SlideShare une entreprise Scribd logo
1  sur  38
Télécharger pour lire hors ligne
NCN Summer School: July 2011
   Notes on the Fundamental of Solar Cell

          Lecture 5
Physics of Organic Solar Cells

        M. A. Alam and B. Ray

             alam@purdue.edu
   Electrical and Computer Engineering
             Purdue University
          West Lafayette, IN USA



                                            1
copyright 2011

    This material is copyrighted by M. Alam under the
    following Creative Commons license:




    Conditions for using these materials is described at

    http://creativecommons.org/licenses/by-nc-sa/2.5/

2                           Alam 2011
Outline

1) Introduction: Rationale of organic solar cells
2) Planar Heterojunction OPV
3) Checkerbox Heterjunction OPV
4) Bulk Heterojunction devices
5) Percolation, fluctuation, and efficiency limits
6) Conclusions




                         Alam 2011                   3
Different types of solar cells
                 p-n              p-i-n                 m-i-m




       Crystalline Silicon      Amorphous silicon   Flexible organic
                                  Alam 2011                     4
*Google Images
Economics of solar cells


                   C-Si      CdTe            a-Si     CIGS     OPV
 Material/m2       207       50-60            64    100-125      37
 Process/m2        123          86            73       130    23-37
 Total/m2          350         130           138       230    50-80
 Cost/W            1.75   0.94 -1.2     0.9-1.4        1.63   1-1.36



If efficiency exceeds 15% and lifetime 15 years, $/W ~0.36

              • All costs are approximate
              • J. Kalowekamo/E. Baker, Solar Energy, 2009.
              • Goodrich, PVSC Tutorial, 2011.

                                 Alam 2011                             5
Outline

1) Introduction: Rationale of organic solar cells
2) Planar Heterojunction OPV
3) Checkerbox Heterjunction OPV
4) Bulk Heterojunction devices
5) Percolation, fluctuation, and efficiency limits
6) Conclusions




                         Alam 2011                   6
Basics: Excitons, electrons, and holes


                                                                       H atom
                                                         rB

 m = 0.1m0 , κ =10
                                                 mq4     1        1  m 
E1 Si ~13.6 meV      rBSi ~ 53 A         E1 =            = 13.6 × 2     eV
                                              32π  ε 0 κ
                                                  2 2  2  2
                                                                 κ  m0 

                                              4πε 0  2              m 
                                         rB =           κ = 0.53 × κ  0  A
                                               mq 2                   m 


m = 0.1m0 κ = 3                        Charge neutral excitons happily
E1 poly ~151 meV     rBpoly ~ 15 A     diffusing around …
                                     Alam 2011                                 7
Basics: Excitons, electrons, and holes
               E1 poly ~151 meV   rBpoly ~ 15 A




                 χB               χM
χM   χA                                                χM
                       χM



          Heterojunctions takes the exciton apart,
          Build-in field sweeps electrons/holes away    8
Bilayer Plastic Solar Cells
              Side view               Band-diagram

                                    Acceptor   Donor




Exciton recombination before dissociation
  at the junction makes it a poor cell …
                   Alam 2011                         9
Photocurrent in bilayer cells                    Jex
                                                                 µn S
                                                               µn E + S
                                                                                Jex




~ Dexτ ex

                                                                                      0
                               J ph                   γ L ,n                  γ L ,p         
                              =                                     −                        
                               Jex           γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec 
                                                                                             
   Jex      JL ,ex
   =        =  ex 1 − e −W /4  ex 
                                    
   qG       qG                                  = µn E(0) = δ τ n ≡ S
                                                γ L ,n    γ rec
    ex ≡ Dexτ ex
                                         J ph        µn E(0)                     Vbi − V
                                                =                         E(0) =
   Jex = qG  ex W 2 ≫  ex                                                        Wn
                                         Jex        µn E(0) + S
   Jex = qG W 4 W 2 ≪  ex
                                                                                          10
Photocurrent in bilayer cells
Defective interface




 J ph                     γ L ,n                  γ L ,p         
=                                       −                        
 Jex             γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec 
                                                                 

        Jex γ n(0)2 + S + µn E  n(0) ≡ γ n(0)2 + υT n(0)
        =                      

                              −υ + υ 2 + 4γ J 
                      J ph =  T     T        ex
                                                  υT
                                   2γ           
                                                
        Interface recombination a key challenge
                               Alam 2011                              11
Dark current in bilayer organic PV
                            Defective interface




                                                                            0     Approx.
                                                                           10




                                                             J (mAcm -2)
                                                                                                    Exact

                                                                            -10
Jd ≈ γ n(0)p(0)                                                            10

                                                                                  0        0.5            1
≈ γ nL e                                        − ni2,0 
            − qEWn / KB T        − qEWp / KB T
                        × pR e                                                        Voltage (V)
                                                        
  γ nL pR e − q(Vbi −V )/ KBT − ni2,0 
                                      
                                            Alam 2011                                                12
Summary: Total current in bilayer organic PV




