SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
International
OPEN ACCESS Journal
Of Modern Engineering Research (IJMER)
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 59|
Optimal Location and Sizing of DG using Fuzzy logic
Sujata Huddar1
, B. Kantharaj2
, K. R. Mohan3
, S. B. Patil4
, Rudresh Magadum5
1
(PG scholar Department of Electrical & Electronics Engg A.I.T Chikmagalur, Karnataka,India)
2, 3 (Associate professor Department of Electrical & Electronics Engg A.I.T Chikmagalur, Karnataka,India)
4
(Assistan professor Department of Electrical & Electronics Engg H.I.T Nidasoshi, karnataka, India)
5
(Assistant professor Department of Electrical & Electronice Engg G.I.T belgaum, Karnataka,India)
I. INTRODUCTION
Distributed generation is defined as small scale generation which is not directly connected to the bulk
transmission system & it is not centrally dispatched. Distributed generation is connected at the distribution level
which leads to the many changes in the characteristics of distribution network. The proper location of DG plays
a very important role to upgrade the system reliability and stability, to reduce the system losses, to improve the
system voltage profile [1].At present the number of scholars are carry the work on placement of DG here the
reference [2] considers the case of single radial feeder with the three load conditions namely uniform load,
concentrated load, increasing load for which the optimal location of DG is found with the analytical approaches
to minimize the losses in the single radial feeder. The optimal location of DG is needed to increase the
distributed generation potential benefits in the power system. There are many methods for the proper location
and sizing DG, some of the methods are explained in reference [3]. Such as Evolutionary computational method
[including genetic algorithm, fuzzy logic, & tabu search], 2/3 Rule, optimal power flow. Reference [4] shows the
consideration of Fuzzy rules for the proper location of capacitor. In case of Fuzzy logic a set of Fuzzy rules are
considered for the proper placement of DG by considering the VSI and PLI as a input to the system and output
as DGSI. The mathematical equations are used to calculate the sizing of DG [5].
The reference [6] shows the optimal placement of DG units using Fuzzy & real coded Genetic
algorithm, Any how the research work is continuous to upgrade the network losses, improve the voltage stability
and reliability of the power system. In this paper we have considered the fuzzy logic method for the optimal
location and sizing of DG. Proposed method is tested by considering the IEEE33 bus system data, before
obtaining location and sizing, the load flow analysis is performed by considering the NR method.
II. INTRODUCTION TO FUZZY LOGIC
First consider the given system data then conduct the load flow analysis, from which we get the PLI
(power loss indices) & VSI (voltage sensitivity indices). The PLI & VSI are used as the inputs to the Fuzzy
interfacing system after Fuzzification & defuzzification we get the output DGSI (distributed generator sensitivity
index). The ranges of VLI, PLI, and DGSI are considered from the load flow analysis. For example let us
consider the range of PLI is 0 to 1, The VLI ranges from 0.9 to 1.1and the output DGSI varies from 0 to 1. The
variables for these ranges are described with the help of five membership functions they are high, high medium,
medium, and low medium, low. The membership functions of PLI & DGSI are triangular in shape & where as
Abstract: Introduction of distributed generation modifies the structure of power system network. High
levels of penetration of distributed generation (DG) are new challenges for traditional electric power
systems. A power injection from DG units modifies network power flows, changes energy losses and
improves voltage profile of the system. Proper locations of DG units in power systems are very important
in order to obtain maximum potential advantages. There are some of the most popular DG placement
methods, such as Optimal Power Flow, 2/3Rule and Evolutionary Computational Methods. The
Evolutionary computational method includes Genetic Algorithm, Fuzzy Systems and Tabu Search. In this
paper we have considered the Fuzzy logic method for the optimal location and sizing of DG.
The optimal placement of DG is necessary to improve the reliability and stability. Proposed method is
tested by considering IEEE 33bus system data. The Fuzzy logic method includes a fuzzy inference system
(FIS) containing a set of rules which are considered to determine the DG placement suitability index of
each node in the distribution system. The optimal sizing of DG unit is obtained with the help of
mathematical expressions.
Keywords: Distributed Generation (DG); Fuzzy logic; Fuzzy rule; Optimal Location; Optimal Power flow.
Optimal Location and Sizing of DG using Fuzzy logic
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 60|
the VSI membership functions are combination of both triangular & trapezoidal in shape, these are graphically
shown as fallows.
Fig 1 Power loss index membership function
Fig 2 Voltage membership function
Fig 3 Distributed generator suitability index membership function
To determine the best DG placement problems certain rules are defined in order to determine the
suitability index of bus. For DG installation the rules are summarized in the fuzzy decision matrix as shown
below.
AND
VSI
L LN N HN H
PLI
L LM LM L L L
LM M LM LM L L
M HM M LM L L
HM HM HM M LM L
H H HM M LM LM
