SlideShare une entreprise Scribd logo
1  sur  17
Télécharger pour lire hors ligne
APPROXIMATING STATIC PORTFOLIO FOR
EXOTIC
PAYOFFS
A project submitted to the Department of Finance
of
Università
Commerciale Luigi Bocconi
Author: Marios Aspris
Supervisor: Professor Andrea Roncoroni
Milano, Italy
July 2015
This page was left blank by intention.
Abstract
In a simple economic period, I assume the existence of three asset
classes. A risk free Bond, a Forward Contract and a range of
derivative instruments, Calls and Put options with different strike
prices. I construct a portfolio in this period using these instruments
with the assumption of continuous time mathematics. I construct a
portfolio for two different increments, and the portfolio consists of
all of the three asset classes for each one of the increment
considered. In this setting of continuity, I take as assumption a
complete market. Since the derivatives market is incomplete,
causes to develop an approximation of the strategy for the
portfolio. With the inability to make use of continuity, I make an
approximation for the portfolio with the use of discrete time
mathematics. In this way I find a portfolio for exotic payoffs with a
small approximation error.
Table of Contents
1. Introduction…………………………………………………………….….1
2. Replication of exotic payoffs……………………………………….….2
3. Discretization of Process…………………………………………..….7
4. Approximation Scheme…...………………………………………….10
5. Summary…...…………………………………………………………….12
6. References…..…………………………………………………………..13
1
Introduction
Yumi Oum and Shmuel Oren [2] proposed a way of a hedging portfolio that
maximizes the expected profit subject to price and volumetric risk with a VaR
constraint. They represent the hedging portfolio as a general exotic option
with a nonlinear payoff contingent to the price of electricity. They replicate the
desired payoff function with a portfolio. The purpose of this paper is to portray
the payoff function that consists of two increments that will eventually be used
to derive the quantities of forwards and options at different strike prices for
each increment. Peter Carr and Dilip Madan [3] demonstrated, with the use of
continuous time mathematics, a way of replicating the payoff function with one
increment. I extend the calculations in the two dimensional case. Because the
market is incomplete and does not allow assumptions of continuity, to
implement the replicating strategy I make use of discrete set providing an
approximation to the replicating strategy, with a risk free bond, a forward
contract and a range of call and put options with different strike prices.
2
1. Replication of exotic payoffs
Consider a load service entity whose revenue is determined by a fixed retail
price r and the uncertain demand q. Denoting uncertain wholesale electricity
price per unit as p, the profit 𝑦(𝑝, 𝑞) from retail sales at time 1 depends on the