Jex                                                                                      μ =10-4 cm2/V.s
=  ex 1 − e −W /2  ex 
                        
qG                                                                   0

        −υ + υ 2 + 4γ J                                           -2      Jd
J ph =  T                  υT                                                      JT,num

                                                     J (mAcm -2)
               T        ex

             2γ                                                   -4
                          
                                                                    -6
Jd     γ nL pR e − q(V
         
                       bi   −V )/ KB T
                                         − ni2,0 
                                                                   -8       JT,approx         JT,anall

                                                                   -10
                                                                     -0.2   0     0.2    0.4       0.6
 = J ph + Jd
 JT                                                                              Voltage (V)

                              Anomalously low fill factor!                                                13
Current collection and charge pileup

                                                                                            V=0.6




                                                                Energy
                                                                                            V=0.0


J ph                   µn E(0)                        Vbi − V
              =                         E(0) <
Jex                 µn E(0) + S                         Wn
                                                                          x 10
                                                                      9

                                                                      8

                0                                                     7
                                                                                 V=0.2
               -2 Jd
                              JT,num
                                                                      6
  J (mAcm )
-2




                                                                E-field
                                                                      5
               -4
                                                                      4          V=0.4
               -6                                                     3


               -8
                                           JT,anall                   2



              -10                                                                   V=0.6
                -0.2     0       0.2   0.4     0.6                    0

                             Voltage (V)             Position
          The electrons stay too long close to a dangerous region …                            14
Better mobility improves Fill factor

                           μ =1e-4                                                     μ =1e-3
                0                                                               0
               -2           JT,num                                             -2             JT,num
J (mAcm -2)




                                                                  J (mAcm )
                                                                  -2
               -4                                                              -4
               -6                                                              -6
                                           JT,anall
               -8                                                              -8                        JT,anall
              -10                                                             -10
                -0.2   0     0.2     0.4   0.6                                  -0.2   0    0.2    0.4      0.6
                            Voltage (V)                                                    Voltage (V)



                                Higher mobility improves Fill factor
                                  Nonlinear series resistance ….

                                                      Alam 2011                                                     15
The problem with planar heterojunction …




                                                          Lex : Dexτ ex




                                                       Lex : Dexτ ex



     Making such thin film is essentially difficult,
           the layers will short out …
                                                                 16
Outline

1) Introduction: Rationale of organic solar cells
2) Planar Heterojunction OPV
3) Checkerbox Heterjunction OPV
4) Bulk Heterojunction devices
5) Percolation, fluctuation, and efficiency limits
6) Conclusions




                         Alam 2011                   17
Checkerboard organic solar cells
  Decoupling exciton and electron-hole paths

                                             Lex : Dexτ ex




                                       McGehee, MRS Bulletin, Feb. 2009
Jex JL ,ex
   = = N ×  ex 1 − e −Ws /2  ex 
           2                      
                                       A. Javey, Nature Materials, July 2009
qG qG                                                                     18
the balancing act …
         Finger density …
S
          NF ~1 2S 2 VF = WS 2

        Fraction of the charge collected/finger …

         F(S) ~ 4S × Dexτ ex 2S 2
              = 2 Dexτ ex S
                                     Two blocks
W        Total charge collected …

          Jex = qG ×VF × F(S)× NF
              ~ qG ×W Dexτ ex S
              Alam 2011                       19
S     Photo and dark currents (like a p-i-n diode)
                                Photocurrent with distributed recombination
                                   J ph               W       γ L ,n                 γ L ,p 
                               =
                               Jex − R(V )        ∫
                                                  0
                                                          dx                 −                  
                                                              γ L ,n + γ R ,n γ L , p + γ R , p 
                                                                                                
 W
                                        2 LD          W       2 LD        W 
                                     =
                                     W×      log cosh      ≅W      − coth      
   γ R = υ0 e − E(W − x )/θ   W         W             2 LD    W           2 LD 

γ L = υ0
                              Dark current with distributed recombination

                    µn (V − Vbi ) / d  qV
               = A  + q(V −V )/ k T  e
                Jd                                                                nkB T
                                                                                          − 1
                   e        bi   B
                                    + 1                                                    

                                          Sokel and Hughes, JAP, 53(11), 1982.

                                      Alam 2011                                            20
meso-structured organic solar cells

bilayer               checkerboard                Mixed Layers




                 Jex JL ,ex
                = = 2N ex 1 − e −Ws /2  ex 
                                             
                qG qG
                AW = NWs 2W
                2N = A Ws
                                                             21
Outline

1) Introduction: Rationale of organic solar cells
2) Planar Heterojunction OPV
3) Checkerbox Heterjunction OPV
4) Bulk Heterojunction OPV
5) Percolation, fluctuation, and efficiency limits
6) Conclusions




                         Alam 2011                   22
Processing of a plastic bulk heterojunction cell

             Solvent                    Nature Materials, 2009
Polymer-A                Polymer-B
(Donor)                  (Acceptor)
                                               100




