X ⊂ RN = {Bi|i = 1, ..., m} N( ) 2 - Simplicial complexes
  • 17. Cech complex 17 P = {xi 2 RN |i = 1, ..., m} Br(xi) = {x 2 RN | ||x xi||  r} ✤ The Cech complex C(P, r) is the nerve of ✤ = {Br(xi)| xi 2 P} ✤ From nerve theorem: C(P, r) Xr = [m i=1Br(xi) ' C(P, r) ✤ Filtration ball with radius r 2 - Simplicial complexes
  • 18. Cech complex 18 ✤ The weighted Cech complex C(P, R) is the nerve of ✤ Computations to check the intersections of balls are not easy ball with different radius= {Bri (xi)| xi 2 P} Alpha complex 2 - Simplicial complexes
  • 19. Voronoi diagrams and Delaunay complex 19 ✤ P = {xi 2 RN |i = 1, ..., m} Vi = {x 2 RN | ||x xi||  ||x xj||, j 6= i} RN = [m i=1Vi Voronoi cell ✤ = {Vi|i = 1, ..., m} D(P) = N( ) Voronoi decomposition Delaunay complex 2 - Simplicial complexes
  • 20. General position 20 ✤ is in a general position, if there is no ✤ If all combination of N+2 points in P is in a general position, then P is in a general position x1, ..., xN+2 2 RN x 2 RN s.t.||x x1|| = ... = ||x xN+2|| ✤ If P is in a general position then The dimensions of Delaunay simplexes <= N Geometric representation of D(P) can be embedded in RN 2 - Simplicial complexes
  • 21. Alpha complex 21 ✤ ✤ ✤ The alpha complex is the nerve of ↵(P, r) = N( ) ✤ From Nerve theorem: Xr ' ↵(P, r) 2 - Simplicial complexes
  • 22. Alpha complex 22 ✤ ✤ ✤ The weighted alpha complex is defined with different radius if P is in a general position filtration of alpha complexes 2 - Simplicial complexes
  • 23. Alpha complex 23 ✤ Computations are much easier than Cech complexes ✤ Software: CGAL • Construct alpha complexes of points clouds data in RN with N <= 3 Filtration of alpha complex Image source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf 2 - Simplicial complexes
  • 24. Outline TDA - Basic Concepts 24 1. Topology and holes 3. Definition of holes 5. Some of applications 2. Simplicial complexes 4. Persistent homology
  • 25. Definition of holes 25 Simplicial complex Chain complex Homology
 group Algebraic Holes Geometrical object Algebraic object 3 - Definition of Holes
  • 26. What is hole? 26 ✤ 1-dimensional hole: ring not ring have ring boundary without ring without boundary Ring = 
 1-dimensional graph without boundary? However, NOT 1-dimensional graph without 
 boundary but is 2-dimensional graph ’s boundary Ring = 1-dimensional graph without boundary and is not boundary of 2-dimensional graph 3 - Definition of Holes
  • 27. What is hole? 27 ✤ 2-dimensional hole: cavity not cavity have cavity boundary without cavity without boundary However, NOT 2-dimensional graph without 
 boundary but is 3-dimensional graph ’s boundary Cavity = 2-dimensional graph without boundary and is not boundary of 3-dimensional graph Cavity = 
 2-dimensional graph without boundary? 3 - Definition of Holes
  • 28. Hole and boundary 28 q-dimensional hole q-dimensional graph without boundary and is not boundary of (q+1)-dimensional graph= We try to make it clear by “Algebraic” language 3 - Definition of Holes
  • 29. Chain complexes 29 Let K be a simplicial complex with dimension n. The group of q- chains is defined as below: The element of Cq(K) is called q chain. Definition: Cq(K) := { X ↵i ⌦ vi0 ...viq ↵ |↵i 2 R, ⌦ vi0 ...viq ↵ : q simplicial in K} 0  q  nif Cq(K) := 0, if q < 0 or q > n 3 - Definition of Holes
  • 30. Boundary 30 Boundary of a q-simplex is the sum of its (q-1)-dimensional faces. Definition: vil is omitted @|v0v1v2| := |v0v1| + |v1v2| + |v0v2| 3 - Definition of Holes
  • 31. Boundary 31 Fundamental lemma @q 1 @q = 0 @2 @1 For q = 2 In general • For a q - simplex τ, the boundary ∂qτ, consists of all (q-1) faces of τ. • Every (q-2)-face of τ belongs to exactly two (q-1)-faces, with different direction @q 1@q⌧ = 0 3 - Definition of Holes
  • 32. Hole and boundary 32 q-dimensional hole q-dimensional graph without boundary and is not boundary of (q+1)-dimensional graph (1) (2) (1) (2) := ker @q := im@q+1 (cycles group) (boundary group) Bq(K) ⇢ Zq(K) ⇢ Cq(K) @q @q+1 = 0 3 - Definition of Holes
