SlideShare une entreprise Scribd logo
1  sur  19
A hidden extinction in
tetrapods at the Jurassic-
Cretaceous boundary
Jonathan Tennant
Thanks! • NERC
• PALASS
• SVP
History of the Jurassic/Cretaceous boundary
• Pioneering work by Newell, Raup, Sepkoski (and his compendia)
• Originally considered to be a ‘major extinction’
• Understood general controls on the fossil record
• Current consensus: NOT a mass extinction
Jon Tennant Background
Raup (1976) Raup and Sepkoski (1982) Hallam (1986)
The structure of the fossil record
Jon Tennant Background
Smith and McGowan (2011)
Tennant et al. (2016)
Raw diversity is not a reliable
estimate of ‘true’ or relative diversity
The fossil record is affected by several
levels of sampling filters/’biases’
Why the J/K boundary?
Jon Tennant Background
Benson and Butler (2011)
Nicholson et al. (2015)
Zanno and Makovicky (2013)
Bronzati et al. (2015)
Newham et al. (2014)
What do we want to know?
1. What is the structure of changes in tetrapod
diversity over the J/K transition? Was there a
‘hidden’ mass extinction?
2. What external factors were responsible for
mediating these changes?
Jon Tennant Methods
Data. More data.
• 4907 species
• 15,472 occurrences, 7314 references
• Split into higher taxonomic clades
• Fully aquatic or non-marine
• Palaeocontinents
• Time binning methods
Jon Tennant Methods
Tennant et al. (2016)
Methodological approach
•Subsampling (SQS) and
phylogenetic diversity
estimates (PDE)
•Model-fitting of extrinsic
parameters
Jon Tennant Methods
• Tetrapod SQS diversity
falls in both the non-
marine and marine realms
• Finer clade-level dynamics
obscured
• Bootstrapping provides
constraints to overall
patterns
Jon Tennant Results
Dinosaur diversity
Jon Tennant Results
• SQS shows greatest decline in theropods
• Sauropods too poorly sampled in Berriasian
• PDE shows greatest decline in sauropods
• Decline less emphasised in theropods
Non-dinosaurian tetrapod diversity
Jon Tennant Results
• Staggered pulses of decline and radiation of new clades
• No singular marked ‘event’ at the boundary itself
• Smaller bodied sized animals generally more poorly sampled
Marine tetrapod diversity
Jon Tennant Results
• Earliest Cretaceous very poorly sampled
• Seems to track pattern of a global
eustatic lowstand
• Similar pattern seen in PDE
• Sampling from continuous lineages
great for ‘filling in the gaps’
A hidden mass extinction at the J/K
boundary?
• No. A prolonged wave of extinctions through the ‘transition’,
coupled with radiations of new groups
• Extinctions target more ‘basal’ groups, and are highest at the
end of the Jurassic
• Magnitude of diversity loss varies – ~33% for ornithischians
to 75-80% for theropods and pterosaurs
• High Late Jurassic origination rates for different groups do
not confer an extinction survival advantage
Jon Tennant Conclusions
What controls global J/K diversity?
Jon Tennant Results
Group
Non-marine
rho p-value
Adjusted
p-value
r p-value
Adjusted
p-value
Aves 0.321 0.498 0.988 -0.174 0.708 0.865
Choristoderes -0.500 1.000 1.000 -0.509 0.660 0.865
Crocodyliformes 0.273 0.448 0.988 0.015 0.967 0.967
Lepidosauromorphs 0.050 0.912 1.000 0.317 0.406 0.757
Lissamphibians 0.000 1.000 1.000 -0.340 0.371 0.757
Mammaliaformes 0.079 0.838 1.000 -0.292 0.413 0.757
Ornithischians 0.209 0.539 0.988 0.424 0.539 0.847
Pterosaurs 0.521 0.123 0.451 0.309 0.387 0.757
Sauropodomorphs 0.736 0.024 0.264 0.733 0.031 0.171
Testudines -0.117 0.776 1.000 -0.094 0.810 0.891
Theropods 0.531 0.079 0.435 0.790 0.004 0.044
Marine
Chelonioides -0.500 1.000 1.000 -0.474 0.686 0.842
Crocodyliformes 0.690 0.069 0.138 0.740 0.036 0.144
Ichthyopterygians 0.612 0.060 0.138 0.479 0.166 0.332
