SlideShare a Scribd company logo
1 of 34
Download to read offline
 
 
 
Preliminary Design Report 
Coring Device for Asteroid Regolith 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 ​Team NASA­2 
Michael Gauger 
Johnny Pham 
Gerald Thompson 
Aaron Nguyen 
11 December 2015 
   
 
Executive Summary 
This report explores the preliminary design process needed to design a coring device for                           
NASA’s Asteroid Redirect Mission (ARM). One of ARM’s objective is to put an asteroid into                             
the moon’s orbit. From there, astronauts will travel to the moon and extract samples from the                               
asteroid to study its composition. With the help of NASA­provided guidelines and parameters,                         
the problem was defined, a handful of concepts were generated, and eventually an Encased                           
Auger was decided upon. Known calculations from a screw auger conveyor system were used to                             
calculate the torque and force necessary to power the system in a low gravity system. After                               
comparing to the human capabilities in space, the Encased Auger was determined to be able to                               
perform the required duty of extracting a small core sample. It is comprised of a ratchet, drill                                 
chuck, multiple bearings, and the auger with a casing surrounding it. The ratchet will power the                               
drill chuck, which is gripping and driving the stem of the auger into the asteroid regolith. At the                                   
bottom of this double helix auger will be two flaps through which the material will flow through.                                 
Using spring hinges, the flaps will close once the astronauts pull up and release the pressure on                                 
the springs. A solid model assembly has been created ao prototyping and test plans are the next                                 
steps. It is imperative to begin coordinating with the machine shop staff to finish necessary steps                               
in order to acquire machine shop access.    
1 
Table of Contents 
Executive Summary ____________________________________________________________1 
Introduction___________________________________________________________________3 
Background Information_________________________________________________________3 
Problem Statement _____________________________________________________________7 
Problem Definition _____________________________________________________________7 
Design Soultion________________________________________________________________9 
Modeling and Analysis_________________________________________________________11 
Approach to Solution__________________________________________________________14 
Plan for Future Work__________________________________________________________21 
References___________________________________________________________________22 
Appendicies__________________________________________________________________24 
   
2 
Introduction 
NASA is known as the United States government agency responsible for the civilian                         
space program as well as aerospace research. NASA wants to improve and expand the space                             
program, so NASA created the Micro­G NExT 2016 Design Challenge ­ various challenges                         
which teams of students can choose to partake in. The goal of these challenges is to take humans                                   
past the Earth’s orbit and gain knowledge of the Solar System. Our team has chosen to partake in                                   
the second challenge ­ to design a coring device capable of obtaining a sample of regolith, loose                                 
pieces of rock and unconsolidated sand, near the surface of an asteroid.  
Detailed in the report is the entire design process complete at this point. Beginning with a                               
statement of the problem and resources provided by NASA, a set of specific design criteria were                               
created. Next brainstorming sessions were held to create possible design solutions; these                       
solutions were turned into a few possible design concepts. Using various methods a final concept                             
was selected to move forward with. After extensive modeling and analysis, a detailed design of                             
the prototype, the manual­powered Encased Auger, was created. The most suitable materials for                         
the main parts of the design were chosen and minor adjustments were made to the final concept                                 
from the conceptual design report. These individual parts were modeled on SolidWorks and were                           
assembled together. Then, extensive calculation were made to support the design feasibility. By                         
these models and analysis, a preliminary design was created that is feasible, efficient, and                           
effective. 
Background Information 
One of the greatest contemporary concerns is the possibility of a major catastrophe                         
caused by an asteroid. NASA’s goal is to perfect a strategy to deflect these large objects using                                 
3 
the asteroids themselves. The Asteroid Redirect Mission (ARM) uses the gravitational force                       
between a large asteroid and a smaller counterpart taken from the surface. The spacecraft                           
carrying the smaller counterpart, or Asteroid Redirect Vehicle (ARV), performs a series of                         
circles, creating an Enhanced Gravity Tractor to deflect the large asteroid from its path​[1]​
. After                             
the redirection, the smaller asteroid is transported to the moon’s orbit where it can be studied.                               
Using a secondary vehicle such as NASA’s Orion, scientists will dock to the ARV and go on to                                   
analyze the asteroid and its regolith​[1]​
. Perfecting this process will help NASA in their aspirations                             
to eventually send humans to Mars. 
Asteroids can be classified into three different types: the C­types, the S­types, and the                           
M­types. The most common type of asteroid is the C­type, representing over 75% of all                             
asteroids. The composition of C­types is very similar to the sun, consisting of large quantities of                               
carbon molecules with smaller quantities of hydrogen and helium molecules.​[2]
They are mostly                         
coal­black, although they can also be found grey as they are made mostly of rocks and metals.                                 
The importance of the C­types comes from the fact that some of them contain water. Scientists                               
believe this can be the key for in­space fuel for rocket ships and energy needed to unlock more                                   
complex asteroid resources. However, they are difficult to spot because they are coal­black.                         
Nevertheless, due to their water content, C­types are of utmost interest to scientists of outer                             
space. 
The second type of asteroid is the S­type, making up about 17% of all asteroids. The                               
composition of S­types is mostly stony magnesium­silicates, mixed with iron and metallic iron.​[3]
                         
While they are less likely to contain hydrated materials, the silicates of the S­types represent a                               
potential source of building material and radiation protection for commercial and government                       
4 
space operations. S­types tend to be relatively bright, making them much easier to spot than the                               
C­type asteroids. 
  The last type of asteroid is the M­type, the third most common asteroid that can be                               
classified. They are rich in metals as they consist mostly of metallic iron with refinery grade                               
nickel and iron.​[4]
Although they are not known to contain hydrated materials, their metallic                           
content can be useful in the future as more space­based projects take place. Because all asteroids                               
contain useful resources within their composition, it is important to develop methods to be able                             
to obtain these resources.  
Coring devices are regularly used in geological surveys to determine the composition of                         
the Earth at places of interest. These devices come in many different varieties ranging from a                               
diamond drill to piston corers. Diamond drills work by cutting around a solid core sample which                               
is placed into a core tube as the drill cuts deeper.​[5]
The core tube is then hoisted up the drill pipe                                         
by a winch or other lifting mechanism.​[5]
Water is usually pumped into the hole to aid in cooling                                   
the system because the drill must be cooled by a fluid to prevent overheating due to friction.​[5]
                                 
Another type of coring device is the reverse circulation (RVC) device.​[5]
RVC works by creating                             
small chips in the rock that are forced up the drill pipe by pressurized air. Then, they are                                   
collected via a cyclone mechanism.​[5]
RVC uses two types of drill bits depending on the moisture                               
present. For dry rock, a hammer bit is used to smash the rock into small pieces.​[5]
Once the rock                                     
begins to soften due to moisture a tricone bit is used to grind the rock into smaller pieces.​[5]
                                   
Piston and gravity corers both use gravity to sink into soft sediments on the ocean floor.​[6]
The                                 
difference between the two is that a piston corer uses a piston to drive the core pipe deeper into                                     
the sediment, whereas the gravity corer uses the effect of gravity.​[6]
   
