SlideShare une entreprise Scribd logo
1  sur  46
Electromagnetism University of Twente Department Applied Physics First-year course on Part I: Electricity: Slides © F.F.M. de Mul
E- field of a long wire Conclusion:  E  radial symmetry ,[object Object],[object Object],[object Object],dE y ,[object Object],e r  . e y  =  cos   r,  e r  and    are  f  (z) : r dz e r dE Approach: z O ,[object Object], y z y x P y P Problem: E P   in point P(0,y P ,0)
Charge elements (1): rod, ring, disk  Line Ring   ,  radius R Disk   ,  radius R   [C/m] O z dz dQ =  .dz   d  R   [C/m] dQ =   .R.d  P Symmetry: If    homogeneous: dQ =    .2  a.da   [C/m 2 ] d   a r P dE dQ =   .dA =    (a.d  ) da  a    r ! 0 < a < R da
Charge elements (2): thin plate dQ =    dA =    dx.dy if plate    large :  dE  //   e z   P Thin plate   ,    [C/m 2 ] x y z (1) z P dE r e r dE  =  dE x   e x  +  dE y   e y +  dE z   e z (2) (2)   if    =  f  (x) only:  x Use result for    long wire:  z dE r e r P z P with d   =   .  dx  dE  in XZ-plane = dA = dx.dy , at (x,y) (1)
Charge elements (3): tube and rod Avoid using  r  for radius !! Tube   ,  radius R    [C/m 2 ] dz d  dA = R. d  . dz dQ =    R. d  . dz  Cross section: thin ring, radius R dz d  Cross section: ring, radius a, width da Solid rod  , radius R   [C/m 3 ] dV = (r.d  ).dr.dz dQ =    (r.d  ).dr.dz
Arc angle and Solid angle  r 1  radian  [rad]   angle with arc length = radius r. 2   radians on circumference.    1  steradian  [sr]   solid angle with surface area = r 2 . There are 4   sr on the surface. d   = (sin  .d  ) d     r sin  Solid angle:
Charge elements (4): on/in a sphere dA = u.v = (R.sin  .d  ).(Rd  ) 0 <     < 2    ; 0 <    <   dV = u.v.w = (r.sin  .d  ).(rd  ).dr 0 <     < 2    ; 0 <    <   0 < r < R R  d   d  R.sin  u v Spherical surface element r  d   d  r.sin  u v Spherical volume element w R
Flux    : Definition   = 0    = A.S. cos       = ( A.e n ) S  e n e n e n A S S S  1. Homogeneous vector field  A         ( e n  , A ) = 0   = 90 o Def.:    = c.A.S Choice: c    1  2. General vector field  A For small surface elements dS: A  and  e n  are constant
Gauss’ Law (1): derivation Result is independent of the shape of the surface e n ’ dA’ Flux   E ’ through surface A’:  A’ R dA e n A Flux   E  through sphere A: O q Charge  q  in O
Gauss’ Law (2): consequences ,[object Object],[object Object],[object Object],R O q dA e n e n ’ dA’ A  A’ Result is independent of the shape of the surface Consequences: Flux:
Gauss-boxes (1): symmetry 1: symmetry present:  everywhere  2+3: no symmetry: averaged  E    over surface can be calculated only:  1 2 3 A A A
Gauss boxes (2) : solid sphere 1. Homogeneously distributed over  volume (non-conducting) 2. Conducting: homogeneously  distributed over surface A Solid sphere: radius R, charge q  0 R r 0 E ~ 1/ r 2 1 2 1+2
Gauss boxes (3) : hollow spheres E R 1 R 2 r O O 2 3 1. Non-conducting;  homog. charge Q 2. Conducting; charge Q 3. Idem, with extra q in O Radii: R 1  < R 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 1 + + + + + + + + + + + + + - - - - - - - -
Gauss-boxes (4): at plates Enclosed charge:    S  Gauss:  2.  E  S =    S /  0   E = ½    /   0   Convenient choices for surface A: E  = 0  or  E // dA  or   E     dA    large plate, homog. charge    [C/m 2 ] x y z Symmetry:  E  // + e y   resp.  -e y  S Take cylinder for Gauss box Non-zero contributions to from top and bottom only
Gauss-boxes (5): around rods Convenient choices for surface A: E  = 0  or  E // dA  or   E     dA Enclosed charge:    L  Gauss:  E.  2  r.L =    L /  0      long bar, homog. charge    [C/m] z Non-zero contributions to from side wall only  Take cylinder for Gauss box L r Symmetry:  E  radial direction