Table1 matrix to determine the DG suitability index
III. DETERMINATION OF SENSITIVE BUSES FOR THE OPTIMAL
IV. LOCATION OF DG FOR 33BUS SYSTEM
Bus no VSI PLI DGSI
1 1.00 0 0.49
2 0.9952 0.0198 0.5
3 0.9725 0.0839 0.471
Optimal Location and Sizing of DG using Fuzzy logic
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 61|
4 0.9601 0.0342 0.425
5 0.9479 0.0322 0.404
6 0.9317 0.0152 0.366
7 0.9259 0.0033 0.376
8 0.9178 0.0084 0.382
9 0.9074 0.0073 0.402
10 0.8976 0.0062 0.404
11 0.8962 0.0010 0.4
12 0.8937 0.0015 0.4
13 0.8835 0.0047 0.395
14 0.8797 0.0013 0.39
15 0.8773 0.0006 0.387
16 0.8750 0.0005 0.384
17 0.8716 0.0004 0.381
18 0.8706 0.0001 0.38
19 0.9944 0.0003 0.498
20 0.9886 0.0013 0.491
21 0.9875 0.0002 0.49
22 0.9864 0.0001 0.442
23 0.9667 0.0053 0.462
24 0.9558 0.0086 0.415
25 0.9504 0.0021 0.403
26 0.9285 0.0045 0.374
27 0.9242 0.0058 0.375
28 0.9051 0.0136 0.421
29 0.8914 0.0068 0.403
30 0.8855 0.0028 0.396
31 0.8785 0.0004 0.388
32 0.8770 0.0001 0.386
33 0.8755 0.0196 0.432
Table 2 DGSI output from the Fuzzy system
Result: The above table shows that maximum value of Distributed generation sensitivity index is at bus 2 with
DGSI= 0.5, Therefore the best location of DG is at bus 2.
Improvement Of Voltage Profile With DG
Bus
No
Without DG With DG
Voltage in P.U Voltage in P.U
1 1.0000 1.0000
2 0.9952 0.9968
3 0.9725 0.9826
4 0.9601 0.9714
5 0.9479 0.9604
6 0.9317 0.9461
7 0.9259 0.9409
8 0.9178 0.9337
9 0.9074 0.9244
10 0.8976 0.9159
11 0.8962 0.9146
12 0.8937 0.9124
13 0.8835 0.9034
Optimal Location and Sizing of DG using Fuzzy logic
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 62|
14 0.8797 0.9001
15 0.8773 0.8980
16 0.8750 0.8960
17 0.8716 0.8931
18 0.8706 0.8922
19 0.9944 0.9959
20 0.9886 0.9903
21 0.9875 0.9891
22 0.9864 0.9881
23 0.9667 0.9844
24 0.9558 0.9866
25 0.9504 1.000
26 0.9285 0.9432
27 0.9242 0.9394
28 0.9051 0.9226
29 0.8914 0.9104
30 0.8855 0.9052
31 0.8785 0.8991
32 0.8770 0.8977
33 0.8755 0.8964
Table3 Bus voltages with & without DG
Bus no
Fig 4 Bus voltages with & without DG
V. PROCEDURE TO CALCULATE THE OPTIMAL SIZE OF DG
First let us consider the drawn system diagram in which the DG is placed at the bus i, which produces
the current of IDG. In a radial distribution system the current IDG changes for the current branches which are
connected to bus i, where as the current of other branches are unchanged.
Therefore new current Ik’ of the kth
branch is given by
Ik’=Ik+AkIDG (1)
Where AK=1 if Kth
branch which is connected to bus i otherwise Ak=0
The value of current IDG can be calculated with the help of fallowing equation
IDG=- (2)
Now the size of DG is calculated by considering the fallowing equation
SDG=ViIDG (3)
Where Vi=Voltage at the ith
bus
Optimal Location and Sizing of DG using Fuzzy logic
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 63|
VI. CONCLUSION
In this paper we have considered optimal location & sizing of DG using Fuzzy logic. Optimal location
of DG is optained using Fuzzy logic and optimal size of DG is calculated by analytical method which are helpful
to upgrade the loss minimization and improvement of voltage profile. Finally we can conclude that proper
location & sizing of DG is better to improve the voltage profile, reduction in the losses and helps to improve the
overall system stability.
REFERENCES
[1] Hussein.A.Attia, M.EI-shibini, Z.H.Osman and Ahmed A Moftah “An assessment of a global performance index for
distributed generation impacts on distribution system” Electrical power and Machines Department ,carlo University.
2010.
[2] Zhang jun-fang, Dingsi-min, Hang yin-li and Hu guang “Research on distributed generation source placement” 2009.
[3] K.Abookazemi, M.Y.Hassan, and M.S.Majid “A review on optimal placement methods of distribution generation
sources” 2010 IEEE interational conference on power and energy.
[4] Optimal capacitor placement using fuzzy logic
[5] Optimal distributed generator placement using fuzzy logic
[6] Ramalingaiah Varikuti, Dr. M.Damodar Reddy “optimal placement of dg units using fuzzy and real coded genetic
algorithm” Journal of Theoretical and Applied Information Technology © 2005 - 2009 JATIT. All rights reserved.
APPENDIX
IEEE 33 Bus system
A. Line data for IEEE 33 Bus system
BASE: 12.66 kV, 100MVA
Sending bus Receiving bus R (in ohm) X (in ohm)
1 2 0.09220 0.04700
2 3 0.49300 0.25110
3 4 0.36600 0.18640
4 5 0.38110 0.19410
5 6 0.81900 0.70700
6 7 0.01872 0.61880
7 8 0.71140 0.23510
8 9 1.03000 0.74000
9 10 1.04400 0.74000
10 11 0.19660 0.06500
11 12 0.37440 0.12380
12 13 1.46800 1.15500
13 14 0.54160 0.71290
14 15 0.59100 0.52600
15 16 0.74630 0.54500
16 17 1.28900 1.72100
17 18 0.73200 0.57400
2 19 0.16400 0.15650
19 20 1.50420 1.35540
20 21 0.40950 0.48740
21 22 0.70890 0.93730
3 23 0.45120 0.30830
23 24 0.89800 0.70910
24 25 0.89600 0.70110
6 26 0.20300 0.10340
26 27 0.20420 0.14470
27 28 1.05900 0.93370
28 29 0.80420 0.70060
Optimal Location and Sizing of DG using Fuzzy logic
| IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 64|
29 30 0.50750 0.25850
30 31 0.97440 0.96300
31 32 0.31050 0.36190
32 33 0.34100 0.53020
B. Load data for IEEE 33Bus system
Bus No Bus code
Load Data
K
W
KVAR
1 1 - -
2 0 100 60
3 0 90 40
4 0 120 80
5 0 60 30
6 0 60 20
7 0 200 100
8 0 200 100
9 0 60 20
10 0 60 20
11 0 45 30
12 0 60 35
13 0 60 35
14 0 120 80
15 0 60 10
16 0 60 20
17 0 60 20
18 0 90 40
19 0 90 40
20 0 90 40
21 0 90 40
22 0 90 40
23 0 90 50
24 0 420 200
25 0 420 200
26 0 60 25
27 0 60 25
28 0 60 20
29 0 120 70
30 0 200 600
31 0 150 70
32 0 210 100
33 0 60 40

