เลขยกกำลัง
เรื่อง  เลขยกกำลัง ความหมายของเลขยกกำลัง บทนิยาม   ถ้า  a  เป็นจำนวนใดๆ   และ  n  เป็นจำนวนเต็มบวก   “  a  ยกกำลัง   n ”  ...
สมบัติของเลขยกกำลัง กำหนดให้   a , b  เป็นจำนวนใดๆ และ  m , n  เป็นจำนวนเต็มบวก 1)      เช่น   2)      ( เมื่อ  m > n )  เ...
8)   เช่น     9)   เช่น 9.1)     9.2)   9.3)   เมื่อ  b     0 9.4)   9.5)   เมื่อ  a     0 ,  a     1  จะได้  x  =  y ส...
   วิธีดำเนินการ หาค่าของเลขยกกำลังในแต่ละช่องตาราง  (1-25) ลากส่วนของเส้นตรงโดยเริ่มตั้งแต่ช่องตารางที่  (1)  ไปหาช่องตา...
ฟังก์ชันลอการิทึม   จาก  f = {(x,y)   R  R  /  y = a x  , a>0 , a  1}  ซึ่งเป็นฟังก์ชัน  1-1  จาก  R  ไป  R + จึงมีฟังก...
<ul><li>เลขยกกำลัง   </li></ul><ul><li>บทนิยาม   เมื่อ  a  เป็นจำนวนจริงใดๆ และ  n  เป็นจำนวนเต็มบวก </li></ul><ul><li>a n...
สมบัติของเลขยกกำลัง ทฤษฎีบท   เมื่อ  a , b  เป็นจำนวนจริงที่ไม่เป็นศูนย์ และ  m , n  เป็นจำนวนเต็ม 1)  a m .a n  = a m+n  ...
2 .   รากที่  n  ในระบบจำนวนจริง และจำนวนจริงในรูปกรณฑ์ บทนิยาม   เมื่อ  x , y  เป็นจำนวนจริง  y  เป็นรากที่สองของ  x  ก็ต...
3.  เลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ บทนิยาม   เมื่อ  a  เป็นจำนวนจริง  n  เป็นจำนวนเต็มที่มากกว่า  1  และ  a  มี...
4.  ฟังก์ชันเอกซ์โพเนนเชียล บทนิยาม   ฟังก์ชันเอกซ์โพเนนเชียล คือ  f = {(x,y)  R  R  /  y = a x  , a>0 , a  1} y   ข้อส...
5.  ฟังก์ชันลอการิทึม จาก  f = {(x,y)   R  R  /  y = a x  , a>0 , a  1}  ซึ่งเป็นฟังก์ชัน  1-1  จาก  R  ไป  R + จึงมีฟั...
สมบัติของลอการิทึม เมื่อ  a , M , N  เป็นจำนวนจริงบวกที่  a   1  และ  k  เป็นจำนวนจริง 1)  log a MN  =  log a M + log a N...
6.  การหาค่าของลอการิทึม ลอการิทึมสามัญ  หมายถึงลอการิทึมฐาน  10   ซึ่งนิยมเขียนโดยไม่มีฐานกำกับ เช่น  log 10 7  เขียนแทนด...
จำนวนจริงบวก  N   ใดๆ สามารถเขียนในรูป  N 0 x 10 n   ได้เสมอ เมื่อ  1  < N 0 <10  และ  n  เป็นจำนวนเต็ม   เนื่องจาก  N  = ...
ตัวอย่าง  จงหาค่าของ  log 45 2 0   พร้อมทั้งบอก แมนทิสซาและแคแรกเทอริสติก วิธีทำ   เนื่องจาก  log 45 2 0  =  log (4.5 2 x ...
แอนติลอการิทึม ตัวอย่าง   กำหนดให้  log N = 2.5159  จงหาค่า  N วิธีทำ   เนื่องจาก  log N  =  2.5159 =  0.5159 + 2 =  log 3...
7.  การเปลี่ยนฐานของลอการิทึม กำหนดให้  y  =  log b x จะได้  x  =  b y log a  x  =  log a  b y log a  x  =  y log a  b y  ...
ลอการิทึมธรรมชาติ  (Natural logarithms) ลอการิทึมธรรมชาติ คือลอการิทึมฐาน  e  เมื่อ  e  เป็นสัญลักษณ์แทนจำนวนอตรรกยะ ซึ่งม...
8.  สมการเอ็กซ์โพเนนเชียลและสมการลอการิทึม สมการเอ็กซ์โพเนนเชียล  คือสมการที่มีตัวแปรเป็นเลขชี้กำลัง ในการหาคำตอบของสมการ ...
สมการลอการิทึม  คือสมการที่มีลอการิทึมของตัวแปร การหาคำตอบของสมการทำได้ โดยใช้สมบัติของฟังก์ชันลอการิทึม ตัวอย่าง   จงหาเซ...
Prochain SlideShare
Chargement dans... 5
×