two random variable p and q, i.e., 𝑦(𝑝, 𝑞) = (𝑟 − 𝑝)𝑞.
Suppose the load service entity hedges the profit through an exotic electricity
option maturing at time 1. Let 𝑌(𝑥) be the hedged profit, then
𝑌(𝑥) = 𝑦(𝑝, 𝑞) + 𝑥(𝑝), where 𝑥(𝑝)is a payoff function of the exotic option,
which is contingent on the price p.
Now considering the payoff function of the exotic option to be contingent on
two prices, 𝑆1 and 𝑆2. To construct the portfolio that replicates the two
dimensional function, it is necessary to make use the theory in the one
dimensional case.
Suppose there exists a twice continuously differentiable function x. As stated
in the Fundamental Theorem of Calculus I can write the function as follows:
First I state the Theorem.
Theorem Statement: If x’ is an integrable function on a closed interval [a,b] ,
then 𝑥(𝑏) − 𝑥(𝑎) = ∫ 𝑥′(𝑢)𝑑𝑢 .
𝑏
𝑎
Notice that if I assign to a=F and b=S, then I can write the formula in the form:
𝑥(𝑆) = 𝑥(𝐹) + ∫ 𝑥′(𝑢)𝑑𝑢 .
𝑆
𝐹
If I expand the formula by adding logical components, I have:
𝑥(𝑆) = 𝑥(𝐹) + 1 𝑆>𝐹 ∗ ∫ 𝑥′(𝑢)𝑑𝑢 − 1 𝑆<𝐹 ∗ ∫ 𝑥′(𝑢)𝑑𝑢
𝐹
𝑆
.
𝑆
𝐹
Suppose now that the function depends on two variables: 𝑥(𝑆1, 𝑆2) . To apply
the same logic and use the Fundamental Theorem of Calculus I will consider
the function fixed in the second component and apply the theorem on the first
component, and taking the partial derivative. Assuming that the function is
twice continuously differentiable with respect to 𝑆1and 𝑆2. I derive the
following:
𝑥(𝑆1, 𝑆2) − 𝑥(𝐹1, 𝑆2) + 𝑥(𝑆1, 𝑆2) − 𝑥(𝑆1, 𝐹2) = 1 𝑆1>𝐹1
∫
𝜕𝑥(𝑢1,𝑆2)
𝜕𝑆1
𝑆1
𝐹1
𝑑𝑢1 −
1 𝑆1<𝐹1
∫
𝜕𝑥(𝑢1,𝑆2)
𝜕𝑆1
𝐹1
𝑆1
𝑑𝑢1 + 1 𝑆2>𝐹2
∫
𝜕𝑥(𝑆1,𝑢2)
𝜕𝑆2
𝑆2
𝐹2
𝑑𝑢2 − 1 𝑆2<𝐹2
∫
𝜕𝑥(𝑆1,𝑢2)
𝜕𝑆2
𝐹2
𝑆2
𝑑𝑢2
3
Now I consider the first two components of the right hand side of the equation
and the same calculations apply for the other two components. If I apply the
Fundamental Theorem inside the integral I derive:
1 𝑆1>𝐹1
∫
𝜕𝑥(𝑢1, 𝑆2)
𝜕𝑆1
𝑆1
𝐹1
𝑑𝑢1 − 1 𝑆1<𝐹1
∫
𝜕𝑥(𝑢1, 𝑆2)
𝜕𝑆1
𝐹1
𝑆1
𝑑𝑢1=
= 1 𝑆1>𝐹1
∫[
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
𝑆1
𝐹1
+ ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑢1
𝐹1
𝑑𝑣1 ]𝑑𝑢1
− 1 𝑆1<𝐹1
∫[
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
𝐹1
𝑆1
− ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝐹1
𝑢1
𝑑𝑣1 ]𝑑𝑢1
Since now the component
𝜕𝑥(𝐹1,𝑆2)
𝜕𝑆1
does not depend on 𝑢1, then
=
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(1 𝑆1>𝐹1
∗ (𝑆1 − 𝐹1)) + 1 𝑆1>𝐹1
∫(
𝑆1
𝐹1
∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑢1
𝐹1
𝑑𝑣1 )𝑑𝑢1
−
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(1 𝑆1<𝐹1
∗ (𝐹1 − 𝑆1))
+ 1 𝑆1<𝐹1
∫
𝐹1
𝑆1
( ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝐹1
𝑢1
𝑑𝑣1 )𝑑𝑢1
Since the intervals [𝐹1, 𝑆1] and [𝑆1, 𝑢1] are finite measurable spaces and
𝜕2 𝑥(𝑣1,𝑆2)
𝜕𝑆1
2 is a measurable function and ∫
𝐹1
𝑆1
(∫ l
𝜕2 𝑥(𝑣1,𝑆2)
𝜕𝑆1
2 l
𝑆1
𝑢1
𝑑𝑣1 ) 𝑑𝑢1 < ∞ ,
since it is a continuous function by assumption in a finite space, then I can
apply Fubini theorem:
