SlideShare une entreprise Scribd logo
1  sur  27
Fluid and Structure Tango in
    Biomedical Research

      Idit Avrahami, Afeka



           ISMBE, I.Avrahami, Afeka
Fluid-Structure Interaction (FSI)
  The unknown motion of the structure
   is a BC for the flow, and vice versa




                                          2
              ISMBE, I.Avrahami, Afeka
Fluid-Structure Interaction (FSI)

1. Separate the problem to:
  – structural domain (S)
  – fluid domain (F)
2. Solve each domain separately
3. The interactions occurs along the
   interfaces



                                         3
              ISMBE, I.Avrahami, Afeka
Governing Equations
For the fluid domain            For the solid domain
 ∇⋅U = 0
  DU                                &&   &
                                   MU + CU + KU = R
ρ     = −∇p + μ∇ 2 U
  Dt
For moving boundaries
    U = u f − ug
                             Interactions at the interfaces
                                        Vf = Us
                                        n ⋅ τ f = n ⋅ τs

                                                              4
                   ISMBE, I.Avrahami, Afeka
Numerical Methods
        for solving the PDE
Meshing:
  Divide each domain into elements

Discretization:
  Approximate the PDE into a set of
  algebraic equations (FVM/ FEM)

Moving Mesh in the fluid domain:
 ALE (Arbitrary Lagrangian Eulerian )
 approach is used to adjust the mesh to
 the boundary motion Afeka
               ISMBE, I.Avrahami,
                                          5
Impedance Pump
          based on resonance wave dynamics


             Flexible graft                        Pincher




outflow                       Fluid




                Impedance mismatch
                   (anastomosis)

                                                             6
                        ISMBE, I.Avrahami, Afeka
Pressure waves in Elastic Tube
  A local periodic pressure imposed in an
    elastic tube produces pressure waves that
    travel along the tube in the wave speed of:

                                                Eh
                                           C=
                                                ρd



                                                     7
                ISMBE, I.Avrahami, Afeka
Wave Reflection
• A local excitation in a specific
  frequency produces periodic
  waves in the domain
• The waves travel along the
  domain and reflected by the
  reflection site
• The reflected waves are
  combined with the traveling
  waves
• At specific frequency (natural
  freq. and its harmonics) the
  reflected waves are added to
  the traveling waves and the
  waves are enhanced – this is
  resonance
                                                   8
                        ISMBE, I.Avrahami, Afeka
9
ISMBE, I.Avrahami, Afeka
Resonance Wave Pumping
 Channel
thickness
 200 μm




                                                         10
                               (Rinderknecht et al., 2005)
            ISMBE, I.Avrahami, Afeka
Experimental Model




                            (Hickerson et al., 2005)
     ISMBE, I.Avrahami, Afeka
Numerical Model

Full fixation                                                               Full fixation
                Imposed harmonic                             Stress free
 dY=dZ=0                                                                     dY=dZ=0
                     motion



  Y                                                Fluid-structure interface,
                Contact surface                       no slip conditions
          Z
Stress-                                                                    Stress-
                                   Axisymmetric
free BC                                                                    free BC
                                        BC




                                  ISMBE, I.Avrahami, Afeka
Symmetric Excitation
   => no net flow




                                 13
      ISMBE, I.Avrahami, Afeka
Asymmetric Excitation




                    (Avrahami & Gharib,2008, JFM)
                                             14
      ISMBE, I.Avrahami, Afeka
Typical Transient Flow Rate
                                                                                                      Positive outlet
                                                                                                        flow rate


                      400
                                                                          Instantaneous Flow             The average
                                                                          Bulk Flow
                      300
                                                                                                       flow rate over a
Flow rate (cm /sec)




                                                                                                          cycle in the
3




                      200



                      100
                                                                                                        periodic phase
                                                                                                             is the
                         0
                                                                                                          Pump Bulk
                      -100
                          0.00   0.50   1.00   1.50     2.00       2.50   3.00      3.50       4.00          Flow
                                                      Time (sec)
                                                                                                                        15
                                                           ISMBE, I.Avrahami, Afeka
Effect of Excitation Point




                 (Rinderknecht, et al., 2005, JMM)
         ISMBE, I.Avrahami, Afeka
                                                 16
Effect of Pinching Parameters
                                          1.5
                                                                                  Numerical simulation                                          1.4
                                          1.0




                                                                                                                    Non-dimensional flow rate
                                                                                  Experiments                                                   1.2
Normalized flow rate




