SlideShare une entreprise Scribd logo
1  sur  314
Télécharger pour lire hors ligne
Sicurezza Strutturale
di Gallerie in Caso di Incendio
Prof. Ing. Franco Bontempi
Ordinario di Tecnica delle Costruzioni
Docente di TEORIA E PROGETTO DI PONTI – GESTIONE DI PONTI E GRANDI STRUTTURE
PROGETTAZIONE STRUTTURALE ANTINCENDIO
Facoltà di Ingegneria Civile e Industriale
Università degli Studi di Roma La Sapienza
franco.bontempi@uniroma1.it
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
2
3
15-Dec-22
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
4
Indice
1. Strutture in sotterraneo
a. Geometrie
b. Impianti di ventilazione
2. Complessità
3. Natura accidentale
4. Azione incendio
a. Caratteristiche intensive
b. Caratteristiche estensive
5. Sviluppo di un incendio in galleria
6. Sicurezza e verifiche
7. Riferimenti
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
5
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
6
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
7
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
8
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
9
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
10
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
11
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
12
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
13
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
14
Strutture in sotterraneo
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
15
1
GEOMETRIE
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
16
Tipo A - autostrade
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
17
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
18
Tipo B – extraurbane principali
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
19
Tipo C – extraurbane secondarie
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
20
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
21
Altri aspetti geometrici
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
22
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
23
Sezioni non standard
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
24
Intersezioni
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
25
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
26
Geometrie non tubolari
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
27
Stazioni metropolitane
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
28
IMPIANTI VENTILAZIONE
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
29
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
30
Normal ventilation - Piston effect
• Is the result of natural induced draft caused by free-flowing traffic (> 50
km/h) in uni-directional tunnel thus providing natural ventilation.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
31
Mechanical ventilation
• “forced” ventilation is required where piston effect is not sufficient such as
in
❑congested traffic situations;
❑bi-directional tunnels (piston effect is neutralized by flow of traffic in two
opposite directions);
❑long tunnels with high traffic volumes.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
32
Tunnel Ventilation Systems
• Road Tunnel Ventilation Systems have two modes of operation:
• Normal ventilation, for control of air quality inside tunnels due to vehicle
exhaust emissions:
❑in any possible traffic situation, tunnel users and staff must not suffer
any damage to their health regardless the duration of their stay in the
tunnel;
❑the necessary visual range must be maintained to allow for safe
stopping.
• Emergency ventilation in case of fire, for smoke control:
❑the escape routes must be kept free from smoke to allow for self-rescue;
❑the activities of emergency services must be supported by providing the
best possible conditions over a sufficient time period ;
❑the extent of damage and injuries (to people, vehicles and the tunnel
structure itself) must be kept to a minimum.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
33
Longitudinal ventilation system
• employs jet fans suspended under tunnel roof; in normal operation fresh air
is introduced via tunnel entering portal and polluted air is discharged from
tunnel leaving portal.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
34
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
35
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
36
Semi-transverse ventilation system
• employs ceiling plenum connected to central fan room equipped with axial
fans; in normal operation fresh air is introduced along the tunnel trough
openings in the ventilation plenum while polluted air is discharged via tunnel
portals.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
37
Full transverse ventilation system
• employs double supply and exhaust plenums connected to central fan rooms
equipped with axial fans; in normal operation fresh air is introduced and
exhausted via openings in double ventilation plenums.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
38
15-Dec-22 39
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
40
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
41
Attachments
• Dispersion stack and fan room combined with longitudinal ventilation: may
be required in order to reduce adverse effect on environment of discharge of
polluted air from tunnel, where buildings are located in proximity (< 100m)
to tunnel leaving portal.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
42
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
43
Ventilation unit
Air extraction
Ventilation unit
Supply of fresh air
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
44
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
45
Observation
• A tunnel must be considered as a system, composed of structures and
plants.
• The essential difference between structures and plants concerns the fact
that the latter require energy that is not necessary for the former.
• In synthetic terms, it can be said that structures are dead works while plants
are living works. This involves different life horizons (50-100 years for
structures, 5-10 years for plants) and consequent different levels of control
and maintenance.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
46
Complessità
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
47
2
LOOSE
couplings
TIGHT
LINEAR interactions NONLINEAR
System Complexity (Perrow)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
48
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
49
Exactitude
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
50
Gregory Bateson
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
51
• La mappa non è il territorio e il nome non è la cosa designata.
• Questo principio, reso famoso da Alfred Korzybski, opera a molti livelli. Esso
ci ricorda in termini generici che quando pensiamo alle noci di cocco o ai
porci, nel cervello non vi sono né noci di cocco né porci.
• Ma in termini più astratti, la proposizione di Korzybski asserisce che sempre
quando c'è pensiero o percezione oppure comunicazione sulla percezione vi
è una trasformazione, una codificazione, tra la cosa comunicata, la Ding an
sich, e la sua comunicazione. Soprattutto, la relazione tra la comunicazione e
la misteriosa cosa comunicata tende ad avere la natura di una classificazione,
di un'assegnazione della cosa a una classe. Dare un nome è sempre un
classificare e tracciare una mappa è essenzialmente lo stesso che dare un
nome.
Multiphysics
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
52
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
53
Factors for Coupling
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
INFORMATION
FLOW DIRECTION
time
tK
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
54
Level 1 - Fully Coupled Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
55
Level 2 - Staggered Coupled Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
56
Level 3 - Temperature Driven Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
57
Level 4 - Scheme With No Memory
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
58
59
15-Dec-22 59
Analysis Strategy #1:
Sensitivity governance of priorities
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
60
Analysis Strategy #2:
Bounding behavior governance
p
(p)

p
(p)