                                      Y (nm)
                                               50




                                                0
                                                     0     50     100
                                                         X (nm)
    Anneal for a certain duration     Cahn-Hilliard Eq:
    at moderate temperature
                                      ∂ϕ           ∂f          
     Phase Separation occurs             = M0  ∇ 2    − 2κ∇ 4ϕ 
                                      ∂t           ∂ϕ          
 through Spinodal Decomposition                                     23
Process model for phase segregation

  Free energy:
      f mix= U − TS
                                                                                        Ø0




                                      Free energy, f(a.u)
                                                            0.5
Enthalpy         Entropy


 Cahn-Hilliard Eq:                                            0

 ∂ϕ       2 ∂f       4 
    = M0  ∇     − 2κ∇ ϕ 
 ∂t          ∂ϕ                                                      ØA                         ØB
                                                            -0.5

                                                                   0              0.5                  1
                      Surface
 Energy of
 mixing
                      tension                                          Volume fraction, Ø (x,y)

                 free energy contains polymer details
                                                                                                   24
                        Ray et al., Solar Energy Mat and Solar Cells, 2011
Demixing and self-organization in thin films
  Anneal time



        Grain-size W(t)




                               ~ ( ta )
                                        1/ 3
                                                      1/ 3
                                               W(t) ~ t
                                                      a




                          Anneal time (sec)
                                Alam 2011                    25
Response of BHJ cells to light pulses


         Electron




                    Movie: How excitons are taken
         Holes      apart by the heterojunction

                 Alam 2011                      26
Photocurrent in BHJ OPV
   Anneal time




          1/ 3                      L(ta)
W(t) ~ t  a                                 W(ta)
                 Area
L(t)× W(t) =
                  2
        Area
L(t) ~
       2 × t1/ 3
            a                                  27
                        Alam 2011
Photocurrent and exciton flux

                                                                  Q Dex 1




                            Exciton flux (a.u)
                                                            Jex = :
                                                                 τ ex τ ex t1/ 3
                                                                            a




                                                 Anneal time (a.u.)
        L(ta)                                                           Area
                                                                L(t) ~
                                                                       2 × t1/ 3
                                                                            a
W(ta)                    Q = q Dexτ ex × L(ta )

                Form defines function ….
                Should we anneal at all ?                                28
Photocurrent and annealing time




                                       Ray et al., Solar Energy Mat and Solar Cells, 2011
                                                        10
   Exciton Flux




                                               JSC (mA/cm2)
                                                              8
                           1/R                                6        ta(opt)

                                                              4

                                                              2              1          2
                  Anneal time (a.u.)                                    10
                                                                  Anneal Time (min)
                                                                                   10
                                                                                            29
How do they compare ?
                     Bilayer                    Typical BHJ           Ordered BHJ


                                                                                       Ray et al., PVSC, 2011



                   15        Bi-layer          Typical BHJ        Ordered BHJ
                             η = 3.56 %        η = 5.5 %          η = 6.1 %
                   10        Jsc = 6.6 mAcm -2 Jsc = 14.6 mAcm -2 Jsc = 15.2 mAcm -2
                             Voc = 0.66V       Voc = 0.63V
Current (mA/cm2)




                                                                  Voc = 0.66V
                    5        FF = 81.5 %       FF = 59.5 %        FF = 63.3 %
                                                                                          Low current
                    0           Bi-layer        Typical BHJ                               Poor fill factor
                    -5

                   -10

                   -15                                             Ordered BHJ
                         0               0.2             0.4            0.6
                                                Voltage (V)

                                                 Alam 2011                                                30
Outline

1) Introduction: Rationale of organic solar cells
2) Planar Heterojunction OPV
3) Checkerbox Heterjunction OPV
4) Bulk Heterojunction devices
5) Percolation, fluctuation, and efficiency limits
6) Conclusions




                        Alam 2011                    31
The challenge of a 15% cell …

New polymers with                   Change solvent
smaller bandgap                     and mixing ratio
Solubility issues                      Percolation dictates
                                       ~1:1 volume ratio


Optimize anneal time                 Regularize morphology
 Very limited play                    Random close to optimal


      Conflicting system requires constraints the design,
     Need to consider all improvement within this context    32
Mixing ratio and percolation


                                                                                Fluctuation and
                    1
                                                                                Mixing Ratio
Connected Volume




                                 100 nm
                   0.8                                                    1
                                 200 nm
                                                                                        1:1




                                                      Connected Volume
                   0.6
                                                                         0.8                    1:2
                                                                         0.6
                   0.4
                                                                         0.4
                   0.2
                                                                         0.2

                    0                                                                                 1:3
                                                                          0 0
                    0.2    0.4            0.6   0.8                       10           10
                                                                                            2
                                                                                                      10
                                                                                                           4


                          Fraction of P3HT                                      Anneal Time (s)

                          Moving away from 1:1 ratio is challenging ….
Ordered vs. Disordered Morphology
                                                                                                        Ray et al., PVSC, 2011
                                      6.5                                               180

                                       6
                                                                                        160
                                                             Regular BHJ
                                      5.5



                    Efficiency (%)
                                                                                        140




