SlideShare une entreprise Scribd logo
1  sur  5
GLOBALSOFT TECHNOLOGIES 
IEEE PROJECTS & SOFTWARE DEVELOPMENTS 
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE 
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS 
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com 
Incremental Affinity Propagation Clustering 
Based on Message Passing 
Abstract: 
Affinity Propagation (AP) clustering has been successfully used in a lot of 
clustering problems. However, most of the applications deal with static data. The 
affinity propagation based clustering algorithm is then individually applied to each 
object Specific cluster. Using t his clustering method . we obtain object specific 
Exemplars together with a high precision for the data associated with each 
exemplar. We perform recognition using a majority voting strategy that is 
weighted by nearest neighbor similarity. This paper considers how to apply AP in 
incremental clustering problems. Firstly, we point out the difficulties in 
Incremental Affinity Propagation (IAP) clustering, and then propose two strategies 
to solve them. Correspondingly, two IAP clustering algorithms are proposed. They 
are IAP clustering based on K-Medoids (IAPKM) and IAP clustering based on 
Nearest Neighbor Assignment (IAPNA). Five popular labeled data sets, real world 
time series and a video are used to test the performance of IAPKM and IAPNA. 
Traditional AP clustering is also implemented to provide benchmark performance.
Experimental results show that IAPKM and IAPNA can achieve comparable 
clustering performance with traditional AP clustering on all the data sets. 
Meanwhile, the time cost is dramatically reduced in IAPKM and IAPNA. Both the 
effectiveness and the efficiency make IAPKM and IAPNA able to be well used in 
incremental clustering tasks. 
Existing System: 
CLUSTERING, or cluster analysis, is an important subject in data mining. It aims at 
partitioning a dataset into some groups, often referred to as clusters, such that data 
points in the same cluster are more similar to each other than to those in other 
clusters. There are different types of clustering. However, most of the clustering 
algorithms were designed for discovering patterns in static data.This imposes 
additional requirements to traditional clustering algorithms to rapidly process and 
summarize the massive amount of continuously arriving data. 
Disadvantages: 
It also requires the ability to adapt to changes in the data distribution, the ability to 
detect emerging clusters and distinguish them from outliers in the data, and the 
ability to merge old clusters or discard expired ones. 
Proposed System: 
we extend a recently proposed clustering algorithm, affinity propagation (AP) 
clustering, to handle dynamic data. Several experiments have shown its consistent
superiority over the previous algorithms in static data. AP clustering is an 
exemplar-based method that realized by assigning each data point to its nearest 
exemplar, where exemplars are identified by passing messages on bipartite graph. 
There are two kinds of messages passing on bipartite graph. They are responsibility 
and availability, collectively called ’affinity’ .AP clustering can be seen as an 
application of belief propagation, which was invented by Pearl to handle inference 
problems on probability graph. Compared with the previous works, another 
remarkable feature of our work is that the IAP clustering algorithms are proposed 
based on a message-passing framework. That’s, each object is a node in a graph, 
and weighted edges between nodes correspond to pair wise similarity between 
objects. When a new object is observed, it will be added on the graph and then 
message passing is implemented to find a new exemplar set. Because that only one, 
or a few of nodes’ entering will not change the structure of the who le graph a lot, a 
local adjustment of availabilities and responsibilities is enough. Therefore, 
messages passing on graphs will re-converge quickly. Based on these features, the 
IAP clustering algorithms proposed in this paper don’t need to re-implemented AP 
clustering on the whole data set, nor need to change the similarities between 
objects. 
Advantages: 
1. A great deal of time can be saved, which makes AP clustering efficient 
enough to be used in dynamic environment. 
2. The goal of this paper is to propose a dynamic variant of AP clustering, 
which can achieve comparable clustering performance with traditional AP
clustering by just adjusting the current clustering results according to new 
arriving objects, rather than re-implemented AP clustering on the whole 
dataset. 
System Configuration: 
HARDWARE REQUIREMENTS: 
Hardware -Pentium 
Speed -1.1 GHz 
RAM -1GB 
Hard Disk -20 GB 
Floppy Drive -1.44 MB 
Key Board -Standard Windows Keyboard 
Mouse -Two or Three Button Mouse 
Monitor - SVGA 
SOFTWARE REQUIREMENTS: 
Operating System : Windows 
Technology : Java and J2EE 
Web Technologies : Html, JavaScript, CSS 
IDE : My Eclipse 
Web Server : Tomcat
Tool kit : Android Phone 
Database : My SQL 
Java Version : J2SDK1.5