5 
Since gravity does not exist in outer space, NASA needed a way to simulate                             
microgravity conditions on Earth. Thus, NASA conceived the idea of constructing the world’s                         
largest indoor pool, the Neutral Buoyancy Laboratory (NBL), to mimic weightlessness and                       
practice interstellar flight procedures. The neutral buoyancy pool measures 202 feet (62 m) long,                           
102 feet (31m) wide, and 40 feet (12.34 m) deep (20 feet above sea level and 20 feet below)​[7]​
.                                     
The walls of the NBL are reinforced with 645 tons of steel, while the floor is reinforced with 689                                     
tons of steel. The pool has a capacity of 6.2 million gallons of water, maintained at 86°F, while                                   
filtering 5,400 gallons per minute. Even at this size, the world’s largest pool can not                             
accommodate the entire International Space Station, which measures 305 feet by 240 feet.                         
However, the NBL was sized with the intentions of performing two spacewalk simulations                         
simultaneously.   
Astronauts rehearse spacewalk missions at the NBL; while underwater, a person is                       
subjected to hydrostatic pressure and buoyancy. To solve this, astronauts would don a spacesuit                           
in which weight could be adjusted so that it neither sinks nor floats, hence, the term “neutral                                 
buoyancy”​[8]​
. Everything needs to be neutrally buoyant to the replicate microgravity conditions                       
of outer space, from the astronaut’s tools to the life­size mock­up of the space station,  
The NBL still has a couple of technical challenges to overcome. The first challenge of the                               
neutral buoyancy pool is the effect of drag due to water​[9]​
. Drag is a friction force that opposes an                                     
object’s direction of motion relative to the surrounding fluid. Drag is nonexistent in outer space,                             
therefore it is easy to set an object in motion, while difficult to keep it stationary. To overcome                                   
this, astronauts generally move slowly to minimize the effects of drag, which is directly                           
proportional to the squared velocity of a moving object. The second problem is that astronauts                             
6 
are not weightless in the suit and will press down against the suit depending on body                               
orientation​[9]​
. This can be problematic and uncomfortable if the astronaut is upside down or in                             
another difficult position. Therefore, precise sizing of the suit is critical to overcoming this                           
challenge.  
Problem Statement 
The objective of this project is to design a coring device prototype for NASA that will                               
obtain a sample of regolith off the surface of an asteroid in microgravity. Accordingly, NASA                             
created the Micro­g NExT 2016 Design Challenge; the device is intended for use solely by                             
NASA. This coring device should be able to penetrate the regolith, collect its samples, and                             
maintain its stratigraphy. By doing so, an analysis of the asteroid’s history and internal structure                             
would become possible. NASA imposed very specific constraints on the prototype design as                         
stated in the Micro­g NExT 2016 Design Challenge on NASA’s website​[10]​
. 
Problem Definition 
The device should perform the following actions while in use: the device shall collect a                             
core sample that must be 1­inch in diameter and 6­inches in length, the device shall obtain a core                                   
from a bin of regolith containing a mixture of unconsolidated sand and rock fragments less than                               
0.25 inches in diameter, and the device shall maintain the stratigraphy of the core during                             
collection, containment, and transportation.  
The device may be operated manually or pneumatically. In the case the device is driven                             
pneumatically, the following will be supplied by NASA: pressure of 125 psig, NBL Shop Air                             
Connector, and the umbilicals. The following details of the NBL Shop Air Connector are                           
provided:  
7 
i. Grainger: Coupler Plug, (M)NPT, Item# 1HLZ8, Mfr. Model#               
A73440­BG (Note: the female P/N is 1HLZ9) 
ii. Quick Coupler Body, (F)NPT, Steel Item# 1HUK7, Mfr. Model#                 
A73410­BG 
The physical dimensions of the device must meet the following constraints as set by                           
NASA in the design requirements​[11]​
: The device may have multiple parts that attach and detach,                             
the device (all parts) shall fit within an 8in x 8in x 18in volume for stowage; the device (all parts)                                       
shall have a dry weigh less than 15 pounds, the device shall have a tether attachment point 1 inch                                     
in diameter, and the mockup components shall not contain sharp edges or items capable of                             
cutting or puncturing because of the potential for personal injury due to contact. 
While the ultimate goal will be to use the device in future space missions, for testing                               
purposes the device will be tested in the NASA Micro­g pool​[11]​
. Accordingly, the device must be                               
operable in a chlorine water environment. The device must also be designed with drain holes or                               
designed with geometry to allow the free flow of air or water as required, to support submersion                                 
and removal to and from the NBL pool. 
The operation of the device will by handled by a single astronaut who will have both                               
hands available​[1]​
. The astronaut must be able to operate the device with Extravehicular Activity                           
(EVA) gloved hands (similar to ski gloves). There must not be any holes or openings in the tool                                   
that will cause the astronaut’s fingers to become entrapped​[10]​
. The hardware of the device must                             
be able to withstand normal handling and kick loads while not presenting a safety hazard​[10]​
. Kick                               
loads are reactive burst of motion resulting from other instruments’ motion. For every action                           
there’s a reaction and in outer space these reactions can be exponentially dangerous 
8 
Design Solution 
The manual powered Encased Auger was chosen as the coring device for NASA’s                         
Micro­g NExT 2016 Design Challenge. This design consists of a helical auger encased inside of                             
a cylindrical tube. The helical auger has a stinger bit attached at its end designed to disturb the                                   
material. The helical auger also has integrated flaps which opens as material travels up the flights                               
of the auger and closes as a certain amount of material enters the auger. The other end of the                                     
helical auger has a drill shank that is connected to a keyed chuck, that is connected to a                                   
cylindrical housing. A ratchet lever is used to power the device. The device also contains a                               
tethering point and a stabilizing handle. To power the device, the astronaut rotates the ratchet                             
lever while holding on to the stabilizing handle for support. 
 
Figure 1: ​Exploded view of coring device with bill of materials 
9 
 
Figure 2: ​Full assembly of the encased auger 
The main part of the prototype is the helical auger. At one end of the helical auger is a                                     
stinger bit and two integrated flaps; at the other end is a shank which connects to the keyed                                   
chuck. The two flaps are attached to the auger via two flap pins. The helical auger is then                                   
encased inside of a cylindrical tube. A bearing is placed at the end of the tube on the shaft                                     
connecting to the keyed chuck. The auger has a length of 7.21 inches, a pitch of 0.75 inches, a                                     
helical diameter of 1 inch, and a shaft diameter of 0.25 inches. The cylindrical tube has an inner                                   
diameter of 1 inch and outer diameter of 1.25 inches. This ensures the proper amount of core                                 
samples will be collected inside the cylindrical tube. The auger will be attached to the housing                               
using an off the shelf chuck.  
10 
The cylindrical housing is another main part of our prototype. The housing encloses the                           
shaft of the drill chuck and remains stationary while the device is powered. It also stabilizes the                                 
astronaut; it includes an attached stability handle and a tether point. The housing consists of two                               
half cylinders held in place by four housing screws. The length of the cylindrical housing is 4                                 
inches while the length of its attached stability handle is 4.49 inches. Its housing screws are .15                                 
inches in diameter, with ¼”­20 machine threads. 
The ratchet lever used to manually power the device is attached to the chuck adapter. An                               
astronaut simply rotates the ratchet lever to transmit power to the helical auger. The chuck                             
housing also has two bearings where it meets the drill chuck. The ratchet lever can be detached                                 
from the rest of the assembly once sample collection is complete. When the astronaut is done                               
collecting samples, the cylindrical tube with the helical auger can also be detached from the                             
device. Flaps on the bottom of the auger will keep material from falling out until the auger can                                   
be removed and rubber stoppers installed.  
Modeling and Analysis 
To proceed with the manual powered Encased Auger, it must be determined that the                           
design is feasible. In order for the design to be feasible, the total torque of the auger must be                                     
within reasonable limits of human power. To derive the total torque of the auger, the auger is                                 
modeled as a screw conveyor with a fully enclosed tubular casing. First, the effective radius of                               
the screw conveyor is defined as 
 Re = 3
2
(R −Ro
2
i
2
R −Ro
3
i
3
)  (1) 
where R​o is the outer radius of the screw flight and R​i is the inner radius of the radius of shaft​[3]​
.                                         
The helix angle of the screw flight corresponding to the effective radius is then 
11 
an  αe = t −1
[( p
πD)(Ri
Ro
)] (2) 
where p is the pitch length of the screw conveyor and D is the screw flight diameter​[12]​
. 
The fullness efficiency must now be defined, the measure of how much material is inside                             
of the encased screw conveyor. This can be given as 
ɳf = p
hav
 (3) 
where h​av is the average height of material on the screw surface and p is the pitch length of the                                       
screw conveyor​[12]​
. 
With the fullness efficiency, it is possible to determine the weight of the bulk material                             
retained on each pitch. The weight is 
⍴gɳ W = π R( o
2
− Ri
2
)p f  (4) 
where   is the density of the material and g is the gravitational constant.⍴   
The weight of the material per pitch at an arbitrary inclination angle must be accounted                             
for.  
F cos(θ))Δ ra = W (sin(θ) + μe (5) 
where is the equivalent friction coefficient to allow for drag of the casing walls during  μe                              
motion. This is defined by 
μe = μc (1 ɳ)+ K F (6) 
where is the friction coefficient for bulk material on the casing surface and is the pressure  μc                          K      
ratio ranging from 0.4 to 0.6. 
From this we can determine the Torque of the screw per pitch   
ΔF R tan(α )Tsp = 3
2
p
L
ra e e + Φs    (7) 
12 
where ​s is the friction angle for bulk solid on screw surface; R​e is effective radius; is  Φ                               αe  
effective helix angle; L is length of screw conveyor; p is pitch. 
Next the torque of the shaft on the material must be found. First the pressure of the bulk                                   
solid on the shaft must be determined. 
ρgpησn = K f  (8) 
where K (K=0.4) is the pressure distribution around the shaft, is the density of the bulk solid, p                   ρ                
is pitch, g is acceleration due to gravity, and  is fullness efficiency.ηf  
Finally torque on the shaft is 
πR σTsh = 2 i
2
np
L
(9) 
where R​i is the inner radius, L is length of the screw conveyor, p is pitch and is the pressure of                                 σn        
the solid on the shaft. 
The total torque is found by taking the sum of the torque on the shaft and torque of the                                     
screw 
T = Tsp + Tsh  (10) 
After plugging in values, it is seen that the torque is heavily dependent on the weight of                                 
the material and the gravitational constant in microgravity. The maximum torque of the screw                           
conveyor comes out to approximately 3 foot­pounds, which is within the capabilities of humans                           
in outer space. The mean maximum torque strength of an astronaut is shown to be between 121.5                                 
to 153.9 foot­pounds with a standard deviation of 3.41 to 5.08 foot­pounds​[13]​
. By modeling the                             
encased auger as an encased screw conveyor and by assuming the astronaut has two available                             
hands, a manually driven auger device in microgravity is very feasible. Engineering drawings                         
and solids models for each part can be found in appendix 2 & 3 respectively. 
13 
Approach to Solution 
Concept Generation 
Our team created many different concepts for a coring device through a series of                           
individual and team brainstorming sessions. For each brainstormed concept, feedback was                     
provided on basis of feasibility and performance. Then each concept was either improved or                           
scrapped; eventually, a morphological chart was created and this morphological chart gave us                         
four concepts we considered as our final design. The concepts generated are: the Dome Drill, the                               
Post Hole Digger, the Conical Bit, and the Encased Auger. 
The Dome Drill is our first concept. It contains notches in the head intended to disturb the                                 
ground. This leaves a circular hole for the material to pass through. To capture the material, the                                 
astronaut pulls up after reaching the required depth. This assumes the weight of the material,                             
along with an upward jerk­motion, effectively closes the levers. 
 