Sauropterygians 0.335 0.263 0.351 0.061 0.842 0.842
Spearman's rank Pearson's PMCC
Tetrapod-bearing
Collections
No correlations with
Formations
Raw diversity is over-
printed by sampling
What controls regional subsampled diversity?
(Europe)
Jon Tennant Results
rho p-value
Adjusted
p-value
r p-value
Adjusted
p-value
Raw richness 0.671 0.006 0.034 0.513 0.042 0.167
Collections 0.468 0.070 0.140 0.474 0.064 0.167
Occurrences 0.512 0.045 0.135 0.446 0.084 0.167
Good's u -0.147 0.616 0.660 -0.348 0.223 0.267
Formations 0.326 0.173 0.259 0.328 0.171 0.256
Global sea-level -0.115 0.660 0.660 -0.153 0.557 0.557
Subsampled richness
Crocodyliformes 0.036 0.964 0.964 0.381 0.400 0.599
Lepidosauromorpha 0.657 0.175 0.525 0.449 0.372 0.599
Ornithischia 0.091 0.811 0.964 0.323 0.363 0.599
Pterosauria -0.107 0.840 0.964 0.277 0.547 0.657
Testudines -0.257 0.658 0.964 0.034 0.949 0.949
Theropoda 0.527 0.123 0.525 0.605 0.064 0.383
Europe
Pearson's PMCCSpearman's rank
• Raw tetrapod diversity
strongly correlates with
outcrop area (non-marine)
• SQS diversity for individual
clades shows no relationship
• No correlations with outcrop
area in the marine realm
What controls regional subsampled diversity? (N.
America)
Jon Tennant Results
rho p-value
Adjusted
p-value
r p-value
Adjusted
p-value
Raw richness 0.346 0.206 0.309 0.278 0.315 0.464
Collections 0.446 0.097 0.292 0.561 0.030 0.089
Occurrences 0.386 0.157 0.309 0.388 0.153 0.305
Good's u -0.073 0.839 0.965 -0.290 0.387 0.464
Formations -0.012 0.965 0.965 -0.146 0.589 0.589
Global sea-level 0.581 0.016 0.098 0.630 0.007 0.040
Subsampled richness
Ornithischia 0.150 0.708 0.708 0.268 0.485 0.485
Theropoda -0.452 0.268 0.536 -0.404 0.321 0.485
North America
Pearson's PMCCSpearman's rank
rho p-value
Adjusted
p-value
r p-value
Adjusted
p-value
Raw richness 0.429 0.113 0.332 0.509 0.053 0.133
Collections 0.154 0.584 0.683 0.454 0.089 0.133
Occurrences 0.146 0.602 0.683 0.474 0.074 0.133
Good's u 0.300 0.683 0.683 0.298 0.626 0.626
Formations 0.479 0.166 0.332 0.457 0.185 0.221
Global sea-level 0.463 0.063 0.332 0.702 0.002 0.010
North America
Spearman's rank Pearson's PMCC
Non-marine
Marine
• Outcrop area correlates
with sea level in marine
and non-marine realms
• Therefore cannot rule
out regional level
‘common cause’
Environmental factors governing diversity
Jon Tennant Results
Likelihood Weight rho
adjusted
p-value
r
adjusted
p-value
Crocodyliformes (marine) Palaeotemp. 22.741 0.237 -0.524 0.634 -0.522 0.678
Crocodyliformes (non-marine) Sea level 26.285 0.969 0.750 0.175 0.846 0.028
Lissamphibia Palaeotemp. 38.260 0.796 0.700 0.301 0.742 0.154
Mammaliaformes Sea level 51.394 0.931 -0.450 0.537 -0.666 0.301
Ornithischia Sea level 60.106 0.391 0.200 0.681 0.047 0.898
Pterosauria Sea level 33.261 0.872 0.714 0.406 0.647 0.581
Sauropodomorpha Sea level 41.191 0.501 0.310 0.810 0.457 0.564
Sauropterygia Sea level 41.820 0.409 0.055 0.906 0.065 0.985
Testudines Palaeotemp. 50.648 0.258 0.343 0.880 0.462 0.891
Theropoda Sea level 72.931 0.534 -0.018 0.968 0.037 0.954
AICc Pearson's PMCCSpearman's rank
Group Parameter
What controls Jurassic/Cretaceous diversity?
• Primary driver on a global scale was eustatic sea level
• Palaeotemperature also an important factor
• Sampling over-prints raw diversity estimates
• Subsampling methods appear to alleviate sampling
issues
• Cannot rule out evidence of a local common cause
factor in North America
Jon Tennant Conclusions
• Major flood basalt and bolide activity
• Marine revolution in micro-organism communities
• Oligotrophic marine conditions likely related to the sea-level regression across the J/K boundary
• Have to consider all levels of an ecosystem and the environment to build a complete picture

