eHealth unit HES-SO in SierreHenning MüllerMichael Schumacher
eHealth in Sierre• History:– Many eHealth projects since 2007– eHealth unit since 2011• Applied research, committed to inn...
Some of our partners33333333333333
Some numbers• 22 collaborators– 3 professors, 5 engineers, 6 postdocs, 8 PhD students– Many visiting researchers and excha...
Research vision• Medicine is getting increasingly data intensive– Digital patient is (becoming) a reality– Health records,...
How can we access, use and interpretdata for reliable decision support?Picture:http://biomedicalcomputationreview.org
Interoperability & SemanticsPicture: http://www.teliris.com
Picture: http://www.teliris.com
Data visualization &Decision supportPicture: http://www.testroniclabs.com
Health monitoring &expert systems
Sustainable HealthTechnology• Aging population & lifestyle (diabetes,cancer, heart diseases, etc.)• Need to sustain health...
Gestational Diabetes Mellitus• GDM occurs during pregnancy (4%)due to increased resistance to insulin• Goal of the project...
• VISual Concept Extraction challenge inRAdioLogy http://visceral.eu/• EU funded research project on the creationof a rese...
Organize 2 competitions• 1. Extract organs andlandmarks in images– Map these to semantics– Allow navigation in data– Basic...
Our role in VISCERAL• Create the platform and infrastructure tomanage the research data in the cloud• Annotate/prepare dat...
Why big data in medicine?• Data production is already enormous andit will continue to increase (genetics, …)– Most can not...
• Clinically-lead EU project, (Children hospital Rome)• Follows two past projects, health-e-child andsim-e-child• Integrat...
Target diseases• Cardiomyopathies– Strongly related to imaging– Simulate treatment outcome– Personalized care• Obesity-rel...
Our role• Creation of an infostructure to manage allclinical & research data in the project– Assure semantic interoperabil...
Conclusions• The digital patient is a reality– Increasingly complex data in large amounts• Collaboration between all partn...
More on our research• Contact:– Henning.Mueller@hevs.ch– Michael.Schumacher@hevs.ch• More information:– http://publication...
eHealth unit HES-SO in Sierre
eHealth unit HES-SO in Sierre
eHealth unit HES-SO in Sierre
eHealth unit HES-SO in Sierre
eHealth unit HES-SO in Sierre
eHealth unit HES-SO in Sierre
Prochain SlideShare
Chargement dans... 5
×

eHealth unit HES-SO in Sierre

580

Published on

A l'occasion de la première journée eHealth du 7 juin 2013, Prof. Henning Müller et Prof. Michael Schumacher ont présenté les projets de recherche eHealth de notre institut.

Published in: Éducation, Technologies
0 commentaires
0 mentions J'aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Be the first to like this

Aucun téléchargement
Vues
Total des vues
580
Sur Slideshare
0
À partir des ajouts
0
Nombre d'ajouts
4
Actions
Partages
0
Téléchargements
6
Commentaires
0
J'aime
0
Ajouts 0
No embeds

No notes for slide

eHealth unit HES-SO in Sierre

  1. 1. eHealth unit HES-SO in SierreHenning MüllerMichael Schumacher
  2. 2. eHealth in Sierre• History:– Many eHealth projects since 2007– eHealth unit since 2011• Applied research, committed to innovation• Close to user needs, with strong links:– Locally (Hôpital VS, Logival, …),– Nationally (CHUV, HUG, EPFL, …) and– Internationally (Stanford, Harvard, ImperialCollege, Carnegie Mellon, NLM, …)
  3. 3. Some of our partners33333333333333
  4. 4. Some numbers• 22 collaborators– 3 professors, 5 engineers, 6 postdocs, 8 PhD students– Many visiting researchers and exchanges with otherresearch groups & companies• 60 peer reviewed publications in 2012• 1 startup company in 2013• Projects 2013:– 8 EU FP7 projects– 4 FNS + 2 Nano-Tera– CTI, TheArk, Hasler, …– Mandates
  5. 5. Research vision• Medicine is getting increasingly data intensive– Digital patient is (becoming) a reality– Health records, Health monitoring, Internetinformation, social networks, genomic data, …• Our main objective is to support the healthdomain– … by connecting data and people– … understanding and combining multiple datasources for reliable interpretations
  6. 6. How can we access, use and interpretdata for reliable decision support?Picture:http://biomedicalcomputationreview.org
  7. 7. Interoperability & SemanticsPicture: http://www.teliris.com
  8. 8. Picture: http://www.teliris.com
  9. 9. Data visualization &Decision supportPicture: http://www.testroniclabs.com
  10. 10. Health monitoring &expert systems
  11. 11. Sustainable HealthTechnology• Aging population & lifestyle (diabetes,cancer, heart diseases, etc.)• Need to sustain health to changebehavior & to allow for a healthy living– Shift focus from treatments to detectionand prevention– Develop early diagnosis & healthmonitoring• Interdisciplinary:
  12. 12. Gestational Diabetes Mellitus• GDM occurs during pregnancy (4%)due to increased resistance to insulin• Goal of the project:1. Constant monitoring and recordingto ease treatment adjustment2. Automatic alerts to medical staff• Technologies:– Market sensors (glucometers)– Smart phones & web apps– Expert systems
  13. 13. • VISual Concept Extraction challenge inRAdioLogy http://visceral.eu/• EU funded research project on the creationof a research infrastructure– Making big image data sets available forresearch in image analysis (10-50 TB)
  14. 14. Organize 2 competitions• 1. Extract organs andlandmarks in images– Map these to semantics– Allow navigation in data– Basic task required• 2. Find similar cases– Including images andradiology reports– Combining images, textand structured data
  15. 15. Our role in VISCERAL• Create the platform and infrastructure tomanage the research data in the cloud• Annotate/prepare data– With radiologists– Assure interoperability• Evaluate results– Assure scalability and automation whenanalyzing the data, necessary for big data• Creation of a gold and silver corpus– Organize workshops to compare results
  16. 16. Why big data in medicine?• Data production is already enormous andit will continue to increase (genetics, …)– Most can not be used for research as this isprivate data• In very large data similar cases canalways be found– Learn from the past for the future– Similar in age, anamnesis, co-morbities– Also for rare diseases that are currentlyproblematic
  17. 17. • Clinically-lead EU project, (Children hospital Rome)• Follows two past projects, health-e-child andsim-e-child• Integrate complex dataand support decisions• Simulate patients andoutcomes• Avoid animal testing• http://www.md-paedigree.eu/
  18. 18. Target diseases• Cardiomyopathies– Strongly related to imaging– Simulate treatment outcome– Personalized care• Obesity-related cardiovasculardisease– Strong increase, societal impact• Juvenile idiopathic arthritis• Neurological & neuromusculardiseases
  19. 19. Our role• Creation of an infostructure to manage allclinical & research data in the project– Assure semantic interoperability between thedifferent clinical partners– Integrate the data• Support physicians to find “patients likemine” and patients to find “patients like me”– Use structured data, free text and imaging datacombined for similar case retrieval– Currently analyzing the requirements
  20. 20. Conclusions• The digital patient is a reality– Increasingly complex data in large amounts• Collaboration between all partners in thehealth system is required– Management of big data and use of extractedinformation for decision making• Many technical challenges– Temporal data, images, semantics• Sustainable health is the goal of research
  21. 21. More on our research• Contact:– Henning.Mueller@hevs.ch– Michael.Schumacher@hevs.ch• More information:– http://publications.hevs.ch/– http://medgift.hevs.ch/– http://aislab.hevs.ch/
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×