Figure 3: ​Domed Drill bit with spring loaded closure flaps  Figure 4: ​Handheld means of power for Domed Drill 
14 
Our second concept is the Post Hole Digger Design, similarly powered with a handheld                           
device as shown in Figures 3 & 4 . The Post Hole Digger Design also uses springs; however, the                                     
springs are compressed rather than wound. Once the material fills the separate container, it                           
effectively shifts the container up, releasing the springs and closing the latches.  
 
Figure 5: ​Side view of post hole digger. Figure 6: ​Top view of post hole digger  
Our third design is the Conical Bit. This design is similar to Dome Drill because it                               
employs the flap­spring concept except with more frequency. The regolith flows through the                         
flaps, and the flaps close themselves once the maximum sample size is obtained. This design is                               
heavily dependent on downward, parallel force, much like the Dome Drill and the Post­Hole                           
Design. 
15 
 
Figure 7:​ Conical Drill Bit with flaps 
Our final design is the Encased Auger. This design uses a helical auger encased in a                               
cylindrical tube. This tube has a removable circumferential drill bit on the end that aids in the                                 
coring. The regolith is captured inside of the auger as it rotates upward. Once the material is                                 
collected, an integrated flap closes the cylindrical container. By placing an auger within a                           
cylinder, along with the use of flaps, we believe this effectively captures the material and stores                               
it. 
16 
 
Figure 8:​ Encased Auger Concept 
Concept Selection 
These four concepts were seen as the most feasible; therefore we used a weighted                           
decision matrix to help make our choice. We completed the decision matrices using different                           
concepts as the datum to ensure consistent results. For our decision matrix we decided that                             
stratigraphy was the most important design criteria. Next we gave power, material transport, and                           
17 
manufacturing the same weighting factor; the least important factors were durability, stability,                       
ease of maintenance, and weight. 
Table 2:​ Weighted decision matrix with the Dome Drill as the datum 
Criteria  Weights  Dome Drill  Post Hole
Digger
Conical Drill  Encased Auger 
Power  1.5  D  S  S  S 
Material Transport  1.5  A  S  S  S 
Manufacturing  1.5  T  -  -  + 
Durability/Reliability  1  U  S  -  + 
Stability  1  M  S  S  + 
Ease of Maintenance  1    -  -  + 
Weight/Size  1    S  S  S 
Stratigraphy   2    S  S  - 
 
Table 3:​ Morphological Chart with the Encased Auger as the datum. 
Criteria  Weights Domed
Drill 
Post Hole Digger  Conical Drill  Encased Auger 
Power  1.5 S  S  S  D 
Material Transport  1.5 S  S  S  A 
Manufacturing  1.5 -  -  -  T 
Durability/Reliability  1 -  -  -  U 
Stability  1 -  -  -  M 
Ease of Maintenance  1 -  -  -   
Weight/Size  1 S  S  S   
Stratigraphy   2 +  +  +   
18 
 
The results of the decision matrices show the Encased Auger is the best coring device                             
Concept. The Encased Auger possesses advantages in manufacturing, durability/reliability, and                   
ease of maintenance. The Encased Auger has the advantage of manufacturing because the other                           
designs consists of more parts, parts that would be more complex to manufacture.  
For example, the Dome Drill consists of many notches in the head and spring­loaded                           
levers dependent on the weight of the sample materials to close the levers. The many notches in                                 
the head are tedious to manufacture, along with the spring­loaded levers. The Post Hole Digger                             
consists of spring­loaded latches that are dependent on the shifting volume of the material;                           
manufacturing this design requires extreme precision. The Conical Drill Bit consists of many                         
spring­loaded flaps, which are tedious to manufacture. Since the Encased Auger only consists of                           
the auger and cylindrical drill bit, it is easier to manufacture than the other designs. Given that                                 
the Encased Auger is easiest to manufacture, it is also the most durable, most stable, and most                                 
effective at extracting the sample of regolith.  
The only advantage the Encased Auger does not possess is the advantage of maintaining                           
stratigraphy. This is the one minor concern of the Encased Auger. The helical auger must rotate                               
out while the device is collecting regolith and when the cylindrical case is unscrewed from the                               
device; as a result, there is minor interference with the stratigraphy of the regolith sample.                             
However, this interference should not ruin the stratigraphy of the regolith sample. The Encased                           
Auger should be able to collect regolith samples without fear of compromised stratigraphies. 
The Encased Auger also meets the specifications and constraints set by NASA in the                           
problem statement. The problem statement sets a specific volume of core samples which must be                             
19 
collected with consistent stratigraphies; the Encased Auger accomplishes this task. As far as the                           
device itself, it must fit within an 8” x 8” x 18” volume, weigh less than 15 pounds, have a tether                                         
point 1” in diameter, contain no sharp edges, and be operable in chlorine water environment.                             
After detailed design and modeling, we designed the Encased Auger to meet these requirements.                           
Finally we are given a choice between manual or pneumatic powered for the device. Using the                               
morphological chart, we chose manual powered as the device consists of less moving parts than a                               
pneumatic device; this increases the device’s reliability and manufacturing. The Encased Auger                       
meets all the problem specifications both effectively and efficiently. 
 
 
 
 
Plan for Future Work 
Table 3: ​Project Timeline for remaining steps 
Task Name  Start  End  Duration (days) 
Design Verification  1/4/16  1/13/16  9 
Prototype 
Construction 
1/13/16  2/17/16  35 
Prototype Testing  2/17/16  2/28/16  11 
Design Evaluation 
Report 
2/20/16  3/2/16  11 
Design Presentation  3/8/16  3/8/16  1 
Final Design Report  3/16/16  3/16/16  1 
20 
 