                                                                                  (Hickerson, 2005)
                                          0.5                                                                                                   1.0

                                          0.0                                                                                                   0.8

                                                                                                                                                0.6
                                      -0.5
                                                                                                                                                0.4
                                      -1.0
                                                                                                                                                0.2
                                      -1.5
                                                 2   4           6           8         10             12                                        0.0
                                                          Axial location along the tube (cm)
                                                                                                                                                      0       20          40       60         80      100
                                                                                                                                                                     Pinching amplitude (%)


                                          2.5
                                                                            Numerical simulation                                                 200
                                          2.0                                                                                                    150
              Non-dimensional Flow Rate




                                                                                                                 F lo w (m L /m in )
                                                                            Experiments
                                                                            (Hickerson, 2005)                                                    100
                                          1.5
                                                                                                                                                  50
                                          1.0
                                                                                                                                                   0
                                                                                                                                                 -50
                                          0.5                                                                                                   -100
                                                                                                                                                -150
                                          0.0                                                                                                   -200
                                          -0.5
                                                                                                                                                          0   5000     10000    15000    20000     25000
                                                 0   20          40          60          80            100
                                                                 Duty-Cycle (%)
                                                                                                                                                                     Pressure (dyn/cm2)


                                                                                                                                                                                                            17
                                                                                                      ISMBE, I.Avrahami, Afeka
Effect of Pinching Frequency
                      300                 Resonant
                                                                                        0 . 0 0 1 2




                                                                              Bulk flow-rate
                                         Frequencies       11.5 Hz
                                6 Hz                                          FFT
                                                                                        0 . 0 0 1




                      250
Flow rate (cm /sec)




                                                                   Natural              0 . 0 0 0 8




                                                                  Frequency
                      200
3




                                                                                        0 . 0 0 0 6




                      150
                                                                                        0 . 0 0 0 4




                      100        Natural                                                0 . 0 0 0 2




                                Frequency


                       50                                                               0




                            2           7                       12
                                            Frequency (Hz)                                            18
                                        ISMBE, I.Avrahami, Afeka
                                       FSI in BME, I. Avrahami, Afeka
Active Bypass Graft
Using resonance wave pumping
Impedance
  pump                 t
                 G ra f


                                     y   Stenosis
                              ar ter
                     nar y
                 Coro




                                                    19
            ISMBE, I.Avrahami, Afeka
                       (Avrahami & Gharib, 2005, BMES)
The Numerical Model
         Pincher
                                                 3D model based on
                                               physiological geometry
                     Dacron
                     Graft


Artery
           φ 2 mm                               Anastomosis
                           450




               90% stenosis

                             (Avrahami & Gharib, 2005, BMES)
                    ISMBE, I.Avrahami, Afeka
                                                         20
Resonance Wave Pumping

                     • Maximal flow is found at natural frequency
              150                                                          5E 10
                                                                             -




                         Bulk flow
              140
                         Natural
                                                                           4. 5E 10
                                                                                -




                                                                                      Dacron Graft
              130
                                                                                      D=3mm
                                                                           4E 10
                                                                             -




                         frequency
              120                                                          3. 5E 10
                                                                                -




                                                                                      L= 12 cm
FR (ml/min)




              110                                                          3E 10
                                                                             -




              100                                                          2. 5E 10
                                                                                -




                                                                                      Duty-cycle=50%
              90                                                           2E 10
                                                                             -




              80                                                           1. 5E 10
                                                                                -
                                                                                      Pinch amp =20%
              70                                                           1E 10
                                                                             -

                                                                                      =>
              60                                                           5E 11
                                                                             -




                                                                                      frequency=100 Hz
              50                                                           0




                    25     50        75       100          125       150
                                      Frequency (Hz)
                                                                                                    21
                                                    ISMBE, I.Avrahami, Afeka
                                                                 (Avrahami & Gharib, 2005, BMES)
Wall Shear Stress at the Anastomosis
   without pump




    with pump




                                                       22
                  ISMBE, I.Avrahami, Afeka
                             (Avrahami & Gharib, 2005, BMES)
Graft
                                                        Anastomosis
                                                           Toe                               Downstream
                                                                                               Artery




                               120                                                       Graft
                                                                                         Anastomosis Toe
                               100                                                       Downstream artery
Wall shear stress (dyne/cm2)