15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
61
Super
Controllore
Problema Risultato
Solutore #1
Solutore #2
Voting System
Analysis Strategy #3:
Redundancy Governance
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
62
Multiphysics
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
63
Fire fighting timeline
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
64
• Context dependence
• Contrast effect
• Recency effect
• Halo effect
• Plasticity
• Order effects
• Pseudo-opinions
• Vividness
• Wishful thinking
• Anchoring
• Social loafing
• Conformity
• The representativeness heuristic
• Law of small numbers
• Hot hand
• Neglecting base rates
• No regressive prediction
• Synchronicity
• Causalation
• Salience
• Minority influence
• Groupthink
Problem Structuring
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
65
Un caso: incendio tunnel del Monte Bianco
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
66
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
67
Mont Blanc Tunnel fire
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
68
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
69
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
70
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
71
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
72
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
73
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
74
On the morning of 24 March 1999, 39 people died when a Belgian transport truck carrying flour and margarine, which had entered the French-side portal, caught fire in the tunnel.[1][2]
The truck came through the tollbooth at 10:46 CET. The initial journey through the tunnel was routine.
According to the documentary television series Seconds from Disaster, the fire and smoke appeared at around 10:49.
Shortly after, the driver realized something was wrong as cars coming in the opposite direction flashed their headlights at him; a glance in his mirrors showed white smoke coming out from under
his cabin. This was not yet considered a fire emergency. In fact, there had been 16 other truck fires in the tunnel over the previous 35 years, always extinguished on the spot by the drivers.
At 10:53, the driver of the vehicle, Gilbert Degrave, stopped 6 km into the 11.6 km tunnel, in attempt to fight the fire but he was suddenly forced back when the payload violently combusted.[2]
Degrave subsequently abandoned his vehicle and ran to the Italian entrance of the tunnel.
At 10:54, one of the drivers called from refuge 22 to raise the alarm.
At 10:55, the tunnel employees triggered the fire alarm and stopped any further traffic from entering. At this point, there were at least 10 cars and 18 trucks in the tunnel that had entered from
the French side. A few vehicles from the Italian side passed the Volvo truck without stopping. Some of the cars from the French side managed to turn around in the narrow two-lane tunnel to
retreat back to France, but navigating the road in the dense smoke that had rapidly filled the tunnel quickly made this impossible.
Between 10:53 and 10:57, the smoke had already covered half a kilometer of the French side. The larger trucks were stranded, as they did not have the space to turn around, and reversing out
was not an option.
Most drivers rolled up their windows and waited for rescue. The ventilation system in the tunnel drove toxic smoke back down the tunnel faster than anyone could run to safety. These fumes
quickly filled the tunnel and starved off oxygen, disabling vehicles. This included fire engines which, once affected, had to be abandoned by the firefighters. Many drivers near the blaze who
attempted to leave their cars and seek refuge points were quickly overcome due to toxic components of the smoke, mainly cyanide.
Within minutes, two fire trucks from Chamonix responded to the unfolding disaster. Melted wiring had eliminated any possible light sources in the tunnel; in the smoke and with abandoned and
wrecked vehicles blocking their path, the fire engines were unable to proceed. Italian firefighters had come within 300 metres of the truck. Without other possibilities, fire crews abandoned their
vehicles and took refuge in two of the emergency fire cubicles (fire-door sealed small rooms set into the walls every 600 metres).
As the firefighters took refuge in a fire cubicle, burning fuel flowed down the road surface, causing tires and fuel tanks to explode and sending deadly shrapnel in the air. This is probably the point
where fire began to spread to other vehicles from the truck, at 11:00.
By 11:11, more Italian firefighters had come to tackle the fire. They also abandoned their vehicles, and searched for trapped groups of firefighters who had taken refuge in the fire cubicles. When
it was realized that the cubicles were offering little protection from the smoke, they began searching for the doors that led to the ventilation duct.
All of the firefighters were rescued five hours later by a third fire crew that responded and reached them via a ventilation duct; of the 15 firefighters who had been trapped, 14 were in serious
condition and one (their commanding officer) later died in the hospital.
Some victims were also able to escape to the fire cubicles. The original fire doors on the cubicles were rated to survive for two hours. Some had been upgraded in the 34 years since tunnel
construction to survive for four hours.
By 11:30, 37 minutes after start of the fire, smoke had reached the French entrance of the tunnel, 6 kilometers from the truck.
In total, the fire burned for 53 hours and reached temperatures of 1,000 °C (1,830 °F), mainly because of the margarine load in the trailer, equivalent to a 23,000-litre (5,100 imp gal; 6,100 US gal)
oil tanker. The fire spread to other cargo vehicles nearby that also carried combustible loads. The fire trapped around 40 vehicles in dense and poisonous smoke containing carbon monoxide and
cyanide. Due to weather conditions at the time, airflow through the tunnel was from the Italian side to the French side.[3] Authorities compounded the chimney effect by pumping in further fresh
air from the Italian side, escalating the fire whist trapping toxic fumes inside. Only vehicles past the fire on the French side of the tunnel were trapped, while cars on the Italian side of the fire
were mostly unaffected.
There were 29 deaths trapped inside of vehicles, and nine more died trying to escape on foot. All the deceased were on the French side, and were ultimately reduced to bones and ash by the
intense heat. Of the initial 50 people trapped by the fire, 12 survived, all of them from the Italian side.[2]
It was more than five days before the tunnel cooled sufficiently to start repairs.
Natura Accidentale
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
75
3
Situazioni HPLC
High Probability Low Consequences
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
76
Low Probability High Consequences
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
77
HPLC vs LPHC events
HPLC
High Probability
Low Consequences
LPHC
Low Probability
High Consequences
release of energy SMALL LARGE
numbers of breakdown SMALL LARGE
people involved FEW MANY
nonlinearity WEAK STRONG
interactions WEAK STRONG
uncertainty WEAK STRONG
decomposability HIGH LOW
course predictability HIGH LOW
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
78
The burnt out interior of the Mont Blanc Tunnel
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
79
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
80
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
81
effect
time
decomposability
course predictability
Runaway: Progressive Collapse
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
82
Cascade Effect / Chain Reaction
• A cascade effect is an inevitable and sometimes unforeseen chain
of events due to an act affecting a system.
• In biology, the term cascade refers to a process that, once started,
proceeds stepwise to its full, seemingly inevitable, conclusion.
• A chain reaction is the cumulative effect produced when one
event sets off a chain of similar events.
• It typically refers to a linked sequence of events where the time
between successive events is relatively small.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
83
Es.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
84
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
85
http://www.wise-uranium.org/img/stavaa.gif
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
86
Design Strategy #1: CONTINUITY
15-Dec-22 87
Design Strategy #2: Segmentation
15-Dec-22 88
Tunnel with a single-point extraction system
• The usual way to control the longitudinal velocity is to provide several independent
ventilation sections.
• When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire
section can be maintained by a suitable operation of the individual air ducts.
• By reversing the fan operation in the exhaust air duct, this duct can be used to supply air
and vice versa.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
89
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
90
Water barriers
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
91
Approcci di analisi
HPLC
Eventi Frequenti con
Conseguenze Limitate
LPHC
Eventi Rari con
Conseguenze Elevate
Complessità:
Aspetti non lineari e
Meccanismi di interazioni
Impostazione
del problema:
DETERMINISTICA
STOCASTICA
ANALISI
QUALITATIVA
DETERMINISTICA
ANALISI
QUANTITATIVA
PROBABILISTICA
ANALISI
PRAGMATICA
CON SCENARI
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
92
CAPITOLO 2:
SICUREZZA
E
PRESTAZONI
ATTESE
QUALITA’
CAPITOLO 3:
AZIONI
AMBIENTALI
CAPITOLO 6:
AZIONI
ANTROPICHE
CAPITOLO 4:
AZIONI
ACCIDENTALI
DOMANDA
CAPITOLO 5:
NORME
SULLE
COSTRUZIONI
CAPITOLO 7:
NORME PER LE
OPERE
INTERAGENTI
CON I TERRENI E
CON LE ROCCE,
PER GLI
INTERVENTI NEI
TERRENI E PER
LA SICUREZZA
DEI PENDII
CAPITOLO 9:
NORME
SULLE
COSTRUZIONI
ESISTENTI
PRODOTTO
CAPITOLO 11:
MATERIALI
E
PRODOTTI
PER USO
STRUTTURALE
CAPITOLO 10:
NORME PER LA
REDAZIONI DEI
PROGETTI
ESECUTIVI
CAPITOLO 8:
COLLAUDO
STATICO
CONTROLLO
D.M. 14 settembre 2005
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
93
Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni,
deve individuare le possibili situazioni contingenti in cui le azioni possono
cimentare l’opera stessa. A tal fine, è definito:
• lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera
potrà trovarsi durante la vita utile di progetto;
• lo scenario di carico: un insieme organizzato e realistico di azioni che
cimentano la struttura;
• lo scenario di contingenza: l’identificazione di uno stato plausibile e
coerente per l’opera, in cui un insieme di azioni (scenario di carico) è
applicato su una configurazione strutturale.
Per ciascuno stato limite considerato devono essere individuati scenari di carico
(ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che
rappresentino le combinazioni delle azioni realisticamente possibili e
verosimilmente più restrittive.
Scenari (D.M. 14 settembre 2005)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
94
15-Dec-22 95
Near miss (Wikipedia)
• A near miss, near hit or close call is an unplanned event that has the
potential to cause, but does not actually result in human injury,
environmental or equipment damage, or an interruption to normal
operation.
• OSHA defines a near miss as an incident in which no property was damaged
and no personal injury was sustained, but where, given a slight shift in time
or position, damage or injury easily could have occurred. Near misses also
may be referred to as near accidents, accident precursors, injury-free events
and, in the case of moving objects, near collisions. A near miss is often an
error, with harm prevented by other considerations and circumstances.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
96
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
97
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
98
Secondo una consulenza tecnica
depositata da tre esperti (Franco
Bontempi, Paolo Galli e Maria
Migliazza) alla Procura di Genova, al
2020 il 75% delle gallerie autostradali
liguri presentava elementi fuori
norma. Tre tunnel su quattro sfuggiti
alla manutenzione, ai controlli, al
rinnovamento. La consulenza è stata
redatta alla conclusione di un lungo
lavoro partito dopo il crollo del soffitto
della galleria Berté, sulla A26, il 30
dicembre del 2019.
https://www.formulapassion.it/automoto/mobility/gallerie-liguria-indagine-75-per-cento-fuori-norma-
2020-lavori-cantieri-579186.html
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
99
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
100
Sicurezza formale
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
101
General assumptions of EN 1990
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
102
HAZARD
I
N
-
D
E
P
T
H
D
E
F
E
N
C
E
HOLES DUE TO
ACTIVE ERRORS
HOLES DUE TO
HIDDEN ERRORS
Failure Path: Reason Model
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
103
STRUCTURAL
SYSTEM
CHARACTERISTICS
STRUCTURAL
SYSTEM
WEAKNESS
15-Dec-22 104
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yes
passive
structural
characteristics
threats
No
Yes
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yes
passive
structural
characteristics
threats
FIRE DETECTION
& SUPPRESSION
No
Yes
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
15-Dec-22 105
FIRE DETECTION
& SUPPRESSION
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
STRUCTURAL
CONCEPTION
STRUCTURAL
TOPOLOGY
&
GEOMETRY
threats
No
Yes
threats
STRUCTURAL
MATERIAL
& PARTS
No
Yes
passive
structural
characteristics
threats
FIRE DETECTION
& SUPPRESSION
No
Yes
active
structural
characteristics
threats
ORGANIZATION &
FIREFIGHTERS
No
Yes
threats
MAINTENANCE
& USE
No
Yes
threats
No
alive
structural
characteristics
Yes
15-Dec-22 106
15-Dec-22 107
Conceptual Design
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
108
Conceptual Design
MULTI-HAZARD
BLACK-SWAN
DISASTER CHAIN
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
109
Azione Incendio
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
110
4
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
111
•Accidental features
•Intensive features
•Extensive features
INTENSIVE FEATURES
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
112
ISO 13387: Example of Design Fire
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
113
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
114
Energie coinvolte
Andamento nel tempo potenza termica
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
115
Incipient
period
Growth period Burning period Decay period
Fire
behavior
Heating
of fuel
Fuel
controlled burning
Ventilation
controlled burning
Fuel
controlled burning
Human
behavior
Prevent
ignition
Extinguish by hand,
escape
Death
Detection Smoke
detectors
Smoke detectors,
heat detectors
External smoke and flame
Active
control
Prevent
ignition
Extinguish by
sprinklers or fire
fighters; control of
smoke
Control by fire-fighters
Passive
control
- Select materials with
resistance to flame
spread
Provide fire resistance;
contain fire, prevent collapse
T
time
Buchanan,
2002
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
116
flashover
STRATEGIE
ATTIVE
(approccio
sistemico)
STRATEGIE
PASSIVE
(approccio
strutturale)
Tempo t
Temperatura
T(t)
andamento di T(t) a
seguito del successo
delle strategie attive
flashover
STRATEGIE
ATTIVE
(approccio
sistemico)
STRATEGIE
PASSIVE
(approccio
strutturale)
Tempo t
Temperatura
T(t)
andamento di T(t) a
seguito del successo
delle strategie attive
Strategie
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
117
F
L
A
S
H
O
V
E
R
passive
▪ Create fire
compartments
▪ Prevent damage
in the elements
▪ Prevent loss of
functionality in
the building
active
▪ Detection measures
(smoke, heat, flame
detectors)
▪ Suppression
measures (sprinklers,
fire extinguisher,
standpipes, firemen)
▪ Smoke and heat
evacuation system
prevention protection robustness
▪ Limit ignition
sources
▪ Limit hazardous
human behavior
▪ Emergency
procedure and
evacuation
▪ Prevent the
propagation of
collapse, once
local damages
occurred (e.g.
redundancy)
Fire Safety Strategies
systemic structural
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
118
active
protection
passive
protection
no
failures
doesn’t
trigger
Y
N
Y
N
spreads
extinguishes
damages
Y
N
robustness
no
collapse
collapse
Y
N
triggers
prevention
1 4
2 3
Fire Safety Strategies
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
119
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
120
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
121
SnakeFighter
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
122
EXTENSIVE FEATURES
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
123
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
124
Windsor Hotel Madrid
Windsor Hotel Madrid
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
125
The Great Fire of Chicago, October 7-10, 1871
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
126
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
127
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
128
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
129
15-Dec-22 130
Sviluppo di un incendio in galleria
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
131
5
Tunnel Fires vs Compartment Fires (1)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
132
Tunnel Fires vs Compartment Fires (2)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
133
Tunnel Fires vs Compartment Fires (3)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
134
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
135
Tunnel Fires Progression (0)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
136
Tunnel Fires Progression (1)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
137
Effects of ventilation
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
138
Temperature development
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
139
Smoke development
• A smoke layer may be created in tunnels at the early stages of a fire with
essentially no longitudinal ventilation. However, the smoke layer will
gradually descend further from the fire.
• If the tunnel is very long, the smoke layer may descend to the tunnel surface
at a specific distance from the fire depending on the fire size, tunnel type,
and the perimeter and height of the tunnel cross section.
• When the longitudinal ventilation is gradually increased, the stratified layer
will gradually dissolve.
• A backlayering of smoke is created on the upstream side of the fire.
• Downstream from the fire there is a degree of stratification of the smoke
that is governed by the heat losses to the surrounding walls and by the
turbulent mixing between the buoyant smoke layers and the normally
opposite moving cold layer.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
140
Backlayering
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
141
Temperature along the tunnel
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
142
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
143
Maximum gas temperatures in the ceiling area
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
144
Maximum gas temperatures in the ceiling area
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
145
Maximum gas temperatures in the cross section
CURVE TEMPERATURE-TEMPO
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
146
• Defined in various national standards, i.e. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc.
• This curve is the lowest used in normal practice.
• It is based on the burning rate of the materials found in general building materials.
Cellulosic curve
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
147
• Although the cellulosic curve has been in use for many years, it soon became apparent that the
burning rates for certain materials i.e. petrol gas, chemicals etc, were well in excess of the rate at
which for instance, timber would burn.
• The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks,
petrol or oil tankers, certain chemical tankers etc.
Hydrocarbon (HC) curve
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
148
• Increased version of the hydrocarbon curve, prescribed by the French regulations.
• The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve.
• However, the temperature gradient in the first few minutes of the HCM fire is as severe as all
hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete
structure and concrete spalling as a result of it.
Hydrocarbon modified (HCM) curve
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
149
• The RABT curve was developed in Germany as a result of a series of test programs such as the
EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5
minutes.
• The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the
temperature of the reinforcement should not exceed 300°C. There is no requirement for a
maximum interface temperature.
RABT-ZTV (train)
Time (minutes) T (°C)
0 15
5 1200
60 1200
170 15
RABT-ZTV (car)
Time (minutes) T (°C)
0 15
5 1200
30 1200
140 15
RABT ZTV curves
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
150
• The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based
on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire
load of 300MW could occur, lasting up to 120 minutes.
• The failure criteria for specimens is that the temperature of the interface between the concrete and
the fire protective lining should not exceed 380°C and the temperature on the reinforcement should
not exceed 250°C.
RWS, RijksWaterStaat
Time
(minutes)
T
(°C)
0 20
3 890
5 1140
10 1200
30 1300
60 1350
90 1300
120 1200
180 1200
RWS (Rijkswaterstaat) curve
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
151
Types of fire exposure for tunnel analysis
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
152
0
200
400
600
800
1000
1200
1400
0 30 60 90 120 150 180
Temperature (
ƒ
C)
Time (min.)
Cellulosic Hydrocarbon Hydrocarbon modified
RABT-ZTV train RABT-ZTV car RWS
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
153
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
154
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
155
15-Dec-22 156
Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas
temperature and Radiation”, Proceedings of the International Seminar on Catastrophic
Tunnel Fires, Borås, Sweden, 20-21 November 2003.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
157
15-Dec-22 158
Fire Scenario Recommendation
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
159
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
160
Eurocodes
EMERGENCY VENTILATION
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
161
Multiphysics
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
162
Smoke stratification
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
163
Natural smoke venting
• It can be sufficient in short, level tunnels where smoke stratification allows
for escape in clear/tenable conditions.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
164
Smoke filling long tunnel
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
165
Emergency ventilation with longitudinal system
• It can be employed in unidirectional, medium length tunnels, with free-
flowing traffic conditions. Smoke is mechanically exhausted in direction of
traffic circulation, clear tenable conditions for escape are obtained on
upstream side of fire.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
166
Ventilation with semi-transverse “point extraction”
• Smoke is mechanically exhausted from single ceiling opening (reverse mode)
leaving clear tenable escape conditions on both sides of fire.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
167
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
168
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
169
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
170
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
171
Goal #1
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
172
Goal #2
k size factor for HGV fire
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
173
k size factor for small pool fire
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
174
Observation: goal
• The purpose of controlling the spread of smoke is to keep people as long as
possible in a smoke-free environment.
• This means that the smoke stratification must be kept intact, leaving a more
or less clear and breathable air underneath the smoke layer.
• The stratified smoke is taken out of the tunnel through exhaust openings
located in the ceiling or at the top of the sidewalls.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
175
EU directive 2004/54/EC sec. 2.9 - Ventilation
• Criteria concerning minimum requirements for installation of mechanical
ventilation:
• 9.2.2 - A mechanical ventilation system shall be installed in all tunnels longer
than 1,000 meters with a traffic volume higher than 2,000 vehicles per lane
(per day).
• 2.9.3 - In tunnels with bi-directional and/or congested unidirectional traffic,
longitudinal ventilation shall be allowed only if a risk analysis according to
Article 13 shows it is acceptable and/or specific measures are taken, such as
appropriate traffic management, shorter emergency exit distances, smoke
exhausts at intervals.
• 2.9.4 - Transverse or semi-transverse ventilation systems shall be used in
tunnels where a mechanical ventilation system is necessary and longitudinal
ventilation is not allowed under point 2.9.3. These systems must be capable
of evacuating smoke in the event of a fire.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
176
Observation: longitudinal velocity
• With practically zero longitudinal air velocity, the smoke layer expands to