Contenu connexe

Tendances

Impacts of distributed generation on electricity market
Impacts of distributed generation on electricity marketImpacts of distributed generation on electricity market
Impacts of distributed generation on electricity marketHarsh Dhiman
 
Solar power integration with grid
Solar power integration with gridSolar power integration with grid
Solar power integration with gridashishant
 
abb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integrationabb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integrationSteve Wittrig
 
Impact of Distributed Generation on Energy Loss
Impact of Distributed Generation on Energy LossImpact of Distributed Generation on Energy Loss
Impact of Distributed Generation on Energy LossNadineCroes
 
Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...Power System Operation
 
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...ijiert bestjournal
 
Distributed Generation By Roland Desouza
Distributed Generation By Roland DesouzaDistributed Generation By Roland Desouza
Distributed Generation By Roland DesouzaIEEEP Karachi
 
Concept of Microgrid and CHP system
Concept of Microgrid and CHP systemConcept of Microgrid and CHP system
Concept of Microgrid and CHP systemVipin Pandey
 
DC micro grid with distributed generation for rural electrification
DC micro grid with distributed generation for rural electrificationDC micro grid with distributed generation for rural electrification
DC micro grid with distributed generation for rural electrificationBrhamesh Alipuria
 
1 s2.0-s0360319919321275-main
1 s2.0-s0360319919321275-main1 s2.0-s0360319919321275-main
1 s2.0-s0360319919321275-mainBalasundarC2
 
A Comprehensive Review of Protection Schemes for Distributed Generation
A Comprehensive Review of Protection Schemes for Distributed GenerationA Comprehensive Review of Protection Schemes for Distributed Generation
A Comprehensive Review of Protection Schemes for Distributed GenerationUmair Shahzad
 
Dist.gen 1
Dist.gen 1Dist.gen 1
Dist.gen 1sanjivkj
 

Tendances (19)

Impacts of distributed generation on electricity market
Impacts of distributed generation on electricity marketImpacts of distributed generation on electricity market
Impacts of distributed generation on electricity market
 
Distributed Generation
Distributed Generation  Distributed Generation
Distributed Generation
 
Solar power integration with grid
Solar power integration with gridSolar power integration with grid
Solar power integration with grid
 
abb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integrationabb micro-grids and-renewable_energy_integration
abb micro-grids and-renewable_energy_integration
 
Impact of Distributed Generation on Energy Loss
Impact of Distributed Generation on Energy LossImpact of Distributed Generation on Energy Loss
Impact of Distributed Generation on Energy Loss
 
Jm3417081729
Jm3417081729Jm3417081729
Jm3417081729
 
Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...
 
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION FOR LOSS REDUCTION IN DISTRIBUTIO...
 