Contenu connexe

Similaire à Romer session presentation

Competition among native and invasive fish
Competition among native and invasive fishCompetition among native and invasive fish
Competition among native and invasive fishLancaster University
 
Water Quality Monitoring in Bayou Chene and Lacassine Bayou in Louisiana - P...
Water Quality Monitoring in Bayou Chene and Lacassine Bayou  in Louisiana - P...Water Quality Monitoring in Bayou Chene and Lacassine Bayou  in Louisiana - P...
Water Quality Monitoring in Bayou Chene and Lacassine Bayou in Louisiana - P...Soil and Water Conservation Society
 
THE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGY
THE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGYTHE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGY
THE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGYAdam Gerughty
 
Vincenzi - Wildlife seminar series, UC Berkeley, October 2014
Vincenzi - Wildlife seminar series, UC Berkeley, October 2014Vincenzi - Wildlife seminar series, UC Berkeley, October 2014
Vincenzi - Wildlife seminar series, UC Berkeley, October 2014simonevincenzi_mathbio
 
The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...
The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...
The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...SERC at Carleton College
 
Shelf enviroment; By Salah ud din Shabab
Shelf enviroment; By Salah ud din ShababShelf enviroment; By Salah ud din Shabab
Shelf enviroment; By Salah ud din ShababSalah Ud Din Shabab
 
Marine and Freshwater Ecology Revision
Marine and Freshwater Ecology RevisionMarine and Freshwater Ecology Revision
Marine and Freshwater Ecology Revisionanigvanderanal
 
Beyond taxonomy: A traits-based approach to fish community ecology
Beyond taxonomy: A traits-based approach to fish community ecology Beyond taxonomy: A traits-based approach to fish community ecology
Beyond taxonomy: A traits-based approach to fish community ecology University of Washington
 
Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...
Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...
Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...Kevin Perry
 
Sandalwood Genetic Diversity
Sandalwood Genetic Diversity Sandalwood Genetic Diversity
Sandalwood Genetic Diversity YourAgri
 
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...Michael Hewitt, GISP
 
Nearshore Study Presentation 2011 Project Meeting Overviewkknew
Nearshore Study Presentation 2011 Project Meeting OverviewkknewNearshore Study Presentation 2011 Project Meeting Overviewkknew
Nearshore Study Presentation 2011 Project Meeting Overviewkknewkkloecker
 
Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...
Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...
Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...DRIscience
 
Portfolio Effect in Puget Sound Herring: ESA 2013 Minneapolis
Portfolio Effect in Puget Sound Herring: ESA 2013 MinneapolisPortfolio Effect in Puget Sound Herring: ESA 2013 Minneapolis
Portfolio Effect in Puget Sound Herring: ESA 2013 MinneapolisTessa Francis
 

Similaire à Romer session presentation (20)

Competition among native and invasive fish
Competition among native and invasive fishCompetition among native and invasive fish
Competition among native and invasive fish
 
Water Quality Monitoring in Bayou Chene and Lacassine Bayou in Louisiana - P...
Water Quality Monitoring in Bayou Chene and Lacassine Bayou  in Louisiana - P...Water Quality Monitoring in Bayou Chene and Lacassine Bayou  in Louisiana - P...
Water Quality Monitoring in Bayou Chene and Lacassine Bayou in Louisiana - P...
 
MRI SCAN.ppsx
MRI SCAN.ppsxMRI SCAN.ppsx
MRI SCAN.ppsx
 
Chironomid community dynamics in Enol Lake (Picos de Europa National Park, Sp...
Chironomid community dynamics in Enol Lake (Picos de Europa National Park, Sp...Chironomid community dynamics in Enol Lake (Picos de Europa National Park, Sp...
Chironomid community dynamics in Enol Lake (Picos de Europa National Park, Sp...
 
THE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGY
THE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGYTHE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGY
THE EFFECT OF POOL GEOMORPHOLOGY ON FEEDING MORPHOLOGY
 
Vincenzi - Wildlife seminar series, UC Berkeley, October 2014
Vincenzi - Wildlife seminar series, UC Berkeley, October 2014Vincenzi - Wildlife seminar series, UC Berkeley, October 2014
Vincenzi - Wildlife seminar series, UC Berkeley, October 2014
 
O21 Kageyama
O21 KageyamaO21 Kageyama
O21 Kageyama
 
The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...
The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...
The Geomorphology of Dunes Along the Western Shoreline of Lake Michigan: Diss...
 