Divergence Theorem Integrate over  volume V : B A V x z y B dy dx dz P Outgoing flux: ,[object Object],[object Object],+ ,[object Object],Total through the block :
“ Gauss” in differential form Assume in V:   (x,y,z) [C/m 3 ] ,[object Object],[object Object],V dV “ Gauss” in  differential form:
Electrostatic Crane (1) Approach:  Displace  m  to P’ from  equilibrium by ( dx,dy,dz ); Calculate  direction of Coulomb-force  dF e  ; From everywhere,  dF e   should point to P Result:  for at least several (if not all ?) displacements:  direction of  dF e   is outward from P. Conclusion: no stable equilibrium possible ,[object Object],[object Object],[object Object],[object Object],F e F g P q,m Q Q Q Q Z Mass  m  with   charge  q
Electrostatic Crane (2) From Coulomb: No stable equilibrium possible. Question : Does “Gauss” provide a “ simple” proof? From “Gauss”: this is possible only when at P  negative charge present !! Conclusion : no negative charge at P    no stable equilibrium  Approach : Gauss sphere around P P q,m Q Q Q Q Z For stable equilibrium: all forces  on P should point  inward  sphere
Gradient in 2 dimensions P Arrows represent vectorial  function:  grad f Top view: Steepest slopes: P x y f (x,y) Scalar function:  f (x,y)
Electric Potential (1): Definition Field force  F E Work needed for transport of q, from A to B, “opposing field force” Work per Coulomb =  potential difference Work is independent of path choice Conservative field E ~   e r  / r 2   dr e r r dl A B Q
Electric Potential (2): Reference Circulation-free field If A (= reference point)       :  “ Potential in B with reference in    :  In general:  Q A B dr e r r dl Q A B
E  = - grad V A B A’ B’ y x V(x,y) dx dV dy x x+dx df f(x)
Vector fields: rotation-free A ~ r  0  = c A ~ r  - 1 A ~ r  - 2
Vector fields: non-zero rotation 2a v 0 River flow If linear profile: X Y  r v  v J B
Who suffers greatest risk ?    Smallest head, greatest risk. Earth surface Equipotential plane Head:  r, q Earth:  R, Q Sphere: Equipotential  
Particle transport and Flux Particles : density  n  per m 3  ; velocity  v  m/s (position dependent) Flux   : nr. of particles passing  per sec . All particles within  v  meter from  A  will pass within 1 sec. from now: n.v  =  flux density  [part. m -2 s -1 ] Suppose all particles carry charge  q  : Charge flux = current: j  = current density Flow tube : contains all particles going through  dA dA A v
Point Charge opposing Conductor Opposing charges:  dipolar field Field lines and equipotential surfaces Charge opposing conductor: image charge inside conductor + +
Point charge opposing flat conductor Question:  determine   (r)  [C/m 2 ] Applying image charge and Coulomb: + d Q Cross section E Gauss box: ring-shaped box  with radii:  r  and  r+dr r 0
Electric field at Interface Surface charge:     [C/m 2 ] Thin Gauss box: E       -  E       =    /  0 E e n Rectangular loop: E //     =  E //  
Energy of/in Charge Distribution Energy for creation = energy for destruction Total Energy released upon destruction :  E tot +  .............................................. + 2 Q 2 Q 3 Q 4 r 12 r 14 Q 1 r ij =r ji
Energy to Charge a Capacitor Question : Energy to charge capacitor  C  up to end charge  Q E Suppose: “Now” already charge  Q  present    potential  V=Q / C Adding charge  q  : does this cost extra energy  q.V  ?  No, because during addition  V  will change!  V = f (Q) Approach : add  dQ  ; then  V  remains constant This will cost  energy:  dE = V.dQ = (Q / C) . dQ In total, charge from  0  to  Q E   :
Change Spacing in a flat Capacitor Important variables:  V  (=const.) ;  C, Q, E  all  f (s)   Energy balance: net supplied energy = growth of field energy Supplied: mechanical and electrical (from battery) ~ A ; ~ s  -2  ; ~ V  2 Question:   Energy and force  to change spacing  s  to  s+ds F Suppose : capacitor connected to battery, potential  V s V
