เลขยกกำลังและลอการิทึม
Prochain SlideShare
Loading in...5
×

Vous aimez ? Partagez donc ce contenu avec votre réseau

Partager
  • Full Name Full Name Comment goes here.
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
    Be the first to comment
No Downloads

Vues

Total des vues
40,936
Sur Slideshare
40,935
From Embeds
1
Nombre d'ajouts
1

Actions

Partages
Téléchargements
142
Commentaires
0
J'aime
3

Ajouts 1

https://twitter.com 1

Signaler un contenu

Signalé comme inapproprié Signaler comme inapproprié
Signaler comme inapproprié

Indiquez la raison pour laquelle vous avez signalé cette présentation comme n'étant pas appropriée.

Annuler
    No notes for slide

Transcript

  • 1. เลขยกกำลัง
  • 2. เรื่อง เลขยกกำลัง ความหมายของเลขยกกำลัง บทนิยาม ถ้า a เป็นจำนวนใดๆ และ n เป็นจำนวนเต็มบวก “ a ยกกำลัง n ” เขียนแทนด้วยสัญลักษณ์ หมายถึงผลคูณของ a ซึ่งมีทั้งหมด n ตัว นั่นคือ = a  a  a  a  ……  a n ตัว จำนวนเต็มบวก n เรียกว่า “ เลขชี้กำลัง ” (exponent) ของ a และเรียกจำนวน a ใดๆ ว่า “ ฐาน ” (base)
  • 3. สมบัติของเลขยกกำลัง กำหนดให้ a , b เป็นจำนวนใดๆ และ m , n เป็นจำนวนเต็มบวก 1) เช่น 2) ( เมื่อ m > n ) เช่น ( เมื่อ m < n ) เช่น 3) เช่น 4) เช่น 5) ( เมื่อ b  0 ) เช่น 6) เช่น 7) ( เมื่อ a  0 ) เช่น และ
  • 4. 8) เช่น 9) เช่น 9.1) 9.2) 9.3) เมื่อ b  0 9.4) 9.5) เมื่อ a  0 , a  1 จะได้ x = y สมบัติของเลขยกกำลัง ( ต่อ )
  • 5.  วิธีดำเนินการ หาค่าของเลขยกกำลังในแต่ละช่องตาราง (1-25) ลากส่วนของเส้นตรงโดยเริ่มตั้งแต่ช่องตารางที่ (1) ไปหาช่องตารางที่ติดกัน ซึ่งต้องเป็นช่องตารางที่มีค่าน้อยที่สุด ( ตัวอย่างลากเส้นจากช่องตารางที่ (1) ไปหาช่องตารางที่ (7) ซึ่งมีค่าเลขยกกำลังน้อยที่สุด ) แต่ละช่องตารางลากส่วนของเส้นตรงผ่านได้ครั้งเดียว
  • 6. ฟังก์ชันลอการิทึม จาก f = {(x,y)  R  R / y = a x , a>0 , a  1} ซึ่งเป็นฟังก์ชัน 1-1 จาก R ไป R + จึงมีฟังก์ชันอินเวอร์สคือ f -1 = {(x,y)  R +  R / x = a y , a>0 , a  1} จาก x = a y สามารถเขียนในรูป y = f(x) ได้ โดยกำหนดเป็น y = log a x เช่น 9 = 3 2 เขียนในรูปลอการิทึมเป็น 2 = log 3 9 32 = 2 5 เขียนในรูปลอการิทึมเป็น 5 = log 2 32 บทนิยาม ฟังก์ชันลอการิทึมคือฟังก์ชันที่เขียนอยู่ในรูป f = {(x,y)  R +  R / y = log a x , a>0 , a  1} เช่น y = log 2 x , f(x) = log 5 x
  • 7.
    • เลขยกกำลัง
    • บทนิยาม เมื่อ a เป็นจำนวนจริงใดๆ และ n เป็นจำนวนเต็มบวก
    • a n หมายถึง a  a  a  a  …..  a จำนวน n ตัว
    • เช่น 2 5 = 2  2  2  2  2