both sides of the fire. The smoke spreads in a stratified way for up to 10 min.
• After this initial phase, smoke begins to mix over the entire cross section,
unless by this time the extraction is in full operation.
• The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity
of the fire incidence zone. With higher velocities, the vertical turbulence in
the shear layer between smoke and fresh air quickly cools the upper layer
and the smoke then mixes over the entire cross section.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
177
Observations: turbulence
• With an air velocity of around 2 m/s, most of the smoke of a medium-size
fire spreads to one side of the fire (limited backlayering) and starts mixing
over the whole cross section at a distance of 400 to 600 m downstream of
the fire site. This mixing over the cross section can also be prevented if the
smoke extraction is activated early enough.
• Vehicles standing in the longitudinal air flow increase strongly the vertical
turbulence and encourage the vertical mixing of the smoke.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
178
Observation: fresh air
• In a transverse ventilation system, the fresh air jets entering the tunnel at
the floor level induce a rotation of the longitudinal airflow, which tends to
bring the smoke layer down to the road.
• No fresh air is to be injected from the ceiling in a zone with smoke because
this increases the amount of smoke and tends to suppress the stratification.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
179
Observation: smoke extraction
• In reversible semi-transverse ventilation with the duct at the ceiling, the
fresh air is added through ceiling openings in normal ventilation operation.
• If a fire occurs, as long as fresh air is supplied through ceiling openings, the
smoke quantity increases by this amount and strong jets tend to bring the
smoke down to the road surface. The conversion of the duct from supply to
extraction must be done as quickly as possible.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
180
Observation: traffic conditions
• For a tunnel with one-way traffic, designed for queues (an urban area), the
ventilation design must take into consideration that cars can likely stand to
both sides of the fire because of the traffic. In urban areas it is usual to find
stop-and-go traffic situations.
• For a tunnel with two-way traffic, where the vehicles run in both directions,
it must be taken into consideration that in the event of a fire vehicles will
generally be trapped on both sides of the fire.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
181
Strategies
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
182
Smoke extraction
• Continuous extraction into a return air duct is needed to remove a stratified
smoke layer out of the tunnel without disturbing the stratification.
• The traditional way to extract smoke is to use small ceiling openings
distributed at short intervals throughout the tunnel.
• Another efficient way to remove smoke quickly out of the traffic space is to
install large openings with remotely controlled dampers. They are normally
in an open position where equal extraction is taking place over the whole
tunnel length.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
183
VENTILATION MODELING
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
184
Levels
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
185
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
186
1D
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
187
1D
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
188
2D (zone model)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
189
2D (zone model)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
190
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
191
FDS Simulation
3D
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
192
FDS Simulation
3D
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
193
3D
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
194
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
195
15-Dec-22 196
Multiscala
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
197
Multiscala
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
198
Multiscala
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
199
Multiscala (strutturale)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
200
Multiscala (strutturale)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
201
Sicurezza e verifica
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
202
6
BASIS
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
203
Design Process - ISO 13387
A. Design constraints and possibilities (blue),
B. Action definition and development (red),
C. Passive system and active response (yellow),
D. Safety and performance (purple).
3/22/2011
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
204
SS0a
PRESCRIBED
DESIGN
PARAMETERS
SS0b
ESTIMATED
DESIGN
PARAMETERS
SS1
initiation and
development
of fire and
fire efluent
SS2
movement of
fire effluent
SS3
structural response
and fire spread
beyond enclosure
of origin
SS4
detection,
activitation and
suppression
SS5
life safety:
occupant behavior,
location and
condition
SS6
property
loss
SS7
business
interruption
SS8
contamination
of
environment
SS9
destruction
of
heritage
(0)
DESIGN
CONSTRAINTS
AND
POSSIBILITIES
(1+2)
ACTION
DEFINITION
AND
DEVELOPMENT
(3+4)
SYSTEM
PASSIVE
AND ACTIVE
RESPONSE
BUS
OF
INFORMATION
RESULTS
DESIGN
ACTION
RESPONSE
SAFETY
&
PERFORMANCE
FSE
15-Dec-22 205
Buchanan,
2002
0
1
2
3
4
5
6
7
8
9
Strategie per
la gestione
dell'incendio
1
Prevenzione
2
Gestione
dell'evento
3
Gestione
dell'incendio
4
Gestione delle
persone e
dei beni
15
Difesa sul posto
16
Spostamento
17
Disposibilità
delle vie
di fuga
18
Far avvenire
il deflusso
19
Controllo
della quantità
di
combustibile
5
Soppressione
dell'incendio
10
Controllo
dell'incendio
attraverso il
progetto
13
Automatica
11
Manuale
12
Controllo dei
materiali
presenti
6
Controllo
del movimento
dell'incendio
7
Resistenza e
stabilità
strutturale
14
Contenimento
9
Ventilazione
8
Fire safety concepts tree (NFPA)
15-Dec-22 206
Line 2
• La gestione dell’incendio non è necessaria se si previene l’ignizione.
• Può essere solo ridotta la probabilità che avvenga l’ignizione.
• Gli incendi dolosi è difficile da prevedere dal progettista
Fire safety concepts tree (NFPA)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
207
Line 4
Exposed persons and property can be managed by moving them from the building
or by defending them in place; in order for people to move, the fire must be
detected, the people must be notified, and there must be a suitable safe path for
movement.
Fire safety concepts tree (NFPA)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
208
Fire safety concepts tree (NFPA)
Line 6
There are three options for managing a fire; in the first case the fuel source can be controlled, by limiting the
amount of fuel or the geometry; the second options is to suppress the fire; the third is to control the fire by
construction. Control fire by construction it is necessary to both control the movement of the fire and provide
the structural stability.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
209
Fire safety concepts tree (NFPA)
Line 9 - The two strategies for controlling fire movement are:
a. fire venting: venting can be by an active system of mechanically operated vents, or a passive system that
relies on the melting of plastic skylights; in either case, the increased ventilation may increase the local severity
of the fire, but fire spread within the building and the overall thermal impact on the structure will be reduced;
b. containment of a fire to prevent spread is the principal tool of passive fire protection; preventing fire growing
to a large size is ne of the most important components of a fire safety strategy; radiant spread of the fire to
neighboring buildings must also be prevented, by limiting the size of openings in exterior walls. Smoke
containment can also controlled by venting or containment; pressurizations and smoke barriers can also used.
15-Dec-22 210
Basis of tunnel fire safety design
• The first priority identified in the literature for fire design of all
tunnels is to ensure:
1. Prevention of critical events that may endanger human life, the
environment, and the tunnel structure and installations.
2. Self-rescue of people present in the tunnel at time of the fire.
3. Effective action by the rescue forces.
4. Protection of the environment.
5. Limitation of the material and structural damage.
• Furthermore, part of the objective is to reduce the consequences
and minimize the economic loss caused by fires.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
211
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
212
15-Dec-22 213
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
214
RISK CONCERN
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
215
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
216
Option 1 Risk avoidance, which usually means not
proceeding to continue with the system; this is
not always a feasible option, but may be the only
course of action if the hazard or their probability
of occurrence or both are particularly serious;
Option 2 Risk reduction, either through (a) reducing the
probability of occurrence of some events, or (b)
through reduction in the severity of the
consequences, such as downsizing the system, or
(c) putting in place control measures;
Option 3 Risk transfer, where insurance or other financial
mechanisms can be put in place to share or
completely transfer the financial risk to other
parties; this is not a feasible option where the
primary consequences are not financial;
Option 4 Risk acceptance, even when it exceeds the criteria,
but perhaps only for a limited time until other
measures can be taken.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
217
DEFINE SYSTEM
(the system is usually decomposed into
a number of smaller subsystems and/or
components)
HAZARD SCENARIO ANALYSIS
(what can go wrong?
how can it happen?
waht controls exist?)
ESTIMATE
CONSEQUENCES
(magnitude)
ESTIMATE
PROBABILITIES
(of occurrences)
DEFINE
RISK SCENARIOS
SENSITIVITY
ANALYSIS
RISK
ANALYSIS
FIRE
EVENT
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
218
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
219
Simulations
DEFINE SYSTEM
(the system is usually decomposed into
a number of smaller subsystems and/or
components)
HAZARD SCENARIO ANALYSIS
(what can go wrong?
how can it happen?
waht controls exist?)
ESTIMATE
CONSEQUENCES
(magnitude)
ESTIMATE
PROBABILITIES
(of occurrences)
DEFINE
RISK SCENARIOS
SENSITIVITY
ANALYSIS
RISK
ANALYSIS
NUMERICAL
MODELING
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
220
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
221
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
222
Point of view for life safety risks
• Individual risk
The purpose of the individual risk is to ensure that individuals in the society
are not exposed to unacceptably high risks.
It can be defined as the risk to any occupant on the scene for the
event/hazard scenario i.e. it is the risk to an individual and not to a group of
people.
• Societal risk
One is not looking at one individual, but it is concerned with the risk of
multiple fatalities.
People are treated as a group, there are no considerations taken to the
individuals within the group: the definition of the risk is from a societal point
of view.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
223
F (frequency) – N (number of fatalities) curve
• An F–N curve is an alternative way of describing the risk associated with loss
of lives.
• An F–N curve shows the frequency (i.e. the expected number) of accident
events with at least N fatalities, where the axes normally are logarithmic.
• The F–N curve describes risk related to large-scale accidents, and is thus
especially suited for characterizing societal risk.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
224
15-Dec-22 225
FN-curves UK Road Rail Aviation Transport, 67-01
Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a
Road Tunnel - An Illustrative Example. Lund, 2002
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
226
Risk acceptance – ALARP (1)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
227
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
228
Risk acceptance – ALARP (2)
Risk reduction by design
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
229
15-Dec-22 230
What is the maximum amount the society (or the decisionmaker) is
willing to pay to reduce the expected number of fatalities by 1?
Typical numbers for the value of a statistical life used in
cost-benefit analysis are 1–10 million euros.
Monetary values – cost of human life (!)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
231
STRUCTURAL CONCERN
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
232
Mechanical Analysis
• The mechanical analysis shall be performed for the same duration as used in
the temperature analysis.
• Verification of fire resistance should be in:
• in the strength domain: Rfi,d,t ≥ Efi,requ,t
(resistance at time t ≥ load effects at time t);
• in the time domain: tfi,d ≥ tfi,requ
(design value of time fire resistance ≥
time required)
• In the temperature domain: Td ≤ Tcr
(design value of the material temperature ≤ critical material
temperature);
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
233
Verification of fire resistance (3D)
R = structural resistance
T = temperature
t = time
T=T(t)
R=R(t,T)=R(t,T(t))=R(t)
15-Dec-22 234
Verification of fire resistance (R-safe)
R = structural resistance
T = temperature
t = time
Rfi,d,t
Efi,requ,t
15-Dec-22 235
Verification of fire resistance (R-fail)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
15-Dec-22 236
Verification of fire resistance (t)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
tfi,d ≥ tfi,requ
15-Dec-22 237
Verification of fire resistance (T)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
Td ≤ Tcr
15-Dec-22 238
Verification of fire resistance (T)
R = structural resistance
T = temperature
t = time
Efi,requ,t
Rfi,d,t
Failure !
Td ≤ Tcr
15-Dec-22 239
Aspetti di analisi non lineare
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
240
Level 3 - Temperature Driven Scheme
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
time
tK
TERMAL
STATE
(Temperature Field
and Termic Related
Properties)
MECHANICAL
STATE
(Strain and Stress
Fields and
Mechanical related
Properties)
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
241
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
242
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
243
Non linearità di materiale
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
244
Calcestruzzo in compressione
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
245
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
246
Calcestruzzo a trazione
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
247
Acciaio per barre
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
248
Parametri
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
249
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
250
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
251
Coefficiente di dilatazione termica
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
252
Dilatazione termica acciai
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
253
Spalling
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
254
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
255
https://www.youtube.com/watch?v=36WlIzOVx30
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
256
March 24, 1999 - Mont Blanc Tunnel fire. 39 dead.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
257
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
258
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
259
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
260
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
261
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
262
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
263
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
264
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
265
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
266
https://www.intechopen.com/chapters/51837
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
267
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
268
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
269
Temperature distribution at the depth of the cross-section after
(a) t = 5 min, (b) t = 10 min and (c) t = 30 min of fire exposure
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
270
https://www.intechopen.com/chapters/51837
Introduction
• As the most typical form, spalling is defined as the violent or nonviolent
breaking off of layers or pieces of concrete from the surface of a structural
element when exposed to high and rapidly rising temperature under fire
conditions.
• All that spalling could be grouped into four categories: (a) aggregate
spalling, (b) corner spalling, (c) surface spalling, and (d) explosive spalling.
• As shown in, aggregate spalling, surface spalling, and explosive spalling occur
during the first 7–30 minutes in a fire, accompanied by popping sounds
(aggregate spalling) or violent explosions (surface and explosive spalling).
• Spalling may also occur nonviolently (corner spalling) later in a fire when the
concrete has so weakened after a period of heating of 30–90 minutes that
cracks develop, and pieces fall off its surface. The most important of these is
explosive spalling, which occurs violently and results in serious loss of
material.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
271
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
272
Time of occurrence of different types of spalling in fire
Mechanisms of explosive spalling
• The most recent theories of the causes of explosive spalling indicate that
three factors play a crucial role, i.e., (a) the build-up of pore pressure, (b)
thermal stresses, and (c) combined high pore pressure and thermal stress in
the concrete when exposed to a rapidly increasing temperature.
• The first hypothesis supposes that heating produces water vapor in concrete
and as the permeability of HPC is low, which limits the ability of vapor to
escape, a build-up of vapor pressure results.
• The second possibility is thermal stresses close to the heated surface due to
preload or a high temperature gradient caused by a high heating rate.
• Third, a combination of both phenomena is also possible.
• These different mechanisms may act individually or on combination
depending upon the moisture content, the section size, and the material.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
273
1 - Pore pressure spalling
• The hypothesis is that the spalling is due to the build-up of very high pore
pressures within the concrete as a result of the liquid-vapor transition of the
capillary pore water as well as that bound in the cement paste component of
the concrete (so-called moisture clog spalling).
• Heating on the surface of concrete results in a temperature gradient, which
forces moisture into the internal of the concrete as well as out of the
surface.
• The explosive spalling occurs when the pore pressure in the matrix
accumulates to a threshold exceeding their tensile strength
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
274
2 - Thermal stress spalling
• Thermal stresses will occur inside the concrete due to temperature gradients
from the heated surface toward the inner, cooler sections of the concrete.
• These gradients will increase with rapid heating rates. Different strains due
to the thermal gradient are deemed to cause tensile and compressive
stresses, depending on the thermal and mechanical properties of the
concrete. Hindered expansion, loads, and restraints as well as the heating
rate are mentioned as further parameters.
• Failure due to spalling is considered to exceed the compressive strength of
the concrete close to the heated surface. The compressive stresses due to
the thermal gradient also lead to tensile stresses in the cooler sections of the
concrete.
• Explosive spalling only due to thermal stresses is relatively a rare occurrence
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
275
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
276
Mechanism of thermal stress spalling
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
277
3
-
Explosive
spalling
caused
by
combined
thermal
stresses
and
pore
pressure
Note
• Although theoretical modeling for the various spalling forms has been
attempted in the past, it is recently that significant development has been
made in this field.
• The complex combined nature of the influences of moisture content, pore
pressures, and thermal stresses in the heterogeneous concrete material with
complex pore structure, which varies markedly with temperature during first
heating, does not lend themselves easily to analytical modeling.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
278
Factors influencing spalling
• Based on the spalling mechanisms, the main factors leading to the explosive
spalling of concrete at high temperatures are heating rate, permeability of
concrete, moisture content, presence of reinforcement, and level of external
applied load, but more factors have been identified in the literature review
as influencing on the risk and extent of spalling.
• The factors influencing to the explosive spalling of concrete can be classified
into three categories as follows:
1.Material-related factors.
2.Structural or mechanical factors.
3.Heating characteristics.
• However, some of these factors would fit into more than one category.
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
279
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
280
Use of various fibers to prevent the explosive spalling
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
281
Non linearità geometrica
282
15 December 2022
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
283
15 December 2022
284
15 December 2022
285
15 December 2022
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
286
Indice
1. Strutture in sotterraneo
a. Geometrie
b. Impianti di ventilazione
2. Complessità
3. Natura accidentale
4. Azione incendio
a. Caratteristiche intensive
b. Caratteristiche estensive
5. Sviluppo di un incendio in galleria
6. Sicurezza e verifiche
7. Riferimenti
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
287
ACKNOWLEDGEMENTS
• Dr. Konstantinos GKOUMAS – Uniroma1
• Dr. Francesco PETRINI – Uniroma1
• Ing. Alessandra LO CANE – MIT
• Dr. Filippo GENTILI – Coimbra (PT)
• Mr. Tiziano BARONCELLI – Uniroma1
15-Dec-22 288
Riferimenti
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
289
7
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
290
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
291
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
292
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
293
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
294
DIRETTIVA 2004/54/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO
del 29 aprile 2004
relativa ai requisiti minimi di sicurezza per le gallerie della rete stradale
transeuropea
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
295
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
296
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
297
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
298
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
299
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
300
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
301
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
302
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
303
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
304
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
305
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
306
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
307
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
308
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
309
CV
• Franco Bontempi - Nato 1963. Servizio militare 1989. Laurea Ingegneria
Civile 1988 e Dottorato di Ricerca in Ingegneria Strutturale 1993, Politecnico
di Milano.
• Dal 2000, Professore Ordinario di Tecnica delle Costruzioni alla Facoltà di
Ingegneria Civile e Industriale dove insegna TEORIA E PROGETTO DI PONTI,
GESTIONE DI PONTI E GRANDI STRUTTURE, PROGETTAZIONE STRUTTURALE ANTINCENDIO.
• Periodi di ricerca: Harbin Institute of Technology (CHINA), Univ. of Illinois
Urbana-Champaign (USA), TU Karlsruhe (D), TU Munich (D). Consulente per
progetto e analisi di strutture speciali, procedimenti di ingegneria forense.
• https://sites.google.com/a/uniroma1.it/francobontempi/
• https://fr.linkedin.com/in/francobontempi
• https://www.youtube.com/channel/UCW3IyXTBJVIiS6OZeSdIN7g/videos
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
310
https://sitES.google.com/a/uniroma1.it/francobontempi/
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
311
https://www.youtube.com/channel/UCW3IyXTBJVIiS6OZeSdIN7g
15-Dec-22
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
312
https://fr.linkedin.com/in/francobontempi
Franco Bontempi - Sicurezza Strutturale
di Gallerie in Caso di Incendio
15-Dec-22 313
Sicurezza Strutturale
di Gallerie in Caso di Incendio
Prof. Ing. Franco Bontempi
Ordinario di Tecnica delle Costruzioni
Docente di TEORIA E PROGETTO DI PONTI – GESTIONE DI PONTI E GRANDI STRUTTURE
PROGETTAZIONE STRUTTURALE ANTINCENDIO
Facoltà di Ingegneria Civile e Industriale
Università degli Studi di Roma La Sapienza
franco.bontempi@uniroma1.it