Conductor: Field at Boundary Everywhere on  A:  E      dA Suppose charge density     [C/m 2 ] is  f  (position) Gauss:  E  . dA  =    dA /   0 E =    /   0   Self-field of box  dA: E s  =    / 2  0   Field from other charges outside box  dA: E oc =    / 2  0   A + + + + + + + + + + + + + + + + + + + + E =0 dA E E s E s E oc E oc A dA E
Electrical Dipole (1): Far-field Dipole moment:  p =  q  a Potential field (with respect to   ) :  Far-field approximation: P      - q + q a Definition: - q + q a r - r + P - q + q r - r + r  a. cos  a e r p
Electrical Dipole (2): components E =  E r   e r  +  E    e    +  E    e  E = -  grad  V r   P d  d  e  e  e r ds r  ds  ds 
Electrical Dipole (3): field lines E =  E r   e r  +  E    e    E r E   r e r e  Field lines  perpendicular to equipotential planes
Electrical Dipole (4): potential energy Potential energy  of a dipole in an homogeneous external field  E ext Dipole:  p =  q  a Energetically most favourable orientation:    = 0 Minimum energy level  E (0). Work needed to rotate dipole from    = 0 to   : Set zero level:  E (0) = -  pE ext   Potential energy:  E (  )= -  pE ext .cos   E (  )= -  p . E ext  E ext a. cos  E (  ) - E (0) =
Electrical Dipole (5): torque Dipole:  p =  q  a Torque at angle   :    = p    E ext   |   | = 2  F E  . ½ a.  sin     =  p E ext  sin     Direction given by right-hand rule: Torque  of a dipole in an homogeneous external field  E ext a. cos   E ext Electrical force  F E   on + and - charge
Polarization of a Dielectric V =  s . dA  dQ= n Q s .dA =  n  p .dA = P . dA =  P  . dA Internal polarization  shows itself  as  bound surface charge dA Unpolarized molecule (  n  mol / m 3 ) E ext  =  0 E ext      0 s Separation of charges Dipole:  p =  q  s s = s +  - s - s + s - dA Charge transport through internal surface element  dA  : dQ = N +  Q - N -  (-Q) = (N +  + N -  )Q = n.VQ ,  with  V = vol s dA
Volume polarization    Surface Charge dz Approach : replace  dz- integration with dr -integration dp = np.dv = np.dS  .dz = P.dS  .dr /  cos     P.dS   =  P.dS    Polarization = surface charges !! z x y P =  n p Suppose :  n  dipoles/m 3  ; each dipole moment  p Assume : Z-axis //  p A Question : calculate  V  in A dz A dr r  dr = dz. cos  r r top r bottom z’ dS  dv=dz.dS  d d
Dielectric Displacement Consider field as representing  imaginairy  flow  D 0   of charges:  D 0  =     0   E 0  =  Q 0  / S   [C/m 2 ] Total charge delivered by battery:  Q = Q 0 +    Q  V 0 +Q 0 -Q 0 1.  Upon closing switch: Plates will be charged:   Q 0 E 0 Between plates: no flow of charges, but  E -field present  2.  Insert dielectricum, with  V 0  =  const. -  Q +  Q    E  remains const.    extra charge    Q  needed Now in dielectricum  real  flow of  (bound polarization) charges     Q = P.S P V 0 E E Field  Free  Bound Charges
E -field at interface Given :  E 1  ;   1  ;   2   Question : Calculate  E 2 Needed:  “Interface-crossing relations”: Relation  D  and  E:   D =   0    r  E E 1 E 2  1  2 1 2 Gauss box  (empty!):  D 1 .A cos   1  -  D 2 .A cos    2  =0     D 1   =  D 2  Circuit:  E 1 .L sin   1  -  E 2 .L sin   2  = 0     E 1 //  =  E 2 //
Electret:  D  and  E  not always parallel . E D Electret P - - - +++ E =  ( D-P )   /    0   D =   0   E + P P D  0 E
Capacitors: series and parallel C 1  and C 2  : same  V C 1  and C 2  : same  Q Q 1  + Q 2  = Q 0 V 1  + V 2  = V 0 V 1  = V 2  = V 0 Q 1  = Q 2  = Q 0 C 0  = C 1  + C 2 C 0 ± Q 0 C 0 ± Q 0 C 1 C 2 ± Q 2 ± Q 1 Series C 2 C 1 ± Q 2 ± Q 1 Parallel
Capacitors: spheres and cylinders Parallel Series Parallel Series

