SlideShare une entreprise Scribd logo
1  sur  5
Towards a Statistical Framework for Source Anonymity in Sensor Networks
Abstract:
In certain applications, the locations of events reported by a sensor network need to remain anonymous. That is,
unauthorized observers must be unable to detect the origin of such events by analyzing the network traffic.
Known as the source anonymity problem, this problem has emerged as an important topic in the security of
wireless sensor networks, with variety of techniques based on different adversarial assumptions being proposed.
In this work, we present a new framework for modeling, analyzing and evaluating anonymity in sensor
networks. The novelty of the proposed framework is twofold: first, it introduces the notion of “interval
indistinguishability” and provides a quantitative measure to model anonymity in wireless sensor networks;
second, it maps source anonymity to the statistical problem of binary hypothesis testing with nuisance
parameters. We then analyze existing solutions for designing anonymous sensor networks using the proposed
model. We show how mapping source anonymity to binary hypothesis testing with nuisance parameters leads to
converting the problem of exposing private source information into searching for an appropriate data
transformation that removes or minimize the effect of the nuisance information. By doing so, we transform the
problem from analyzing real-valued sample points to binary codes, which opens the door for coding theory to
be incorporated into the study of anonymous sensor networks. Finally, we discuss how existing solutions can be
modified to improve their anonymity.
GLOBALSOFT TECHNOLOGIES
IEEE PROJECTS & SOFTWARE DEVELOPMENTS
IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE
BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS
CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401
Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
Existing System:
Existing Wireless sensor networks once sensor nodes have been deployed, there will be
minimal manual intervention and monitoring. But, when nodes are deployed in a hostile
environment and there is no manual monitoring,
Proposed System:
To improve anonymity, we suggest introducing the same correlation of inter-transmission times during
real intervals to inter-transmission times during fake intervals. That is, let the transmission procedure consists of
two different algorithms: AR and AF . In the presence of real events , algorithm AR is implemented. In the
absence of real events , algorithm AF is implemented. In algorithm AF , the nodes generates two sets of events
independently of each other: “dummy events” and fake events. Fake events serve the same purpose they serve
in algorithm AR, that is, they are used to hide the existence of real transmissions. Since there are no real events
in fake intervals, however, dummy events are generated to be handled as if they are real events. That is, dummy
events are generated independently of fake messages and, upon their generation, their transmission times are
determined according to the used statistical goodness of fit test. The purpose of this procedure is to introduce
the same correlation of real intervals into fake intervals. That is, not only the two sequences of intertransmission
times will be statistically indistinguishable by means of statistical goodness of fit tests, but also the binary codes
representing fake and real intervals will have the same statistical behavior.
Proposed Modules:
1. Source Anonymity
We introduce the notion of “interval indistinguishability” and illustrate how the problem of statistical
source anonymity can be mapped to the problem of interval indistinguishability.
_ We propose a quantitative measure to evaluate statistical source anonymity in sensor networks.
2. Coding Theory
We analyze existing solutions under the proposed model. By finding a transformation of observed data, we
convert the problem from analyzing real-valued samples to binary codes and identify a possible anonymity
breach in the current solutions for the SSA problem.
3. Nuisance Parameters
In statistical decision theory, the term “nuisance parameters” refers to information that is not needed for
hypothesis testing and, further, can preclude a more accurate decision making . When performing hypothesis
testing of data with nuisance parameters, it is desired (even necessary in some scenarios) to find an appropriate
transformation of the data that removes or minimizes the effect of the nuisance information.
4. Hypothesis Testing
In binary hypothesis testing, given two hypothesis, H0 and H1, and a data sample that belongs to one of
the two hypotheses (e.g., a bit transmitted through a noisy communication channel), the goal is to decide to
which hypothesis the data sample belongs. In the statistical strong anonymity problem under interval
indistinguishability, given an interval of intertransmission times, the goal is to decide whether the interval is
fake or real (i.e., consists of fake transmissions only or contains real transmissions).
Software Requirements:
Hardware Requirement:
 Minimum 1.1 GHz PROCESSOR should be on the computer.
 128 MB RAM.
 20 GB HDD.
 1.44 MB FDD.
 52x CD-ROM Drive.
 MONITORS at 800x600 minimum resolution at 256 colors minimum.
 I/O, One or two button mouse and standard 101-key keyboard.
Software Requirement:
 Operating System : Windows 95/98/2000/NT4.0.
 Technology : JAVA, JFC(Swing),J2me
 Development IDE : Eclipse 3.x
CLOUING
DOMAIN: WIRELESS NETWORK PROJECTS

Contenu connexe

Plus de IEEEGLOBALSOFTTECHNOLOGIES

Plus de IEEEGLOBALSOFTTECHNOLOGIES (20)

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Optimal multicast capacity and delay...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT On the real time hardware implementa...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Mobile relay configuration in data i...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Distributed cooperative caching in s...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Delay optimal broadcast for multihop...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Dcim distributed cache invalidation ...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Cooperative packet delivery in hybri...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Content sharing over smartphone base...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Community aware opportunistic routin...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Capacity of hybrid wireless mesh net...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Adaptive position update for geograp...
 
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
DOTNET 2013 IEEE MOBILECOMPUTING PROJECT A scalable server architecture for m...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Attribute based access to scalable me...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Scalable and secure sharing of person...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Qos ranking prediction for cloud serv...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Privacy preserving public auditing fo...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Facilitating document annotation usin...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Error tolerant resource allocation an...
 