Contenu connexe

Plus de IEEEFINALYEARSTUDENTPROJECTS

IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS A novel time obfuscated algorithm ...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS  A novel time obfuscated algorithm ...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS  A novel time obfuscated algorithm ...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS A novel time obfuscated algorithm ...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...
IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...
IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easy
IEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easyIEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easy
IEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easyIEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl os
IEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl osIEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl os
IEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl osIEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbms
IEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbmsIEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbms
IEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbmsIEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...
IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...
IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signatures
IEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signaturesIEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signatures
IEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signaturesIEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...IEEEFINALYEARSTUDENTPROJECTS
 
IEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databases
IEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databasesIEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databases
IEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databasesIEEEFINALYEARSTUDENTPROJECTS
 

Plus de IEEEFINALYEARSTUDENTPROJECTS (20)

IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Efficient and privacy aware data agg...
 
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS Cloud assisted mobile-access of heal...
 
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...
IEEE 2014 JAVA MOBILE COMPUTING PROJECTS A low complexity algorithm for neigh...
 
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Hierarchical prediction and context ...
 
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Designing an-efficient-image encrypt...
 
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...
IEEE 2014 JAVA IMAGE PROCESSING PROJECTS Click prediction-for-web-image-reran...
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Web service recommendation via expl...
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Scalable and accurate prediction of...
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Privacy enhanced web service compos...
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS Decentralized enactment of bpel pro...
 
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS A novel time obfuscated algorithm ...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS  A novel time obfuscated algorithm ...IEEE 2014 JAVA SERVICE COMPUTING PROJECTS  A novel time obfuscated algorithm ...
IEEE 2014 JAVA SERVICE COMPUTING PROJECTS A novel time obfuscated algorithm ...
 
IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...
IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...
IEEE 2014 JAVA SOFTWARE ENGINEER PROJECTS Conservation of information softwar...
 
IEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easy
IEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easyIEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easy
IEEE 2014 JAVA DATA MINING PROJECTS Xs path navigation on xml schemas made easy
 
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
IEEE 2014 JAVA DATA MINING PROJECTS Web image re ranking using query-specific...
 
IEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl os
IEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl osIEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl os
IEEE 2014 JAVA DATA MINING PROJECTS Towards multi tenant performance sl os
 
IEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbms
IEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbmsIEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbms
IEEE 2014 JAVA DATA MINING PROJECTS Shortest path computing in relational dbms
 
IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...
IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...
IEEE 2014 JAVA DATA MINING PROJECTS Security evaluation of pattern classifier...
 
IEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signatures
IEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signaturesIEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signatures
IEEE 2014 JAVA DATA MINING PROJECTS Secure outsourced attribute based signatures
 
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
IEEE 2014 JAVA DATA MINING PROJECTS Secure mining of association rules in hor...
 
IEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databases
IEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databasesIEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databases
IEEE 2014 JAVA DATA MINING PROJECTS Searching dimension incomplete databases
 

Dernier

22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf203318pmpc
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...SUHANI PANDEY
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXssuser89054b
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 

Dernier (20)

22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf22-prompt engineering noted slide shown.pdf
22-prompt engineering noted slide shown.pdf
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
VIP Model Call Girls Kothrud ( Pune ) Call ON 8005736733 Starting From 5K to ...
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 

IEEE 2014 JAVA DATA MINING PROJECTS Incremental affinity propagation clustering based on message passing