Contenu connexe

Tendances

Tendances (20)

Concorso Roma La Sapienza Tecnica delle Costruzioni
Concorso Roma La Sapienza Tecnica delle CostruzioniConcorso Roma La Sapienza Tecnica delle Costruzioni
Concorso Roma La Sapienza Tecnica delle Costruzioni
 
CALZONA - precompressione
CALZONA - precompressioneCALZONA - precompressione
CALZONA - precompressione
 
METODI E STRUMENTI NELLA DIAGNOSTICA DELLE STRUTTURE ESISTENTI
METODI E STRUMENTI NELLA DIAGNOSTICA DELLE STRUTTURE ESISTENTIMETODI E STRUMENTI NELLA DIAGNOSTICA DELLE STRUTTURE ESISTENTI
METODI E STRUMENTI NELLA DIAGNOSTICA DELLE STRUTTURE ESISTENTI
 
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.markedTecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
Tecnica delle costruzioni alessandra aguinagalde.image.marked.text.marked
 
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANOCostruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
Costruzioni Metalliche - Ponti: seminario Ing. Luca ROMANO
 
Appunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
Appunti del corso di Tecnica delle Costruzioni - Bontempi, SapienzaAppunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
Appunti del corso di Tecnica delle Costruzioni - Bontempi, Sapienza
 
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
Tecnica delle costruzioni - esercitazione 9 - unioni parte 2
 
Tdc esercitazione sulle UNIONI - parte 2
Tdc esercitazione sulle UNIONI - parte 2Tdc esercitazione sulle UNIONI - parte 2
Tdc esercitazione sulle UNIONI - parte 2
 
Calcoli per grandi ponti ad arco.
Calcoli per grandi ponti ad arco.Calcoli per grandi ponti ad arco.
Calcoli per grandi ponti ad arco.
 
Particolari costruttivi strutture in accaio
Particolari costruttivi strutture in accaioParticolari costruttivi strutture in accaio
Particolari costruttivi strutture in accaio
 
110324 001
110324 001110324 001
110324 001
 
VALUTAZIONE DELLA SICUREZZA CON METODI PUSH-OVER
VALUTAZIONE DELLA SICUREZZA CON METODI PUSH-OVERVALUTAZIONE DELLA SICUREZZA CON METODI PUSH-OVER
VALUTAZIONE DELLA SICUREZZA CON METODI PUSH-OVER
 
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
 
ottimizzazione 2023 parte I RID.pdf
ottimizzazione 2023 parte I RID.pdfottimizzazione 2023 parte I RID.pdf
ottimizzazione 2023 parte I RID.pdf
 
TPP 2021/22
TPP 2021/22TPP 2021/22
TPP 2021/22
 
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
 
Aspetti operativi della modellazione strutturale
Aspetti operativi della modellazione strutturaleAspetti operativi della modellazione strutturale
Aspetti operativi della modellazione strutturale
 
Connessioni in Acciaio - Lezione 14 dicembre2012
Connessioni in Acciaio - Lezione 14 dicembre2012Connessioni in Acciaio - Lezione 14 dicembre2012
Connessioni in Acciaio - Lezione 14 dicembre2012
 
TdC ex_10_2013_acciaio
TdC ex_10_2013_acciaioTdC ex_10_2013_acciaio
TdC ex_10_2013_acciaio
 

Similaire à Sicurezza Strutturale di Gallerie in Caso di Incendio

Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS ...
Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS                           ...Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS                           ...
Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS ...
Sin Byrne
 
Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...
Franco Bontempi
 

Similaire à Sicurezza Strutturale di Gallerie in Caso di Incendio (11)

PSA - Sicurezza delle gallerie in caso di incendio
PSA - Sicurezza delle gallerie in caso di incendioPSA - Sicurezza delle gallerie in caso di incendio
PSA - Sicurezza delle gallerie in caso di incendio
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendioApproccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
 
Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi
Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, BontempiConvegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi
Convegno sulla Resistenza al Fuoco, Cosenza 6 Febbraio 2014, Bontempi
 
Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS ...
Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS                           ...Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS                           ...
Mill 14-1-15 - Sheet - A108 - BUILDING REGULATIONS ...
 
Building services project 2 presentation slides
Building services project 2 presentation slidesBuilding services project 2 presentation slides
Building services project 2 presentation slides
 
Fire regulation service sector Mauritius
Fire regulation service sector MauritiusFire regulation service sector Mauritius
Fire regulation service sector Mauritius
 
Fire safety as per National Building Code-2016
Fire safety as per National Building Code-2016Fire safety as per National Building Code-2016
Fire safety as per National Building Code-2016
 
High-Rise Building Disasters
High-Rise Building DisastersHigh-Rise Building Disasters
High-Rise Building Disasters
 
Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...
 
Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...
 