                                                                            (mA/cm 2)
                                       5                                                                          Regular BHJ
                                                                                        120
                                      4.5                    Random BHJ
                                                                                                                 Random BHJ




                                                                                  SC
                                                                                        100




                                                                              J
                                       4

                                      3.5                                                80

                                       3                                                 60
                                            5   10    15       20      25                      5   10    15         20        25
                                                     <W D>                                              <W D>

                                     0.66                                                0.7

                                     0.65                    Regular BHJ                0.68
                                                                                                                Regular BHJ
                                                                                        0.66
                                     0.64
              (V)




                                                                                        0.64
                                                             Random BHJ

                                                                               FF
                                     0.63
                OC




                                                                                        0.62                    Random BHJ
              V




                                     0.62
                                                                                         0.6

                                     0.61                                               0.58

                                      0.6
                                            5   10    15       20      25                      5   10    15         20        25
                                                     <W D>                                              <W D>


Reduced variability, optimal for a range of anneal conditions                                                                      34
Fundamental constraint of reliability
                                              (i) t a = 0 s          (ii) t a = 10 2 s    (iii) t a = 10 3 s
                                                                                                                                       Continued coarsening
                                                                                                                                         with anneal time
(a) Ta =120 0 C                                                                                                                                                               n
(Processing
Temperature)                                                                                                        WC (ta ,Ta ) ∝  Deff (Ta )ta 
                                                                                                                                                 
                                              (i) t s = 10 4 s   (ii) t s = 10 5 s       (iii) t s = 10 6 s
                                                                                                                                        Deff (Ta ) = D0 e -EA / kTa
                         (b) TS = 80 0 C




                                                                                                                                             TS= 800, 1000, 1200 C




                                                                                                               Cluster Size, WC (nm)
Stress Temperature ,TS




                                              (i) t s = 10 4 s   (ii) t s = 10 5 s        (iii) t s = 10 6 s                           50
                         (c) TS = 100 0 C




                                                                                                                                                   W C~ tSn
                                                                                                                                       20
                                            (i) t s = 10 4 s      (ii) t s = 10 5 s      (iii) t s = 10 6 s
                         (d) TS = 120 0 C




                                                                                                                                       10

                                                                                                                                             2             4              6
                                                                                                                                        10            10             10
                                                                                                                                                 Stress Time (s)

The difference between Arizona sun and an oven is negligible                                                                                                   35
Derivation of the reliability formula
                                                                                                Lex                       JSC (t0 + t s )    WC (t0 )
                                                                                         JSC ∝                                            =
   ts = 10 hrs                                              100 hrs                            WC (t)                        JSC (t0 )      WC (t0 + t s )
                                                                                                                                                                      n
                                                                                                                                                  Deff (T0 )t0 
                                                                                                                                                               
                                                                                                                      =                                                             n
                                                                                                                             Deff (T0 )t0 + Deff (Ts )t s 
                                                                                                                                                          
                                                                                                                                                                      -n
                                                                                                                             -E A / kTS
                                                                                                                                          ts                    
                                                                                                                      = 1+ e                                   
                                                                                                                                         teq                   
                                                                                                                                                               
                                                                                                                                                 500
                                   Ts= 800, 1000, 1200 C                            1                                                                   JSC (deg) = 10, 20, 30%
     Cluster Size, WC (nm)




                                                                                                                               Lifetime (days)
                                                                                                                                                 400
                             50
                                                                      JSC (norm)




                                                                                   0.8
                                                                                                                                                 300
                                         WC~   tan                                                                                                               Ea = 1.2 eV
                                                                                   0.6
                                                                                                                                                 200             n = .25
                             20
                                                                                   0.4
                                                                                                                                                 100
                             10                                                    0.2 Ts= 800, 1000, 1200 C
                                                                                                                                                   0
                                   2             4              6                         3         4        5        6                            20            30             40
                              10            10             10                        10        10       10       10
                                       Anneal Time (s)                                        Anneal Time (s)                                           Operating T (0C)

Ray et al., APL, 2011                                                      Lifetime less than a year!                                                                          36
ordered vs. spinodal films



Bulk Heterojunction      Checkerboard        Double Gyroid




      Good …             better …                Best …

                           Alam 2011                  37
Conclusions

Organic solar cells promises a low cost PV
technology, lightweight, easy to install. Also, a
beautiful physics problem with biomimetic transport.
Theory explains optimum of anneal time, the
rationale of 1:1 mixing ratio, the fundamental
constraints of reliability, limits of Voc and FF.
Reliability, variability, and efficiency are important
concerns. Self assembled regularized structure, new
class of optics, lower bandgap materials, may help us
reach 15% efficiency targets.
                         Alam 2011                  38

Contenu connexe

Tendances

organic solar cell
organic solar cellorganic solar cell
organic solar cellRahul Bibave
 
Organic Solar Cell by Suraj Bhakta
Organic Solar Cell by Suraj BhaktaOrganic Solar Cell by Suraj Bhakta
Organic Solar Cell by Suraj BhaktaSURAJBHAKTA4
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cellsAkinola Oyedele
 
Progress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cellProgress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cellMd Ataul Mamun
 