Theorem Statement: Let (X, P, μ) and (Y, L, λ) be σ-finite measure spaces,
and let f be an (P x L)-measurable function on X x Y. If 0≤f≤∞, and if
φ(x) = ∫ 𝑓𝑥𝑌
𝑑𝜆 , 𝜓(x) = ∫ 𝑓𝑌𝑋
𝑑𝜇 (x ε X, y ε Y),
4
then φ is P –measurable, 𝜓 is L –measurable, and
∫ φ𝑋
𝑑𝜇 = ∫ 𝑓𝑋 𝑥 𝑌
𝑑(𝜇 𝑥 𝜆) = ∫ 𝜓𝑦
𝑑𝜆. The first and last integrals can also be
written in the more usual form ∫ 𝑑𝜇(𝑥) ∫ f(x, y)𝑌
𝑑𝑋
𝜆(𝑦) =
∫ 𝑑𝜆(𝑦) ∫ f(x, y)𝑋
𝑑𝜇(𝑥)𝑌
. These are the so called iterated integrals of f.
Continuing the calculations:
=
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑚𝑎𝑥(𝑆1 − 𝐹1, 0)) + 1 𝑆1>𝐹1
∫(
𝑆1
𝐹1
∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑆1
𝑣1
𝑑𝑢1 )𝑑𝑣1
−
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑚𝑎𝑥(𝐹1 − 𝑆1, 0))
+ 1 𝑆1<𝐹1
∫
𝐹1
𝑆1
(∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑣1
𝑆1
𝑑𝑢1)𝑑𝑣1
=
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1)+
+ 1 𝑆1>𝐹1
∫
𝑆1
𝐹1
∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑆1
𝑣1
𝑑𝑢1 𝑑𝑣1
−
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝐹1 − 𝑆1)+
− 1 𝑆1<𝐹1
∫
𝐹1
𝑆1
∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑣1
𝑆1
𝑑𝑢1 𝑑𝑣1
Notice that with the change of integration the function does not depend on 𝑢1
and the integration space [𝐹1, 𝑆1] equals to [𝑣1 𝑆1,] when I change position. So I
can easily solve it. Now (𝑆1 − 𝐹1)+
− (𝐹1 − 𝑆1)+
= max(𝑆1 − 𝐹1, 0) + 𝑚𝑖𝑛(𝐹1 −
𝑆1, 0) = 𝑆1 − 𝐹1 , and with the change of integration I arrive at:
=
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1) + 1 𝑆1>𝐹1
∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝑆1
𝐹1
(𝑆1 − 𝑣1)𝑑𝑣1
+ 1 𝑆1<𝐹1
∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝐹1
𝑆1
(𝑣1 − 𝑆1)𝑑𝑣1
Applying the logical component on the space of integration and in the function
I arrive at the final form:
5
=
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1) + ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
∞
𝐹1
(𝑆1 − 𝑣1)+
𝑑𝑣1
+ ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝐹1
0
(𝑣1 − 𝑆1)+
𝑑𝑣1
Now I can apply the same steps for the second variable therefore calculations
are omitted. So the function will have the final form:
𝑥(𝑆1, 𝑆2) =
1
2
[ 𝑥(𝐹1, 𝑆2) +
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1) + ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
∞
𝐹1
(𝑆1 − 𝑣1)+
𝑑𝑣1
+ ∫
𝜕2
𝑥(𝑣1, 𝑆2)
𝜕𝑆1
2
𝐹1
0
(𝑣1 − 𝑆1)+
𝑑𝑣1 ] +
1
2
[ 𝑥(𝑆1, 𝐹2)
+
𝜕𝑥(𝑆1, 𝐹2)
𝜕𝑆2
(𝑆2 − 𝐹2) + ∫
𝜕2
𝑥(𝑆1, 𝑣2)
𝜕𝑆2
2
∞
𝐹2
(𝑆2 − 𝑣2)+
𝑑𝑣2
+ ∫
𝜕2
𝑥(𝑆1, 𝑣2)
𝜕𝑆2
2
𝐹2
0
(𝑣2 − 𝑆2)+
𝑑𝑣2 ]
If I consider the above function as a function that replicates the exotic payoff
function and denoting as 𝑆1, 𝑆2 the uncertain price per unit and 𝐹1, 𝐹2 be a
forward price for a delivery at time 1 then I construct a portfolio composed of
standard instruments. Rewriting the equation:
𝑥(𝑆1, 𝑆2) =
1
2
[ 𝑥(𝐹1, 𝑆2) +
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1) + ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
∞
𝐹1
(𝑆1 − 𝐾1)+