Plus de Franco Bontempi

La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzione
Franco Bontempi
 

Plus de Franco Bontempi (20)

84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf84-91 UNI RM - Bontempi REV.pdf
84-91 UNI RM - Bontempi REV.pdf
 
PGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdfPGS - lezione 63 - robustness.pdf
PGS - lezione 63 - robustness.pdf
 
PGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdfPGS - lezione 60 - evidences of failures.pdf
PGS - lezione 60 - evidences of failures.pdf
 
La realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzioneLa realtà dei ponti e dei viadotti: controllo e manutenzione
La realtà dei ponti e dei viadotti: controllo e manutenzione
 
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
ANALISI DEL RISCHIO PER LA SICUREZZA NELLE GALLERIE STRADALI.
 
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELSRISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
RISK ANALYSIS FOR SEVERE TRAFFIC ACCIDENTS IN ROAD TUNNELS
 
Approccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi pontiApproccio sistemico al progetto dei grandi ponti
Approccio sistemico al progetto dei grandi ponti
 
PGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdfPGS - lezione D - grandi strutture.pdf
PGS - lezione D - grandi strutture.pdf
 
PGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdfPGS - lezione F - ingegneria forense.pdf
PGS - lezione F - ingegneria forense.pdf
 
PGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdfPGS - lezione C - controllo e manutenzione.pdf
PGS - lezione C - controllo e manutenzione.pdf
 
PSA_MF_05_05_23.pdf
PSA_MF_05_05_23.pdfPSA_MF_05_05_23.pdf
PSA_MF_05_05_23.pdf
 
PSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdfPSA_MF_04_05_23.pdf
PSA_MF_04_05_23.pdf
 
Fenomeni di instabilita'
Fenomeni di instabilita'Fenomeni di instabilita'
Fenomeni di instabilita'
 
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaioIntroduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
Introduzione al Calcolo Elasto – Plastico «a freddo» delle strutture in acciaio
 
FB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdfFB - PSA Esercitazione 1_12_18-II parte.pdf
FB - PSA Esercitazione 1_12_18-II parte.pdf
 
Esplosioni.
Esplosioni.Esplosioni.
Esplosioni.
 
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdfPGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
PGS - lezione 03 - IMPALCATO DA PONTE E PIASTRE.pdf
 
INCENDIO
INCENDIOINCENDIO
INCENDIO
 
Progettazione Strutturale Antincendio. ROBUSTEZZA
Progettazione Strutturale Antincendio. ROBUSTEZZAProgettazione Strutturale Antincendio. ROBUSTEZZA
Progettazione Strutturale Antincendio. ROBUSTEZZA
 
PGS - lezione B - robustness.pdf
PGS - lezione B - robustness.pdfPGS - lezione B - robustness.pdf
PGS - lezione B - robustness.pdf
 

Dernier

Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
Kamal Acharya
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
hublikarsn
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 

Dernier (20)

Independent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging StationIndependent Solar-Powered Electric Vehicle Charging Station
Independent Solar-Powered Electric Vehicle Charging Station
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/Footing
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
Unsatisfied Bhabhi ℂall Girls Ahmedabad Book Esha 6378878445 Top Class ℂall G...
 
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
Convergence of Robotics and Gen AI offers excellent opportunities for Entrepr...
 
Computer Graphics Introduction To Curves
Computer Graphics Introduction To CurvesComputer Graphics Introduction To Curves
Computer Graphics Introduction To Curves
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Fundamentals of Structure in C Programming
Fundamentals of Structure in C ProgrammingFundamentals of Structure in C Programming
Fundamentals of Structure in C Programming
 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
 
Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)Introduction to Artificial Intelligence ( AI)
Introduction to Artificial Intelligence ( AI)
 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
Call for Papers - Journal of Electrical Systems (JES), E-ISSN: 1112-5209, ind...
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 