  • 33. Hole and boundary 33 q-dimensional hole q-dimensional graph without boundary and is not boundary of (q+1)-dimensional graph (1) (2) Elements in Zq(K) remain after make Bq(K) become zero This operator is defined as Q = := ker @q := im@q+1 Q(z0 ) = Q(z) + Q(b) = Q(z) (z and z’ are equivalent in with respect to ) q-dimensional hole = an equivalence class of vectors ker @q im @q+1 For z0 = z + b, z, z0 2 ker @q, b 2 im @q+1 3 - Definition of Holes
  • 34. Homology group 34 Homology groups The qth Homology Group Hq is defined as Hq = Ker@q/Im@q+1 = {z + Im@q+1 | z 2 Ker@q } = {[z]|z 2 Ker@q} Divided in groups with operator [z] + [z’] = [z + z’] Betti Numbers The qth Betti Number is defined as the dimension of Hq bq = dim(Hq) H0(K): connected component H1(K): ring H2(K): cavity 3 - Definition of Holes
  • 35. Computing Homology 35 v0 v1 v2 v3 All vectors in the column space of Ker@0 are equivalent with respect to Im@1 b0 = dim(H0) = 1 Im@2 has only the zero vector b1 = dim(H1) = 1 H1 = { (|v0v1| + |v1v2| + |v2v3| + |v3v0|)} 3 - Definition of Holes
  • 36. Computing Homology 36 v0 v1 v2 v3 H1 = { (hv0v1i + hv1v2i + hv2v3i hv0v3i)} All vectors in the column space of Ker@0 are equivalent with respect to Im@1 b0 = dim(H0) = 1 Im@2 has only the zero vector b1 = dim(H1) = 1 3 - Definition of Holes
  • 37. Outline TDA - Basic Concepts 37 1. Topology and holes 3. Definition of holes 5. Some of applications 2. Simplicial complexes 4. Persistent homology
  • 38. Persistent Homology Persistent homology 38 ✤ Consider filtration of finite type K : K0 ⇢ K1 ⇢ ... ⇢ Kt ⇢ ... 9 ⇥ s.t. Kj = K⇥ , 8j ⇥ ✤ : total simplicial complexK = [t 0Kt Kk Kt k T( ) = t 2 Kt Kt 1 : all k-simplexes in K : all k-simplexes in K at time t : birth time of the simplex time Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 39. Persistent Homology 39 ✤ Z2 - vector space ✤ Z2[x] - graded module ✤ Inclusion map ✤ is a free Z2[x] module with the baseCk(K) Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 40. Persistent Homology 40 ✤ Boundary map ✤ From the graded structure ✤ Persistent homology (graded homomorphism) face of σ Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 41. Persistent Homology 41 ✤ From the structure theorem of Z2[x] (PID) ✤ Persistent interval ✤ Persistent diagram Ii(b): inf of Ii, Ii(d): sup of Ii Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 42. Persistent Homology 42 birth time death time ✤ “Hole” appears close to the diagonal may be the “noise” ✤ “Hole” appears far to the diagonal may be the “noise” ✤ Detect the “structure hole” Persistent homology Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 43. Outline TDA - Basic Concepts 43 1. Topology and holes 3. Definition of holes 5. Some of applications 2. Simplicial complexes 4. Persistent homology see more at part2 of tutorial
  • 44. Applications 5 - Some of applications 44 • Persistence to Protein compressibility Marcio Gameiro et. al. (Japan J. Indust. Appl. Math (2015) 32:1-17)
  • 45. Protein Structure Persistence to protein compressibility 45 amino acid 1 amino acid 2 3-dim structure of hemoglobin 1-dim structure of protein folding peptide bond Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 46. Protein Structure Persistence to protein compressibility 46 ✤ Van der Waals radius of an atom H: 1.2, C: 1.7, N: 1.55 (A0) O: 1.52, S: 1.8, P: 1.8 (A0) Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf Van der Waals ball model of hemoglobin
  • 47. Alpha Complex for Protein Modeling Persistence to protein compressibility 47 ✤ ✤ ✤ : position of atoms : radius of i-th atom : weighted Voronoi Decomposition : power distance : ball with radius ri Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 48. Alpha Complex for Protein Modeling Persistence to protein compressibility 48 ✤ ✤ ✤ Alpha complex nerve k - simplex Nerve lemma Changing radius to form a filtration (by w) Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 49. Topology of Ovalbumin Persistence to protein compressibility 49 birth time deathtime birth time deathtime 1st betti plot 2nd betti plot PD1 PD2 Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 50. Compressibility Persistence to protein compressibility 50 3-dim structureFunctionality Softness Compressibility Experiments Quantification Persistence diagrams (Difficult) …..….. Select generators and fitting parameters with experimental compressibility holes