Distributed Generation By Roland Desouza
Distributed Generation By Roland DesouzaDistributed Generation By Roland Desouza
Distributed Generation By Roland Desouza
 
Concept of Microgrid and CHP system
Concept of Microgrid and CHP systemConcept of Microgrid and CHP system
Concept of Microgrid and CHP system
 
Distributed Generation
Distributed Generation Distributed Generation
Distributed Generation
 
DC micro grid with distributed generation for rural electrification
DC micro grid with distributed generation for rural electrificationDC micro grid with distributed generation for rural electrification
DC micro grid with distributed generation for rural electrification
 
1 s2.0-s0360319919321275-main
1 s2.0-s0360319919321275-main1 s2.0-s0360319919321275-main
1 s2.0-s0360319919321275-main
 
A Comprehensive Review of Protection Schemes for Distributed Generation
A Comprehensive Review of Protection Schemes for Distributed GenerationA Comprehensive Review of Protection Schemes for Distributed Generation
A Comprehensive Review of Protection Schemes for Distributed Generation
 
Micro grid
Micro gridMicro grid
Micro grid
 
Dist.gen 1
Dist.gen 1Dist.gen 1
Dist.gen 1
 
Microgrid
MicrogridMicrogrid
Microgrid
 
Ho3513201325
Ho3513201325Ho3513201325
Ho3513201325
 
Microgrid
MicrogridMicrogrid
Microgrid
 

En vedette

OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...Prashanta Sarkar
 
An optimized hybrid system model solution for coastal area in bangladesh
An optimized hybrid system model   solution for coastal area in bangladeshAn optimized hybrid system model   solution for coastal area in bangladesh
An optimized hybrid system model solution for coastal area in bangladesheSAT Journals
 
Delivering distribution intelligence with MV/LV supervision and control
Delivering distribution intelligence with MV/LV supervision and controlDelivering distribution intelligence with MV/LV supervision and control
Delivering distribution intelligence with MV/LV supervision and controlLandis+Gyr
 
Gridstream Evolution
Gridstream EvolutionGridstream Evolution
Gridstream EvolutionLandis+Gyr
 
Optimal placement and sizing of ht shunt capacitors for transmission loss min...
Optimal placement and sizing of ht shunt capacitors for transmission loss min...Optimal placement and sizing of ht shunt capacitors for transmission loss min...
Optimal placement and sizing of ht shunt capacitors for transmission loss min...IAEME Publication
 
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEESHYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEESBhushith Kumar
 
Optimal placement and sizing of multi dg using pso
Optimal placement and sizing of multi dg  using psoOptimal placement and sizing of multi dg  using pso
Optimal placement and sizing of multi dg using psoJitendra Bhadoriya
 
Genetic Algo. for Radial Distribution System to reduce Losses
Genetic Algo. for Radial Distribution System to reduce LossesGenetic Algo. for Radial Distribution System to reduce Losses
Genetic Algo. for Radial Distribution System to reduce LossesAbhishek Jangid
 
Electricity theft detection and localisation in unknown radial low voltage ne...
Electricity theft detection and localisation in unknown radial low voltage ne...Electricity theft detection and localisation in unknown radial low voltage ne...
Electricity theft detection and localisation in unknown radial low voltage ne...eSAT Journals
 
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION Jitendra Bhadoriya
 
prevention of power theft and power uality by the help of fuzzy logic
prevention of power theft and power uality by the help of fuzzy logicprevention of power theft and power uality by the help of fuzzy logic
prevention of power theft and power uality by the help of fuzzy logicvaibyfrndz
 
X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...
X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...
X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...IJMER
 
Optimal Control Problem and Power-Efficient Medical Image Processing Using Puma
Optimal Control Problem and Power-Efficient Medical Image Processing Using PumaOptimal Control Problem and Power-Efficient Medical Image Processing Using Puma
Optimal Control Problem and Power-Efficient Medical Image Processing Using PumaIJMER
 
Ijmer 46062932
Ijmer 46062932Ijmer 46062932
Ijmer 46062932IJMER
 
Illustration Clamor Echelon Evaluation via Prime Piece Psychotherapy
Illustration Clamor Echelon Evaluation via Prime Piece PsychotherapyIllustration Clamor Echelon Evaluation via Prime Piece Psychotherapy
Illustration Clamor Echelon Evaluation via Prime Piece PsychotherapyIJMER
 
Structural Behaviour of Fibrous Concrete Using Polypropylene Fibres
Structural Behaviour of Fibrous Concrete Using Polypropylene FibresStructural Behaviour of Fibrous Concrete Using Polypropylene Fibres
Structural Behaviour of Fibrous Concrete Using Polypropylene FibresIJMER
 
A Novel Switch Mechanism for Load Balancing in Public Cloud
A Novel Switch Mechanism for Load Balancing in Public CloudA Novel Switch Mechanism for Load Balancing in Public Cloud
A Novel Switch Mechanism for Load Balancing in Public CloudIJMER
 
Ce32944948
Ce32944948Ce32944948
Ce32944948IJMER
 
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...IJMER
 

En vedette (20)

OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
OPTIMAL PLACEMENT AND SIZING OF CAPACITOR BANKS BASED ON VOLTAGE PROFILE AND ...
 