Now that detailed design is complete the project will move into design verification and                           
prototype construction. Off the shelf parts will need to be ordered and custom parts will be                               
machined during the next three months. The design may be subjected to multiple iterations until                             
satisfaction. By May, a working prototype should be built and all steps of the design process will                                 
have been completed. The Gantt chart has been updated to show only the remaining parts of the                                 
design process that need to be completed. 
Figure 9:​ Gantt chart of remaining design processes   
21 
References 
[1] “How Will NASA’s Asteroid Redirect Mission Help Humans Reach Mars?” NASA. 
http://www.nasa.gov/content/how­will­nasas­asteroid­redirect­mission­help­humans­reach­mars. 
June 2014. 
[2] "Asteroids: Composition | Planetary Resources." Planetary Resources Asteroids Composition 
Comments. N.p., n.d. Web. http://www.planetaryresources.com/asteroids/composition/. 21 Oct. 
2015. 
[3] "Asteroids." N.p., n.d. Web. http://nssdc.gsfc.nasa.gov/planetary/text/asteroids.txt. 21 Oct. 
2015. 
[4] "Regolith | Geology." Encyclopedia Britannica Online. Encyclopedia Britannica, n.d. Web. 
http://www.britannica.com/science/regolith. 21 Oct. 2015. 
[5] "Diamond Drilling." ​Diamond Drilling​. N.p., n.d. Web. 
http://earthsci.org/education/fieldsk/drilling/drilling.html. 21 Oct. 2015.  
[6] "Piston Corer." ​WHOI : Instruments :​. N.p., n.d. Web. 
http://www.whoi.edu/instruments/viewInstrument.do?id=8087. 21 Oct. 2015.  
[7] “NBL Characteristics,” NASA, http://dx12.jsc.nasa.gov/about/index.shtml. October 10, 2015. 
[8] Hutchinson, L., 2013, “Swimming with Spacemen : training for spacewalks at NASA’s giant 
pool,” Ars Technica, http://arstechnica.com/science/2013/03/swimming­with­spacemen/1/. 
October 10, 2015. 
[9] “What is Neutral Buoyancy?,” NASA, http://dx12.jsc.nasa.gov/about/whatIsNB.shtml 
October 10, 2015.  
22 
[10] "NASA ­ Reduced Gravity Student Flight Opportunities Program." ​NASA ­ Reduced Gravity 
Student Flight Opportunities Program​. N.p., n.d. Web. 
[11] "Challenge: Coring Device For Regolith." (n.d.): n. pag. ​MICRO­G NEXT 2016 DESIGN 
CHALLENGES​. NASA. Web. 
https://microgravityuniversity.jsc.nasa.gov/pdfs/MicroG%20NExT%202016%20Design%20Cha
llenges.pdf. 21 Oct. 2015. 
[12] "Design Considerations and Performance Evaluation of Screw Conveyors." ​DESIGN 
CONSIDERATIONS AND PERFORMANCE EVALUATION OF SCREW CONVEYORS​ (n.d.): n. 
pag. ​Double Arrow Belt​. Web. 30 Nov. 2015. 
[13] "Human Performance Capabilities." ​HUMAN PERFORMANCE CAPABILITIES​. N.p., n.d. 
Web. 30 Nov. 2015. 
 
 
 
   
23 
Appendices 
Appendix 1: Torque calculation for auger__________________________________________20 
Appendix 2: Engineering Drawings_______________________________________________21 
Appendix 3: Solid Models______________________________________________________25 
   
24 
Appendix 1: Torque calculation of encased auger 
L=7 (in) 
g=rand*32.2 (ft/s​2​
) 
Ro=(1.25:.01:2)./2 (in) 
Ro=Ro./12 (convert in to ft) 
Ri=(0.25:.01:1)./2 (in) 
Ri=Ri./12 (convert in to ft) 
p=0.25.*(Ro.*2) (ft) 
rho=108 (lbm/ft​3​
) 
rho=rho/32.2 (convert lbm/ft^3 to slug/ft​3​
) 
MUc=0.40 (between steel and sand) 
Ke=0.5 
K=0.4  
theta=90​o 
phi=22​o​
 (between steel and sand) 
D=Ro.*2 (ft) 
hav=rand.*p (ft) 
Re=(2/3)*((Ro.^3­Ri.^3)./(Ro.^2­Ri.^2)) (ft) 
nf=hav./p; 
alpha=atand((p./(pi.*D)).*(Ro./Re)) (degrees) 
W=pi.*(Ro.^2­Ri.^2).*p.*rho.*g.*nf (lb) 
MUe=MUc.*(1+Ke.*nf) 
Fr=W.*(sind(theta)+MUe.*cosd(theta)) (lb) 
Tsp=2/3.*L./p.*Fr.*Re.*tand(alpha+phi) (ft­lbs) 
sig=K.*rho.*g.*p.*nf (lb/ft​2​
) 
Tsh=2.*pi.*Ri.^2.*sig.*L./p (ft­lbs) 
T=Tsp+Tsh (ft­lbs) 
 
   
25 
Appendix 2: Engineering Drawings 
Dimensions of all drawing are in inches
 
Figure 1: Coring Device assembly with Bill of Materials 
26 
 
Figure 10:​ Auger 
 
Figure 11: ​Bottom of Auger 
27 
 
Figure 12: ​Casing without rubber stoppers 
 
Figure 13:​ Drill Chuck with adapter 
28 
 
Figure 14: ​Auger Flaps 
 
Figure 15: ​Housing with tether point and stability handle 
29 
Appendix 3: Solid Models 
 
Figure 2: ​Full assembly of coring device 
30 
 
Figure 16: ​Isometric view of front of auger in casing 
 
Figure 17:​ Isometric View of back of auger in casing 
31 
 
Figure 18: ​Section view of auger inside casing 
 
Figure 19:​ Auger with closure flaps installed 
32 
 
Figure 20:​ Casing with rubber stoppers installed 
 
Figure 21: ​Section view of casing with stoppers installed 
33 

More Related Content

What's hot

Gravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroidsGravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroidsSérgio Sacani
 
C.Odenwald_VASTS2014_FinalProject
C.Odenwald_VASTS2014_FinalProjectC.Odenwald_VASTS2014_FinalProject
C.Odenwald_VASTS2014_FinalProjectChristine Odenwald
 
Seameo qitep pha_dhani
Seameo qitep pha_dhaniSeameo qitep pha_dhani
Seameo qitep pha_dhaniMank Zein
 
Pictures of the year 2013: Space
Pictures of the year 2013: SpacePictures of the year 2013: Space
Pictures of the year 2013: Spaceguimera
 
Planetary motionmodule15
Planetary motionmodule15Planetary motionmodule15
Planetary motionmodule15Kella Boatner
 
Space exploration benefits essay example
Space exploration benefits essay exampleSpace exploration benefits essay example
Space exploration benefits essay exampleKirk's Class
 
Life and research in International Space Station
Life and research in International Space StationLife and research in International Space Station
Life and research in International Space Stationnikchem
 
Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...
Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...
Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...Winston Sanks
 
How A Rocket is Launched into Space
How A Rocket is Launched into SpaceHow A Rocket is Launched into Space
How A Rocket is Launched into SpaceJohann Lo
 
Space debris and methods employed to encounter it
Space debris and methods employed to encounter itSpace debris and methods employed to encounter it
Space debris and methods employed to encounter itManjunath C Harapanahalli
 

What's hot (20)

Gravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroidsGravitational trator to_towing_asteroids
Gravitational trator to_towing_asteroids
 
C.Odenwald_VASTS2014_FinalProject
C.Odenwald_VASTS2014_FinalProjectC.Odenwald_VASTS2014_FinalProject
C.Odenwald_VASTS2014_FinalProject
 
Seameo qitep pha_dhani
Seameo qitep pha_dhaniSeameo qitep pha_dhani
Seameo qitep pha_dhani
 
Aiaa asm 2015-isru-11-bp
Aiaa asm 2015-isru-11-bpAiaa asm 2015-isru-11-bp
Aiaa asm 2015-isru-11-bp
 
12 lecture outline
12 lecture outline12 lecture outline
12 lecture outline
 
Pictures of the year 2013: Space
Pictures of the year 2013: SpacePictures of the year 2013: Space
Pictures of the year 2013: Space
 
Planetary motionmodule15
Planetary motionmodule15Planetary motionmodule15
Planetary motionmodule15
 
Comets
CometsComets
Comets
 
Space Debris
Space DebrisSpace Debris
Space Debris
 
Space exploration benefits essay example
Space exploration benefits essay exampleSpace exploration benefits essay example
Space exploration benefits essay example
 
Life and research in International Space Station
Life and research in International Space StationLife and research in International Space Station
Life and research in International Space Station
 
Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...
Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...
Kinetic Energy Transfer of Near-Earth Objects for Interplanetary Manned Missi...
 
sarabhai
sarabhaisarabhai
sarabhai
 
Space Station
Space StationSpace Station
Space Station
 
Visits tomarsjun02
Visits tomarsjun02Visits tomarsjun02
Visits tomarsjun02
 
How A Rocket is Launched into Space
How A Rocket is Launched into SpaceHow A Rocket is Launched into Space
How A Rocket is Launched into Space
 
Satellites
SatellitesSatellites
Satellites
 
ACCESSMars_ExecutiveSummary
ACCESSMars_ExecutiveSummaryACCESSMars_ExecutiveSummary
ACCESSMars_ExecutiveSummary
 