                               80



                               60



                               40



                               20



                                0
                                 0.00     0.10   0.20   0.30   0.40   0.50     0.60   0.70   0.80   0.90     1.00
                                                                                                                    23
                                                                  Time (sec)
                                                    ISMBE, I.Avrahami, Afeka
Additional Support Pump




  pump




 On Cavo-pulmonary                                 Intra - Aortic support
connection support for                             Pump
  Fontan procedure
                                                           (Loumes et al., 2008)
             (Avrahami et al., 2006)                                        24
                        ISMBE, I.Avrahami, Afeka
Micro-Pump
for mixing and heat removal




                                 Max Flow at freq=78Hz




                        mL/min



                                                         25
     ISMBE, I.Avrahami, Afeka
Acknowledgments

•   Prof. Mory Gharib, Caltech
•   Dr. Laurence Loumes, McGill University
•   Dr. Derek Rinderknecht
•   Dr. Anna Hickerson
•   Division of Materials Technology, NTU,
    Singapore

• The Joseph Drown Foundation



                                             26
                  ISMBE, I.Avrahami, Afeka
References
• Avrahami I. and Gharib M. (2008), "Computational
  Studies of Resonance Wave Pumping in Compliant
  Tubes”, Journal of Fluid mechanics, Vol. 608: 139-160.


• Loumes, L., I. Avrahami and M. Gharib (2008), "Resonant
  pumping in a multilayer impedance pump." Physics of
  Fluids, Vol. 20(2)


• Avrahami, I., L. Loumes and M. Gharib (2006).
  "Numerical investigation of the fluid and structure
  dynamics in models of impedance pump." Journal of
  Biomechanics 39: 438-400.

                                                           27
                      ISMBE, I.Avrahami, Afeka

Contenu connexe

En vedette

Brand, Branding and Marketing for Protection Services Professionals
Brand, Branding and Marketing for Protection Services ProfessionalsBrand, Branding and Marketing for Protection Services Professionals
Brand, Branding and Marketing for Protection Services ProfessionalsLarry Snow
 
7 nov fsi - tobias berg
7 nov   fsi - tobias berg7 nov   fsi - tobias berg
7 nov fsi - tobias bergAndersANSYS
 
21 nov ansys meshing - tomas jarneholt ansys sweden
21 nov   ansys meshing - tomas jarneholt ansys sweden21 nov   ansys meshing - tomas jarneholt ansys sweden
21 nov ansys meshing - tomas jarneholt ansys swedenAndersANSYS
 
Fluent fsi 14.5-lect-03_co_simulation_setup (1)
Fluent fsi 14.5-lect-03_co_simulation_setup (1)Fluent fsi 14.5-lect-03_co_simulation_setup (1)
Fluent fsi 14.5-lect-03_co_simulation_setup (1)arstanle
 
Coronary artery disease
Coronary artery diseaseCoronary artery disease
Coronary artery diseaseMitch Angela
 
overview on cardioplegia by Dr. Idit Avrahami
overview on  cardioplegia by Dr. Idit Avrahamioverview on  cardioplegia by Dr. Idit Avrahami
overview on cardioplegia by Dr. Idit AvrahamiIdit Avrahami
 
Numerical simulation of blood flow in flexible arteries using Fluid-Structure...
Numerical simulation of blood flow in flexible arteries using Fluid-Structure...Numerical simulation of blood flow in flexible arteries using Fluid-Structure...
Numerical simulation of blood flow in flexible arteries using Fluid-Structure...Mostafa Ghadamyari
 
Clinical Anatomy Circle Of Willis & Cavernous Sinus
Clinical Anatomy Circle Of Willis & Cavernous SinusClinical Anatomy Circle Of Willis & Cavernous Sinus
Clinical Anatomy Circle Of Willis & Cavernous SinusAnkit Punjabi
 

En vedette (9)

Brand, Branding and Marketing for Protection Services Professionals
Brand, Branding and Marketing for Protection Services ProfessionalsBrand, Branding and Marketing for Protection Services Professionals
Brand, Branding and Marketing for Protection Services Professionals
 
7 nov fsi - tobias berg
7 nov   fsi - tobias berg7 nov   fsi - tobias berg
7 nov fsi - tobias berg
 
21 nov ansys meshing - tomas jarneholt ansys sweden
21 nov   ansys meshing - tomas jarneholt ansys sweden21 nov   ansys meshing - tomas jarneholt ansys sweden
21 nov ansys meshing - tomas jarneholt ansys sweden
 