    • บทนิยาม a 0 = 1 เมื่อ a เป็นจำนวนจริงใดๆ ที่ไม่เท่ากับศูนย์
    • บทนิยาม a -n = 1 / a n เมื่อ a เป็นจำนวนจริงใดๆ ที่ไม่เท่ากับศูนย์ และ n เป็นจำนวนเต็มบวก
    • เช่น 3 -2 = 1 /3 2 = 1/9
  • 8. สมบัติของเลขยกกำลัง ทฤษฎีบท เมื่อ a , b เป็นจำนวนจริงที่ไม่เป็นศูนย์ และ m , n เป็นจำนวนเต็ม 1) a m .a n = a m+n 2) (a m ) n = a mn 3) (ab) n = a n b n 4) (a / b) n = a n / b n 5) a m / a n = a m-n ตัวอย่าง จงหาค่าของ (2 -3 x 2 y 4 /2 x -1 ) -2
  • 9. 2 . รากที่ n ในระบบจำนวนจริง และจำนวนจริงในรูปกรณฑ์ บทนิยาม เมื่อ x , y เป็นจำนวนจริง y เป็นรากที่สองของ x ก็ต่อเมื่อ y 2 = x สมบัติของรากที่สอง 1) เมื่อ x  0 , y  0 ตัวอย่าง จงหาค่าของ วิธีทำ 2) เมื่อ x  0 , y > 0
  • 10. 3. เลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ บทนิยาม เมื่อ a เป็นจำนวนจริง n เป็นจำนวนเต็มที่มากกว่า 1 และ a มีรากที่ n ตัวอย่าง จงทำให้ส่วนไม่ติดกรณฑ์ บทนิยาม เมื่อ a เป็นจำนวนจริง p , q เป็นจำนวนเต็มที่ (p,q) = 1 , q > 0 และ  R โดยที่ p < 0 แล้ว a ต้องไม่เป็นศูนย์
  • 11. 4. ฟังก์ชันเอกซ์โพเนนเชียล บทนิยาม ฟังก์ชันเอกซ์โพเนนเชียล คือ f = {(x,y)  R  R / y = a x , a>0 , a  1} y ข้อสังเกต 1) กราฟของ y = a x ผ่านจุด (0,1) เสมอ 2) ถ้า a > 1 แล้ว y = a x เป็นฟังก์ชันเพิ่ม 3) ถ้า 0 < a < 1 แล้ว y = a x เป็นฟังก์ชันลด 4) y = a x เป็นฟังก์ชัน 1-1 จาก R ไป R + 5 ) โดยสมบัติของฟังก์ชัน 1-1 จะได้ a x = a y ก็ต่อเมื่อ x = y
  • 12. 5. ฟังก์ชันลอการิทึม จาก f = {(x,y)  R  R / y = a x , a>0 , a  1} ซึ่งเป็นฟังก์ชัน 1-1 จาก R ไป R + จึงมีฟังก์ชันอินเวอร์สคือ f -1 = {(x,y)  R +  R / x = a y , a>0 , a  1} จาก x = a y สามารถเขียนในรูป y = f(x) ได้ โดยกำหนดเป็น y = log a x เช่น 9 = 3 2 เขียนในรูปลอการิทึมเป็น 2 = log 3 9 32 = 2 5 เขียนในรูปลอการิทึมเป็น 5 = log 2 32 บทนิยาม ฟังก์ชันลอการิทึมคือฟังก์ชันที่เขียนอยู่ในรูป f = {(x,y)  R +  R / y = log a x , a>0 , a  1} เช่น y = log 2 x , f(x) = log 5 x
  • 13. สมบัติของลอการิทึม เมื่อ a , M , N เป็นจำนวนจริงบวกที่ a  1 และ k เป็นจำนวนจริง 1) log a MN = log a M + log a N 2) log a M / N = log a M – log a N 3) log a M k = k log a M 4) log a a = 1 5) log a 1 = 0 6) log a kM = 1 / k log a M 7) log b a = 1 / log a b
  • 14. 6. การหาค่าของลอการิทึม ลอการิทึมสามัญ หมายถึงลอการิทึมฐาน 10 ซึ่งนิยมเขียนโดยไม่มีฐานกำกับ เช่น log 10 7 เขียนแทนด้วย log 7 log 10 15 เขียนแทนด้วย log 15 พิจารณาค่าของลอการิทึมของจำนวนเต็มที่สามารถเขียนในรูป 10 n เมื่อ n  I log 10 = log 10 1 = 1 log 100 = log 10 2 = 2 log 1000 = log 10 3 = 3 ดังนั้น log 10 n = n