Space Debris Project
Space Debris ProjectSpace Debris Project
Space Debris Project
 
Space debris and methods employed to encounter it
Space debris and methods employed to encounter itSpace debris and methods employed to encounter it
Space debris and methods employed to encounter it
 

Similar to PreliminaryDesignReport

Autonomous Restructuring of Asteroids into Rotating Space Stations
Autonomous Restructuring of Asteroids into Rotating Space StationsAutonomous Restructuring of Asteroids into Rotating Space Stations
Autonomous Restructuring of Asteroids into Rotating Space StationsSérgio Sacani
 
SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011
SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011
SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011Journal For Research
 
asteroid mining presentation for earth and space science
asteroid mining presentation for earth and space scienceasteroid mining presentation for earth and space science
asteroid mining presentation for earth and space sciencetshmvm547v
 
Solar system exploration with space resources - Aiaa asm 2014_bp_9 final paper
Solar system exploration with space resources - Aiaa asm 2014_bp_9 final paperSolar system exploration with space resources - Aiaa asm 2014_bp_9 final paper
Solar system exploration with space resources - Aiaa asm 2014_bp_9 final paperBryan Palaszewski
 
Nano satellite by anil
Nano satellite by anilNano satellite by anil
Nano satellite by anilAnil Yadav
 
Transofrming earthquake detection
Transofrming earthquake detectionTransofrming earthquake detection
Transofrming earthquake detectionSérgio Sacani
 
Importance of space technology
Importance of space technologyImportance of space technology
Importance of space technologyIkyaRaletta
 
NorthDakotaSYSTEMS
NorthDakotaSYSTEMSNorthDakotaSYSTEMS
NorthDakotaSYSTEMSAustin Cote
 
Laser melting manufacturing of large elements of lunar regolith simulant for ...
Laser melting manufacturing of large elements of lunar regolith simulant for ...Laser melting manufacturing of large elements of lunar regolith simulant for ...
Laser melting manufacturing of large elements of lunar regolith simulant for ...Sérgio Sacani
 
Canberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesCanberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesJohn Hines
 
ILOA Galaxy Forum China 2017 - Guo Linli
ILOA Galaxy Forum China 2017 -  Guo LinliILOA Galaxy Forum China 2017 -  Guo Linli
ILOA Galaxy Forum China 2017 - Guo LinliILOAHawaii
 
712295015_Suryapratap_Innovation-in-space.pptx
712295015_Suryapratap_Innovation-in-space.pptx712295015_Suryapratap_Innovation-in-space.pptx
712295015_Suryapratap_Innovation-in-space.pptxSuryapratapsingh166
 
Space Science.pptx
Space Science.pptxSpace Science.pptx
Space Science.pptxSayyad Shafi
 

Similar to PreliminaryDesignReport (20)

Autonomous Restructuring of Asteroids into Rotating Space Stations
Autonomous Restructuring of Asteroids into Rotating Space StationsAutonomous Restructuring of Asteroids into Rotating Space Stations
Autonomous Restructuring of Asteroids into Rotating Space Stations
 
ACT Science Coffee - Robert Swinney
ACT Science Coffee  - Robert SwinneyACT Science Coffee  - Robert Swinney
ACT Science Coffee - Robert Swinney
 
5079
50795079
5079
 
SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011
SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011
SPACE EXPLORATION ROVER USING LABVIEW | J4RV3I12011
 
asteroid mining presentation for earth and space science
asteroid mining presentation for earth and space scienceasteroid mining presentation for earth and space science
asteroid mining presentation for earth and space science
 
Solar system exploration with space resources - Aiaa asm 2014_bp_9 final paper
Solar system exploration with space resources - Aiaa asm 2014_bp_9 final paperSolar system exploration with space resources - Aiaa asm 2014_bp_9 final paper
Solar system exploration with space resources - Aiaa asm 2014_bp_9 final paper
 
Nano satellite by anil
Nano satellite by anilNano satellite by anil
Nano satellite by anil
 
WSW 3.0 (3).pptx
WSW 3.0 (3).pptxWSW 3.0 (3).pptx
WSW 3.0 (3).pptx
 
Transofrming earthquake detection
Transofrming earthquake detectionTransofrming earthquake detection
Transofrming earthquake detection
 
Importance of space technology
Importance of space technologyImportance of space technology
Importance of space technology
 
solar sail
solar sailsolar sail
solar sail
 
NorthDakotaSYSTEMS
NorthDakotaSYSTEMSNorthDakotaSYSTEMS
NorthDakotaSYSTEMS
 
Laser melting manufacturing of large elements of lunar regolith simulant for ...
Laser melting manufacturing of large elements of lunar regolith simulant for ...Laser melting manufacturing of large elements of lunar regolith simulant for ...
Laser melting manufacturing of large elements of lunar regolith simulant for ...
 
Mangalyan Mission
Mangalyan MissionMangalyan Mission
Mangalyan Mission
 
69962
6996269962
69962
 
AAS National Conference 2008: Jon Morse
AAS National Conference 2008: Jon MorseAAS National Conference 2008: Jon Morse
AAS National Conference 2008: Jon Morse
 
Canberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hinesCanberra Nanosatellitre Keynote-jw hines
Canberra Nanosatellitre Keynote-jw hines
 
ILOA Galaxy Forum China 2017 - Guo Linli
ILOA Galaxy Forum China 2017 -  Guo LinliILOA Galaxy Forum China 2017 -  Guo Linli
ILOA Galaxy Forum China 2017 - Guo Linli
 
712295015_Suryapratap_Innovation-in-space.pptx
712295015_Suryapratap_Innovation-in-space.pptx712295015_Suryapratap_Innovation-in-space.pptx
712295015_Suryapratap_Innovation-in-space.pptx
 