Contenu connexe

Tendances

Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequencyVishal Thakur
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetHaris Hassan
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb TippensLUIS POWELL
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheetsankalptiwari
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Bellman Ford's Algorithm
Bellman Ford's AlgorithmBellman Ford's Algorithm
Bellman Ford's AlgorithmTanmay Baranwal
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vectorshabdrang
 
Electric field of a hollow sphere
Electric field of a hollow sphereElectric field of a hollow sphere
Electric field of a hollow sphereFFMdeMul
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineeringmanish katara
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworldmrecedu
 

Tendances (19)

Concept of-complex-frequency
Concept of-complex-frequencyConcept of-complex-frequency
Concept of-complex-frequency
 
Tutorial no. 2
Tutorial no. 2Tutorial no. 2
Tutorial no. 2
 
Chapter 16 2
Chapter 16 2Chapter 16 2
Chapter 16 2
 
EE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheetEE402B Radio Systems and Personal Communication Networks-Formula sheet
EE402B Radio Systems and Personal Communication Networks-Formula sheet
 
Lect1
Lect1Lect1
Lect1
 
Physics Working Formulas
Physics Working FormulasPhysics Working Formulas
Physics Working Formulas
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheet
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Smith chart basics
Smith chart basicsSmith chart basics
Smith chart basics
 
Bellman Ford's Algorithm
Bellman Ford's AlgorithmBellman Ford's Algorithm
Bellman Ford's Algorithm
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
Electric field of a hollow sphere
Electric field of a hollow sphereElectric field of a hollow sphere
Electric field of a hollow sphere
 
Modern2426
Modern2426Modern2426
Modern2426
 
Gate 2013 complete solutions of ec electronics and communication engineering
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
 
bode_plot By DEV
 bode_plot By DEV bode_plot By DEV
bode_plot By DEV
 
M1 unit vii-jntuworld
M1 unit vii-jntuworldM1 unit vii-jntuworld
M1 unit vii-jntuworld
 
Ch24 ssm
Ch24 ssmCh24 ssm
Ch24 ssm
 

Similaire à Electricity slides

Similaire à Electricity slides (20)

Electrycity 2 p c r o 1
Electrycity 2 p c r o 1Electrycity 2 p c r o 1
Electrycity 2 p c r o 1
 
Meeting 3. Gauss's Law.pptx
Meeting 3. Gauss's Law.pptxMeeting 3. Gauss's Law.pptx
Meeting 3. Gauss's Law.pptx
 
228602.ppt
228602.ppt228602.ppt
228602.ppt
 
Magnetism slides
Magnetism slidesMagnetism slides
Magnetism slides
 
Lecture noteschapter2
Lecture noteschapter2Lecture noteschapter2
Lecture noteschapter2
 
Electrostatics 3
Electrostatics 3Electrostatics 3
Electrostatics 3
 
gauss law.ppt
gauss law.pptgauss law.ppt
gauss law.ppt
 
Electricity for physic
Electricity for physic Electricity for physic
Electricity for physic
 