𝑑𝐾1
+ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐹1
0
(𝐾1 − 𝑆1)+
𝑑𝐾1 ] +
1
2
[ 𝑥(𝑆1, 𝐹2)
+
𝜕𝑥(𝑆1, 𝐹2)
𝜕𝑆2
(𝑆2 − 𝐹2) + ∫
𝜕2
𝑥(𝑆1, 𝐾2)
𝜕𝑆2
2
∞
𝐹2
(𝑆2 − 𝐾2)+
𝑑𝐾2
+ ∫
𝜕2
𝑥(𝑆1, 𝐾2)
𝜕𝑆2
2
𝐹2
0
(𝐾2 − 𝑆2)+
𝑑𝐾2 ]
6
Notice that 1,(𝑆𝑖 − 𝐹𝑖), (𝐾𝑖 − 𝑆𝑖)+
, (𝑆𝑖 − 𝐾𝑖)+
for i=1,2 in the above expression
represents payoffs at time 1 of a Bond, Forward Contract, European Put
options, and European Calls respectively. Therefore an exact replication can
be obtained from a long cash position of size 𝑥(𝐹1, 𝑆2) for the first asset and
𝑥(𝑆1, 𝐹2) for the second asset, a long forward position of size
𝜕𝑥(𝐹1,𝑆2)
𝜕𝑆1
,
𝜕𝑥(𝑆1,𝐹2)
𝜕𝑆2
of the first and second asset respectively, long positions
𝜕2 𝑥(𝐾1,𝑆2)
𝜕𝑆1
2 𝑑𝐾1,
𝜕2 𝑥(𝑆1,𝐾2)
𝜕𝑆2
2 𝑑𝐾2 in puts struck at 𝐾𝑖, for a continuum 𝐾𝑖 < 𝐹𝑖 ,i=1,2 , and long
positions
𝜕2 𝑥(𝐾1,𝑆2)
𝜕𝑆1
2 𝑑𝐾1,
𝜕2 𝑥(𝑆1,𝐾2)
𝜕𝑆2
2 𝑑𝐾2 in calls struck at 𝐾𝑖, for a continuum 𝐾𝑖 >
𝐹𝑖 ,i=1,2.
7
2. Discretization of the process
Notice that the above I make use of the assumption of a continuum of strike
prices. The optimal strategy involves purchasing a spectrum of Calls and Puts
for both increments with continuum strike prices. This result demonstrates that
it should be purchased a portfolio of options. With the assumption of continuity
is the counterpart of the standard assumption of continuous trading.
Therefore, I consider a complete market. In practice the derivatives market is
incomplete and does not offer options for the full continuum of strike prices.
Consequently, I take our assumption as a reasonable approximation when
there are a large but finite number of option strike prices offered and where
investors can trade frequently.
To implement the above replicating strategy using a discrete set of standard
plain Vanilla options, I need to discretize the strike prices and approximate the
payoff function using a set of discrete options at available strike prices.
Therefore, I am taking the summation of integrals.
The strike prices are discretized as follows: Suppose there are put options
with 𝐾11
< 𝐾12
< ⋯ < 𝐾1 𝑛
= 𝐹 strikes and call options with strike prices 𝐹 =
𝐾′
11
< ⋯ < 𝐾′
1 𝑚
in the market for the first increment of the approximation
function and with the same procedure for the second increment. I set 𝐾1 𝑛+1
=
𝐾1 𝑛
, 𝐾10
= 0, 𝐾′
10
= 𝐾′
11
, and 𝐾′
1 𝑚+1
= ∞. As a result, I consider the
following:
∫
𝜕2 𝑥(𝐾1,𝑆2)
𝜕𝑆1
2
𝐹1
0
(𝐾1 − 𝑆1)+
𝑑𝐾1 + ∫
𝜕2 𝑥(𝐾1,𝑆2)
𝜕𝑆1
2
∞
𝐹1
(𝑆1 − 𝐾1)+
𝑑𝐾1=
= ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐾1 𝑖+1
𝐾1 𝑖
(𝐾1 − 𝑆1)+
𝑑𝐾1
𝑛−1
𝑖=0
+ ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐾′
1 𝑖+1
𝐾′
1 𝑖
(𝑆1 − 𝐾1)+
𝑑𝐾1
𝑚
𝑖=1
I consider what applies for the first increment 𝑆1 of the function because the
calculations are similar for the second increment and as a result are omitted.
To proceed to the next step, I will make use of the Mean Value Theorem for
integrals.
8
Theorem Statement: Suppose that f is a continuous function on [a, b] and