Terrestrial Support of Aquatic Food Webs
Terrestrial Support of Aquatic Food WebsTerrestrial Support of Aquatic Food Webs
Terrestrial Support of Aquatic Food Webs
 
ICES ASC Plenary lecture "Integrated science for integrated management: fair...
ICES ASC Plenary lecture "Integrated science for integrated management:  fair...ICES ASC Plenary lecture "Integrated science for integrated management:  fair...
ICES ASC Plenary lecture "Integrated science for integrated management: fair...
 
Shelf enviroment; By Salah ud din Shabab
Shelf enviroment; By Salah ud din ShababShelf enviroment; By Salah ud din Shabab
Shelf enviroment; By Salah ud din Shabab
 
Marine and Freshwater Ecology Revision
Marine and Freshwater Ecology RevisionMarine and Freshwater Ecology Revision
Marine and Freshwater Ecology Revision
 
Beyond taxonomy: A traits-based approach to fish community ecology
Beyond taxonomy: A traits-based approach to fish community ecology Beyond taxonomy: A traits-based approach to fish community ecology
Beyond taxonomy: A traits-based approach to fish community ecology
 
Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...
Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...
Dunn, Heidi, Ecological Specialists, Inc., Freshwater Mussels and the New Amm...
 
Sandalwood Genetic Diversity
Sandalwood Genetic Diversity Sandalwood Genetic Diversity
Sandalwood Genetic Diversity
 
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
Shawn Rummel, Trout Unlimited, "Recovery of Coldwater Ecosystems Following Tr...
 
Nearshore Study Presentation 2011 Project Meeting Overviewkknew
Nearshore Study Presentation 2011 Project Meeting OverviewkknewNearshore Study Presentation 2011 Project Meeting Overviewkknew
Nearshore Study Presentation 2011 Project Meeting Overviewkknew
 
Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...
Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...
Monitoring Climate Variability and Impact in NV: What's A PA Country Gal Doin...
 
Portfolio Effect in Puget Sound Herring: ESA 2013 Minneapolis
Portfolio Effect in Puget Sound Herring: ESA 2013 MinneapolisPortfolio Effect in Puget Sound Herring: ESA 2013 Minneapolis
Portfolio Effect in Puget Sound Herring: ESA 2013 Minneapolis
 
O s icefish
O s icefishO s icefish
O s icefish
 

Plus de Jonathan Tennant

The past, present, and future of publishing
The past, present, and future of publishingThe past, present, and future of publishing
The past, present, and future of publishingJonathan Tennant
 
ScienceOpen for Researchers
ScienceOpen for ResearchersScienceOpen for Researchers
ScienceOpen for ResearchersJonathan Tennant
 
Championing open science as an early career researcher
Championing open science as an early career researcherChampioning open science as an early career researcher
Championing open science as an early career researcherJonathan Tennant
 

Plus de Jonathan Tennant (7)

The past, present, and future of publishing
The past, present, and future of publishingThe past, present, and future of publishing
The past, present, and future of publishing
 
ScienceOpen for Researchers
ScienceOpen for ResearchersScienceOpen for Researchers
ScienceOpen for Researchers
 
Championing open science as an early career researcher
Championing open science as an early career researcherChampioning open science as an early career researcher
Championing open science as an early career researcher
 
ISMTE 2016 Keynote talk
ISMTE 2016 Keynote talkISMTE 2016 Keynote talk
ISMTE 2016 Keynote talk
 
We Are Generation Open
We Are Generation OpenWe Are Generation Open
We Are Generation Open
 
Being Open as a student
Being Open as a studentBeing Open as a student
Being Open as a student
 
Altmetricon 2015
Altmetricon 2015Altmetricon 2015
Altmetricon 2015
 

Dernier

Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfSumit Kumar yadav
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 

Dernier (20)

9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
CELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdfCELL -Structural and Functional unit of life.pdf
CELL -Structural and Functional unit of life.pdf
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Chemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdfChemistry 4th semester series (krishna).pdf
Chemistry 4th semester series (krishna).pdf
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 