Fluent fsi 14.5-lect-03_co_simulation_setup (1)
Fluent fsi 14.5-lect-03_co_simulation_setup (1)Fluent fsi 14.5-lect-03_co_simulation_setup (1)
Fluent fsi 14.5-lect-03_co_simulation_setup (1)
 
Coronary artery disease
Coronary artery diseaseCoronary artery disease
Coronary artery disease
 
overview on cardioplegia by Dr. Idit Avrahami
overview on  cardioplegia by Dr. Idit Avrahamioverview on  cardioplegia by Dr. Idit Avrahami
overview on cardioplegia by Dr. Idit Avrahami
 
Numerical simulation of blood flow in flexible arteries using Fluid-Structure...
Numerical simulation of blood flow in flexible arteries using Fluid-Structure...Numerical simulation of blood flow in flexible arteries using Fluid-Structure...
Numerical simulation of blood flow in flexible arteries using Fluid-Structure...
 
Clinical Anatomy Circle Of Willis & Cavernous Sinus
Clinical Anatomy Circle Of Willis & Cavernous SinusClinical Anatomy Circle Of Willis & Cavernous Sinus
Clinical Anatomy Circle Of Willis & Cavernous Sinus
 
SlideShare 101
SlideShare 101SlideShare 101
SlideShare 101
 

FSI of impedance pump by Idit Avrahami

  • 1. Fluid and Structure Tango in Biomedical Research Idit Avrahami, Afeka ISMBE, I.Avrahami, Afeka
  • 2. Fluid-Structure Interaction (FSI) The unknown motion of the structure is a BC for the flow, and vice versa 2 ISMBE, I.Avrahami, Afeka
  • 3. Fluid-Structure Interaction (FSI) 1. Separate the problem to: – structural domain (S) – fluid domain (F) 2. Solve each domain separately 3. The interactions occurs along the interfaces 3 ISMBE, I.Avrahami, Afeka
  • 4. Governing Equations For the fluid domain For the solid domain ∇⋅U = 0 DU && & MU + CU + KU = R ρ = −∇p + μ∇ 2 U Dt For moving boundaries U = u f − ug Interactions at the interfaces Vf = Us n ⋅ τ f = n ⋅ τs 4 ISMBE, I.Avrahami, Afeka
  • 5. Numerical Methods for solving the PDE Meshing: Divide each domain into elements Discretization: Approximate the PDE into a set of algebraic equations (FVM/ FEM) Moving Mesh in the fluid domain: ALE (Arbitrary Lagrangian Eulerian ) approach is used to adjust the mesh to the boundary motion Afeka ISMBE, I.Avrahami, 5
  • 6. Impedance Pump based on resonance wave dynamics Flexible graft Pincher outflow Fluid Impedance mismatch (anastomosis) 6 ISMBE, I.Avrahami, Afeka
  • 7. Pressure waves in Elastic Tube A local periodic pressure imposed in an elastic tube produces pressure waves that travel along the tube in the wave speed of: Eh C= ρd 7 ISMBE, I.Avrahami, Afeka
  • 8. Wave Reflection • A local excitation in a specific frequency produces periodic waves in the domain • The waves travel along the domain and reflected by the reflection site • The reflected waves are combined with the traveling waves • At specific frequency (natural freq. and its harmonics) the reflected waves are added to the traveling waves and the waves are enhanced – this is resonance 8 ISMBE, I.Avrahami, Afeka
  • 10. Resonance Wave Pumping Channel thickness 200 μm 10 (Rinderknecht et al., 2005) ISMBE, I.Avrahami, Afeka
  • 11. Experimental Model (Hickerson et al., 2005) ISMBE, I.Avrahami, Afeka
  • 12. Numerical Model Full fixation Full fixation Imposed harmonic Stress free dY=dZ=0 dY=dZ=0 motion Y Fluid-structure interface, Contact surface no slip conditions Z Stress- Stress- Axisymmetric free BC free BC BC ISMBE, I.Avrahami, Afeka
  • 13. Symmetric Excitation => no net flow 13 ISMBE, I.Avrahami, Afeka
  • 14. Asymmetric Excitation (Avrahami & Gharib,2008, JFM) 14 ISMBE, I.Avrahami, Afeka