that g is integrable and nonnegative on [a, b]. Then ∫ 𝑓(𝑥)
𝑏
𝑎
𝑔(𝑥)𝑑𝑥 =
𝑓(𝜉) ∫ 𝑔(𝑥)
𝑏
𝑎
𝑑𝑥 for some ξ in [a, b].
If I denote as 𝑔 =
𝜕2 𝑥(𝐾1,𝑆2)
𝜕𝑆1
2 and 𝑓 = (𝐾1 − 𝑆1)+
in each different part in the
equation above then I can apply it. Another thing is the integration limits
where I have to consider if 𝑆1 < 𝐾1 𝑖
𝑜𝑟 𝐾1 𝑖
< 𝑆1 < 𝐾1 𝑖+1
𝑜𝑟 𝑆1 > 𝐾1 𝑖+1
. By taking
the 𝑚𝑎𝑥(𝑆1, 𝐾1 𝑖
) 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑆1, 𝐾′
1 𝑖
) for the payoff of the Put and Call option
respectively, then I can take an approximation of the series. I also consider as
𝑓(𝜉) =
1
2
{ (𝐾1 𝑖
− 𝑆1)+
+ (𝐾1 𝑖+1
− 𝑆1)+
} (appropriately for the Call payoff).
Therefore:
≈ ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝑚𝑎𝑥(𝑆1,𝐾1 𝑖+1
)
𝑚𝑎𝑥(𝑆1,𝐾1 𝑖
)
𝑑𝐾1
𝑛−1
𝑖=0
∗
1
2
{ (𝐾1 𝑖
− 𝑆1)+
+ (𝐾1 𝑖+1
− 𝑆1)+
}
+ ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝑚𝑖𝑛(𝑆1,𝐾′
1 𝑖+1
)
𝑚𝑖𝑛(𝑆1,𝐾′
1 𝑖
)
𝑑𝐾1
𝑚
𝑖=0
∗
1
2
{ (𝑆1−𝐾′
1 𝑖
)+
+ (𝑆1−𝐾′
1 𝑖+1
)+
}
Now I can take another approximation in the calculations integrating from
𝐾1 𝑖
𝑡𝑜 𝐾1 𝑖+1
:
≈ ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐾1 𝑖+1
𝐾1 𝑖
𝑑𝐾1
𝑛−1
𝑖=0
∗
1
2
{ (𝐾1 𝑖
− 𝑆1)+
+ (𝐾1 𝑖+1
− 𝑆1)+
}
+ ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐾′
1 𝑖+1
𝐾′
1 𝑖
𝑑𝐾1 ∗
1
2
{ (𝑆1−𝐾′
1 𝑖
)+
+ (𝑆1−𝐾′
1 𝑖+1
)+
}
𝑚
𝑖=1
9
Now I defined as 𝐾11
< 𝐾12
< ⋯ < 𝐾1 𝑛
= 𝐹 as the strikes of the Put options
and 𝐹 = 𝐾′
11
< ⋯ < 𝐾′
1 𝑚
the strike prices of the Call options. Also 𝐾1 𝑛+1
=
𝐾1 𝑛
, 𝐾10
= 0, 𝐾′
10
= 𝐾′
11
, and 𝐾′
1 𝑚+1
= ∞.
In this way if I write the limits of the series and changing appropriately the
integration limits I arrive at the final form.
= ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐾1 𝑖+1
𝐾1 𝑖−1
𝑑𝐾1
𝑛
𝑖=1
∗
1
2
{ (𝐾1 𝑖
− 𝑆1)+
}
+ ∑ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐾′
1 𝑖+1
𝐾′
1 𝑖−1
𝑑𝐾1 ∗
1
2
{ (𝑆1−𝐾′
1 𝑖
)+
}
𝑚
𝑖=1
= ∑
1
2
[
𝜕𝑥(𝐾1 𝑖+1
, 𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾1 𝑖−1
, 𝑆2)
𝜕𝑆1
] ∗ { (𝐾1 𝑖
− 𝑆1)+
}
𝑛
𝑖=1
+ ∑
1
2
[
𝜕𝑥(𝐾′
1 𝑖+1
, 𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾′
1 𝑖−1
, 𝑆2)
𝜕𝑆1
] ∗ { (𝑆1−𝐾′
1 𝑖
)+
}
𝑚
𝑖=1
10
3. Approximation Scheme
With the calculations above I have derived the final form of the replication
strategy:
𝑥(𝑆1, 𝑆2) =
1
2
[ 𝑥(𝐹1, 𝑆2) +
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1) + ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
∞
𝐹1
(𝑆1 − 𝐾1)+
𝑑𝐾1
+ ∫
𝜕2
𝑥(𝐾1, 𝑆2)
𝜕𝑆1
2
𝐹1
0
(𝐾1 − 𝑆1)+
𝑑𝐾1 ]
+
1
2
[ 𝑥(𝑆1, 𝐹2) +
𝜕𝑥(𝑆1, 𝐹2)
𝜕𝑆2
(𝑆2 − 𝐹2)
+ ∫
𝜕2
𝑥(𝑆1, 𝐾2)
𝜕𝑆2
2
∞
𝐹2
(𝑆2 − 𝐾2)+
𝑑𝐾2 + ∫
𝜕2
𝑥(𝑆1, 𝐾2)
𝜕𝑆2
2
𝐹2
0
(𝐾2 − 𝑆2)+
𝑑𝐾2 ]
≈
1
2
[ 𝑥(𝐹1, 𝑆2) +
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1)
+ ∑
1
2
[
𝜕𝑥(𝐾1 𝑖+1
, 𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾1 𝑖−1
, 𝑆2)
𝜕𝑆1
] ∗ { (𝐾1 𝑖
− 𝑆1)+
}
𝑛
𝑖=1
+ ∑
1
2
[
𝜕𝑥(𝐾′
1 𝑖+1
, 𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾′
1 𝑖−1
, 𝑆2)
𝜕𝑆1
] ∗ { (𝑆1−𝐾′
1 𝑖
)+
}
𝑚
𝑖=1
]
+
1
2
[ 𝑥(𝑆1, 𝐹2) +