Space Science.pptx
Space Science.pptxSpace Science.pptx
Space Science.pptx
 

PreliminaryDesignReport

  • 2. Executive Summary  This report explores the preliminary design process needed to design a coring device for                            NASA’s Asteroid Redirect Mission (ARM). One of ARM’s objective is to put an asteroid into                              the moon’s orbit. From there, astronauts will travel to the moon and extract samples from the                                asteroid to study its composition. With the help of NASA­provided guidelines and parameters,                          the problem was defined, a handful of concepts were generated, and eventually an Encased                            Auger was decided upon. Known calculations from a screw auger conveyor system were used to                              calculate the torque and force necessary to power the system in a low gravity system. After                                comparing to the human capabilities in space, the Encased Auger was determined to be able to                                perform the required duty of extracting a small core sample. It is comprised of a ratchet, drill                                  chuck, multiple bearings, and the auger with a casing surrounding it. The ratchet will power the                                drill chuck, which is gripping and driving the stem of the auger into the asteroid regolith. At the                                    bottom of this double helix auger will be two flaps through which the material will flow through.                                  Using spring hinges, the flaps will close once the astronauts pull up and release the pressure on                                  the springs. A solid model assembly has been created ao prototyping and test plans are the next                                  steps. It is imperative to begin coordinating with the machine shop staff to finish necessary steps                                in order to acquire machine shop access.     1 
  • 3. Table of Contents  Executive Summary ____________________________________________________________1  Introduction___________________________________________________________________3  Background Information_________________________________________________________3  Problem Statement _____________________________________________________________7  Problem Definition _____________________________________________________________7  Design Soultion________________________________________________________________9  Modeling and Analysis_________________________________________________________11  Approach to Solution__________________________________________________________14  Plan for Future Work__________________________________________________________21  References___________________________________________________________________22  Appendicies__________________________________________________________________24      2 
  • 4. Introduction  NASA is known as the United States government agency responsible for the civilian                          space program as well as aerospace research. NASA wants to improve and expand the space                              program, so NASA created the Micro­G NExT 2016 Design Challenge ­ various challenges                          which teams of students can choose to partake in. The goal of these challenges is to take humans                                    past the Earth’s orbit and gain knowledge of the Solar System. Our team has chosen to partake in                                    the second challenge ­ to design a coring device capable of obtaining a sample of regolith, loose                                  pieces of rock and unconsolidated sand, near the surface of an asteroid.   Detailed in the report is the entire design process complete at this point. Beginning with a                                statement of the problem and resources provided by NASA, a set of specific design criteria were                                created. Next brainstorming sessions were held to create possible design solutions; these                        solutions were turned into a few possible design concepts. Using various methods a final concept                              was selected to move forward with. After extensive modeling and analysis, a detailed design of                              the prototype, the manual­powered Encased Auger, was created. The most suitable materials for                          the main parts of the design were chosen and minor adjustments were made to the final concept                                  from the conceptual design report. These individual parts were modeled on SolidWorks and were                            assembled together. Then, extensive calculation were made to support the design feasibility. By                          these models and analysis, a preliminary design was created that is feasible, efficient, and                            effective.  Background Information  One of the greatest contemporary concerns is the possibility of a major catastrophe                          caused by an asteroid. NASA’s goal is to perfect a strategy to deflect these large objects using                                  3 
  • 5. the asteroids themselves. The Asteroid Redirect Mission (ARM) uses the gravitational force                        between a large asteroid and a smaller counterpart taken from the surface. The spacecraft                            carrying the smaller counterpart, or Asteroid Redirect Vehicle (ARV), performs a series of                          circles, creating an Enhanced Gravity Tractor to deflect the large asteroid from its path​[1]​ . After                              the redirection, the smaller asteroid is transported to the moon’s orbit where it can be studied.                                Using a secondary vehicle such as NASA’s Orion, scientists will dock to the ARV and go on to                                    analyze the asteroid and its regolith​[1]​ . Perfecting this process will help NASA in their aspirations                              to eventually send humans to Mars.  Asteroids can be classified into three different types: the C­types, the S­types, and the                            M­types. The most common type of asteroid is the C­type, representing over 75% of all                              asteroids. The composition of C­types is very similar to the sun, consisting of large quantities of                                carbon molecules with smaller quantities of hydrogen and helium molecules.​[2] They are mostly                          coal­black, although they can also be found grey as they are made mostly of rocks and metals.                                  The importance of the C­types comes from the fact that some of them contain water. Scientists                                believe this can be the key for in­space fuel for rocket ships and energy needed to unlock more                                    complex asteroid resources. However, they are difficult to spot because they are coal­black.                          Nevertheless, due to their water content, C­types are of utmost interest to scientists of outer                              space.  The second type of asteroid is the S­type, making up about 17% of all asteroids. The                                composition of S­types is mostly stony magnesium­silicates, mixed with iron and metallic iron.​[3]                           While they are less likely to contain hydrated materials, the silicates of the S­types represent a                                potential source of building material and radiation protection for commercial and government                        4 
  • 6. space operations. S­types tend to be relatively bright, making them much easier to spot than the                                C­type asteroids.    The last type of asteroid is the M­type, the third most common asteroid that can be                                classified. They are rich in metals as they consist mostly of metallic iron with refinery grade                                nickel and iron.​[4] Although they are not known to contain hydrated materials, their metallic                            content can be useful in the future as more space­based projects take place. Because all asteroids                                contain useful resources within their composition, it is important to develop methods to be able                              to obtain these resources.   Coring devices are regularly used in geological surveys to determine the composition of                          the Earth at places of interest. These devices come in many different varieties ranging from a                                diamond drill to piston corers. Diamond drills work by cutting around a solid core sample which                                is placed into a core tube as the drill cuts deeper.​[5] The core tube is then hoisted up the drill pipe                                          by a winch or other lifting mechanism.​[5] Water is usually pumped into the hole to aid in cooling                                    the system because the drill must be cooled by a fluid to prevent overheating due to friction.​[5]                                   Another type of coring device is the reverse circulation (RVC) device.​[5] RVC works by creating                              small chips in the rock that are forced up the drill pipe by pressurized air. Then, they are                                    collected via a cyclone mechanism.​[5] RVC uses two types of drill bits depending on the moisture                                present. For dry rock, a hammer bit is used to smash the rock into small pieces.​[5] Once the rock                                      begins to soften due to moisture a tricone bit is used to grind the rock into smaller pieces.​[5]                                     Piston and gravity corers both use gravity to sink into soft sediments on the ocean floor.​[6] The                                  difference between the two is that a piston corer uses a piston to drive the core pipe deeper into                                      the sediment, whereas the gravity corer uses the effect of gravity.​[6]     5 
  • 7. Since gravity does not exist in outer space, NASA needed a way to simulate                              microgravity conditions on Earth. Thus, NASA conceived the idea of constructing the world’s                          largest indoor pool, the Neutral Buoyancy Laboratory (NBL), to mimic weightlessness and                        practice interstellar flight procedures. The neutral buoyancy pool measures 202 feet (62 m) long,                            102 feet (31m) wide, and 40 feet (12.34 m) deep (20 feet above sea level and 20 feet below)​[7]​ .                                      The walls of the NBL are reinforced with 645 tons of steel, while the floor is reinforced with 689                                      tons of steel. The pool has a capacity of 6.2 million gallons of water, maintained at 86°F, while                                    filtering 5,400 gallons per minute. Even at this size, the world’s largest pool can not                              accommodate the entire International Space Station, which measures 305 feet by 240 feet.                          However, the NBL was sized with the intentions of performing two spacewalk simulations                          simultaneously.    Astronauts rehearse spacewalk missions at the NBL; while underwater, a person is                        subjected to hydrostatic pressure and buoyancy. To solve this, astronauts would don a spacesuit                            in which weight could be adjusted so that it neither sinks nor floats, hence, the term “neutral                                  buoyancy”​[8]​ . Everything needs to be neutrally buoyant to the replicate microgravity conditions                        of outer space, from the astronaut’s tools to the life­size mock­up of the space station,   The NBL still has a couple of technical challenges to overcome. The first challenge of the                                neutral buoyancy pool is the effect of drag due to water​[9]​ . Drag is a friction force that opposes an                                      object’s direction of motion relative to the surrounding fluid. Drag is nonexistent in outer space,                              therefore it is easy to set an object in motion, while difficult to keep it stationary. To overcome                                    this, astronauts generally move slowly to minimize the effects of drag, which is directly                            proportional to the squared velocity of a moving object. The second problem is that astronauts                              6 