Romer session presentation

  • 1. A hidden extinction in tetrapods at the Jurassic- Cretaceous boundary Jonathan Tennant
  • 2. Thanks! • NERC • PALASS • SVP
  • 3. History of the Jurassic/Cretaceous boundary • Pioneering work by Newell, Raup, Sepkoski (and his compendia) • Originally considered to be a ‘major extinction’ • Understood general controls on the fossil record • Current consensus: NOT a mass extinction Jon Tennant Background Raup (1976) Raup and Sepkoski (1982) Hallam (1986)
  • 4. The structure of the fossil record Jon Tennant Background Smith and McGowan (2011) Tennant et al. (2016) Raw diversity is not a reliable estimate of ‘true’ or relative diversity The fossil record is affected by several levels of sampling filters/’biases’
  • 5. Why the J/K boundary? Jon Tennant Background Benson and Butler (2011) Nicholson et al. (2015) Zanno and Makovicky (2013) Bronzati et al. (2015) Newham et al. (2014)
  • 6. What do we want to know? 1. What is the structure of changes in tetrapod diversity over the J/K transition? Was there a ‘hidden’ mass extinction? 2. What external factors were responsible for mediating these changes? Jon Tennant Methods
  • 7. Data. More data. • 4907 species • 15,472 occurrences, 7314 references • Split into higher taxonomic clades • Fully aquatic or non-marine • Palaeocontinents • Time binning methods Jon Tennant Methods Tennant et al. (2016)
  • 8. Methodological approach •Subsampling (SQS) and phylogenetic diversity estimates (PDE) •Model-fitting of extrinsic parameters Jon Tennant Methods
  • 9. • Tetrapod SQS diversity falls in both the non- marine and marine realms • Finer clade-level dynamics obscured • Bootstrapping provides constraints to overall patterns Jon Tennant Results
  • 10. Dinosaur diversity Jon Tennant Results • SQS shows greatest decline in theropods • Sauropods too poorly sampled in Berriasian • PDE shows greatest decline in sauropods • Decline less emphasised in theropods
  • 11. Non-dinosaurian tetrapod diversity Jon Tennant Results • Staggered pulses of decline and radiation of new clades • No singular marked ‘event’ at the boundary itself • Smaller bodied sized animals generally more poorly sampled
  • 12. Marine tetrapod diversity Jon Tennant Results • Earliest Cretaceous very poorly sampled • Seems to track pattern of a global eustatic lowstand • Similar pattern seen in PDE • Sampling from continuous lineages great for ‘filling in the gaps’
  • 13. A hidden mass extinction at the J/K boundary? • No. A prolonged wave of extinctions through the ‘transition’, coupled with radiations of new groups • Extinctions target more ‘basal’ groups, and are highest at the end of the Jurassic • Magnitude of diversity loss varies – ~33% for ornithischians to 75-80% for theropods and pterosaurs • High Late Jurassic origination rates for different groups do not confer an extinction survival advantage Jon Tennant Conclusions
  • 14. What controls global J/K diversity? Jon Tennant Results Group Non-marine rho p-value Adjusted p-value r p-value Adjusted p-value Aves 0.321 0.498 0.988 -0.174 0.708 0.865 Choristoderes -0.500 1.000 1.000 -0.509 0.660 0.865 Crocodyliformes 0.273 0.448 0.988 0.015 0.967 0.967 Lepidosauromorphs 0.050 0.912 1.000 0.317 0.406 0.757 Lissamphibians 0.000 1.000 1.000 -0.340 0.371 0.757 Mammaliaformes 0.079 0.838 1.000 -0.292 0.413 0.757 Ornithischians 0.209 0.539 0.988 0.424 0.539 0.847 Pterosaurs 0.521 0.123 0.451 0.309 0.387 0.757 Sauropodomorphs 0.736 0.024 0.264 0.733 0.031 0.171 Testudines -0.117 0.776 1.000 -0.094 0.810 0.891 Theropods 0.531 0.079 0.435 0.790 0.004 0.044 Marine Chelonioides -0.500 1.000 1.000 -0.474 0.686 0.842 Crocodyliformes 0.690 0.069 0.138 0.740 0.036 0.144 Ichthyopterygians 0.612 0.060 0.138 0.479 0.166 0.332 Sauropterygians 0.335 0.263 0.351 0.061 0.842 0.842 Spearman's rank Pearson's PMCC Tetrapod-bearing Collections No correlations with Formations Raw diversity is over- printed by sampling