  • 1. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com Incremental Affinity Propagation Clustering Based on Message Passing Abstract: Affinity Propagation (AP) clustering has been successfully used in a lot of clustering problems. However, most of the applications deal with static data. The affinity propagation based clustering algorithm is then individually applied to each object Specific cluster. Using t his clustering method . we obtain object specific Exemplars together with a high precision for the data associated with each exemplar. We perform recognition using a majority voting strategy that is weighted by nearest neighbor similarity. This paper considers how to apply AP in incremental clustering problems. Firstly, we point out the difficulties in Incremental Affinity Propagation (IAP) clustering, and then propose two strategies to solve them. Correspondingly, two IAP clustering algorithms are proposed. They are IAP clustering based on K-Medoids (IAPKM) and IAP clustering based on Nearest Neighbor Assignment (IAPNA). Five popular labeled data sets, real world time series and a video are used to test the performance of IAPKM and IAPNA. Traditional AP clustering is also implemented to provide benchmark performance.
  • 2. Experimental results show that IAPKM and IAPNA can achieve comparable clustering performance with traditional AP clustering on all the data sets. Meanwhile, the time cost is dramatically reduced in IAPKM and IAPNA. Both the effectiveness and the efficiency make IAPKM and IAPNA able to be well used in incremental clustering tasks. Existing System: CLUSTERING, or cluster analysis, is an important subject in data mining. It aims at partitioning a dataset into some groups, often referred to as clusters, such that data points in the same cluster are more similar to each other than to those in other clusters. There are different types of clustering. However, most of the clustering algorithms were designed for discovering patterns in static data.This imposes additional requirements to traditional clustering algorithms to rapidly process and summarize the massive amount of continuously arriving data. Disadvantages: It also requires the ability to adapt to changes in the data distribution, the ability to detect emerging clusters and distinguish them from outliers in the data, and the ability to merge old clusters or discard expired ones. Proposed System: we extend a recently proposed clustering algorithm, affinity propagation (AP) clustering, to handle dynamic data. Several experiments have shown its consistent
  • 3. superiority over the previous algorithms in static data. AP clustering is an exemplar-based method that realized by assigning each data point to its nearest exemplar, where exemplars are identified by passing messages on bipartite graph. There are two kinds of messages passing on bipartite graph. They are responsibility and availability, collectively called ’affinity’ .AP clustering can be seen as an application of belief propagation, which was invented by Pearl to handle inference problems on probability graph. Compared with the previous works, another remarkable feature of our work is that the IAP clustering algorithms are proposed based on a message-passing framework. That’s, each object is a node in a graph, and weighted edges between nodes correspond to pair wise similarity between objects. When a new object is observed, it will be added on the graph and then message passing is implemented to find a new exemplar set. Because that only one, or a few of nodes’ entering will not change the structure of the who le graph a lot, a local adjustment of availabilities and responsibilities is enough. Therefore, messages passing on graphs will re-converge quickly. Based on these features, the IAP clustering algorithms proposed in this paper don’t need to re-implemented AP clustering on the whole data set, nor need to change the similarities between objects. Advantages: 1. A great deal of time can be saved, which makes AP clustering efficient enough to be used in dynamic environment. 2. The goal of this paper is to propose a dynamic variant of AP clustering, which can achieve comparable clustering performance with traditional AP
  • 4. clustering by just adjusting the current clustering results according to new arriving objects, rather than re-implemented AP clustering on the whole dataset. System Configuration: HARDWARE REQUIREMENTS: Hardware -Pentium Speed -1.1 GHz RAM -1GB Hard Disk -20 GB Floppy Drive -1.44 MB Key Board -Standard Windows Keyboard Mouse -Two or Three Button Mouse Monitor - SVGA SOFTWARE REQUIREMENTS: Operating System : Windows Technology : Java and J2EE Web Technologies : Html, JavaScript, CSS IDE : My Eclipse Web Server : Tomcat
  • 5. Tool kit : Android Phone Database : My SQL Java Version : J2SDK1.5