Sicurezza Strutturale di Gallerie in Caso di Incendio

  • 1. Sicurezza Strutturale di Gallerie in Caso di Incendio Prof. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Docente di TEORIA E PROGETTO DI PONTI – GESTIONE DI PONTI E GRANDI STRUTTURE PROGETTAZIONE STRUTTURALE ANTINCENDIO Facoltà di Ingegneria Civile e Industriale Università degli Studi di Roma La Sapienza franco.bontempi@uniroma1.it
  • 2. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 2
  • 4. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 4
  • 5. Indice 1. Strutture in sotterraneo a. Geometrie b. Impianti di ventilazione 2. Complessità 3. Natura accidentale 4. Azione incendio a. Caratteristiche intensive b. Caratteristiche estensive 5. Sviluppo di un incendio in galleria 6. Sicurezza e verifiche 7. Riferimenti 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 5
  • 6. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 6
  • 7. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 7
  • 8. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 8
  • 9. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 9
  • 10. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 10
  • 11. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 11
  • 12. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 12
  • 13. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 13
  • 14. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 14
  • 15. Strutture in sotterraneo 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 15 1
  • 16. GEOMETRIE 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 16
  • 17. Tipo A - autostrade 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 17
  • 18. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 18
  • 19. Tipo B – extraurbane principali 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 19
  • 20. Tipo C – extraurbane secondarie 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 20
  • 21. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 21
  • 22. Altri aspetti geometrici 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 22
  • 23. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 23
  • 24. Sezioni non standard 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 24
  • 25. Intersezioni 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 25
  • 26. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 26
  • 27. Geometrie non tubolari 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 27
  • 28. Stazioni metropolitane 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 28
  • 29. IMPIANTI VENTILAZIONE 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 29
  • 30. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 30
  • 31. Normal ventilation - Piston effect • Is the result of natural induced draft caused by free-flowing traffic (> 50 km/h) in uni-directional tunnel thus providing natural ventilation. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 31
  • 32. Mechanical ventilation • “forced” ventilation is required where piston effect is not sufficient such as in ❑congested traffic situations; ❑bi-directional tunnels (piston effect is neutralized by flow of traffic in two opposite directions); ❑long tunnels with high traffic volumes. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 32
  • 33. Tunnel Ventilation Systems • Road Tunnel Ventilation Systems have two modes of operation: • Normal ventilation, for control of air quality inside tunnels due to vehicle exhaust emissions: ❑in any possible traffic situation, tunnel users and staff must not suffer any damage to their health regardless the duration of their stay in the tunnel; ❑the necessary visual range must be maintained to allow for safe stopping. • Emergency ventilation in case of fire, for smoke control: ❑the escape routes must be kept free from smoke to allow for self-rescue; ❑the activities of emergency services must be supported by providing the best possible conditions over a sufficient time period ; ❑the extent of damage and injuries (to people, vehicles and the tunnel structure itself) must be kept to a minimum. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 33
  • 34. Longitudinal ventilation system • employs jet fans suspended under tunnel roof; in normal operation fresh air is introduced via tunnel entering portal and polluted air is discharged from tunnel leaving portal. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 34
  • 35. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 35
  • 36. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 36
  • 37. Semi-transverse ventilation system • employs ceiling plenum connected to central fan room equipped with axial fans; in normal operation fresh air is introduced along the tunnel trough openings in the ventilation plenum while polluted air is discharged via tunnel portals. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 37
  • 38. Full transverse ventilation system • employs double supply and exhaust plenums connected to central fan rooms equipped with axial fans; in normal operation fresh air is introduced and exhausted via openings in double ventilation plenums. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 38
  • 40. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 40
  • 41. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 41
  • 42. Attachments • Dispersion stack and fan room combined with longitudinal ventilation: may be required in order to reduce adverse effect on environment of discharge of polluted air from tunnel, where buildings are located in proximity (< 100m) to tunnel leaving portal. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 42
  • 43. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 43
  • 44. Ventilation unit Air extraction Ventilation unit Supply of fresh air 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 44
  • 45. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 45
  • 46. Observation • A tunnel must be considered as a system, composed of structures and plants. • The essential difference between structures and plants concerns the fact that the latter require energy that is not necessary for the former. • In synthetic terms, it can be said that structures are dead works while plants are living works. This involves different life horizons (50-100 years for structures, 5-10 years for plants) and consequent different levels of control and maintenance. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 46
  • 47. Complessità 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 47 2
  • 48. LOOSE couplings TIGHT LINEAR interactions NONLINEAR System Complexity (Perrow) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 48
  • 49. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 49 Exactitude
  • 50. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 50
  • 51. Gregory Bateson 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 51 • La mappa non è il territorio e il nome non è la cosa designata. • Questo principio, reso famoso da Alfred Korzybski, opera a molti livelli. Esso ci ricorda in termini generici che quando pensiamo alle noci di cocco o ai porci, nel cervello non vi sono né noci di cocco né porci. • Ma in termini più astratti, la proposizione di Korzybski asserisce che sempre quando c'è pensiero o percezione oppure comunicazione sulla percezione vi è una trasformazione, una codificazione, tra la cosa comunicata, la Ding an sich, e la sua comunicazione. Soprattutto, la relazione tra la comunicazione e la misteriosa cosa comunicata tende ad avere la natura di una classificazione, di un'assegnazione della cosa a una classe. Dare un nome è sempre un classificare e tracciare una mappa è essenzialmente lo stesso che dare un nome.
  • 52. Multiphysics 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 52
  • 53. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 53
  • 54. Factors for Coupling MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) TERMAL STATE (Temperature Field and Termic Related Properties) INFORMATION FLOW DIRECTION time tK 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 54
  • 55. Level 1 - Fully Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 55
  • 56. Level 2 - Staggered Coupled Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 56
  • 57. Level 3 - Temperature Driven Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 57
  • 58. Level 4 - Scheme With No Memory time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 58
  • 60. Analysis Strategy #1: Sensitivity governance of priorities 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 60
  • 61. Analysis Strategy #2: Bounding behavior governance p (p)  p (p)  15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 61
  • 62. Super Controllore Problema Risultato Solutore #1 Solutore #2 Voting System Analysis Strategy #3: Redundancy Governance 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 62
  • 63. Multiphysics 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 63
  • 64. Fire fighting timeline 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 64
  • 65. • Context dependence • Contrast effect • Recency effect • Halo effect • Plasticity • Order effects • Pseudo-opinions • Vividness • Wishful thinking • Anchoring • Social loafing • Conformity • The representativeness heuristic • Law of small numbers • Hot hand • Neglecting base rates • No regressive prediction • Synchronicity • Causalation • Salience • Minority influence • Groupthink Problem Structuring 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 65
  • 66. Un caso: incendio tunnel del Monte Bianco 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 66
  • 67. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 67 Mont Blanc Tunnel fire
  • 68. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 68
  • 69. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 69
  • 70. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 70
  • 71. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 71
  • 72. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 72
  • 73. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 73
  • 74. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 74 On the morning of 24 March 1999, 39 people died when a Belgian transport truck carrying flour and margarine, which had entered the French-side portal, caught fire in the tunnel.[1][2] The truck came through the tollbooth at 10:46 CET. The initial journey through the tunnel was routine. According to the documentary television series Seconds from Disaster, the fire and smoke appeared at around 10:49. Shortly after, the driver realized something was wrong as cars coming in the opposite direction flashed their headlights at him; a glance in his mirrors showed white smoke coming out from under his cabin. This was not yet considered a fire emergency. In fact, there had been 16 other truck fires in the tunnel over the previous 35 years, always extinguished on the spot by the drivers. At 10:53, the driver of the vehicle, Gilbert Degrave, stopped 6 km into the 11.6 km tunnel, in attempt to fight the fire but he was suddenly forced back when the payload violently combusted.[2] Degrave subsequently abandoned his vehicle and ran to the Italian entrance of the tunnel. At 10:54, one of the drivers called from refuge 22 to raise the alarm. At 10:55, the tunnel employees triggered the fire alarm and stopped any further traffic from entering. At this point, there were at least 10 cars and 18 trucks in the tunnel that had entered from the French side. A few vehicles from the Italian side passed the Volvo truck without stopping. Some of the cars from the French side managed to turn around in the narrow two-lane tunnel to retreat back to France, but navigating the road in the dense smoke that had rapidly filled the tunnel quickly made this impossible. Between 10:53 and 10:57, the smoke had already covered half a kilometer of the French side. The larger trucks were stranded, as they did not have the space to turn around, and reversing out was not an option. Most drivers rolled up their windows and waited for rescue. The ventilation system in the tunnel drove toxic smoke back down the tunnel faster than anyone could run to safety. These fumes quickly filled the tunnel and starved off oxygen, disabling vehicles. This included fire engines which, once affected, had to be abandoned by the firefighters. Many drivers near the blaze who attempted to leave their cars and seek refuge points were quickly overcome due to toxic components of the smoke, mainly cyanide. Within minutes, two fire trucks from Chamonix responded to the unfolding disaster. Melted wiring had eliminated any possible light sources in the tunnel; in the smoke and with abandoned and wrecked vehicles blocking their path, the fire engines were unable to proceed. Italian firefighters had come within 300 metres of the truck. Without other possibilities, fire crews abandoned their vehicles and took refuge in two of the emergency fire cubicles (fire-door sealed small rooms set into the walls every 600 metres). As the firefighters took refuge in a fire cubicle, burning fuel flowed down the road surface, causing tires and fuel tanks to explode and sending deadly shrapnel in the air. This is probably the point where fire began to spread to other vehicles from the truck, at 11:00. By 11:11, more Italian firefighters had come to tackle the fire. They also abandoned their vehicles, and searched for trapped groups of firefighters who had taken refuge in the fire cubicles. When it was realized that the cubicles were offering little protection from the smoke, they began searching for the doors that led to the ventilation duct. All of the firefighters were rescued five hours later by a third fire crew that responded and reached them via a ventilation duct; of the 15 firefighters who had been trapped, 14 were in serious condition and one (their commanding officer) later died in the hospital. Some victims were also able to escape to the fire cubicles. The original fire doors on the cubicles were rated to survive for two hours. Some had been upgraded in the 34 years since tunnel construction to survive for four hours. By 11:30, 37 minutes after start of the fire, smoke had reached the French entrance of the tunnel, 6 kilometers from the truck. In total, the fire burned for 53 hours and reached temperatures of 1,000 °C (1,830 °F), mainly because of the margarine load in the trailer, equivalent to a 23,000-litre (5,100 imp gal; 6,100 US gal) oil tanker. The fire spread to other cargo vehicles nearby that also carried combustible loads. The fire trapped around 40 vehicles in dense and poisonous smoke containing carbon monoxide and cyanide. Due to weather conditions at the time, airflow through the tunnel was from the Italian side to the French side.[3] Authorities compounded the chimney effect by pumping in further fresh air from the Italian side, escalating the fire whist trapping toxic fumes inside. Only vehicles past the fire on the French side of the tunnel were trapped, while cars on the Italian side of the fire were mostly unaffected. There were 29 deaths trapped inside of vehicles, and nine more died trying to escape on foot. All the deceased were on the French side, and were ultimately reduced to bones and ash by the intense heat. Of the initial 50 people trapped by the fire, 12 survived, all of them from the Italian side.[2] It was more than five days before the tunnel cooled sufficiently to start repairs.
  • 75. Natura Accidentale 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 75 3
  • 76. Situazioni HPLC High Probability Low Consequences 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 76
  • 77. Low Probability High Consequences 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 77
  • 78. HPLC vs LPHC events HPLC High Probability Low Consequences LPHC Low Probability High Consequences release of energy SMALL LARGE numbers of breakdown SMALL LARGE people involved FEW MANY nonlinearity WEAK STRONG interactions WEAK STRONG uncertainty WEAK STRONG decomposability HIGH LOW course predictability HIGH LOW 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 78
  • 79. The burnt out interior of the Mont Blanc Tunnel 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 79
  • 80. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 80
  • 81. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 81
  • 82. effect time decomposability course predictability Runaway: Progressive Collapse 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 82
  • 83. Cascade Effect / Chain Reaction • A cascade effect is an inevitable and sometimes unforeseen chain of events due to an act affecting a system. • In biology, the term cascade refers to a process that, once started, proceeds stepwise to its full, seemingly inevitable, conclusion. • A chain reaction is the cumulative effect produced when one event sets off a chain of similar events. • It typically refers to a linked sequence of events where the time between successive events is relatively small. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 83
  • 84. Es. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 84
  • 85. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 85
  • 86. http://www.wise-uranium.org/img/stavaa.gif 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 86
  • 87. Design Strategy #1: CONTINUITY 15-Dec-22 87
  • 88. Design Strategy #2: Segmentation 15-Dec-22 88
  • 89. Tunnel with a single-point extraction system • The usual way to control the longitudinal velocity is to provide several independent ventilation sections. • When a tunnel has several ventilation sections, a certain longitudinal velocity in the fire section can be maintained by a suitable operation of the individual air ducts. • By reversing the fan operation in the exhaust air duct, this duct can be used to supply air and vice versa. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 89
  • 90. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 90 Water barriers
  • 91. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 91
  • 92. Approcci di analisi HPLC Eventi Frequenti con Conseguenze Limitate LPHC Eventi Rari con Conseguenze Elevate Complessità: Aspetti non lineari e Meccanismi di interazioni Impostazione del problema: DETERMINISTICA STOCASTICA ANALISI QUALITATIVA DETERMINISTICA ANALISI QUANTITATIVA PROBABILISTICA ANALISI PRAGMATICA CON SCENARI 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 92
  • 93. CAPITOLO 2: SICUREZZA E PRESTAZONI ATTESE QUALITA’ CAPITOLO 3: AZIONI AMBIENTALI CAPITOLO 6: AZIONI ANTROPICHE CAPITOLO 4: AZIONI ACCIDENTALI DOMANDA CAPITOLO 5: NORME SULLE COSTRUZIONI CAPITOLO 7: NORME PER LE OPERE INTERAGENTI CON I TERRENI E CON LE ROCCE, PER GLI INTERVENTI NEI TERRENI E PER LA SICUREZZA DEI PENDII CAPITOLO 9: NORME SULLE COSTRUZIONI ESISTENTI PRODOTTO CAPITOLO 11: MATERIALI E PRODOTTI PER USO STRUTTURALE CAPITOLO 10: NORME PER LA REDAZIONI DEI PROGETTI ESECUTIVI CAPITOLO 8: COLLAUDO STATICO CONTROLLO D.M. 14 settembre 2005 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 93
  • 94. Il Progettista, a seguito della classificazione e della caratterizzazione delle azioni, deve individuare le possibili situazioni contingenti in cui le azioni possono cimentare l’opera stessa. A tal fine, è definito: • lo scenario: un insieme organizzato e realistico di situazioni in cui l’opera potrà trovarsi durante la vita utile di progetto; • lo scenario di carico: un insieme organizzato e realistico di azioni che cimentano la struttura; • lo scenario di contingenza: l’identificazione di uno stato plausibile e coerente per l’opera, in cui un insieme di azioni (scenario di carico) è applicato su una configurazione strutturale. Per ciascuno stato limite considerato devono essere individuati scenari di carico (ovvero insiemi organizzati e coerenti nello spazio e nel tempo di azioni) che rappresentino le combinazioni delle azioni realisticamente possibili e verosimilmente più restrittive. Scenari (D.M. 14 settembre 2005) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 94