  • 15. จำนวนจริงบวก N ใดๆ สามารถเขียนในรูป N 0 x 10 n ได้เสมอ เมื่อ 1 < N 0 <10 และ n เป็นจำนวนเต็ม เนื่องจาก N = N 0 x 10 n ดังนั้น log N = log (N 0 x 10 n ) = log N 0 + log 10 n = log N 0 + n log N 0 เรียกว่า แมนทิสซา (mantissa) ของ log N n เรียกว่า แคแรกเทอริสติก (characteristic) ของ log N
  • 16. ตัวอย่าง จงหาค่าของ log 45 2 0 พร้อมทั้งบอก แมนทิสซาและแคแรกเทอริสติก วิธีทำ เนื่องจาก log 45 2 0 = log (4.5 2 x 10 3 ) = log 4.5 2 + log 10 3 = 0.65 51 + 3 = 3.6542 ดังนั้น log 4510 = 3.65 51 แมนทิสซาของ log 45 2 0 คือ 0.6551 แคแรกเทอริสติกของ log 45 2 0 คือ 3
  • 17. แอนติลอการิทึม ตัวอย่าง กำหนดให้ log N = 2.5159 จงหาค่า N วิธีทำ เนื่องจาก log N = 2.5159 = 0.5159 + 2 = log 3.28 + log 10 2 = log (3.28 x 10 2 ) = log 328 ดังนั้น N = 328
  • 18. 7. การเปลี่ยนฐานของลอการิทึม กำหนดให้ y = log b x จะได้ x = b y log a x = log a b y log a x = y log a b y = ดังนั้น log b x = ตัวอย่าง จงหาค่าของ log 2 24
  • 19. ลอการิทึมธรรมชาติ (Natural logarithms) ลอการิทึมธรรมชาติ คือลอการิทึมฐาน e เมื่อ e เป็นสัญลักษณ์แทนจำนวนอตรรกยะ ซึ่งมีค่าประมาณ 2.7182818 หรือเรียกอีกอย่างหนึ่งว่า “ ลอการิทึมแบบเนเปียร์ ” (Napierian Logarithms) ในการเขียนลอการิทึมธรรมชาติจะไม่นิยมเขียนฐานกำกับ ดังนี้ log e x เขียนแทนด้วย ln x log e 3 เขียนแทนด้วย ln 3 log e 20 เขียนแทนด้วย ln 20 การหาค่าลอการิทึมธรรมชาติทำได้โดยการเปลี่ยนฐานให้เป็นลอการิทึมสามัญ ซึ่ง log e = log 2.7182818 = 0.4343 ตัวอย่าง จงหาค่าของ ln 25
  • 20. 8. สมการเอ็กซ์โพเนนเชียลและสมการลอการิทึม สมการเอ็กซ์โพเนนเชียล คือสมการที่มีตัวแปรเป็นเลขชี้กำลัง ในการหาคำตอบของสมการ ทำได้โดยใช้สมบัติของฟังก์ชันเอ็กซ์โพเนนเชียลและสมบัติของฟังก์ชันลอการิทึม ตัวอย่าง จงหาเซตคำตอบของสมการ 2 x .2 2x+1 = 4 x-2 วิธีทำ 2 x+2x+1 = (2 2 ) x-2 2 3x+1 = 2 2x-4 จะได้ 3x+1 = 2x-4 x = -5 ดังนั้น คำตอบของสมการ คือ {-5} ตัวอย่าง จงหาเซตคำตอบของสมการ 4 x + 2 x+1 – 24 = 0
  • 21. สมการลอการิทึม คือสมการที่มีลอการิทึมของตัวแปร การหาคำตอบของสมการทำได้ โดยใช้สมบัติของฟังก์ชันลอการิทึม ตัวอย่าง จงหาเซตคำตอบของสมการ log 2 (x-2) + log 2 (x-3) = 1 วิธีทำ log 2 (x-2) + log 2 (x-3) = 1 log 2 (x-2)(x-3) = log 2 2 จะได้ (x-2)(x-3) = 2 x 2 - 5x + 4 = 0 (x-1)(x-4) = 0 x = 1 , 4 ดังนั้น คำตอบของสมการ คือ {4} เพราะว่า เมื่อตรวจคำตอบ x = 1 หาค่าไม่ได้