  • 51. Denoising Persistence to protein compressibility 51 birth time deathtime ✤ Topological noise ✤ Non-robust topological features depend on a status of fluctuations ✤ The quantification should not be dependent on a status of fluctuations Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 52. Holes with Sparse or Dense Boundary Persistence to protein compressibility 52 ✤ A sparse hole structure is deformable to a much larger extent than the dense hole → greater compressibility ✤ Effective sparse holes : van der Waals ball : enlarged ball birth time deathtime Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 53. # of generators v.s. compressibility Persistence to protein compressibility 53 # of generators v.s. compressibility Topological Measurement Cp Compressibility Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 54. Applications 5 - Some of applications 54 • Persistence to Phylogenetic Trees
  • 55. Protein Phylogenetic Tree Persistence to Phylogenetic Trees 55 ✤ Phylogenetic tree is defined by a distance matrix for a set of species (human, dog, frog, fish,…) ✤ The distance matrix is calculated by a score function based on similarity of amino acid sequences amino acid sequences fish hemoglobin frog hemoglobin human hemoglobin distance matrix of hemoglobin fish frog human dog Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 56. Persistence Distance and Classification of Proteins Persistence to Phylogenetic Trees 56 ✤ The score function based on amnio acid sequences does not contain information of 3-dim structure of proteins ✤ Wasserstein distance (of degree p) Cohen-Steiner, Edelsbrunner, Harer, and Mileyko, FCM, 2010 on persistence diagrams reflects similarity of persistence diagram (3-dim structures) of proteins Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 57. Persistence Distance and Classification of Proteins Persistence to Phylogenetic Trees 57 birth time deathtime birth time birth time deathtime deathtimeWasserstein distance Bijection Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 58. Distance between persistence diagrams Persistence to Phylogenetic Trees 58 Persistence of sub level sets Stability Theorem (Cohen-Steiner et al., 2010) birth time deathtime Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 59. Phylogenetic Tree by Persistence Persistence to Phylogenetic Trees 59 ✤ Apply the distance on persistence diagrams to classify proteins Persistence diagram used the noise band same as in the computations of compressibility 3DHT 3D1A 1QPW 3LQD 1FAW 1C40 2FZB Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 60. Future work TDA - Basic Concepts 60 ✤ Principle to de-noise fluctuations in persistence diagrams (NMR experiments) ✤ Finding minimum generators to identify specific regions in a protein (e.g., a region inducing high compressibility, hereditarily important regions) ✤ Zigzag persistence for robust topological features among a specific group of proteins (quiver representation) ✤ Multi-dimensional persistence (PID → Grobner basic) Slide source: http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf
  • 61. Applications more in part … of tutorials 5 - Some of applications 61 ✤ Robotics ✤ Computer Visions ✤ Sensor network ✤ Concurrency & database ✤ Visualization Prof. Robert Ghrist Department of Mathematics University of Pennsylvania One of pioneers in applications Michael Farber Edelsbrunner Mischaikow Gaucher Bubenik Zomorodian Carlsson
  • 62. Software TDA - Basic Concepts 62 • Alpha complex by CGAL http://www.cgal.org/ • Persistence diagrams by Perseus (coded by Vidit Nanda) http://www.sas.upenn.edu/~vnanda/perseus/index.html http://chomp.rutgers.edu/Project.html • CHomP project
  • 63. Reference links TDA - Basic Concepts 63 • Yasuaki Hiraoka associate professor homepage http://www2.math.kyushu-u.ac.jp/~hiraoka/site/About_Me.html http://www2.math.kyushu-u.ac.jp/~hiraoka/protein_homology.pdf www.msys.sys.i.kyoto-u.ac.jp/~kazunori/paper/nist20081219.pdf • Applications in sensor network