  • 8. are not weightless in the suit and will press down against the suit depending on body                                orientation​[9]​ . This can be problematic and uncomfortable if the astronaut is upside down or in                              another difficult position. Therefore, precise sizing of the suit is critical to overcoming this                            challenge.   Problem Statement  The objective of this project is to design a coring device prototype for NASA that will                                obtain a sample of regolith off the surface of an asteroid in microgravity. Accordingly, NASA                              created the Micro­g NExT 2016 Design Challenge; the device is intended for use solely by                              NASA. This coring device should be able to penetrate the regolith, collect its samples, and                              maintain its stratigraphy. By doing so, an analysis of the asteroid’s history and internal structure                              would become possible. NASA imposed very specific constraints on the prototype design as                          stated in the Micro­g NExT 2016 Design Challenge on NASA’s website​[10]​ .  Problem Definition  The device should perform the following actions while in use: the device shall collect a                              core sample that must be 1­inch in diameter and 6­inches in length, the device shall obtain a core                                    from a bin of regolith containing a mixture of unconsolidated sand and rock fragments less than                                0.25 inches in diameter, and the device shall maintain the stratigraphy of the core during                              collection, containment, and transportation.   The device may be operated manually or pneumatically. In the case the device is driven                              pneumatically, the following will be supplied by NASA: pressure of 125 psig, NBL Shop Air                              Connector, and the umbilicals. The following details of the NBL Shop Air Connector are                            provided:   7 
  • 9. i. Grainger: Coupler Plug, (M)NPT, Item# 1HLZ8, Mfr. Model#                A73440­BG (Note: the female P/N is 1HLZ9)  ii. Quick Coupler Body, (F)NPT, Steel Item# 1HUK7, Mfr. Model#                  A73410­BG  The physical dimensions of the device must meet the following constraints as set by                            NASA in the design requirements​[11]​ : The device may have multiple parts that attach and detach,                              the device (all parts) shall fit within an 8in x 8in x 18in volume for stowage; the device (all parts)                                        shall have a dry weigh less than 15 pounds, the device shall have a tether attachment point 1 inch                                      in diameter, and the mockup components shall not contain sharp edges or items capable of                              cutting or puncturing because of the potential for personal injury due to contact.  While the ultimate goal will be to use the device in future space missions, for testing                                purposes the device will be tested in the NASA Micro­g pool​[11]​ . Accordingly, the device must be                                operable in a chlorine water environment. The device must also be designed with drain holes or                                designed with geometry to allow the free flow of air or water as required, to support submersion                                  and removal to and from the NBL pool.  The operation of the device will by handled by a single astronaut who will have both                                hands available​[1]​ . The astronaut must be able to operate the device with Extravehicular Activity                            (EVA) gloved hands (similar to ski gloves). There must not be any holes or openings in the tool                                    that will cause the astronaut’s fingers to become entrapped​[10]​ . The hardware of the device must                              be able to withstand normal handling and kick loads while not presenting a safety hazard​[10]​ . Kick                                loads are reactive burst of motion resulting from other instruments’ motion. For every action                            there’s a reaction and in outer space these reactions can be exponentially dangerous  8 
  • 10. Design Solution  The manual powered Encased Auger was chosen as the coring device for NASA’s                          Micro­g NExT 2016 Design Challenge. This design consists of a helical auger encased inside of                              a cylindrical tube. The helical auger has a stinger bit attached at its end designed to disturb the                                    material. The helical auger also has integrated flaps which opens as material travels up the flights                                of the auger and closes as a certain amount of material enters the auger. The other end of the                                      helical auger has a drill shank that is connected to a keyed chuck, that is connected to a                                    cylindrical housing. A ratchet lever is used to power the device. The device also contains a                                tethering point and a stabilizing handle. To power the device, the astronaut rotates the ratchet                              lever while holding on to the stabilizing handle for support.    Figure 1: ​Exploded view of coring device with bill of materials  9 
  • 11.   Figure 2: ​Full assembly of the encased auger  The main part of the prototype is the helical auger. At one end of the helical auger is a                                      stinger bit and two integrated flaps; at the other end is a shank which connects to the keyed                                    chuck. The two flaps are attached to the auger via two flap pins. The helical auger is then                                    encased inside of a cylindrical tube. A bearing is placed at the end of the tube on the shaft                                      connecting to the keyed chuck. The auger has a length of 7.21 inches, a pitch of 0.75 inches, a                                      helical diameter of 1 inch, and a shaft diameter of 0.25 inches. The cylindrical tube has an inner                                    diameter of 1 inch and outer diameter of 1.25 inches. This ensures the proper amount of core                                  samples will be collected inside the cylindrical tube. The auger will be attached to the housing                                using an off the shelf chuck.   10 
  • 12. The cylindrical housing is another main part of our prototype. The housing encloses the                            shaft of the drill chuck and remains stationary while the device is powered. It also stabilizes the                                  astronaut; it includes an attached stability handle and a tether point. The housing consists of two                                half cylinders held in place by four housing screws. The length of the cylindrical housing is 4                                  inches while the length of its attached stability handle is 4.49 inches. Its housing screws are .15                                  inches in diameter, with ¼”­20 machine threads.  The ratchet lever used to manually power the device is attached to the chuck adapter. An                                astronaut simply rotates the ratchet lever to transmit power to the helical auger. The chuck                              housing also has two bearings where it meets the drill chuck. The ratchet lever can be detached                                  from the rest of the assembly once sample collection is complete. When the astronaut is done                                collecting samples, the cylindrical tube with the helical auger can also be detached from the                              device. Flaps on the bottom of the auger will keep material from falling out until the auger can                                    be removed and rubber stoppers installed.   Modeling and Analysis  To proceed with the manual powered Encased Auger, it must be determined that the                            design is feasible. In order for the design to be feasible, the total torque of the auger must be                                      within reasonable limits of human power. To derive the total torque of the auger, the auger is                                  modeled as a screw conveyor with a fully enclosed tubular casing. First, the effective radius of                                the screw conveyor is defined as   Re = 3 2 (R −Ro 2 i 2 R −Ro 3 i 3 )  (1)  where R​o is the outer radius of the screw flight and R​i is the inner radius of the radius of shaft​[3]​ .                                          The helix angle of the screw flight corresponding to the effective radius is then  11 
  • 13. an  αe = t −1 [( p πD)(Ri Ro )] (2)  where p is the pitch length of the screw conveyor and D is the screw flight diameter​[12]​ .  The fullness efficiency must now be defined, the measure of how much material is inside                              of the encased screw conveyor. This can be given as  ɳf = p hav  (3)  where h​av is the average height of material on the screw surface and p is the pitch length of the                                        screw conveyor​[12]​ .  With the fullness efficiency, it is possible to determine the weight of the bulk material                              retained on each pitch. The weight is  ⍴gɳ W = π R( o 2 − Ri 2 )p f  (4)  where   is the density of the material and g is the gravitational constant.⍴    The weight of the material per pitch at an arbitrary inclination angle must be accounted                              for.   F cos(θ))Δ ra = W (sin(θ) + μe (5)  where is the equivalent friction coefficient to allow for drag of the casing walls during  μe                               motion. This is defined by  μe = μc (1 ɳ)+ K F (6)  where is the friction coefficient for bulk material on the casing surface and is the pressure  μc                          K       ratio ranging from 0.4 to 0.6.  From this we can determine the Torque of the screw per pitch    ΔF R tan(α )Tsp = 3 2 p L ra e e + Φs    (7)  12 
  • 14. where ​s is the friction angle for bulk solid on screw surface; R​e is effective radius; is  Φ                               αe   effective helix angle; L is length of screw conveyor; p is pitch.  Next the torque of the shaft on the material must be found. First the pressure of the bulk                                    solid on the shaft must be determined.  ρgpησn = K f  (8)  where K (K=0.4) is the pressure distribution around the shaft, is the density of the bulk solid, p                   ρ                 is pitch, g is acceleration due to gravity, and  is fullness efficiency.ηf   Finally torque on the shaft is  πR σTsh = 2 i 2 np L (9)  where R​i is the inner radius, L is length of the screw conveyor, p is pitch and is the pressure of                                 σn         the solid on the shaft.  The total torque is found by taking the sum of the torque on the shaft and torque of the                                      screw  T = Tsp + Tsh  (10)  After plugging in values, it is seen that the torque is heavily dependent on the weight of                                  the material and the gravitational constant in microgravity. The maximum torque of the screw                            conveyor comes out to approximately 3 foot­pounds, which is within the capabilities of humans                            in outer space. The mean maximum torque strength of an astronaut is shown to be between 121.5                                  to 153.9 foot­pounds with a standard deviation of 3.41 to 5.08 foot­pounds​[13]​ . By modeling the                              encased auger as an encased screw conveyor and by assuming the astronaut has two available                              hands, a manually driven auger device in microgravity is very feasible. Engineering drawings                          and solids models for each part can be found in appendix 2 & 3 respectively.  13 