𝜕𝑥(𝑆1, 𝐹2)
𝜕𝑆2
(𝑆2 − 𝐹2)
+ ∑
1
2
[
𝜕𝑥(𝑆1, 𝐾2 𝑖+1
)
𝜕𝑆2
−
𝜕𝑥(𝑆1, 𝐾2 𝑖−1
)
𝜕𝑆2
] ∗ { (𝐾2 𝑖
− 𝑆2)+
}
𝑛
𝑖=1
+ ∑
1
2
[
𝜕𝑥(𝑆1, 𝐾′
2 𝑖+1
)
𝜕𝑆2
−
𝜕𝑥(𝑆1, 𝐾′
2 𝑖−1
)
𝜕𝑆2
] ∗ { (𝑆2−𝐾′
2 𝑖
)+
}
𝑚
𝑖=1
]
11
𝑥(𝑆1, 𝑆2) = [
1
2
𝑥(𝐹1, 𝑆2) +
1
2
𝜕𝑥(𝐹1, 𝑆2)
𝜕𝑆1
(𝑆1 − 𝐹1)
+ ∑
1
4
[(
𝜕𝑥(𝐾1 𝑖+1
, 𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾1 𝑖−1
, 𝑆2)
𝜕𝑆1
)] ∗ { (𝐾1 𝑖
− 𝑆1)+
}
𝑛
𝑖=1
+ ∑
1
4
[(
𝜕𝑥(𝐾′
1 𝑖+1
, 𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾′
1 𝑖−1
, 𝑆2)
𝜕𝑆1
)] ∗ { (𝑆1−𝐾′
1 𝑖
)+
}
𝑚
𝑖=1
]
+ [
1
2
𝑥(𝑆1, 𝐹2) +
1
2
𝜕𝑥(𝑆1, 𝐹2)
𝜕𝑆2
(𝑆2 − 𝐹2)
+ ∑
1
4
[ (
𝜕𝑥(𝑆1, 𝐾2 𝑖+1
)
𝜕𝑆2
−
𝜕𝑥(𝑆1, 𝐾2 𝑖−1
)
𝜕𝑆2
) ] ∗ { (𝐾2 𝑖
− 𝑆2)+
}
𝑛
𝑖=1
+ ∑
1
4
[ (
𝜕𝑥(𝑆1, 𝐾′
2 𝑖+1
)
𝜕𝑆2
−
𝜕𝑥(𝑆1, 𝐾′
2 𝑖−1
)
𝜕𝑆2
)] ∗ { (𝑆2−𝐾′
2 𝑖
)+
}
𝑚
𝑖=1
]
Here is provided an approximate replication of an exotic payoff function using
the existing plain vanilla options so that the total payoff from those options is
close to the exotic payoff. As a result, the strategy consists of:
 a long cash position of size
1
2
∗ 𝑥(𝐹1, 𝑆2) for the price of 𝑆1 and
1
2
𝑥(𝑆1, 𝐹2) for the price 𝑆2,
 a long forward position of
1
2
𝜕𝑥(𝐹1,𝑆2)
𝜕𝑆1
and
1
2
𝜕𝑥(𝑆1,𝐹2)
𝜕𝑆2
for 𝑆1 and 𝑆2
respectively,
 long positions of size
1
4
[(
𝜕𝑥(𝐾1 𝑖+1
,𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾1 𝑖−1
,𝑆2)
𝜕𝑆1
)] in put options struck
at 𝐾1 𝑖
𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 . Respectively for the price 𝑆2 long position of size
1
4
[ (
𝜕𝑥(𝑆1,𝐾2 𝑖+1
)
𝜕𝑆2
−
𝜕𝑥(𝑆1,𝐾2 𝑖−1
)
𝜕𝑆2
) ] in puts with strike price 𝐾2 𝑖
,
 long positions of size
1
4
[(
𝜕𝑥(𝐾′
1 𝑖+1
,𝑆2)
𝜕𝑆1
−
𝜕𝑥(𝐾′
1 𝑖−1
,𝑆2)
𝜕𝑆1
)] in calls struck at
𝐾′
1 𝑖
𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 for the price 𝑆1 and of size
1
4
[ (
𝜕𝑥(𝑆1,𝐾′
2 𝑖+1
)
𝜕𝑆2
−
𝜕𝑥(𝑆1,𝐾′
2 𝑖−1
)
𝜕𝑆2
)] for price 𝑆2 struck at 𝐾′
2 𝑖
𝑓𝑜𝑟 𝑖 = 1, … , 𝑚.
12
In this approximation form, I will have a small error if
𝜕2 𝑥(𝐾1,𝑆2)
𝜕𝑆1
2 , for appropriate
index, is constant in each interval between two consecutive strike prices. I can
also reduce the error by refining the strike price discretization in the range
where there is high probability that 𝑆𝑖 ,for i=1,2 , will fall.
Summary
To obtain a realistic hedging portfolio for two dimensions, I solved for the
payoff function what represents the payoff of two exotic options as a function
of price. Then it is shown how we can replicate the function using a portfolio of
forward contracts and options and how can we take an approximation of the
function with a small approximation error.
13
References
[1] Michael D. Spivak, Calculus 3rd
Edition (1994), 282-288.
[2] Y. Oum and S. Oren, VaR constrained hedging of fixed price load-following
obligations in competitive electricity markets, Risk and Decision Analysis 1
(2009),
50-54.
[3] P. Carr and D.Madan, Optimal Positioning in derivative securities,
Quantitative Finance 1 (2001), 34-36.
[4] Walter Rudin, Real and Complex Analysis 3rd
Edition (1987), 164-165.