เลขยกกำลังและลอการิทึม

45,898

Published on

0 commentaires
6 mentions J'aime
Statistiques
Remarques
  • Soyez le premier à commenter

Aucun téléchargement
Vues
Total des vues
45,898
Sur Slideshare
0
À partir des ajouts
0
Nombre d'ajouts
0
Actions
Partages
0
Téléchargements
164
Commentaires
0
J'aime
6
Ajouts 0
No embeds

No notes for slide

เลขยกกำลังและลอการิทึม

  1. 1. เลขยกกำลัง
  2. 2. เรื่อง เลขยกกำลัง ความหมายของเลขยกกำลัง บทนิยาม ถ้า a เป็นจำนวนใดๆ และ n เป็นจำนวนเต็มบวก “ a ยกกำลัง n ” เขียนแทนด้วยสัญลักษณ์ หมายถึงผลคูณของ a ซึ่งมีทั้งหมด n ตัว นั่นคือ = a  a  a  a  ……  a n ตัว จำนวนเต็มบวก n เรียกว่า “ เลขชี้กำลัง ” (exponent) ของ a และเรียกจำนวน a ใดๆ ว่า “ ฐาน ” (base)
  3. 3. สมบัติของเลขยกกำลัง กำหนดให้ a , b เป็นจำนวนใดๆ และ m , n เป็นจำนวนเต็มบวก 1) เช่น 2) ( เมื่อ m > n ) เช่น ( เมื่อ m < n ) เช่น 3) เช่น 4) เช่น 5) ( เมื่อ b  0 ) เช่น 6) เช่น 7) ( เมื่อ a  0 ) เช่น และ
  4. 4. 8) เช่น 9) เช่น 9.1) 9.2) 9.3) เมื่อ b  0 9.4) 9.5) เมื่อ a  0 , a  1 จะได้ x = y สมบัติของเลขยกกำลัง ( ต่อ )
  5. 5.  วิธีดำเนินการ หาค่าของเลขยกกำลังในแต่ละช่องตาราง (1-25) ลากส่วนของเส้นตรงโดยเริ่มตั้งแต่ช่องตารางที่ (1) ไปหาช่องตารางที่ติดกัน ซึ่งต้องเป็นช่องตารางที่มีค่าน้อยที่สุด ( ตัวอย่างลากเส้นจากช่องตารางที่ (1) ไปหาช่องตารางที่ (7) ซึ่งมีค่าเลขยกกำลังน้อยที่สุด ) แต่ละช่องตารางลากส่วนของเส้นตรงผ่านได้ครั้งเดียว
  6. 6. ฟังก์ชันลอการิทึม จาก f = {(x,y)  R  R / y = a x , a>0 , a  1} ซึ่งเป็นฟังก์ชัน 1-1 จาก R ไป R + จึงมีฟังก์ชันอินเวอร์สคือ f -1 = {(x,y)  R +  R / x = a y , a>0 , a  1} จาก x = a y สามารถเขียนในรูป y = f(x) ได้ โดยกำหนดเป็น y = log a x เช่น 9 = 3 2 เขียนในรูปลอการิทึมเป็น 2 = log 3 9 32 = 2 5 เขียนในรูปลอการิทึมเป็น 5 = log 2 32 บทนิยาม ฟังก์ชันลอการิทึมคือฟังก์ชันที่เขียนอยู่ในรูป f = {(x,y)  R +  R / y = log a x , a>0 , a  1} เช่น y = log 2 x , f(x) = log 5 x
  7. 7. <ul><li>เลขยกกำลัง </li></ul><ul><li>บทนิยาม เมื่อ a เป็นจำนวนจริงใดๆ และ n เป็นจำนวนเต็มบวก </li></ul><ul><li>a n หมายถึง a  a  a  a  …..  a จำนวน n ตัว </li></ul><ul><li>เช่น 2 5 = 2  2  2  2  2 </li></ul><ul><li>บทนิยาม a 0 = 1 เมื่อ a เป็นจำนวนจริงใดๆ ที่ไม่เท่ากับศูนย์ </li></ul><ul><li>บทนิยาม a -n = 1 / a n เมื่อ a เป็นจำนวนจริงใดๆ ที่ไม่เท่ากับศูนย์ และ n เป็นจำนวนเต็มบวก </li></ul><ul><li>เช่น 3 -2 = 1 /3 2 = 1/9 </li></ul>