EM integrations
EM integrationsEM integrations
EM integrations
 
Physics about-electric-field
Physics about-electric-fieldPhysics about-electric-field
Physics about-electric-field
 
Ch22 ssm
Ch22 ssmCh22 ssm
Ch22 ssm
 
Integration elements
Integration elementsIntegration elements
Integration elements
 
Physics Formula list (4)
Physics Formula list (4)Physics Formula list (4)
Physics Formula list (4)
 
Physics formulas
Physics formulasPhysics formulas
Physics formulas
 
Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)Electric Field (PHY N1203 - L01)
Electric Field (PHY N1203 - L01)
 
jan25.pdf
jan25.pdfjan25.pdf
jan25.pdf
 
E field energy
E field energyE field energy
E field energy
 
1 potential &amp; capacity 09
1 potential &amp; capacity 091 potential &amp; capacity 09
1 potential &amp; capacity 09
 
Shahjahan notes:Electrostatics formula-1
Shahjahan notes:Electrostatics formula-1Shahjahan notes:Electrostatics formula-1
Shahjahan notes:Electrostatics formula-1
 
Lecture 6 4_electric_flux_and_gauss_law
Lecture 6 4_electric_flux_and_gauss_lawLecture 6 4_electric_flux_and_gauss_law
Lecture 6 4_electric_flux_and_gauss_law
 

Plus de FFMdeMul

Electromagnetism history
Electromagnetism historyElectromagnetism history
Electromagnetism historyFFMdeMul
 
Laplace and Earnshaw
Laplace and EarnshawLaplace and Earnshaw
Laplace and EarnshawFFMdeMul
 
Gauss law for planes
Gauss law for planesGauss law for planes
Gauss law for planesFFMdeMul
 
Gauss law for cylinders
Gauss law for cylindersGauss law for cylinders
Gauss law for cylindersFFMdeMul
 
Electric field of a wire
Electric field of a wireElectric field of a wire
Electric field of a wireFFMdeMul
 
E field polarized-object
E field polarized-objectE field polarized-object
E field polarized-objectFFMdeMul
 
E field line of dipoles
E field line of dipolesE field line of dipoles
E field line of dipolesFFMdeMul
 
E field disk
E field diskE field disk
E field diskFFMdeMul
 
E field dipole
E field dipoleE field dipole
E field dipoleFFMdeMul
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theoremFFMdeMul
 
Capacitor partial filling
Capacitor partial fillingCapacitor partial filling
Capacitor partial fillingFFMdeMul
 
Capacitor filling
Capacitor fillingCapacitor filling
Capacitor fillingFFMdeMul
 
B field wire
B field wireB field wire
B field wireFFMdeMul
 
B field homogenous sphere
B field homogenous sphereB field homogenous sphere
B field homogenous sphereFFMdeMul
 
B field conducting sphere
B field conducting sphereB field conducting sphere
B field conducting sphereFFMdeMul
 

Plus de FFMdeMul (15)

Electromagnetism history
Electromagnetism historyElectromagnetism history
Electromagnetism history
 
Laplace and Earnshaw
Laplace and EarnshawLaplace and Earnshaw
Laplace and Earnshaw
 
Gauss law for planes
Gauss law for planesGauss law for planes
Gauss law for planes
 
Gauss law for cylinders
Gauss law for cylindersGauss law for cylinders
Gauss law for cylinders
 
Electric field of a wire
Electric field of a wireElectric field of a wire
Electric field of a wire
 
E field polarized-object
E field polarized-objectE field polarized-object
E field polarized-object
 
E field line of dipoles
E field line of dipolesE field line of dipoles
E field line of dipoles
 
E field disk
E field diskE field disk
E field disk
 
E field dipole
E field dipoleE field dipole
E field dipole
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Capacitor partial filling
Capacitor partial fillingCapacitor partial filling
Capacitor partial filling
 