Contenu connexe

Tendances

Numerical Methods
Numerical MethodsNumerical Methods
Numerical MethodsESUG
 
design and analysis of algorithm
design and analysis of algorithmdesign and analysis of algorithm
design and analysis of algorithmMuhammad Arish
 
fuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzificationfuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzificationNourhan Selem Salm
 
Comparitive Analysis of Algorithm strategies
Comparitive Analysis of Algorithm strategiesComparitive Analysis of Algorithm strategies
Comparitive Analysis of Algorithm strategiesTalha Shaikh
 
test pre
test pretest pre
test prefarazch
 
Constraints on conformal field theories in d=3
Constraints on conformal field theories in d=3Constraints on conformal field theories in d=3
Constraints on conformal field theories in d=3Subham Dutta Chowdhury
 
NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING
NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING
NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING Anu Bhatt
 
Conformal field theories and three point functions
Conformal field theories and three point functionsConformal field theories and three point functions
Conformal field theories and three point functionsSubham Dutta Chowdhury
 
Ms nikita greedy agorithm
Ms nikita greedy agorithmMs nikita greedy agorithm
Ms nikita greedy agorithmNikitagupta123
 
4 greedy methodnew
4 greedy methodnew4 greedy methodnew
4 greedy methodnewabhinav108
 
X01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieX01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieMarco Moldenhauer
 
unit-4-dynamic programming
unit-4-dynamic programmingunit-4-dynamic programming
unit-4-dynamic programminghodcsencet
 

Tendances (19)

Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
design and analysis of algorithm
design and analysis of algorithmdesign and analysis of algorithm
design and analysis of algorithm
 
fuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzificationfuzzy fuzzification and defuzzification
fuzzy fuzzification and defuzzification
 
Comparitive Analysis of Algorithm strategies
Comparitive Analysis of Algorithm strategiesComparitive Analysis of Algorithm strategies
Comparitive Analysis of Algorithm strategies
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
12 Greeddy Method
12 Greeddy Method12 Greeddy Method
12 Greeddy Method
 
test pre
test pretest pre
test pre
 
Constraints on conformal field theories in d=3
Constraints on conformal field theories in d=3Constraints on conformal field theories in d=3
Constraints on conformal field theories in d=3
 
NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING
NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING
NUMERICAL & STATISTICAL METHODS FOR COMPUTER ENGINEERING
 
Conformal field theories and three point functions
Conformal field theories and three point functionsConformal field theories and three point functions
Conformal field theories and three point functions
 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
 
Ms nikita greedy agorithm
Ms nikita greedy agorithmMs nikita greedy agorithm
Ms nikita greedy agorithm
 
4 greedy methodnew
4 greedy methodnew4 greedy methodnew
4 greedy methodnew
 
Statistics Assignment Help
Statistics Assignment HelpStatistics Assignment Help
Statistics Assignment Help
 
derivatives math
derivatives mathderivatives math
derivatives math
 
L25052056
L25052056L25052056
L25052056
 
5.1 greedy 03
5.1 greedy 035.1 greedy 03
5.1 greedy 03
 
X01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorieX01 Supervised learning problem linear regression one feature theorie
X01 Supervised learning problem linear regression one feature theorie
 
unit-4-dynamic programming
unit-4-dynamic programmingunit-4-dynamic programming
unit-4-dynamic programming
 