Thermoelectric Materials
Thermoelectric MaterialsThermoelectric Materials
Thermoelectric MaterialsViji Vijitha
 
Ferroelectric & pizeoelectric materials
Ferroelectric & pizeoelectric materialsFerroelectric & pizeoelectric materials
Ferroelectric & pizeoelectric materialsAvaneesh Mishra
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar CellAbhas Dash
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryDawn John Mullassery
 
Organic photovoltaic
Organic photovoltaicOrganic photovoltaic
Organic photovoltaicZaidKhan281
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)shashank chetty
 
Organic / Polymer solar cells
Organic / Polymer solar cells Organic / Polymer solar cells
Organic / Polymer solar cells Savio Fernandes
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Tuong Do
 

Tendances (20)

organic solar cell
organic solar cellorganic solar cell
organic solar cell
 
New Material:Perovskites presentation
New Material:Perovskites presentationNew Material:Perovskites presentation
New Material:Perovskites presentation
 
Organic Solar Cell by Suraj Bhakta
Organic Solar Cell by Suraj BhaktaOrganic Solar Cell by Suraj Bhakta
Organic Solar Cell by Suraj Bhakta
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
 
Progress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cellProgress in all inorganic perovskite solar cell
Progress in all inorganic perovskite solar cell
 
Thermoelectric Materials
Thermoelectric MaterialsThermoelectric Materials
Thermoelectric Materials
 
Ferroelectric & pizeoelectric materials
Ferroelectric & pizeoelectric materialsFerroelectric & pizeoelectric materials
Ferroelectric & pizeoelectric materials
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar Cell
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John Mullassery
 
Apps of thin films
Apps of thin filmsApps of thin films
Apps of thin films
 
Organic photovoltaic
Organic photovoltaicOrganic photovoltaic
Organic photovoltaic
 
Polymer Solar Cell
Polymer Solar CellPolymer Solar Cell
Polymer Solar Cell
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)
 
Perovskite Solar Cell
Perovskite Solar CellPerovskite Solar Cell
Perovskite Solar Cell
 
Organic / Polymer solar cells
Organic / Polymer solar cells Organic / Polymer solar cells
Organic / Polymer solar cells
 
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?
 
Solar cell
 Solar cell Solar cell
Solar cell
 
Thermoelectrics
ThermoelectricsThermoelectrics
Thermoelectrics
 

Similaire à Solar Cells Lecture 5: Organic Photovoltaics

Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyEngenuitySC
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applicationsvvk0
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic WaveYong Heui Cho
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Lewis Larsen
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
Potentiometry 140702115517-phpapp01
Potentiometry 140702115517-phpapp01Potentiometry 140702115517-phpapp01
Potentiometry 140702115517-phpapp01Cleophas Rwemera
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Roppon Picha
 
Electron configurations 1a presentation
Electron configurations 1a presentationElectron configurations 1a presentation
Electron configurations 1a presentationPaul Cummings
 
Electron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsElectron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsJoke Hadermann
 
Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 

Similaire à Solar Cells Lecture 5: Organic Photovoltaics (20)

Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Basic i
Basic iBasic i
Basic i
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Gravity tests with neutrons
Gravity tests with neutronsGravity tests with neutrons
Gravity tests with neutrons
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
NANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock ApproachNANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock Approach
 
Electromagnetic Wave
Electromagnetic WaveElectromagnetic Wave
Electromagnetic Wave
 
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
Widom and Larsen ULM Neutron Catalyzed LENRs on Metallic Hydride Surfaces-EPJ...
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Potentiometry 140702115517-phpapp01
Potentiometry 140702115517-phpapp01Potentiometry 140702115517-phpapp01
Potentiometry 140702115517-phpapp01
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 
Nuclear Basics Summer 2010
Nuclear Basics Summer 2010Nuclear Basics Summer 2010
Nuclear Basics Summer 2010
 
non linear optics
non linear opticsnon linear optics
non linear optics
 
Electron configurations 1a presentation
Electron configurations 1a presentationElectron configurations 1a presentation
Electron configurations 1a presentation
 
quantum dots
quantum dotsquantum dots
quantum dots
 
Ch1 slides-1
Ch1 slides-1Ch1 slides-1
Ch1 slides-1
 
Seminar at SKKU: 2014.05.30
Seminar at SKKU: 2014.05.30Seminar at SKKU: 2014.05.30
Seminar at SKKU: 2014.05.30
 
Electron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsElectron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materials
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 

Plus de Tuong Do

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTuong Do
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTuong Do
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandTuong Do
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionTuong Do
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaTuong Do
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoTuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióTuong Do
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016Tuong Do
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamTuong Do
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamTuong Do
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Tuong Do
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamTuong Do
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Tuong Do
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Tuong Do
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationTuong Do
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsTuong Do
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Tuong Do
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013Tuong Do
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Tuong Do
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Tuong Do
 

Plus de Tuong Do (20)

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh học
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introduction
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV Vietnam
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in Vietnam
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integration
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptations
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
 

Dernier

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 

Dernier (20)