An optimized hybrid system model solution for coastal area in bangladesh
An optimized hybrid system model   solution for coastal area in bangladeshAn optimized hybrid system model   solution for coastal area in bangladesh
An optimized hybrid system model solution for coastal area in bangladesh
 
Delivering distribution intelligence with MV/LV supervision and control
Delivering distribution intelligence with MV/LV supervision and controlDelivering distribution intelligence with MV/LV supervision and control
Delivering distribution intelligence with MV/LV supervision and control
 
Gridstream Evolution
Gridstream EvolutionGridstream Evolution
Gridstream Evolution
 
Optimal placement and sizing of ht shunt capacitors for transmission loss min...
Optimal placement and sizing of ht shunt capacitors for transmission loss min...Optimal placement and sizing of ht shunt capacitors for transmission loss min...
Optimal placement and sizing of ht shunt capacitors for transmission loss min...
 
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEESHYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
HYBRID POWER GENERATION SYSTEM FOR DOMESTIC PIRPOSEES
 
Optimal placement and sizing of multi dg using pso
Optimal placement and sizing of multi dg  using psoOptimal placement and sizing of multi dg  using pso
Optimal placement and sizing of multi dg using pso
 
Genetic Algo. for Radial Distribution System to reduce Losses
Genetic Algo. for Radial Distribution System to reduce LossesGenetic Algo. for Radial Distribution System to reduce Losses
Genetic Algo. for Radial Distribution System to reduce Losses
 
Electricity theft detection and localisation in unknown radial low voltage ne...
Electricity theft detection and localisation in unknown radial low voltage ne...Electricity theft detection and localisation in unknown radial low voltage ne...
Electricity theft detection and localisation in unknown radial low voltage ne...
 
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION
OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION
 
prevention of power theft and power uality by the help of fuzzy logic
prevention of power theft and power uality by the help of fuzzy logicprevention of power theft and power uality by the help of fuzzy logic
prevention of power theft and power uality by the help of fuzzy logic
 
Loss minimisation in power system
Loss minimisation in power systemLoss minimisation in power system
Loss minimisation in power system
 
X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...
X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...
X-Ray Diffraction Analysis of the Microscopies of Some Corrosion-Protective B...
 
Optimal Control Problem and Power-Efficient Medical Image Processing Using Puma
Optimal Control Problem and Power-Efficient Medical Image Processing Using PumaOptimal Control Problem and Power-Efficient Medical Image Processing Using Puma
Optimal Control Problem and Power-Efficient Medical Image Processing Using Puma
 
Ijmer 46062932
Ijmer 46062932Ijmer 46062932
Ijmer 46062932
 
Illustration Clamor Echelon Evaluation via Prime Piece Psychotherapy
Illustration Clamor Echelon Evaluation via Prime Piece PsychotherapyIllustration Clamor Echelon Evaluation via Prime Piece Psychotherapy
Illustration Clamor Echelon Evaluation via Prime Piece Psychotherapy
 
Structural Behaviour of Fibrous Concrete Using Polypropylene Fibres
Structural Behaviour of Fibrous Concrete Using Polypropylene FibresStructural Behaviour of Fibrous Concrete Using Polypropylene Fibres
Structural Behaviour of Fibrous Concrete Using Polypropylene Fibres
 
A Novel Switch Mechanism for Load Balancing in Public Cloud
A Novel Switch Mechanism for Load Balancing in Public CloudA Novel Switch Mechanism for Load Balancing in Public Cloud
A Novel Switch Mechanism for Load Balancing in Public Cloud
 
Ce32944948
Ce32944948Ce32944948
Ce32944948
 
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...Evaluation and Accuracy Assessment of Static GPS Technique in  Monitoring of ...
Evaluation and Accuracy Assessment of Static GPS Technique in Monitoring of ...
 

Similaire à Optimal Location and Sizing of DG using Fuzzy logic

A new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generationA new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generationIAEME Publication
 
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...IJERA Editor
 
Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...journalBEEI
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...IJERA Editor
 
VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...
VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...
VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...Journal For Research
 
Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...Editor IJLRES
 
Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...
Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...
Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...IOSR Journals
 
Optimum Location of DG Units Considering Operation Conditions
Optimum Location of DG Units Considering Operation ConditionsOptimum Location of DG Units Considering Operation Conditions
Optimum Location of DG Units Considering Operation ConditionsEditor IJCATR
 
An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...IAEME Publication
 
ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO
ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO
ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO ecij
 
Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...nooriasukmaningtyas
 
Voltage_Stability_Analysis_With DG NEW (1).pptx
Voltage_Stability_Analysis_With DG NEW (1).pptxVoltage_Stability_Analysis_With DG NEW (1).pptx
Voltage_Stability_Analysis_With DG NEW (1).pptxrameshss
 
Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2IAEME Publication
 
Optimal Siting of Distributed Generators in a Distribution Network using Arti...
Optimal Siting of Distributed Generators in a Distribution Network using Arti...Optimal Siting of Distributed Generators in a Distribution Network using Arti...
Optimal Siting of Distributed Generators in a Distribution Network using Arti...IJECEIAES
 

Similaire à Optimal Location and Sizing of DG using Fuzzy logic (20)

A new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generationA new simplified approach for optimum allocation of a distributed generation
A new simplified approach for optimum allocation of a distributed generation
 
Jh3516001603
Jh3516001603Jh3516001603
Jh3516001603
 
Ka3418051809
Ka3418051809Ka3418051809
Ka3418051809
 
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
Voltage Profile Improvement of distribution system Using Particle Swarm Optim...
 
Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...Performance comparison of distributed generation installation arrangement in ...
Performance comparison of distributed generation installation arrangement in ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
Fi36983988
Fi36983988Fi36983988
Fi36983988
 
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
Transforming an Existing Distribution Network Into Autonomous MICRO-GRID usin...
 
VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...
VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...
VOLTAGE PROFILE IMPROVEMENT AND LINE LOSSES REDUCTION USING DG USING GSA AND ...
 
Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...Performance based Comparison of Wind and Solar Distributed Generators using E...
Performance based Comparison of Wind and Solar Distributed Generators using E...
 
40220140502004
4022014050200440220140502004
40220140502004
 
Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...
Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...
Application of Gravitational Search Algorithm and Fuzzy For Loss Reduction of...
 
E010123337
E010123337E010123337
E010123337
 
Optimum Location of DG Units Considering Operation Conditions
Optimum Location of DG Units Considering Operation ConditionsOptimum Location of DG Units Considering Operation Conditions
Optimum Location of DG Units Considering Operation Conditions
 
An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...An analytical approach for optimal placement of combined dg and capacitor in ...
An analytical approach for optimal placement of combined dg and capacitor in ...
 
ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO
ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO
ASSESSMENT OF INTRICATE DG PLANNING WITH PRACTICAL LOAD MODELS BY USING PSO
 
Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...Network loss reduction and voltage improvement by optimal placement and sizin...
Network loss reduction and voltage improvement by optimal placement and sizin...
 
Voltage_Stability_Analysis_With DG NEW (1).pptx
Voltage_Stability_Analysis_With DG NEW (1).pptxVoltage_Stability_Analysis_With DG NEW (1).pptx
Voltage_Stability_Analysis_With DG NEW (1).pptx
 
Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2Fuzzy expert system based optimal capacitor allocation in distribution system-2
Fuzzy expert system based optimal capacitor allocation in distribution system-2
 
Optimal Siting of Distributed Generators in a Distribution Network using Arti...
Optimal Siting of Distributed Generators in a Distribution Network using Arti...Optimal Siting of Distributed Generators in a Distribution Network using Arti...
Optimal Siting of Distributed Generators in a Distribution Network using Arti...
 

Plus de IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...IJMER
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingIJMER
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreIJMER
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...IJMER
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...IJMER
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...IJMER
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...IJMER
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationIJMER
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless BicycleIJMER
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIJMER
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemIJMER
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesIJMER
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...IJMER
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningIJMER
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessIJMER
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersIJMER
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And AuditIJMER
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLIJMER
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyIJMER
 

Plus de IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
 

Dernier

High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical trainingGladiatorsKasper
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
 

Dernier (20)

High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESCME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
 
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfList of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
 