  8. 8. สมบัติของเลขยกกำลัง ทฤษฎีบท เมื่อ a , b เป็นจำนวนจริงที่ไม่เป็นศูนย์ และ m , n เป็นจำนวนเต็ม 1) a m .a n = a m+n 2) (a m ) n = a mn 3) (ab) n = a n b n 4) (a / b) n = a n / b n 5) a m / a n = a m-n ตัวอย่าง จงหาค่าของ (2 -3 x 2 y 4 /2 x -1 ) -2
  9. 9. 2 . รากที่ n ในระบบจำนวนจริง และจำนวนจริงในรูปกรณฑ์ บทนิยาม เมื่อ x , y เป็นจำนวนจริง y เป็นรากที่สองของ x ก็ต่อเมื่อ y 2 = x สมบัติของรากที่สอง 1) เมื่อ x  0 , y  0 ตัวอย่าง จงหาค่าของ วิธีทำ 2) เมื่อ x  0 , y > 0
  10. 10. 3. เลขยกกำลังที่มีเลขชี้กำลังเป็นจำนวนตรรกยะ บทนิยาม เมื่อ a เป็นจำนวนจริง n เป็นจำนวนเต็มที่มากกว่า 1 และ a มีรากที่ n ตัวอย่าง จงทำให้ส่วนไม่ติดกรณฑ์ บทนิยาม เมื่อ a เป็นจำนวนจริง p , q เป็นจำนวนเต็มที่ (p,q) = 1 , q > 0 และ  R โดยที่ p < 0 แล้ว a ต้องไม่เป็นศูนย์
  11. 11. 4. ฟังก์ชันเอกซ์โพเนนเชียล บทนิยาม ฟังก์ชันเอกซ์โพเนนเชียล คือ f = {(x,y)  R  R / y = a x , a>0 , a  1} y ข้อสังเกต 1) กราฟของ y = a x ผ่านจุด (0,1) เสมอ 2) ถ้า a > 1 แล้ว y = a x เป็นฟังก์ชันเพิ่ม 3) ถ้า 0 < a < 1 แล้ว y = a x เป็นฟังก์ชันลด 4) y = a x เป็นฟังก์ชัน 1-1 จาก R ไป R + 5 ) โดยสมบัติของฟังก์ชัน 1-1 จะได้ a x = a y ก็ต่อเมื่อ x = y
  12. 12. 5. ฟังก์ชันลอการิทึม จาก f = {(x,y)  R  R / y = a x , a>0 , a  1} ซึ่งเป็นฟังก์ชัน 1-1 จาก R ไป R + จึงมีฟังก์ชันอินเวอร์สคือ f -1 = {(x,y)  R +  R / x = a y , a>0 , a  1} จาก x = a y สามารถเขียนในรูป y = f(x) ได้ โดยกำหนดเป็น y = log a x เช่น 9 = 3 2 เขียนในรูปลอการิทึมเป็น 2 = log 3 9 32 = 2 5 เขียนในรูปลอการิทึมเป็น 5 = log 2 32 บทนิยาม ฟังก์ชันลอการิทึมคือฟังก์ชันที่เขียนอยู่ในรูป f = {(x,y)  R +  R / y = log a x , a>0 , a  1} เช่น y = log 2 x , f(x) = log 5 x
  13. 13. สมบัติของลอการิทึม เมื่อ a , M , N เป็นจำนวนจริงบวกที่ a  1 และ k เป็นจำนวนจริง 1) log a MN = log a M + log a N 2) log a M / N = log a M – log a N 3) log a M k = k log a M 4) log a a = 1 5) log a 1 = 0 6) log a kM = 1 / k log a M 7) log b a = 1 / log a b
  14. 14. 6. การหาค่าของลอการิทึม ลอการิทึมสามัญ หมายถึงลอการิทึมฐาน 10 ซึ่งนิยมเขียนโดยไม่มีฐานกำกับ เช่น log 10 7 เขียนแทนด้วย log 7 log 10 15 เขียนแทนด้วย log 15 พิจารณาค่าของลอการิทึมของจำนวนเต็มที่สามารถเขียนในรูป 10 n เมื่อ n  I log 10 = log 10 1 = 1 log 100 = log 10 2 = 2 log 1000 = log 10 3 = 3 ดังนั้น log 10 n = n