  • 15. Typical Transient Flow Rate Positive outlet flow rate 400 Instantaneous Flow The average Bulk Flow 300 flow rate over a Flow rate (cm /sec) cycle in the 3 200 100 periodic phase is the 0 Pump Bulk -100 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Flow Time (sec) 15 ISMBE, I.Avrahami, Afeka
  • 16. Effect of Excitation Point (Rinderknecht, et al., 2005, JMM) ISMBE, I.Avrahami, Afeka 16
  • 17. Effect of Pinching Parameters 1.5 Numerical simulation 1.4 1.0 Non-dimensional flow rate Experiments 1.2 Normalized flow rate (Hickerson, 2005) 0.5 1.0 0.0 0.8 0.6 -0.5 0.4 -1.0 0.2 -1.5 2 4 6 8 10 12 0.0 Axial location along the tube (cm) 0 20 40 60 80 100 Pinching amplitude (%) 2.5 Numerical simulation 200 2.0 150 Non-dimensional Flow Rate F lo w (m L /m in ) Experiments (Hickerson, 2005) 100 1.5 50 1.0 0 -50 0.5 -100 -150 0.0 -200 -0.5 0 5000 10000 15000 20000 25000 0 20 40 60 80 100 Duty-Cycle (%) Pressure (dyn/cm2) 17 ISMBE, I.Avrahami, Afeka
  • 18. Effect of Pinching Frequency 300 Resonant 0 . 0 0 1 2 Bulk flow-rate Frequencies 11.5 Hz 6 Hz FFT 0 . 0 0 1 250 Flow rate (cm /sec) Natural 0 . 0 0 0 8 Frequency 200 3 0 . 0 0 0 6 150 0 . 0 0 0 4 100 Natural 0 . 0 0 0 2 Frequency 50 0 2 7 12 Frequency (Hz) 18 ISMBE, I.Avrahami, Afeka FSI in BME, I. Avrahami, Afeka
  • 19. Active Bypass Graft Using resonance wave pumping Impedance pump t G ra f y Stenosis ar ter nar y Coro 19 ISMBE, I.Avrahami, Afeka (Avrahami & Gharib, 2005, BMES)
  • 20. The Numerical Model Pincher 3D model based on physiological geometry Dacron Graft Artery φ 2 mm Anastomosis 450 90% stenosis (Avrahami & Gharib, 2005, BMES) ISMBE, I.Avrahami, Afeka 20
  • 21. Resonance Wave Pumping • Maximal flow is found at natural frequency 150 5E 10 - Bulk flow 140 Natural 4. 5E 10 - Dacron Graft 130 D=3mm 4E 10 - frequency 120 3. 5E 10 - L= 12 cm FR (ml/min) 110 3E 10 - 100 2. 5E 10 - Duty-cycle=50% 90 2E 10 - 80 1. 5E 10 - Pinch amp =20% 70 1E 10 - => 60 5E 11 - frequency=100 Hz 50 0 25 50 75 100 125 150 Frequency (Hz) 21 ISMBE, I.Avrahami, Afeka (Avrahami & Gharib, 2005, BMES)
  • 22. Wall Shear Stress at the Anastomosis without pump with pump 22 ISMBE, I.Avrahami, Afeka (Avrahami & Gharib, 2005, BMES)
  • 23. Graft Anastomosis Toe Downstream Artery 120 Graft Anastomosis Toe 100 Downstream artery Wall shear stress (dyne/cm2) 80 60 40 20 0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 23 Time (sec) ISMBE, I.Avrahami, Afeka
  • 24. Additional Support Pump pump On Cavo-pulmonary Intra - Aortic support connection support for Pump Fontan procedure (Loumes et al., 2008) (Avrahami et al., 2006) 24 ISMBE, I.Avrahami, Afeka
  • 25. Micro-Pump for mixing and heat removal Max Flow at freq=78Hz mL/min 25 ISMBE, I.Avrahami, Afeka
  • 26. Acknowledgments • Prof. Mory Gharib, Caltech • Dr. Laurence Loumes, McGill University • Dr. Derek Rinderknecht • Dr. Anna Hickerson • Division of Materials Technology, NTU, Singapore • The Joseph Drown Foundation 26 ISMBE, I.Avrahami, Afeka
  • 27. References • Avrahami I. and Gharib M. (2008), "Computational Studies of Resonance Wave Pumping in Compliant Tubes”, Journal of Fluid mechanics, Vol. 608: 139-160. • Loumes, L., I. Avrahami and M. Gharib (2008), "Resonant pumping in a multilayer impedance pump." Physics of Fluids, Vol. 20(2) • Avrahami, I., L. Loumes and M. Gharib (2006). "Numerical investigation of the fluid and structure dynamics in models of impedance pump." Journal of Biomechanics 39: 438-400. 27 ISMBE, I.Avrahami, Afeka