Optimal Location and Sizing of DG using Fuzzy logic

  • 1. International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 59| Optimal Location and Sizing of DG using Fuzzy logic Sujata Huddar1 , B. Kantharaj2 , K. R. Mohan3 , S. B. Patil4 , Rudresh Magadum5 1 (PG scholar Department of Electrical & Electronics Engg A.I.T Chikmagalur, Karnataka,India) 2, 3 (Associate professor Department of Electrical & Electronics Engg A.I.T Chikmagalur, Karnataka,India) 4 (Assistan professor Department of Electrical & Electronics Engg H.I.T Nidasoshi, karnataka, India) 5 (Assistant professor Department of Electrical & Electronice Engg G.I.T belgaum, Karnataka,India) I. INTRODUCTION Distributed generation is defined as small scale generation which is not directly connected to the bulk transmission system & it is not centrally dispatched. Distributed generation is connected at the distribution level which leads to the many changes in the characteristics of distribution network. The proper location of DG plays a very important role to upgrade the system reliability and stability, to reduce the system losses, to improve the system voltage profile [1].At present the number of scholars are carry the work on placement of DG here the reference [2] considers the case of single radial feeder with the three load conditions namely uniform load, concentrated load, increasing load for which the optimal location of DG is found with the analytical approaches to minimize the losses in the single radial feeder. The optimal location of DG is needed to increase the distributed generation potential benefits in the power system. There are many methods for the proper location and sizing DG, some of the methods are explained in reference [3]. Such as Evolutionary computational method [including genetic algorithm, fuzzy logic, & tabu search], 2/3 Rule, optimal power flow. Reference [4] shows the consideration of Fuzzy rules for the proper location of capacitor. In case of Fuzzy logic a set of Fuzzy rules are considered for the proper placement of DG by considering the VSI and PLI as a input to the system and output as DGSI. The mathematical equations are used to calculate the sizing of DG [5]. The reference [6] shows the optimal placement of DG units using Fuzzy & real coded Genetic algorithm, Any how the research work is continuous to upgrade the network losses, improve the voltage stability and reliability of the power system. In this paper we have considered the fuzzy logic method for the optimal location and sizing of DG. Proposed method is tested by considering the IEEE33 bus system data, before obtaining location and sizing, the load flow analysis is performed by considering the NR method. II. INTRODUCTION TO FUZZY LOGIC First consider the given system data then conduct the load flow analysis, from which we get the PLI (power loss indices) & VSI (voltage sensitivity indices). The PLI & VSI are used as the inputs to the Fuzzy interfacing system after Fuzzification & defuzzification we get the output DGSI (distributed generator sensitivity index). The ranges of VLI, PLI, and DGSI are considered from the load flow analysis. For example let us consider the range of PLI is 0 to 1, The VLI ranges from 0.9 to 1.1and the output DGSI varies from 0 to 1. The variables for these ranges are described with the help of five membership functions they are high, high medium, medium, and low medium, low. The membership functions of PLI & DGSI are triangular in shape & where as Abstract: Introduction of distributed generation modifies the structure of power system network. High levels of penetration of distributed generation (DG) are new challenges for traditional electric power systems. A power injection from DG units modifies network power flows, changes energy losses and improves voltage profile of the system. Proper locations of DG units in power systems are very important in order to obtain maximum potential advantages. There are some of the most popular DG placement methods, such as Optimal Power Flow, 2/3Rule and Evolutionary Computational Methods. The Evolutionary computational method includes Genetic Algorithm, Fuzzy Systems and Tabu Search. In this paper we have considered the Fuzzy logic method for the optimal location and sizing of DG. The optimal placement of DG is necessary to improve the reliability and stability. Proposed method is tested by considering IEEE 33bus system data. The Fuzzy logic method includes a fuzzy inference system (FIS) containing a set of rules which are considered to determine the DG placement suitability index of each node in the distribution system. The optimal sizing of DG unit is obtained with the help of mathematical expressions. Keywords: Distributed Generation (DG); Fuzzy logic; Fuzzy rule; Optimal Location; Optimal Power flow.
  • 2. Optimal Location and Sizing of DG using Fuzzy logic | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 60| the VSI membership functions are combination of both triangular & trapezoidal in shape, these are graphically shown as fallows. Fig 1 Power loss index membership function Fig 2 Voltage membership function Fig 3 Distributed generator suitability index membership function To determine the best DG placement problems certain rules are defined in order to determine the suitability index of bus. For DG installation the rules are summarized in the fuzzy decision matrix as shown below. AND VSI L LN N HN H PLI L LM LM L L L LM M LM LM L L M HM M LM L L HM HM HM M LM L H H HM M LM LM Table1 matrix to determine the DG suitability index III. DETERMINATION OF SENSITIVE BUSES FOR THE OPTIMAL IV. LOCATION OF DG FOR 33BUS SYSTEM Bus no VSI PLI DGSI 1 1.00 0 0.49 2 0.9952 0.0198 0.5 3 0.9725 0.0839 0.471