  15. 15. จำนวนจริงบวก N ใดๆ สามารถเขียนในรูป N 0 x 10 n ได้เสมอ เมื่อ 1 < N 0 <10 และ n เป็นจำนวนเต็ม เนื่องจาก N = N 0 x 10 n ดังนั้น log N = log (N 0 x 10 n ) = log N 0 + log 10 n = log N 0 + n log N 0 เรียกว่า แมนทิสซา (mantissa) ของ log N n เรียกว่า แคแรกเทอริสติก (characteristic) ของ log N
  16. 16. ตัวอย่าง จงหาค่าของ log 45 2 0 พร้อมทั้งบอก แมนทิสซาและแคแรกเทอริสติก วิธีทำ เนื่องจาก log 45 2 0 = log (4.5 2 x 10 3 ) = log 4.5 2 + log 10 3 = 0.65 51 + 3 = 3.6542 ดังนั้น log 4510 = 3.65 51 แมนทิสซาของ log 45 2 0 คือ 0.6551 แคแรกเทอริสติกของ log 45 2 0 คือ 3
  17. 17. แอนติลอการิทึม ตัวอย่าง กำหนดให้ log N = 2.5159 จงหาค่า N วิธีทำ เนื่องจาก log N = 2.5159 = 0.5159 + 2 = log 3.28 + log 10 2 = log (3.28 x 10 2 ) = log 328 ดังนั้น N = 328
  18. 18. 7. การเปลี่ยนฐานของลอการิทึม กำหนดให้ y = log b x จะได้ x = b y log a x = log a b y log a x = y log a b y = ดังนั้น log b x = ตัวอย่าง จงหาค่าของ log 2 24
  19. 19. ลอการิทึมธรรมชาติ (Natural logarithms) ลอการิทึมธรรมชาติ คือลอการิทึมฐาน e เมื่อ e เป็นสัญลักษณ์แทนจำนวนอตรรกยะ ซึ่งมีค่าประมาณ 2.7182818 หรือเรียกอีกอย่างหนึ่งว่า “ ลอการิทึมแบบเนเปียร์ ” (Napierian Logarithms) ในการเขียนลอการิทึมธรรมชาติจะไม่นิยมเขียนฐานกำกับ ดังนี้ log e x เขียนแทนด้วย ln x log e 3 เขียนแทนด้วย ln 3 log e 20 เขียนแทนด้วย ln 20 การหาค่าลอการิทึมธรรมชาติทำได้โดยการเปลี่ยนฐานให้เป็นลอการิทึมสามัญ ซึ่ง log e = log 2.7182818 = 0.4343 ตัวอย่าง จงหาค่าของ ln 25
  20. 20. 8. สมการเอ็กซ์โพเนนเชียลและสมการลอการิทึม สมการเอ็กซ์โพเนนเชียล คือสมการที่มีตัวแปรเป็นเลขชี้กำลัง ในการหาคำตอบของสมการ ทำได้โดยใช้สมบัติของฟังก์ชันเอ็กซ์โพเนนเชียลและสมบัติของฟังก์ชันลอการิทึม ตัวอย่าง จงหาเซตคำตอบของสมการ 2 x .2 2x+1 = 4 x-2 วิธีทำ 2 x+2x+1 = (2 2 ) x-2 2 3x+1 = 2 2x-4 จะได้ 3x+1 = 2x-4 x = -5 ดังนั้น คำตอบของสมการ คือ {-5} ตัวอย่าง จงหาเซตคำตอบของสมการ 4 x + 2 x+1 – 24 = 0
  21. 21. สมการลอการิทึม คือสมการที่มีลอการิทึมของตัวแปร การหาคำตอบของสมการทำได้ โดยใช้สมบัติของฟังก์ชันลอการิทึม ตัวอย่าง จงหาเซตคำตอบของสมการ log 2 (x-2) + log 2 (x-3) = 1 วิธีทำ log 2 (x-2) + log 2 (x-3) = 1 log 2 (x-2)(x-3) = log 2 2 จะได้ (x-2)(x-3) = 2 x 2 - 5x + 4 = 0 (x-1)(x-4) = 0 x = 1 , 4 ดังนั้น คำตอบของสมการ คือ {4} เพราะว่า เมื่อตรวจคำตอบ x = 1 หาค่าไม่ได้
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×