  • 15. Approach to Solution  Concept Generation  Our team created many different concepts for a coring device through a series of                            individual and team brainstorming sessions. For each brainstormed concept, feedback was                      provided on basis of feasibility and performance. Then each concept was either improved or                            scrapped; eventually, a morphological chart was created and this morphological chart gave us                          four concepts we considered as our final design. The concepts generated are: the Dome Drill, the                                Post Hole Digger, the Conical Bit, and the Encased Auger.  The Dome Drill is our first concept. It contains notches in the head intended to disturb the                                  ground. This leaves a circular hole for the material to pass through. To capture the material, the                                  astronaut pulls up after reaching the required depth. This assumes the weight of the material,                              along with an upward jerk­motion, effectively closes the levers.    Figure 3: ​Domed Drill bit with spring loaded closure flaps  Figure 4: ​Handheld means of power for Domed Drill  14 
  • 16. Our second concept is the Post Hole Digger Design, similarly powered with a handheld                            device as shown in Figures 3 & 4 . The Post Hole Digger Design also uses springs; however, the                                      springs are compressed rather than wound. Once the material fills the separate container, it                            effectively shifts the container up, releasing the springs and closing the latches.     Figure 5: ​Side view of post hole digger. Figure 6: ​Top view of post hole digger   Our third design is the Conical Bit. This design is similar to Dome Drill because it                                employs the flap­spring concept except with more frequency. The regolith flows through the                          flaps, and the flaps close themselves once the maximum sample size is obtained. This design is                                heavily dependent on downward, parallel force, much like the Dome Drill and the Post­Hole                            Design.  15 
  • 17.   Figure 7:​ Conical Drill Bit with flaps  Our final design is the Encased Auger. This design uses a helical auger encased in a                                cylindrical tube. This tube has a removable circumferential drill bit on the end that aids in the                                  coring. The regolith is captured inside of the auger as it rotates upward. Once the material is                                  collected, an integrated flap closes the cylindrical container. By placing an auger within a                            cylinder, along with the use of flaps, we believe this effectively captures the material and stores                                it.  16 
  • 18.   Figure 8:​ Encased Auger Concept  Concept Selection  These four concepts were seen as the most feasible; therefore we used a weighted                            decision matrix to help make our choice. We completed the decision matrices using different                            concepts as the datum to ensure consistent results. For our decision matrix we decided that                              stratigraphy was the most important design criteria. Next we gave power, material transport, and                            17 
  • 19. manufacturing the same weighting factor; the least important factors were durability, stability,                        ease of maintenance, and weight.  Table 2:​ Weighted decision matrix with the Dome Drill as the datum  Criteria  Weights  Dome Drill  Post Hole Digger Conical Drill  Encased Auger  Power  1.5  D  S  S  S  Material Transport  1.5  A  S  S  S  Manufacturing  1.5  T  -  -  +  Durability/Reliability  1  U  S  -  +  Stability  1  M  S  S  +  Ease of Maintenance  1    -  -  +  Weight/Size  1    S  S  S  Stratigraphy   2    S  S  -    Table 3:​ Morphological Chart with the Encased Auger as the datum.  Criteria  Weights Domed Drill  Post Hole Digger  Conical Drill  Encased Auger  Power  1.5 S  S  S  D  Material Transport  1.5 S  S  S  A  Manufacturing  1.5 -  -  -  T  Durability/Reliability  1 -  -  -  U  Stability  1 -  -  -  M  Ease of Maintenance  1 -  -  -    Weight/Size  1 S  S  S    Stratigraphy   2 +  +  +    18 
  • 20.   The results of the decision matrices show the Encased Auger is the best coring device                              Concept. The Encased Auger possesses advantages in manufacturing, durability/reliability, and                    ease of maintenance. The Encased Auger has the advantage of manufacturing because the other                            designs consists of more parts, parts that would be more complex to manufacture.   For example, the Dome Drill consists of many notches in the head and spring­loaded                            levers dependent on the weight of the sample materials to close the levers. The many notches in                                  the head are tedious to manufacture, along with the spring­loaded levers. The Post Hole Digger                              consists of spring­loaded latches that are dependent on the shifting volume of the material;                            manufacturing this design requires extreme precision. The Conical Drill Bit consists of many                          spring­loaded flaps, which are tedious to manufacture. Since the Encased Auger only consists of                            the auger and cylindrical drill bit, it is easier to manufacture than the other designs. Given that                                  the Encased Auger is easiest to manufacture, it is also the most durable, most stable, and most                                  effective at extracting the sample of regolith.   The only advantage the Encased Auger does not possess is the advantage of maintaining                            stratigraphy. This is the one minor concern of the Encased Auger. The helical auger must rotate                                out while the device is collecting regolith and when the cylindrical case is unscrewed from the                                device; as a result, there is minor interference with the stratigraphy of the regolith sample.                              However, this interference should not ruin the stratigraphy of the regolith sample. The Encased                            Auger should be able to collect regolith samples without fear of compromised stratigraphies.  The Encased Auger also meets the specifications and constraints set by NASA in the                            problem statement. The problem statement sets a specific volume of core samples which must be                              19 
  • 21. collected with consistent stratigraphies; the Encased Auger accomplishes this task. As far as the                            device itself, it must fit within an 8” x 8” x 18” volume, weigh less than 15 pounds, have a tether                                          point 1” in diameter, contain no sharp edges, and be operable in chlorine water environment.                              After detailed design and modeling, we designed the Encased Auger to meet these requirements.                            Finally we are given a choice between manual or pneumatic powered for the device. Using the                                morphological chart, we chose manual powered as the device consists of less moving parts than a                                pneumatic device; this increases the device’s reliability and manufacturing. The Encased Auger                        meets all the problem specifications both effectively and efficiently.          Plan for Future Work  Table 3: ​Project Timeline for remaining steps  Task Name  Start  End  Duration (days)  Design Verification  1/4/16  1/13/16  9  Prototype  Construction  1/13/16  2/17/16  35  Prototype Testing  2/17/16  2/28/16  11  Design Evaluation  Report  2/20/16  3/2/16  11  Design Presentation  3/8/16  3/8/16  1  Final Design Report  3/16/16  3/16/16  1  20 
  • 22.   Now that detailed design is complete the project will move into design verification and                            prototype construction. Off the shelf parts will need to be ordered and custom parts will be                                machined during the next three months. The design may be subjected to multiple iterations until                              satisfaction. By May, a working prototype should be built and all steps of the design process will                                  have been completed. The Gantt chart has been updated to show only the remaining parts of the                                  design process that need to be completed.  Figure 9:​ Gantt chart of remaining design processes    21 
  • 23. References  [1] “How Will NASA’s Asteroid Redirect Mission Help Humans Reach Mars?” NASA.  http://www.nasa.gov/content/how­will­nasas­asteroid­redirect­mission­help­humans­reach­mars.  June 2014.  [2] "Asteroids: Composition | Planetary Resources." Planetary Resources Asteroids Composition  Comments. N.p., n.d. Web. http://www.planetaryresources.com/asteroids/composition/. 21 Oct.  2015.  [3] "Asteroids." N.p., n.d. Web. http://nssdc.gsfc.nasa.gov/planetary/text/asteroids.txt. 21 Oct.  2015.  [4] "Regolith | Geology." Encyclopedia Britannica Online. Encyclopedia Britannica, n.d. Web.  http://www.britannica.com/science/regolith. 21 Oct. 2015.  [5] "Diamond Drilling." ​Diamond Drilling​. N.p., n.d. Web.  http://earthsci.org/education/fieldsk/drilling/drilling.html. 21 Oct. 2015.   [6] "Piston Corer." ​WHOI : Instruments :​. N.p., n.d. Web.  http://www.whoi.edu/instruments/viewInstrument.do?id=8087. 21 Oct. 2015.   [7] “NBL Characteristics,” NASA, http://dx12.jsc.nasa.gov/about/index.shtml. October 10, 2015.  [8] Hutchinson, L., 2013, “Swimming with Spacemen : training for spacewalks at NASA’s giant  pool,” Ars Technica, http://arstechnica.com/science/2013/03/swimming­with­spacemen/1/.  October 10, 2015.  [9] “What is Neutral Buoyancy?,” NASA, http://dx12.jsc.nasa.gov/about/whatIsNB.shtml  October 10, 2015.   22 
  • 24. [10] "NASA ­ Reduced Gravity Student Flight Opportunities Program." ​NASA ­ Reduced Gravity  Student Flight Opportunities Program​. N.p., n.d. Web.  [11] "Challenge: Coring Device For Regolith." (n.d.): n. pag. ​MICRO­G NEXT 2016 DESIGN  CHALLENGES​. NASA. Web.  https://microgravityuniversity.jsc.nasa.gov/pdfs/MicroG%20NExT%202016%20Design%20Cha llenges.pdf. 21 Oct. 2015.  [12] "Design Considerations and Performance Evaluation of Screw Conveyors." ​DESIGN  CONSIDERATIONS AND PERFORMANCE EVALUATION OF SCREW CONVEYORS​ (n.d.): n.  pag. ​Double Arrow Belt​. Web. 30 Nov. 2015.  [13] "Human Performance Capabilities." ​HUMAN PERFORMANCE CAPABILITIES​. N.p., n.d.  Web. 30 Nov. 2015.            23 
  • 26. Appendix 1: Torque calculation of encased auger  L=7 (in)  g=rand*32.2 (ft/s​2​ )  Ro=(1.25:.01:2)./2 (in)  Ro=Ro./12 (convert in to ft)  Ri=(0.25:.01:1)./2 (in)  Ri=Ri./12 (convert in to ft)  p=0.25.*(Ro.*2) (ft)  rho=108 (lbm/ft​3​ )  rho=rho/32.2 (convert lbm/ft^3 to slug/ft​3​ )  MUc=0.40 (between steel and sand)  Ke=0.5  K=0.4   theta=90​o  phi=22​o​  (between steel and sand)  D=Ro.*2 (ft)  hav=rand.*p (ft)  Re=(2/3)*((Ro.^3­Ri.^3)./(Ro.^2­Ri.^2)) (ft)  nf=hav./p;  alpha=atand((p./(pi.*D)).*(Ro./Re)) (degrees)  W=pi.*(Ro.^2­Ri.^2).*p.*rho.*g.*nf (lb)  MUe=MUc.*(1+Ke.*nf)  Fr=W.*(sind(theta)+MUe.*cosd(theta)) (lb)  Tsp=2/3.*L./p.*Fr.*Re.*tand(alpha+phi) (ft­lbs)  sig=K.*rho.*g.*p.*nf (lb/ft​2​ )  Tsh=2.*pi.*Ri.^2.*sig.*L./p (ft­lbs)  T=Tsp+Tsh (ft­lbs)        25