  • 3. Optimal Location and Sizing of DG using Fuzzy logic | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 61| 4 0.9601 0.0342 0.425 5 0.9479 0.0322 0.404 6 0.9317 0.0152 0.366 7 0.9259 0.0033 0.376 8 0.9178 0.0084 0.382 9 0.9074 0.0073 0.402 10 0.8976 0.0062 0.404 11 0.8962 0.0010 0.4 12 0.8937 0.0015 0.4 13 0.8835 0.0047 0.395 14 0.8797 0.0013 0.39 15 0.8773 0.0006 0.387 16 0.8750 0.0005 0.384 17 0.8716 0.0004 0.381 18 0.8706 0.0001 0.38 19 0.9944 0.0003 0.498 20 0.9886 0.0013 0.491 21 0.9875 0.0002 0.49 22 0.9864 0.0001 0.442 23 0.9667 0.0053 0.462 24 0.9558 0.0086 0.415 25 0.9504 0.0021 0.403 26 0.9285 0.0045 0.374 27 0.9242 0.0058 0.375 28 0.9051 0.0136 0.421 29 0.8914 0.0068 0.403 30 0.8855 0.0028 0.396 31 0.8785 0.0004 0.388 32 0.8770 0.0001 0.386 33 0.8755 0.0196 0.432 Table 2 DGSI output from the Fuzzy system Result: The above table shows that maximum value of Distributed generation sensitivity index is at bus 2 with DGSI= 0.5, Therefore the best location of DG is at bus 2. Improvement Of Voltage Profile With DG Bus No Without DG With DG Voltage in P.U Voltage in P.U 1 1.0000 1.0000 2 0.9952 0.9968 3 0.9725 0.9826 4 0.9601 0.9714 5 0.9479 0.9604 6 0.9317 0.9461 7 0.9259 0.9409 8 0.9178 0.9337 9 0.9074 0.9244 10 0.8976 0.9159 11 0.8962 0.9146 12 0.8937 0.9124 13 0.8835 0.9034
  • 4. Optimal Location and Sizing of DG using Fuzzy logic | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 62| 14 0.8797 0.9001 15 0.8773 0.8980 16 0.8750 0.8960 17 0.8716 0.8931 18 0.8706 0.8922 19 0.9944 0.9959 20 0.9886 0.9903 21 0.9875 0.9891 22 0.9864 0.9881 23 0.9667 0.9844 24 0.9558 0.9866 25 0.9504 1.000 26 0.9285 0.9432 27 0.9242 0.9394 28 0.9051 0.9226 29 0.8914 0.9104 30 0.8855 0.9052 31 0.8785 0.8991 32 0.8770 0.8977 33 0.8755 0.8964 Table3 Bus voltages with & without DG Bus no Fig 4 Bus voltages with & without DG V. PROCEDURE TO CALCULATE THE OPTIMAL SIZE OF DG First let us consider the drawn system diagram in which the DG is placed at the bus i, which produces the current of IDG. In a radial distribution system the current IDG changes for the current branches which are connected to bus i, where as the current of other branches are unchanged. Therefore new current Ik’ of the kth branch is given by Ik’=Ik+AkIDG (1) Where AK=1 if Kth branch which is connected to bus i otherwise Ak=0 The value of current IDG can be calculated with the help of fallowing equation IDG=- (2) Now the size of DG is calculated by considering the fallowing equation SDG=ViIDG (3) Where Vi=Voltage at the ith bus
  • 5. Optimal Location and Sizing of DG using Fuzzy logic | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 63| VI. CONCLUSION In this paper we have considered optimal location & sizing of DG using Fuzzy logic. Optimal location of DG is optained using Fuzzy logic and optimal size of DG is calculated by analytical method which are helpful to upgrade the loss minimization and improvement of voltage profile. Finally we can conclude that proper location & sizing of DG is better to improve the voltage profile, reduction in the losses and helps to improve the overall system stability. REFERENCES [1] Hussein.A.Attia, M.EI-shibini, Z.H.Osman and Ahmed A Moftah “An assessment of a global performance index for distributed generation impacts on distribution system” Electrical power and Machines Department ,carlo University. 2010. [2] Zhang jun-fang, Dingsi-min, Hang yin-li and Hu guang “Research on distributed generation source placement” 2009. [3] K.Abookazemi, M.Y.Hassan, and M.S.Majid “A review on optimal placement methods of distribution generation sources” 2010 IEEE interational conference on power and energy. [4] Optimal capacitor placement using fuzzy logic [5] Optimal distributed generator placement using fuzzy logic [6] Ramalingaiah Varikuti, Dr. M.Damodar Reddy “optimal placement of dg units using fuzzy and real coded genetic algorithm” Journal of Theoretical and Applied Information Technology © 2005 - 2009 JATIT. All rights reserved. APPENDIX IEEE 33 Bus system A. Line data for IEEE 33 Bus system BASE: 12.66 kV, 100MVA Sending bus Receiving bus R (in ohm) X (in ohm) 1 2 0.09220 0.04700 2 3 0.49300 0.25110 3 4 0.36600 0.18640 4 5 0.38110 0.19410 5 6 0.81900 0.70700 6 7 0.01872 0.61880 7 8 0.71140 0.23510 8 9 1.03000 0.74000 9 10 1.04400 0.74000 10 11 0.19660 0.06500 11 12 0.37440 0.12380 12 13 1.46800 1.15500 13 14 0.54160 0.71290 14 15 0.59100 0.52600 15 16 0.74630 0.54500 16 17 1.28900 1.72100 17 18 0.73200 0.57400 2 19 0.16400 0.15650 19 20 1.50420 1.35540 20 21 0.40950 0.48740 21 22 0.70890 0.93730 3 23 0.45120 0.30830 23 24 0.89800 0.70910 24 25 0.89600 0.70110 6 26 0.20300 0.10340 26 27 0.20420 0.14470 27 28 1.05900 0.93370 28 29 0.80420 0.70060
  • 6. Optimal Location and Sizing of DG using Fuzzy logic | IJMER | ISSN: 2249–6645 | www.ijmer.com | Vol. 4 | Iss. 6| June. 2014 | 64| 29 30 0.50750 0.25850 30 31 0.97440 0.96300 31 32 0.31050 0.36190 32 33 0.34100 0.53020 B. Load data for IEEE 33Bus system Bus No Bus code Load Data K W KVAR 1 1 - - 2 0 100 60 3 0 90 40 4 0 120 80 5 0 60 30 6 0 60 20 7 0 200 100 8 0 200 100 9 0 60 20 10 0 60 20 11 0 45 30 12 0 60 35 13 0 60 35 14 0 120 80 15 0 60 10 16 0 60 20 17 0 60 20 18 0 90 40 19 0 90 40 20 0 90 40 21 0 90 40 22 0 90 40 23 0 90 50 24 0 420 200 25 0 420 200 26 0 60 25 27 0 60 25 28 0 60 20 29 0 120 70 30 0 200 600 31 0 150 70 32 0 210 100 33 0 60 40