  • 15. What controls regional subsampled diversity? (Europe) Jon Tennant Results rho p-value Adjusted p-value r p-value Adjusted p-value Raw richness 0.671 0.006 0.034 0.513 0.042 0.167 Collections 0.468 0.070 0.140 0.474 0.064 0.167 Occurrences 0.512 0.045 0.135 0.446 0.084 0.167 Good's u -0.147 0.616 0.660 -0.348 0.223 0.267 Formations 0.326 0.173 0.259 0.328 0.171 0.256 Global sea-level -0.115 0.660 0.660 -0.153 0.557 0.557 Subsampled richness Crocodyliformes 0.036 0.964 0.964 0.381 0.400 0.599 Lepidosauromorpha 0.657 0.175 0.525 0.449 0.372 0.599 Ornithischia 0.091 0.811 0.964 0.323 0.363 0.599 Pterosauria -0.107 0.840 0.964 0.277 0.547 0.657 Testudines -0.257 0.658 0.964 0.034 0.949 0.949 Theropoda 0.527 0.123 0.525 0.605 0.064 0.383 Europe Pearson's PMCCSpearman's rank • Raw tetrapod diversity strongly correlates with outcrop area (non-marine) • SQS diversity for individual clades shows no relationship • No correlations with outcrop area in the marine realm
  • 16. What controls regional subsampled diversity? (N. America) Jon Tennant Results rho p-value Adjusted p-value r p-value Adjusted p-value Raw richness 0.346 0.206 0.309 0.278 0.315 0.464 Collections 0.446 0.097 0.292 0.561 0.030 0.089 Occurrences 0.386 0.157 0.309 0.388 0.153 0.305 Good's u -0.073 0.839 0.965 -0.290 0.387 0.464 Formations -0.012 0.965 0.965 -0.146 0.589 0.589 Global sea-level 0.581 0.016 0.098 0.630 0.007 0.040 Subsampled richness Ornithischia 0.150 0.708 0.708 0.268 0.485 0.485 Theropoda -0.452 0.268 0.536 -0.404 0.321 0.485 North America Pearson's PMCCSpearman's rank rho p-value Adjusted p-value r p-value Adjusted p-value Raw richness 0.429 0.113 0.332 0.509 0.053 0.133 Collections 0.154 0.584 0.683 0.454 0.089 0.133 Occurrences 0.146 0.602 0.683 0.474 0.074 0.133 Good's u 0.300 0.683 0.683 0.298 0.626 0.626 Formations 0.479 0.166 0.332 0.457 0.185 0.221 Global sea-level 0.463 0.063 0.332 0.702 0.002 0.010 North America Spearman's rank Pearson's PMCC Non-marine Marine • Outcrop area correlates with sea level in marine and non-marine realms • Therefore cannot rule out regional level ‘common cause’
  • 17. Environmental factors governing diversity Jon Tennant Results Likelihood Weight rho adjusted p-value r adjusted p-value Crocodyliformes (marine) Palaeotemp. 22.741 0.237 -0.524 0.634 -0.522 0.678 Crocodyliformes (non-marine) Sea level 26.285 0.969 0.750 0.175 0.846 0.028 Lissamphibia Palaeotemp. 38.260 0.796 0.700 0.301 0.742 0.154 Mammaliaformes Sea level 51.394 0.931 -0.450 0.537 -0.666 0.301 Ornithischia Sea level 60.106 0.391 0.200 0.681 0.047 0.898 Pterosauria Sea level 33.261 0.872 0.714 0.406 0.647 0.581 Sauropodomorpha Sea level 41.191 0.501 0.310 0.810 0.457 0.564 Sauropterygia Sea level 41.820 0.409 0.055 0.906 0.065 0.985 Testudines Palaeotemp. 50.648 0.258 0.343 0.880 0.462 0.891 Theropoda Sea level 72.931 0.534 -0.018 0.968 0.037 0.954 AICc Pearson's PMCCSpearman's rank Group Parameter
  • 18. What controls Jurassic/Cretaceous diversity? • Primary driver on a global scale was eustatic sea level • Palaeotemperature also an important factor • Sampling over-prints raw diversity estimates • Subsampling methods appear to alleviate sampling issues • Cannot rule out evidence of a local common cause factor in North America Jon Tennant Conclusions
  • 19. • Major flood basalt and bolide activity • Marine revolution in micro-organism communities • Oligotrophic marine conditions likely related to the sea-level regression across the J/K boundary • Have to consider all levels of an ecosystem and the environment to build a complete picture