08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

Solar Cells Lecture 5: Organic Photovoltaics

  • 1. NCN Summer School: July 2011 Notes on the Fundamental of Solar Cell Lecture 5 Physics of Organic Solar Cells M. A. Alam and B. Ray alam@purdue.edu Electrical and Computer Engineering Purdue University West Lafayette, IN USA 1
  • 2. copyright 2011 This material is copyrighted by M. Alam under the following Creative Commons license: Conditions for using these materials is described at http://creativecommons.org/licenses/by-nc-sa/2.5/ 2 Alam 2011
  • 3. Outline 1) Introduction: Rationale of organic solar cells 2) Planar Heterojunction OPV 3) Checkerbox Heterjunction OPV 4) Bulk Heterojunction devices 5) Percolation, fluctuation, and efficiency limits 6) Conclusions Alam 2011 3
  • 4. Different types of solar cells p-n p-i-n m-i-m Crystalline Silicon Amorphous silicon Flexible organic Alam 2011 4 *Google Images
  • 5. Economics of solar cells C-Si CdTe a-Si CIGS OPV Material/m2 207 50-60 64 100-125 37 Process/m2 123 86 73 130 23-37 Total/m2 350 130 138 230 50-80 Cost/W 1.75 0.94 -1.2 0.9-1.4 1.63 1-1.36 If efficiency exceeds 15% and lifetime 15 years, $/W ~0.36 • All costs are approximate • J. Kalowekamo/E. Baker, Solar Energy, 2009. • Goodrich, PVSC Tutorial, 2011. Alam 2011 5
  • 6. Outline 1) Introduction: Rationale of organic solar cells 2) Planar Heterojunction OPV 3) Checkerbox Heterjunction OPV 4) Bulk Heterojunction devices 5) Percolation, fluctuation, and efficiency limits 6) Conclusions Alam 2011 6
  • 7. Basics: Excitons, electrons, and holes H atom rB m = 0.1m0 , κ =10 mq4 1 1  m  E1 Si ~13.6 meV rBSi ~ 53 A E1 = = 13.6 × 2   eV 32π  ε 0 κ 2 2 2 2 κ  m0  4πε 0  2 m  rB = κ = 0.53 × κ  0  A mq 2  m  m = 0.1m0 κ = 3 Charge neutral excitons happily E1 poly ~151 meV rBpoly ~ 15 A diffusing around … Alam 2011 7
  • 8. Basics: Excitons, electrons, and holes E1 poly ~151 meV rBpoly ~ 15 A χB χM χM χA χM χM Heterojunctions takes the exciton apart, Build-in field sweeps electrons/holes away 8
  • 9. Bilayer Plastic Solar Cells Side view Band-diagram Acceptor Donor Exciton recombination before dissociation at the junction makes it a poor cell … Alam 2011 9
  • 10. Photocurrent in bilayer cells Jex µn S µn E + S Jex ~ Dexτ ex 0 J ph  γ L ,n γ L ,p  =  −  Jex  γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec    Jex JL ,ex = =  ex 1 − e −W /4  ex    qG qG = µn E(0) = δ τ n ≡ S γ L ,n γ rec  ex ≡ Dexτ ex J ph µn E(0) Vbi − V = E(0) = Jex = qG  ex W 2 ≫  ex Wn Jex µn E(0) + S Jex = qG W 4 W 2 ≪  ex 10
  • 11. Photocurrent in bilayer cells Defective interface J ph  γ L ,n γ L ,p  =  −  Jex  γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec    Jex γ n(0)2 + S + µn E  n(0) ≡ γ n(0)2 + υT n(0) =    −υ + υ 2 + 4γ J  J ph =  T T ex  υT  2γ    Interface recombination a key challenge Alam 2011 11
  • 12. Dark current in bilayer organic PV Defective interface 0 Approx. 10 J (mAcm -2) Exact -10 Jd ≈ γ n(0)p(0) 10 0 0.5 1 ≈ γ nL e − ni2,0  − qEWn / KB T − qEWp / KB T × pR e Voltage (V)   γ nL pR e − q(Vbi −V )/ KBT − ni2,0    Alam 2011 12
  • 13. Summary: Total current in bilayer organic PV Jex μ =10-4 cm2/V.s =  ex 1 − e −W /2  ex    qG 0  −υ + υ 2 + 4γ J  -2 Jd J ph =  T  υT JT,num J (mAcm -2) T ex  2γ  -4   -6 Jd γ nL pR e − q(V  bi −V )/ KB T − ni2,0   -8 JT,approx JT,anall -10 -0.2 0 0.2 0.4 0.6 = J ph + Jd JT Voltage (V) Anomalously low fill factor! 13
  • 14. Current collection and charge pileup V=0.6 Energy V=0.0 J ph µn E(0) Vbi − V = E(0) < Jex µn E(0) + S Wn x 10 9 8 0 7 V=0.2 -2 Jd JT,num 6 J (mAcm ) -2 E-field 5 -4 4 V=0.4 -6 3 -8 JT,anall 2 -10 V=0.6 -0.2 0 0.2 0.4 0.6 0 Voltage (V) Position The electrons stay too long close to a dangerous region … 14