Capacitor filling
Capacitor fillingCapacitor filling
Capacitor filling
 
B field wire
B field wireB field wire
B field wire
 
B field homogenous sphere
B field homogenous sphereB field homogenous sphere
B field homogenous sphere
 
B field conducting sphere
B field conducting sphereB field conducting sphere
B field conducting sphere
 

Dernier

Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 

Dernier (20)

Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 

Electricity slides

  • 1. Electromagnetism University of Twente Department Applied Physics First-year course on Part I: Electricity: Slides © F.F.M. de Mul
  • 2.
  • 3. Charge elements (1): rod, ring, disk Line Ring , radius R Disk , radius R  [C/m] O z dz dQ =  .dz  d  R  [C/m] dQ =  .R.d  P Symmetry: If  homogeneous: dQ =  .2  a.da  [C/m 2 ] d   a r P dE dQ =  .dA =  (a.d  ) da a  r ! 0 < a < R da
  • 4. Charge elements (2): thin plate dQ =  dA =  dx.dy if plate  large : dE // e z P Thin plate ,  [C/m 2 ] x y z (1) z P dE r e r dE = dE x e x + dE y e y + dE z e z (2) (2) if  = f (x) only: x Use result for  long wire: z dE r e r P z P with d  =  . dx dE in XZ-plane = dA = dx.dy , at (x,y) (1)
  • 5. Charge elements (3): tube and rod Avoid using r for radius !! Tube , radius R  [C/m 2 ] dz d  dA = R. d  . dz dQ =  R. d  . dz Cross section: thin ring, radius R dz d  Cross section: ring, radius a, width da Solid rod , radius R  [C/m 3 ] dV = (r.d  ).dr.dz dQ =  (r.d  ).dr.dz
  • 6. Arc angle and Solid angle  r 1 radian [rad]  angle with arc length = radius r. 2  radians on circumference.  1 steradian [sr]  solid angle with surface area = r 2 . There are 4  sr on the surface. d  = (sin  .d  ) d   r sin  Solid angle:
  • 7. Charge elements (4): on/in a sphere dA = u.v = (R.sin  .d  ).(Rd  ) 0 <  < 2  ; 0 <  <  dV = u.v.w = (r.sin  .d  ).(rd  ).dr 0 <  < 2  ; 0 <  <  0 < r < R R  d   d  R.sin  u v Spherical surface element r  d   d  r.sin  u v Spherical volume element w R
  • 8. Flux  : Definition  = 0  = A.S. cos   = ( A.e n ) S e n e n e n A S S S  1. Homogeneous vector field A    ( e n , A ) = 0  = 90 o Def.:  = c.A.S Choice: c  1 2. General vector field A For small surface elements dS: A and e n are constant
  • 9. Gauss’ Law (1): derivation Result is independent of the shape of the surface e n ’ dA’ Flux  E ’ through surface A’:  A’ R dA e n A Flux  E through sphere A: O q Charge q in O
  • 10.
  • 11. Gauss-boxes (1): symmetry 1: symmetry present: everywhere 2+3: no symmetry: averaged E  over surface can be calculated only: 1 2 3 A A A
  • 12. Gauss boxes (2) : solid sphere 1. Homogeneously distributed over volume (non-conducting) 2. Conducting: homogeneously distributed over surface A Solid sphere: radius R, charge q 0 R r 0 E ~ 1/ r 2 1 2 1+2
  • 13. Gauss boxes (3) : hollow spheres E R 1 R 2 r O O 2 3 1. Non-conducting; homog. charge Q 2. Conducting; charge Q 3. Idem, with extra q in O Radii: R 1 < R 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 1 + + + + + + + + + + + + + - - - - - - - -
  • 14. Gauss-boxes (4): at plates Enclosed charge:  S Gauss: 2. E S =  S /  0 E = ½  /  0 Convenient choices for surface A: E = 0 or E // dA or E  dA  large plate, homog. charge  [C/m 2 ] x y z Symmetry: E // + e y resp. -e y S Take cylinder for Gauss box Non-zero contributions to from top and bottom only