  • 96. Near miss (Wikipedia) • A near miss, near hit or close call is an unplanned event that has the potential to cause, but does not actually result in human injury, environmental or equipment damage, or an interruption to normal operation. • OSHA defines a near miss as an incident in which no property was damaged and no personal injury was sustained, but where, given a slight shift in time or position, damage or injury easily could have occurred. Near misses also may be referred to as near accidents, accident precursors, injury-free events and, in the case of moving objects, near collisions. A near miss is often an error, with harm prevented by other considerations and circumstances. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 96
  • 97. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 97
  • 98. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 98 Secondo una consulenza tecnica depositata da tre esperti (Franco Bontempi, Paolo Galli e Maria Migliazza) alla Procura di Genova, al 2020 il 75% delle gallerie autostradali liguri presentava elementi fuori norma. Tre tunnel su quattro sfuggiti alla manutenzione, ai controlli, al rinnovamento. La consulenza è stata redatta alla conclusione di un lungo lavoro partito dopo il crollo del soffitto della galleria Berté, sulla A26, il 30 dicembre del 2019. https://www.formulapassion.it/automoto/mobility/gallerie-liguria-indagine-75-per-cento-fuori-norma- 2020-lavori-cantieri-579186.html
  • 99. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 99
  • 100. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 100
  • 101. Sicurezza formale 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 101
  • 102. General assumptions of EN 1990 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 102
  • 103. HAZARD I N - D E P T H D E F E N C E HOLES DUE TO ACTIVE ERRORS HOLES DUE TO HIDDEN ERRORS Failure Path: Reason Model 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 103
  • 106. FIRE DETECTION & SUPPRESSION active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes STRUCTURAL CONCEPTION STRUCTURAL TOPOLOGY & GEOMETRY threats No Yes threats STRUCTURAL MATERIAL & PARTS No Yes passive structural characteristics threats FIRE DETECTION & SUPPRESSION No Yes active structural characteristics threats ORGANIZATION & FIREFIGHTERS No Yes threats MAINTENANCE & USE No Yes threats No alive structural characteristics Yes 15-Dec-22 106
  • 108. Conceptual Design 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 108
  • 109. Conceptual Design MULTI-HAZARD BLACK-SWAN DISASTER CHAIN 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 109
  • 110. Azione Incendio 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 110 4
  • 111. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 111 •Accidental features •Intensive features •Extensive features
  • 112. INTENSIVE FEATURES 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 112
  • 113. ISO 13387: Example of Design Fire 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 113
  • 114. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 114 Energie coinvolte
  • 115. Andamento nel tempo potenza termica 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 115
  • 116. Incipient period Growth period Burning period Decay period Fire behavior Heating of fuel Fuel controlled burning Ventilation controlled burning Fuel controlled burning Human behavior Prevent ignition Extinguish by hand, escape Death Detection Smoke detectors Smoke detectors, heat detectors External smoke and flame Active control Prevent ignition Extinguish by sprinklers or fire fighters; control of smoke Control by fire-fighters Passive control - Select materials with resistance to flame spread Provide fire resistance; contain fire, prevent collapse T time Buchanan, 2002 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 116
  • 117. flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t Temperatura T(t) andamento di T(t) a seguito del successo delle strategie attive flashover STRATEGIE ATTIVE (approccio sistemico) STRATEGIE PASSIVE (approccio strutturale) Tempo t Temperatura T(t) andamento di T(t) a seguito del successo delle strategie attive Strategie 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 117
  • 118. F L A S H O V E R passive ▪ Create fire compartments ▪ Prevent damage in the elements ▪ Prevent loss of functionality in the building active ▪ Detection measures (smoke, heat, flame detectors) ▪ Suppression measures (sprinklers, fire extinguisher, standpipes, firemen) ▪ Smoke and heat evacuation system prevention protection robustness ▪ Limit ignition sources ▪ Limit hazardous human behavior ▪ Emergency procedure and evacuation ▪ Prevent the propagation of collapse, once local damages occurred (e.g. redundancy) Fire Safety Strategies systemic structural 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 118
  • 120. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 120
  • 121. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 121
  • 122. SnakeFighter 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 122
  • 123. EXTENSIVE FEATURES 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 123
  • 124. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 124 Windsor Hotel Madrid
  • 125. Windsor Hotel Madrid 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 125
  • 126. The Great Fire of Chicago, October 7-10, 1871 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 126
  • 127. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 127
  • 128. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 128
  • 129. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 129
  • 131. Sviluppo di un incendio in galleria 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 131 5
  • 132. Tunnel Fires vs Compartment Fires (1) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 132
  • 133. Tunnel Fires vs Compartment Fires (2) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 133
  • 134. Tunnel Fires vs Compartment Fires (3) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 134
  • 135. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 135
  • 136. Tunnel Fires Progression (0) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 136
  • 137. Tunnel Fires Progression (1) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 137
  • 138. Effects of ventilation 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 138
  • 139. Temperature development 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 139
  • 140. Smoke development • A smoke layer may be created in tunnels at the early stages of a fire with essentially no longitudinal ventilation. However, the smoke layer will gradually descend further from the fire. • If the tunnel is very long, the smoke layer may descend to the tunnel surface at a specific distance from the fire depending on the fire size, tunnel type, and the perimeter and height of the tunnel cross section. • When the longitudinal ventilation is gradually increased, the stratified layer will gradually dissolve. • A backlayering of smoke is created on the upstream side of the fire. • Downstream from the fire there is a degree of stratification of the smoke that is governed by the heat losses to the surrounding walls and by the turbulent mixing between the buoyant smoke layers and the normally opposite moving cold layer. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 140
  • 141. Backlayering 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 141
  • 142. Temperature along the tunnel 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 142
  • 143. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 143 Maximum gas temperatures in the ceiling area
  • 144. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 144 Maximum gas temperatures in the ceiling area
  • 145. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 145 Maximum gas temperatures in the cross section
  • 146. CURVE TEMPERATURE-TEMPO 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 146
  • 147. • Defined in various national standards, i.e. ISO 834, BS 476: part 20, DIN 4102, AS 1530 etc. • This curve is the lowest used in normal practice. • It is based on the burning rate of the materials found in general building materials. Cellulosic curve 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 147
  • 148. • Although the cellulosic curve has been in use for many years, it soon became apparent that the burning rates for certain materials i.e. petrol gas, chemicals etc, were well in excess of the rate at which for instance, timber would burn. • The hydrocarbon curve is applicable where small petroleum fires might occur, i.e. car fuel tanks, petrol or oil tankers, certain chemical tankers etc. Hydrocarbon (HC) curve 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 148
  • 149. • Increased version of the hydrocarbon curve, prescribed by the French regulations. • The maximum temperature of the HCM curve is 1300ºC instead of the 1100ºC, standard HC curve. • However, the temperature gradient in the first few minutes of the HCM fire is as severe as all hydrocarbon based fires possibly causing a temperature shock to the surrounding concrete structure and concrete spalling as a result of it. Hydrocarbon modified (HCM) curve 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 149
  • 150. • The RABT curve was developed in Germany as a result of a series of test programs such as the EUREKA project. In the RABT curve, the temperature rise is very rapid up to 1200°C within 5 minutes. • The failure criteria for specimens exposed to the RABT-ZTV time-temperature curve is that the temperature of the reinforcement should not exceed 300°C. There is no requirement for a maximum interface temperature. RABT-ZTV (train) Time (minutes) T (°C) 0 15 5 1200 60 1200 170 15 RABT-ZTV (car) Time (minutes) T (°C) 0 15 5 1200 30 1200 140 15 RABT ZTV curves 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 150
  • 151. • The RWS curve was developed by the Ministry of Transport in the Netherlands. This curve is based on the assumption that in a worst case scenario, a 50 m³ fuel, oil or petrol, tanker fire with a fire load of 300MW could occur, lasting up to 120 minutes. • The failure criteria for specimens is that the temperature of the interface between the concrete and the fire protective lining should not exceed 380°C and the temperature on the reinforcement should not exceed 250°C. RWS, RijksWaterStaat Time (minutes) T (°C) 0 20 3 890 5 1140 10 1200 30 1300 60 1350 90 1300 120 1200 180 1200 RWS (Rijkswaterstaat) curve 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 151
  • 152. Types of fire exposure for tunnel analysis 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 152 0 200 400 600 800 1000 1200 1400 0 30 60 90 120 150 180 Temperature ( ƒ C) Time (min.) Cellulosic Hydrocarbon Hydrocarbon modified RABT-ZTV train RABT-ZTV car RWS
  • 153. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 153
  • 154. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 154
  • 155. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 155
  • 157. Lönnermark, A. and Ingason, H., “Large Scale Fire Tests in the Runehamar tunnel – gas temperature and Radiation”, Proceedings of the International Seminar on Catastrophic Tunnel Fires, Borås, Sweden, 20-21 November 2003. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 157
  • 159. Fire Scenario Recommendation 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 159
  • 160. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 160 Eurocodes
  • 161. EMERGENCY VENTILATION 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 161
  • 162. Multiphysics 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 162
  • 163. Smoke stratification 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 163
  • 164. Natural smoke venting • It can be sufficient in short, level tunnels where smoke stratification allows for escape in clear/tenable conditions. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 164
  • 165. Smoke filling long tunnel 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 165
  • 166. Emergency ventilation with longitudinal system • It can be employed in unidirectional, medium length tunnels, with free- flowing traffic conditions. Smoke is mechanically exhausted in direction of traffic circulation, clear tenable conditions for escape are obtained on upstream side of fire. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 166
  • 167. Ventilation with semi-transverse “point extraction” • Smoke is mechanically exhausted from single ceiling opening (reverse mode) leaving clear tenable escape conditions on both sides of fire. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 167
  • 168. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 168
  • 169. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 169
  • 170. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 170
  • 171. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 171 Goal #1
  • 172. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 172 Goal #2
  • 173. k size factor for HGV fire 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 173
  • 174. k size factor for small pool fire 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 174
  • 175. Observation: goal • The purpose of controlling the spread of smoke is to keep people as long as possible in a smoke-free environment. • This means that the smoke stratification must be kept intact, leaving a more or less clear and breathable air underneath the smoke layer. • The stratified smoke is taken out of the tunnel through exhaust openings located in the ceiling or at the top of the sidewalls. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 175
  • 176. EU directive 2004/54/EC sec. 2.9 - Ventilation • Criteria concerning minimum requirements for installation of mechanical ventilation: • 9.2.2 - A mechanical ventilation system shall be installed in all tunnels longer than 1,000 meters with a traffic volume higher than 2,000 vehicles per lane (per day). • 2.9.3 - In tunnels with bi-directional and/or congested unidirectional traffic, longitudinal ventilation shall be allowed only if a risk analysis according to Article 13 shows it is acceptable and/or specific measures are taken, such as appropriate traffic management, shorter emergency exit distances, smoke exhausts at intervals. • 2.9.4 - Transverse or semi-transverse ventilation systems shall be used in tunnels where a mechanical ventilation system is necessary and longitudinal ventilation is not allowed under point 2.9.3. These systems must be capable of evacuating smoke in the event of a fire. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 176
  • 177. Observation: longitudinal velocity • With practically zero longitudinal air velocity, the smoke layer expands to both sides of the fire. The smoke spreads in a stratified way for up to 10 min. • After this initial phase, smoke begins to mix over the entire cross section, unless by this time the extraction is in full operation. • The longitudinal velocity of the tunnel air must be below 2 m/s in the vicinity of the fire incidence zone. With higher velocities, the vertical turbulence in the shear layer between smoke and fresh air quickly cools the upper layer and the smoke then mixes over the entire cross section. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 177
  • 178. Observations: turbulence • With an air velocity of around 2 m/s, most of the smoke of a medium-size fire spreads to one side of the fire (limited backlayering) and starts mixing over the whole cross section at a distance of 400 to 600 m downstream of the fire site. This mixing over the cross section can also be prevented if the smoke extraction is activated early enough. • Vehicles standing in the longitudinal air flow increase strongly the vertical turbulence and encourage the vertical mixing of the smoke. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 178
  • 179. Observation: fresh air • In a transverse ventilation system, the fresh air jets entering the tunnel at the floor level induce a rotation of the longitudinal airflow, which tends to bring the smoke layer down to the road. • No fresh air is to be injected from the ceiling in a zone with smoke because this increases the amount of smoke and tends to suppress the stratification. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 179
  • 180. Observation: smoke extraction • In reversible semi-transverse ventilation with the duct at the ceiling, the fresh air is added through ceiling openings in normal ventilation operation. • If a fire occurs, as long as fresh air is supplied through ceiling openings, the smoke quantity increases by this amount and strong jets tend to bring the smoke down to the road surface. The conversion of the duct from supply to extraction must be done as quickly as possible. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 180
  • 181. Observation: traffic conditions • For a tunnel with one-way traffic, designed for queues (an urban area), the ventilation design must take into consideration that cars can likely stand to both sides of the fire because of the traffic. In urban areas it is usual to find stop-and-go traffic situations. • For a tunnel with two-way traffic, where the vehicles run in both directions, it must be taken into consideration that in the event of a fire vehicles will generally be trapped on both sides of the fire. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 181
  • 182. Strategies 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 182
  • 183. Smoke extraction • Continuous extraction into a return air duct is needed to remove a stratified smoke layer out of the tunnel without disturbing the stratification. • The traditional way to extract smoke is to use small ceiling openings distributed at short intervals throughout the tunnel. • Another efficient way to remove smoke quickly out of the traffic space is to install large openings with remotely controlled dampers. They are normally in an open position where equal extraction is taking place over the whole tunnel length. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 183
  • 184. VENTILATION MODELING 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 184
  • 185. Levels 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 185
  • 186. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 186
  • 187. 1D 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 187
  • 188. 1D 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 188
  • 189. 2D (zone model) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 189
  • 190. 2D (zone model) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 190
  • 191. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 191
  • 192. FDS Simulation 3D 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 192
  • 193. FDS Simulation 3D 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 193
  • 194. 3D 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 194
  • 195. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 195
  • 197. Multiscala 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 197
  • 198. Multiscala 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 198
  • 199. Multiscala 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 199
  • 200. Multiscala (strutturale) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 200
  • 201. Multiscala (strutturale) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 201
  • 202. Sicurezza e verifica 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 202 6
  • 203. BASIS 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 203
  • 204. Design Process - ISO 13387 A. Design constraints and possibilities (blue), B. Action definition and development (red), C. Passive system and active response (yellow), D. Safety and performance (purple). 3/22/2011 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 204
  • 205. SS0a PRESCRIBED DESIGN PARAMETERS SS0b ESTIMATED DESIGN PARAMETERS SS1 initiation and development of fire and fire efluent SS2 movement of fire effluent SS3 structural response and fire spread beyond enclosure of origin SS4 detection, activitation and suppression SS5 life safety: occupant behavior, location and condition SS6 property loss SS7 business interruption SS8 contamination of environment SS9 destruction of heritage (0) DESIGN CONSTRAINTS AND POSSIBILITIES (1+2) ACTION DEFINITION AND DEVELOPMENT (3+4) SYSTEM PASSIVE AND ACTIVE RESPONSE BUS OF INFORMATION RESULTS DESIGN ACTION RESPONSE SAFETY & PERFORMANCE FSE 15-Dec-22 205