  • 15. Better mobility improves Fill factor μ =1e-4 μ =1e-3 0 0 -2 JT,num -2 JT,num J (mAcm -2) J (mAcm ) -2 -4 -4 -6 -6 JT,anall -8 -8 JT,anall -10 -10 -0.2 0 0.2 0.4 0.6 -0.2 0 0.2 0.4 0.6 Voltage (V) Voltage (V) Higher mobility improves Fill factor Nonlinear series resistance …. Alam 2011 15
  • 16. The problem with planar heterojunction … Lex : Dexτ ex Lex : Dexτ ex Making such thin film is essentially difficult, the layers will short out … 16
  • 17. Outline 1) Introduction: Rationale of organic solar cells 2) Planar Heterojunction OPV 3) Checkerbox Heterjunction OPV 4) Bulk Heterojunction devices 5) Percolation, fluctuation, and efficiency limits 6) Conclusions Alam 2011 17
  • 18. Checkerboard organic solar cells Decoupling exciton and electron-hole paths Lex : Dexτ ex McGehee, MRS Bulletin, Feb. 2009 Jex JL ,ex = = N ×  ex 1 − e −Ws /2  ex  2   A. Javey, Nature Materials, July 2009 qG qG 18
  • 19. the balancing act … Finger density … S NF ~1 2S 2 VF = WS 2 Fraction of the charge collected/finger … F(S) ~ 4S × Dexτ ex 2S 2 = 2 Dexτ ex S Two blocks W Total charge collected … Jex = qG ×VF × F(S)× NF ~ qG ×W Dexτ ex S Alam 2011 19
  • 20. S Photo and dark currents (like a p-i-n diode) Photocurrent with distributed recombination J ph W  γ L ,n γ L ,p  = Jex − R(V ) ∫ 0 dx  −   γ L ,n + γ R ,n γ L , p + γ R , p    W 2 LD W  2 LD W  = W× log cosh ≅W − coth  γ R = υ0 e − E(W − x )/θ W W 2 LD  W 2 LD  γ L = υ0 Dark current with distributed recombination  µn (V − Vbi ) / d  qV = A  + q(V −V )/ k T  e Jd nkB T − 1 e bi B + 1   Sokel and Hughes, JAP, 53(11), 1982. Alam 2011 20
  • 21. meso-structured organic solar cells bilayer checkerboard Mixed Layers Jex JL ,ex = = 2N ex 1 − e −Ws /2  ex    qG qG AW = NWs 2W 2N = A Ws 21
  • 22. Outline 1) Introduction: Rationale of organic solar cells 2) Planar Heterojunction OPV 3) Checkerbox Heterjunction OPV 4) Bulk Heterojunction OPV 5) Percolation, fluctuation, and efficiency limits 6) Conclusions Alam 2011 22
  • 23. Processing of a plastic bulk heterojunction cell Solvent Nature Materials, 2009 Polymer-A Polymer-B (Donor) (Acceptor) 100 Y (nm) 50 0 0 50 100 X (nm) Anneal for a certain duration Cahn-Hilliard Eq: at moderate temperature ∂ϕ  ∂f  Phase Separation occurs = M0  ∇ 2 − 2κ∇ 4ϕ  ∂t  ∂ϕ  through Spinodal Decomposition 23
  • 24. Process model for phase segregation Free energy: f mix= U − TS Ø0 Free energy, f(a.u) 0.5 Enthalpy Entropy Cahn-Hilliard Eq: 0 ∂ϕ  2 ∂f 4  = M0  ∇ − 2κ∇ ϕ  ∂t  ∂ϕ  ØA ØB -0.5 0 0.5 1 Surface Energy of mixing tension Volume fraction, Ø (x,y) free energy contains polymer details 24 Ray et al., Solar Energy Mat and Solar Cells, 2011
  • 25. Demixing and self-organization in thin films Anneal time Grain-size W(t) ~ ( ta ) 1/ 3 1/ 3 W(t) ~ t a Anneal time (sec) Alam 2011 25
  • 26. Response of BHJ cells to light pulses Electron Movie: How excitons are taken Holes apart by the heterojunction Alam 2011 26
  • 27. Photocurrent in BHJ OPV Anneal time 1/ 3 L(ta) W(t) ~ t a W(ta) Area L(t)× W(t) = 2 Area L(t) ~ 2 × t1/ 3 a 27 Alam 2011
  • 28. Photocurrent and exciton flux Q Dex 1 Exciton flux (a.u) Jex = : τ ex τ ex t1/ 3 a Anneal time (a.u.) L(ta) Area L(t) ~ 2 × t1/ 3 a W(ta) Q = q Dexτ ex × L(ta ) Form defines function …. Should we anneal at all ? 28
  • 29. Photocurrent and annealing time Ray et al., Solar Energy Mat and Solar Cells, 2011 10 Exciton Flux JSC (mA/cm2) 8 1/R 6 ta(opt) 4 2 1 2 Anneal time (a.u.) 10 Anneal Time (min) 10 29