  • 15. Gauss-boxes (5): around rods Convenient choices for surface A: E = 0 or E // dA or E  dA Enclosed charge:  L Gauss: E. 2  r.L =  L /  0  long bar, homog. charge  [C/m] z Non-zero contributions to from side wall only Take cylinder for Gauss box L r Symmetry: E radial direction
  • 16.
  • 17.
  • 18.
  • 19. Electrostatic Crane (2) From Coulomb: No stable equilibrium possible. Question : Does “Gauss” provide a “ simple” proof? From “Gauss”: this is possible only when at P negative charge present !! Conclusion : no negative charge at P  no stable equilibrium Approach : Gauss sphere around P P q,m Q Q Q Q Z For stable equilibrium: all forces on P should point inward sphere
  • 20. Gradient in 2 dimensions P Arrows represent vectorial function: grad f Top view: Steepest slopes: P x y f (x,y) Scalar function: f (x,y)
  • 21. Electric Potential (1): Definition Field force F E Work needed for transport of q, from A to B, “opposing field force” Work per Coulomb = potential difference Work is independent of path choice Conservative field E ~ e r / r 2 dr e r r dl A B Q
  • 22. Electric Potential (2): Reference Circulation-free field If A (= reference point)   : “ Potential in B with reference in  : In general: Q A B dr e r r dl Q A B
  • 23. E = - grad V A B A’ B’ y x V(x,y) dx dV dy x x+dx df f(x)
  • 24. Vector fields: rotation-free A ~ r 0 = c A ~ r - 1 A ~ r - 2
  • 25. Vector fields: non-zero rotation 2a v 0 River flow If linear profile: X Y  r v  v J B
  • 26. Who suffers greatest risk ?  Smallest head, greatest risk. Earth surface Equipotential plane Head: r, q Earth: R, Q Sphere: Equipotential 
  • 27. Particle transport and Flux Particles : density n per m 3 ; velocity v m/s (position dependent) Flux  : nr. of particles passing per sec . All particles within v meter from A will pass within 1 sec. from now: n.v = flux density [part. m -2 s -1 ] Suppose all particles carry charge q : Charge flux = current: j = current density Flow tube : contains all particles going through dA dA A v
  • 28. Point Charge opposing Conductor Opposing charges: dipolar field Field lines and equipotential surfaces Charge opposing conductor: image charge inside conductor + +
  • 29. Point charge opposing flat conductor Question: determine  (r) [C/m 2 ] Applying image charge and Coulomb: + d Q Cross section E Gauss box: ring-shaped box with radii: r and r+dr r 0
  • 30. Electric field at Interface Surface charge:  [C/m 2 ] Thin Gauss box: E   - E   =  /  0 E e n Rectangular loop: E //  = E // 
  • 31. Energy of/in Charge Distribution Energy for creation = energy for destruction Total Energy released upon destruction : E tot + .............................................. + 2 Q 2 Q 3 Q 4 r 12 r 14 Q 1 r ij =r ji
  • 32. Energy to Charge a Capacitor Question : Energy to charge capacitor C up to end charge Q E Suppose: “Now” already charge Q present  potential V=Q / C Adding charge q : does this cost extra energy q.V ? No, because during addition V will change! V = f (Q) Approach : add dQ ; then V remains constant This will cost energy: dE = V.dQ = (Q / C) . dQ In total, charge from 0 to Q E :
  • 33. Change Spacing in a flat Capacitor Important variables: V (=const.) ; C, Q, E all f (s) Energy balance: net supplied energy = growth of field energy Supplied: mechanical and electrical (from battery) ~ A ; ~ s -2 ; ~ V 2 Question: Energy and force to change spacing s to s+ds F Suppose : capacitor connected to battery, potential V s V