  • 206. Buchanan, 2002 0 1 2 3 4 5 6 7 8 9 Strategie per la gestione dell'incendio 1 Prevenzione 2 Gestione dell'evento 3 Gestione dell'incendio 4 Gestione delle persone e dei beni 15 Difesa sul posto 16 Spostamento 17 Disposibilità delle vie di fuga 18 Far avvenire il deflusso 19 Controllo della quantità di combustibile 5 Soppressione dell'incendio 10 Controllo dell'incendio attraverso il progetto 13 Automatica 11 Manuale 12 Controllo dei materiali presenti 6 Controllo del movimento dell'incendio 7 Resistenza e stabilità strutturale 14 Contenimento 9 Ventilazione 8 Fire safety concepts tree (NFPA) 15-Dec-22 206
  • 207. Line 2 • La gestione dell’incendio non è necessaria se si previene l’ignizione. • Può essere solo ridotta la probabilità che avvenga l’ignizione. • Gli incendi dolosi è difficile da prevedere dal progettista Fire safety concepts tree (NFPA) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 207
  • 208. Line 4 Exposed persons and property can be managed by moving them from the building or by defending them in place; in order for people to move, the fire must be detected, the people must be notified, and there must be a suitable safe path for movement. Fire safety concepts tree (NFPA) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 208
  • 209. Fire safety concepts tree (NFPA) Line 6 There are three options for managing a fire; in the first case the fuel source can be controlled, by limiting the amount of fuel or the geometry; the second options is to suppress the fire; the third is to control the fire by construction. Control fire by construction it is necessary to both control the movement of the fire and provide the structural stability. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 209
  • 210. Fire safety concepts tree (NFPA) Line 9 - The two strategies for controlling fire movement are: a. fire venting: venting can be by an active system of mechanically operated vents, or a passive system that relies on the melting of plastic skylights; in either case, the increased ventilation may increase the local severity of the fire, but fire spread within the building and the overall thermal impact on the structure will be reduced; b. containment of a fire to prevent spread is the principal tool of passive fire protection; preventing fire growing to a large size is ne of the most important components of a fire safety strategy; radiant spread of the fire to neighboring buildings must also be prevented, by limiting the size of openings in exterior walls. Smoke containment can also controlled by venting or containment; pressurizations and smoke barriers can also used. 15-Dec-22 210
  • 211. Basis of tunnel fire safety design • The first priority identified in the literature for fire design of all tunnels is to ensure: 1. Prevention of critical events that may endanger human life, the environment, and the tunnel structure and installations. 2. Self-rescue of people present in the tunnel at time of the fire. 3. Effective action by the rescue forces. 4. Protection of the environment. 5. Limitation of the material and structural damage. • Furthermore, part of the objective is to reduce the consequences and minimize the economic loss caused by fires. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 211
  • 212. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 212
  • 214. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 214
  • 215. RISK CONCERN 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 215
  • 216. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 216 Option 1 Risk avoidance, which usually means not proceeding to continue with the system; this is not always a feasible option, but may be the only course of action if the hazard or their probability of occurrence or both are particularly serious; Option 2 Risk reduction, either through (a) reducing the probability of occurrence of some events, or (b) through reduction in the severity of the consequences, such as downsizing the system, or (c) putting in place control measures; Option 3 Risk transfer, where insurance or other financial mechanisms can be put in place to share or completely transfer the financial risk to other parties; this is not a feasible option where the primary consequences are not financial; Option 4 Risk acceptance, even when it exceeds the criteria, but perhaps only for a limited time until other measures can be taken.
  • 217. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 217
  • 218. DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS FIRE EVENT 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 218
  • 219. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 219 Simulations DEFINE SYSTEM (the system is usually decomposed into a number of smaller subsystems and/or components) HAZARD SCENARIO ANALYSIS (what can go wrong? how can it happen? waht controls exist?) ESTIMATE CONSEQUENCES (magnitude) ESTIMATE PROBABILITIES (of occurrences) DEFINE RISK SCENARIOS SENSITIVITY ANALYSIS RISK ANALYSIS NUMERICAL MODELING
  • 220. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 220
  • 221. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 221
  • 222. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 222
  • 223. Point of view for life safety risks • Individual risk The purpose of the individual risk is to ensure that individuals in the society are not exposed to unacceptably high risks. It can be defined as the risk to any occupant on the scene for the event/hazard scenario i.e. it is the risk to an individual and not to a group of people. • Societal risk One is not looking at one individual, but it is concerned with the risk of multiple fatalities. People are treated as a group, there are no considerations taken to the individuals within the group: the definition of the risk is from a societal point of view. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 223
  • 224. F (frequency) – N (number of fatalities) curve • An F–N curve is an alternative way of describing the risk associated with loss of lives. • An F–N curve shows the frequency (i.e. the expected number) of accident events with at least N fatalities, where the axes normally are logarithmic. • The F–N curve describes risk related to large-scale accidents, and is thus especially suited for characterizing societal risk. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 224
  • 225. 15-Dec-22 225 FN-curves UK Road Rail Aviation Transport, 67-01
  • 226. Persson, M. Quantitative Risk Analysis Procedure for the Fire Evacuation of a Road Tunnel - An Illustrative Example. Lund, 2002 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 226
  • 227. Risk acceptance – ALARP (1) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 227
  • 228. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 228 Risk acceptance – ALARP (2)
  • 229. Risk reduction by design 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 229
  • 231. What is the maximum amount the society (or the decisionmaker) is willing to pay to reduce the expected number of fatalities by 1? Typical numbers for the value of a statistical life used in cost-benefit analysis are 1–10 million euros. Monetary values – cost of human life (!) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 231
  • 232. STRUCTURAL CONCERN 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 232
  • 233. Mechanical Analysis • The mechanical analysis shall be performed for the same duration as used in the temperature analysis. • Verification of fire resistance should be in: • in the strength domain: Rfi,d,t ≥ Efi,requ,t (resistance at time t ≥ load effects at time t); • in the time domain: tfi,d ≥ tfi,requ (design value of time fire resistance ≥ time required) • In the temperature domain: Td ≤ Tcr (design value of the material temperature ≤ critical material temperature); 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 233
  • 234. Verification of fire resistance (3D) R = structural resistance T = temperature t = time T=T(t) R=R(t,T)=R(t,T(t))=R(t) 15-Dec-22 234
  • 235. Verification of fire resistance (R-safe) R = structural resistance T = temperature t = time Rfi,d,t Efi,requ,t 15-Dec-22 235
  • 236. Verification of fire resistance (R-fail) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! 15-Dec-22 236
  • 237. Verification of fire resistance (t) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! tfi,d ≥ tfi,requ 15-Dec-22 237
  • 238. Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr 15-Dec-22 238
  • 239. Verification of fire resistance (T) R = structural resistance T = temperature t = time Efi,requ,t Rfi,d,t Failure ! Td ≤ Tcr 15-Dec-22 239
  • 240. Aspetti di analisi non lineare 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 240
  • 241. Level 3 - Temperature Driven Scheme time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) time tK TERMAL STATE (Temperature Field and Termic Related Properties) MECHANICAL STATE (Strain and Stress Fields and Mechanical related Properties) 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 241
  • 242. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 242
  • 243. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 243 Non linearità di materiale
  • 244. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 244 Calcestruzzo in compressione
  • 245. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 245
  • 246. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 246 Calcestruzzo a trazione
  • 247. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 247 Acciaio per barre
  • 248. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 248 Parametri
  • 249. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 249
  • 250. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 250
  • 251. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 251 Coefficiente di dilatazione termica
  • 252. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 252 Dilatazione termica acciai
  • 253. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 253 Spalling
  • 254. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 254
  • 255. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 255 https://www.youtube.com/watch?v=36WlIzOVx30
  • 256. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 256 March 24, 1999 - Mont Blanc Tunnel fire. 39 dead.
  • 257. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 257
  • 258. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 258
  • 259. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 259
  • 260. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 260
  • 261. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 261
  • 262. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 262
  • 263. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 263
  • 264. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 264
  • 265. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 265
  • 266. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 266 https://www.intechopen.com/chapters/51837
  • 267. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 267
  • 268. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 268
  • 269. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 269 Temperature distribution at the depth of the cross-section after (a) t = 5 min, (b) t = 10 min and (c) t = 30 min of fire exposure
  • 270. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 270 https://www.intechopen.com/chapters/51837
  • 271. Introduction • As the most typical form, spalling is defined as the violent or nonviolent breaking off of layers or pieces of concrete from the surface of a structural element when exposed to high and rapidly rising temperature under fire conditions. • All that spalling could be grouped into four categories: (a) aggregate spalling, (b) corner spalling, (c) surface spalling, and (d) explosive spalling. • As shown in, aggregate spalling, surface spalling, and explosive spalling occur during the first 7–30 minutes in a fire, accompanied by popping sounds (aggregate spalling) or violent explosions (surface and explosive spalling). • Spalling may also occur nonviolently (corner spalling) later in a fire when the concrete has so weakened after a period of heating of 30–90 minutes that cracks develop, and pieces fall off its surface. The most important of these is explosive spalling, which occurs violently and results in serious loss of material. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 271
  • 272. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 272 Time of occurrence of different types of spalling in fire
  • 273. Mechanisms of explosive spalling • The most recent theories of the causes of explosive spalling indicate that three factors play a crucial role, i.e., (a) the build-up of pore pressure, (b) thermal stresses, and (c) combined high pore pressure and thermal stress in the concrete when exposed to a rapidly increasing temperature. • The first hypothesis supposes that heating produces water vapor in concrete and as the permeability of HPC is low, which limits the ability of vapor to escape, a build-up of vapor pressure results. • The second possibility is thermal stresses close to the heated surface due to preload or a high temperature gradient caused by a high heating rate. • Third, a combination of both phenomena is also possible. • These different mechanisms may act individually or on combination depending upon the moisture content, the section size, and the material. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 273
  • 274. 1 - Pore pressure spalling • The hypothesis is that the spalling is due to the build-up of very high pore pressures within the concrete as a result of the liquid-vapor transition of the capillary pore water as well as that bound in the cement paste component of the concrete (so-called moisture clog spalling). • Heating on the surface of concrete results in a temperature gradient, which forces moisture into the internal of the concrete as well as out of the surface. • The explosive spalling occurs when the pore pressure in the matrix accumulates to a threshold exceeding their tensile strength 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 274
  • 275. 2 - Thermal stress spalling • Thermal stresses will occur inside the concrete due to temperature gradients from the heated surface toward the inner, cooler sections of the concrete. • These gradients will increase with rapid heating rates. Different strains due to the thermal gradient are deemed to cause tensile and compressive stresses, depending on the thermal and mechanical properties of the concrete. Hindered expansion, loads, and restraints as well as the heating rate are mentioned as further parameters. • Failure due to spalling is considered to exceed the compressive strength of the concrete close to the heated surface. The compressive stresses due to the thermal gradient also lead to tensile stresses in the cooler sections of the concrete. • Explosive spalling only due to thermal stresses is relatively a rare occurrence 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 275
  • 276. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 276 Mechanism of thermal stress spalling
  • 277. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 277 3 - Explosive spalling caused by combined thermal stresses and pore pressure
  • 278. Note • Although theoretical modeling for the various spalling forms has been attempted in the past, it is recently that significant development has been made in this field. • The complex combined nature of the influences of moisture content, pore pressures, and thermal stresses in the heterogeneous concrete material with complex pore structure, which varies markedly with temperature during first heating, does not lend themselves easily to analytical modeling. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 278
  • 279. Factors influencing spalling • Based on the spalling mechanisms, the main factors leading to the explosive spalling of concrete at high temperatures are heating rate, permeability of concrete, moisture content, presence of reinforcement, and level of external applied load, but more factors have been identified in the literature review as influencing on the risk and extent of spalling. • The factors influencing to the explosive spalling of concrete can be classified into three categories as follows: 1.Material-related factors. 2.Structural or mechanical factors. 3.Heating characteristics. • However, some of these factors would fit into more than one category. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 279
  • 280. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 280 Use of various fibers to prevent the explosive spalling
  • 281. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 281 Non linearità geometrica
  • 282. 282 15 December 2022 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio
  • 286. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 286
  • 287. Indice 1. Strutture in sotterraneo a. Geometrie b. Impianti di ventilazione 2. Complessità 3. Natura accidentale 4. Azione incendio a. Caratteristiche intensive b. Caratteristiche estensive 5. Sviluppo di un incendio in galleria 6. Sicurezza e verifiche 7. Riferimenti 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 287
  • 288. ACKNOWLEDGEMENTS • Dr. Konstantinos GKOUMAS – Uniroma1 • Dr. Francesco PETRINI – Uniroma1 • Ing. Alessandra LO CANE – MIT • Dr. Filippo GENTILI – Coimbra (PT) • Mr. Tiziano BARONCELLI – Uniroma1 15-Dec-22 288
  • 289. Riferimenti 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 289 7
  • 290. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 290
  • 291. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 291
  • 292. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 292
  • 293. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 293
  • 294. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 294
  • 295. DIRETTIVA 2004/54/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 29 aprile 2004 relativa ai requisiti minimi di sicurezza per le gallerie della rete stradale transeuropea 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 295
  • 296. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 296
  • 297. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 297
  • 298. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 298
  • 299. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 299
  • 300. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 300
  • 301. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 301
  • 302. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 302
  • 303. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 303
  • 304. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 304
  • 305. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 305
  • 306. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 306
  • 307. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 307
  • 308. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 308
  • 309. 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 309
  • 310. CV • Franco Bontempi - Nato 1963. Servizio militare 1989. Laurea Ingegneria Civile 1988 e Dottorato di Ricerca in Ingegneria Strutturale 1993, Politecnico di Milano. • Dal 2000, Professore Ordinario di Tecnica delle Costruzioni alla Facoltà di Ingegneria Civile e Industriale dove insegna TEORIA E PROGETTO DI PONTI, GESTIONE DI PONTI E GRANDI STRUTTURE, PROGETTAZIONE STRUTTURALE ANTINCENDIO. • Periodi di ricerca: Harbin Institute of Technology (CHINA), Univ. of Illinois Urbana-Champaign (USA), TU Karlsruhe (D), TU Munich (D). Consulente per progetto e analisi di strutture speciali, procedimenti di ingegneria forense. • https://sites.google.com/a/uniroma1.it/francobontempi/ • https://fr.linkedin.com/in/francobontempi • https://www.youtube.com/channel/UCW3IyXTBJVIiS6OZeSdIN7g/videos 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 310
  • 311. https://sitES.google.com/a/uniroma1.it/francobontempi/ 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 311
  • 312. https://www.youtube.com/channel/UCW3IyXTBJVIiS6OZeSdIN7g 15-Dec-22 Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 312
  • 313. https://fr.linkedin.com/in/francobontempi Franco Bontempi - Sicurezza Strutturale di Gallerie in Caso di Incendio 15-Dec-22 313
  • 314. Sicurezza Strutturale di Gallerie in Caso di Incendio Prof. Ing. Franco Bontempi Ordinario di Tecnica delle Costruzioni Docente di TEORIA E PROGETTO DI PONTI – GESTIONE DI PONTI E GRANDI STRUTTURE PROGETTAZIONE STRUTTURALE ANTINCENDIO Facoltà di Ingegneria Civile e Industriale Università degli Studi di Roma La Sapienza franco.bontempi@uniroma1.it