  • 30. How do they compare ? Bilayer Typical BHJ Ordered BHJ Ray et al., PVSC, 2011 15 Bi-layer Typical BHJ Ordered BHJ η = 3.56 % η = 5.5 % η = 6.1 % 10 Jsc = 6.6 mAcm -2 Jsc = 14.6 mAcm -2 Jsc = 15.2 mAcm -2 Voc = 0.66V Voc = 0.63V Current (mA/cm2) Voc = 0.66V 5 FF = 81.5 % FF = 59.5 % FF = 63.3 % Low current 0 Bi-layer Typical BHJ Poor fill factor -5 -10 -15 Ordered BHJ 0 0.2 0.4 0.6 Voltage (V) Alam 2011 30
  • 31. Outline 1) Introduction: Rationale of organic solar cells 2) Planar Heterojunction OPV 3) Checkerbox Heterjunction OPV 4) Bulk Heterojunction devices 5) Percolation, fluctuation, and efficiency limits 6) Conclusions Alam 2011 31
  • 32. The challenge of a 15% cell … New polymers with Change solvent smaller bandgap and mixing ratio Solubility issues Percolation dictates ~1:1 volume ratio Optimize anneal time Regularize morphology Very limited play Random close to optimal Conflicting system requires constraints the design, Need to consider all improvement within this context 32
  • 33. Mixing ratio and percolation Fluctuation and 1 Mixing Ratio Connected Volume 100 nm 0.8 1 200 nm 1:1 Connected Volume 0.6 0.8 1:2 0.6 0.4 0.4 0.2 0.2 0 1:3 0 0 0.2 0.4 0.6 0.8 10 10 2 10 4 Fraction of P3HT Anneal Time (s) Moving away from 1:1 ratio is challenging ….
  • 34. Ordered vs. Disordered Morphology Ray et al., PVSC, 2011 6.5 180 6 160 Regular BHJ 5.5 Efficiency (%) 140 (mA/cm 2) 5 Regular BHJ 120 4.5 Random BHJ Random BHJ SC 100 J 4 3.5 80 3 60 5 10 15 20 25 5 10 15 20 25 <W D> <W D> 0.66 0.7 0.65 Regular BHJ 0.68 Regular BHJ 0.66 0.64 (V) 0.64 Random BHJ FF 0.63 OC 0.62 Random BHJ V 0.62 0.6 0.61 0.58 0.6 5 10 15 20 25 5 10 15 20 25 <W D> <W D> Reduced variability, optimal for a range of anneal conditions 34
  • 35. Fundamental constraint of reliability (i) t a = 0 s (ii) t a = 10 2 s (iii) t a = 10 3 s Continued coarsening with anneal time (a) Ta =120 0 C n (Processing Temperature) WC (ta ,Ta ) ∝  Deff (Ta )ta    (i) t s = 10 4 s (ii) t s = 10 5 s (iii) t s = 10 6 s Deff (Ta ) = D0 e -EA / kTa (b) TS = 80 0 C TS= 800, 1000, 1200 C Cluster Size, WC (nm) Stress Temperature ,TS (i) t s = 10 4 s (ii) t s = 10 5 s (iii) t s = 10 6 s 50 (c) TS = 100 0 C W C~ tSn 20 (i) t s = 10 4 s (ii) t s = 10 5 s (iii) t s = 10 6 s (d) TS = 120 0 C 10 2 4 6 10 10 10 Stress Time (s) The difference between Arizona sun and an oven is negligible 35
  • 36. Derivation of the reliability formula Lex JSC (t0 + t s ) WC (t0 ) JSC ∝ = ts = 10 hrs 100 hrs WC (t) JSC (t0 ) WC (t0 + t s ) n  Deff (T0 )t0    = n  Deff (T0 )t0 + Deff (Ts )t s    -n  -E A / kTS  ts  = 1+ e     teq     500 Ts= 800, 1000, 1200 C 1 JSC (deg) = 10, 20, 30% Cluster Size, WC (nm) Lifetime (days) 400 50 JSC (norm) 0.8 300 WC~ tan Ea = 1.2 eV 0.6 200 n = .25 20 0.4 100 10 0.2 Ts= 800, 1000, 1200 C 0 2 4 6 3 4 5 6 20 30 40 10 10 10 10 10 10 10 Anneal Time (s) Anneal Time (s) Operating T (0C) Ray et al., APL, 2011 Lifetime less than a year! 36
  • 37. ordered vs. spinodal films Bulk Heterojunction Checkerboard Double Gyroid Good … better … Best … Alam 2011 37
  • 38. Conclusions Organic solar cells promises a low cost PV technology, lightweight, easy to install. Also, a beautiful physics problem with biomimetic transport. Theory explains optimum of anneal time, the rationale of 1:1 mixing ratio, the fundamental constraints of reliability, limits of Voc and FF. Reliability, variability, and efficiency are important concerns. Self assembled regularized structure, new class of optics, lower bandgap materials, may help us reach 15% efficiency targets. Alam 2011 38