  • 34. Conductor: Field at Boundary Everywhere on A: E  dA Suppose charge density  [C/m 2 ] is f (position) Gauss: E . dA =  dA /  0 E =  /  0 Self-field of box dA: E s =  / 2  0 Field from other charges outside box dA: E oc =  / 2  0 A + + + + + + + + + + + + + + + + + + + + E =0 dA E E s E s E oc E oc A dA E
  • 35. Electrical Dipole (1): Far-field Dipole moment: p = q a Potential field (with respect to  ) : Far-field approximation: P   - q + q a Definition: - q + q a r - r + P - q + q r - r + r  a. cos  a e r p
  • 36. Electrical Dipole (2): components E = E r e r + E  e  + E  e  E = - grad V r   P d  d  e  e  e r ds r ds  ds 
  • 37. Electrical Dipole (3): field lines E = E r e r + E  e  E r E   r e r e  Field lines perpendicular to equipotential planes
  • 38. Electrical Dipole (4): potential energy Potential energy of a dipole in an homogeneous external field E ext Dipole: p = q a Energetically most favourable orientation:  = 0 Minimum energy level E (0). Work needed to rotate dipole from  = 0 to  : Set zero level: E (0) = - pE ext Potential energy: E (  )= - pE ext .cos  E (  )= - p . E ext  E ext a. cos  E (  ) - E (0) =
  • 39. Electrical Dipole (5): torque Dipole: p = q a Torque at angle  :  = p  E ext |  | = 2 F E . ½ a. sin  = p E ext sin  Direction given by right-hand rule: Torque of a dipole in an homogeneous external field E ext a. cos   E ext Electrical force F E on + and - charge
  • 40. Polarization of a Dielectric V = s . dA dQ= n Q s .dA = n p .dA = P . dA = P  . dA Internal polarization shows itself as bound surface charge dA Unpolarized molecule ( n mol / m 3 ) E ext = 0 E ext  0 s Separation of charges Dipole: p = q s s = s + - s - s + s - dA Charge transport through internal surface element dA : dQ = N + Q - N - (-Q) = (N + + N - )Q = n.VQ , with V = vol s dA
  • 41. Volume polarization  Surface Charge dz Approach : replace dz- integration with dr -integration dp = np.dv = np.dS  .dz = P.dS  .dr / cos  P.dS  = P.dS  Polarization = surface charges !! z x y P = n p Suppose : n dipoles/m 3 ; each dipole moment p Assume : Z-axis // p A Question : calculate V in A dz A dr r  dr = dz. cos  r r top r bottom z’ dS  dv=dz.dS  d d
  • 42. Dielectric Displacement Consider field as representing imaginairy flow D 0 of charges: D 0 =  0 E 0 = Q 0 / S [C/m 2 ] Total charge delivered by battery: Q = Q 0 +  Q V 0 +Q 0 -Q 0 1. Upon closing switch: Plates will be charged:  Q 0 E 0 Between plates: no flow of charges, but E -field present 2. Insert dielectricum, with V 0 = const. -  Q +  Q  E remains const.  extra charge  Q needed Now in dielectricum real flow of (bound polarization) charges  Q = P.S P V 0 E E Field Free Bound Charges
  • 43. E -field at interface Given : E 1 ;  1 ;  2 Question : Calculate E 2 Needed: “Interface-crossing relations”: Relation D and E: D =  0  r E E 1 E 2  1  2 1 2 Gauss box (empty!): D 1 .A cos  1 - D 2 .A cos  2 =0  D 1  = D 2  Circuit: E 1 .L sin  1 - E 2 .L sin  2 = 0  E 1 // = E 2 //
  • 44. Electret: D and E not always parallel . E D Electret P - - - +++ E = ( D-P ) /  0 D =  0 E + P P D  0 E
  • 45. Capacitors: series and parallel C 1 and C 2 : same V C 1 and C 2 : same Q Q 1 + Q 2 = Q 0 V 1 + V 2 = V 0 V 1 = V 2 = V 0 Q 1 = Q 2 = Q 0 C 0 = C 1 + C 2 C 0 ± Q 0 C 0 ± Q 0 C 1 C 2 ± Q 2 ± Q 1 Series C 2 C 1 ± Q 2 ± Q 1 Parallel
  • 46. Capacitors: spheres and cylinders Parallel Series Parallel Series