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
DOTNET 2013 IEEE CLOUDCOMPUTING PROJECT Dynamic resource allocation using vir...
 

Dernier

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 

Dernier (20)

How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu SubbuApidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
Apidays Singapore 2024 - Modernizing Securities Finance by Madhu Subbu
 

DOTNET 2013 IEEE MOBILECOMPUTING PROJECT Towards a statistical framework for source anonymity in sensor networks

  • 1. Towards a Statistical Framework for Source Anonymity in Sensor Networks Abstract: In certain applications, the locations of events reported by a sensor network need to remain anonymous. That is, unauthorized observers must be unable to detect the origin of such events by analyzing the network traffic. Known as the source anonymity problem, this problem has emerged as an important topic in the security of wireless sensor networks, with variety of techniques based on different adversarial assumptions being proposed. In this work, we present a new framework for modeling, analyzing and evaluating anonymity in sensor networks. The novelty of the proposed framework is twofold: first, it introduces the notion of “interval indistinguishability” and provides a quantitative measure to model anonymity in wireless sensor networks; second, it maps source anonymity to the statistical problem of binary hypothesis testing with nuisance parameters. We then analyze existing solutions for designing anonymous sensor networks using the proposed model. We show how mapping source anonymity to binary hypothesis testing with nuisance parameters leads to converting the problem of exposing private source information into searching for an appropriate data transformation that removes or minimize the effect of the nuisance information. By doing so, we transform the problem from analyzing real-valued sample points to binary codes, which opens the door for coding theory to be incorporated into the study of anonymous sensor networks. Finally, we discuss how existing solutions can be modified to improve their anonymity. GLOBALSOFT TECHNOLOGIES IEEE PROJECTS & SOFTWARE DEVELOPMENTS IEEE FINAL YEAR PROJECTS|IEEE ENGINEERING PROJECTS|IEEE STUDENTS PROJECTS|IEEE BULK PROJECTS|BE/BTECH/ME/MTECH/MS/MCA PROJECTS|CSE/IT/ECE/EEE PROJECTS CELL: +91 98495 39085, +91 99662 35788, +91 98495 57908, +91 97014 40401 Visit: www.finalyearprojects.org Mail to:ieeefinalsemprojects@gmail.com
  • 2. Existing System: Existing Wireless sensor networks once sensor nodes have been deployed, there will be minimal manual intervention and monitoring. But, when nodes are deployed in a hostile environment and there is no manual monitoring, Proposed System: To improve anonymity, we suggest introducing the same correlation of inter-transmission times during real intervals to inter-transmission times during fake intervals. That is, let the transmission procedure consists of two different algorithms: AR and AF . In the presence of real events , algorithm AR is implemented. In the absence of real events , algorithm AF is implemented. In algorithm AF , the nodes generates two sets of events independently of each other: “dummy events” and fake events. Fake events serve the same purpose they serve in algorithm AR, that is, they are used to hide the existence of real transmissions. Since there are no real events in fake intervals, however, dummy events are generated to be handled as if they are real events. That is, dummy events are generated independently of fake messages and, upon their generation, their transmission times are determined according to the used statistical goodness of fit test. The purpose of this procedure is to introduce the same correlation of real intervals into fake intervals. That is, not only the two sequences of intertransmission times will be statistically indistinguishable by means of statistical goodness of fit tests, but also the binary codes representing fake and real intervals will have the same statistical behavior.
  • 3. Proposed Modules: 1. Source Anonymity We introduce the notion of “interval indistinguishability” and illustrate how the problem of statistical source anonymity can be mapped to the problem of interval indistinguishability. _ We propose a quantitative measure to evaluate statistical source anonymity in sensor networks. 2. Coding Theory We analyze existing solutions under the proposed model. By finding a transformation of observed data, we convert the problem from analyzing real-valued samples to binary codes and identify a possible anonymity breach in the current solutions for the SSA problem. 3. Nuisance Parameters In statistical decision theory, the term “nuisance parameters” refers to information that is not needed for hypothesis testing and, further, can preclude a more accurate decision making . When performing hypothesis testing of data with nuisance parameters, it is desired (even necessary in some scenarios) to find an appropriate transformation of the data that removes or minimizes the effect of the nuisance information. 4. Hypothesis Testing In binary hypothesis testing, given two hypothesis, H0 and H1, and a data sample that belongs to one of the two hypotheses (e.g., a bit transmitted through a noisy communication channel), the goal is to decide to which hypothesis the data sample belongs. In the statistical strong anonymity problem under interval indistinguishability, given an interval of intertransmission times, the goal is to decide whether the interval is fake or real (i.e., consists of fake transmissions only or contains real transmissions). Software Requirements: Hardware Requirement:
  • 4.  Minimum 1.1 GHz PROCESSOR should be on the computer.  128 MB RAM.  20 GB HDD.  1.44 MB FDD.  52x CD-ROM Drive.  MONITORS at 800x600 minimum resolution at 256 colors minimum.  I/O, One or two button mouse and standard 101-key keyboard. Software Requirement:  Operating System : Windows 95/98/2000/NT4.0.  Technology : JAVA, JFC(Swing),J2me  Development IDE : Eclipse 3.x