En vedette

Lab created engagement rings
Lab created engagement ringsLab created engagement rings
Lab created engagement ringsJason Deulo
 
Presentacion el sueño de un robot
Presentacion el sueño de un robotPresentacion el sueño de un robot
Presentacion el sueño de un robotangietr23
 
Baby gifts diaper cakes ideas baby gift basket
Baby gifts diaper cakes ideas baby gift basketBaby gifts diaper cakes ideas baby gift basket
Baby gifts diaper cakes ideas baby gift basketJeff Mccoy
 
Bab 2 semester 3
Bab 2 semester 3Bab 2 semester 3
Bab 2 semester 3restupolman
 
02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam
02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam
02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt NamTuyen Dao
 
Inter National Logistics
Inter National LogisticsInter National Logistics
Inter National LogisticsShekhar Shukla
 
Building Stories around DevOps Mentorship
Building Stories around DevOps MentorshipBuilding Stories around DevOps Mentorship
Building Stories around DevOps MentorshipJohn Contad
 
KENYA & TANZANIA WALKING SAFARI-13 DAYS
KENYA & TANZANIA WALKING SAFARI-13 DAYSKENYA & TANZANIA WALKING SAFARI-13 DAYS
KENYA & TANZANIA WALKING SAFARI-13 DAYSsolomon kimitei
 
Comparación entre procesos de Administración y Supervisión del Currículo en d...
Comparación entre procesos de Administración y Supervisión del Currículo en d...Comparación entre procesos de Administración y Supervisión del Currículo en d...
Comparación entre procesos de Administración y Supervisión del Currículo en d...Julio Marín
 

En vedette (15)

Frekuenci
FrekuenciFrekuenci
Frekuenci
 
Lab created engagement rings
Lab created engagement ringsLab created engagement rings
Lab created engagement rings
 
Cna medical knowledge
Cna medical knowledgeCna medical knowledge
Cna medical knowledge
 
Presentacion el sueño de un robot
Presentacion el sueño de un robotPresentacion el sueño de un robot
Presentacion el sueño de un robot
 
Baby gifts diaper cakes ideas baby gift basket
Baby gifts diaper cakes ideas baby gift basketBaby gifts diaper cakes ideas baby gift basket
Baby gifts diaper cakes ideas baby gift basket
 
Corner mk sch
Corner mk schCorner mk sch
Corner mk sch
 
Bab 2 semester 3
Bab 2 semester 3Bab 2 semester 3
Bab 2 semester 3
 
Nti 1
Nti 1Nti 1
Nti 1
 
02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam
02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam
02 - Thực trạng áp dụng loyalty của các thương hiệu sm es tại Việt Nam
 
Bab 3 smester 3
Bab 3 smester 3Bab 3 smester 3
Bab 3 smester 3
 
VIRDEN.CAPSTONE
VIRDEN.CAPSTONEVIRDEN.CAPSTONE
VIRDEN.CAPSTONE
 
Inter National Logistics
Inter National LogisticsInter National Logistics
Inter National Logistics
 
Building Stories around DevOps Mentorship
Building Stories around DevOps MentorshipBuilding Stories around DevOps Mentorship
Building Stories around DevOps Mentorship
 
KENYA & TANZANIA WALKING SAFARI-13 DAYS
KENYA & TANZANIA WALKING SAFARI-13 DAYSKENYA & TANZANIA WALKING SAFARI-13 DAYS
KENYA & TANZANIA WALKING SAFARI-13 DAYS
 
Comparación entre procesos de Administración y Supervisión del Currículo en d...
Comparación entre procesos de Administración y Supervisión del Currículo en d...Comparación entre procesos de Administración y Supervisión del Currículo en d...
Comparación entre procesos de Administración y Supervisión del Currículo en d...
 

Similaire à Thesis

Derivatives and it’s simple applications
Derivatives and it’s simple applicationsDerivatives and it’s simple applications
Derivatives and it’s simple applicationsRutuja Gholap
 
lecture01-2functions-230830145652-a15c1554.pptx
lecture01-2functions-230830145652-a15c1554.pptxlecture01-2functions-230830145652-a15c1554.pptx
lecture01-2functions-230830145652-a15c1554.pptxMuhammadShoaibRabban1
 
derivativesanditssimpleapplications-160828144729.pptx
derivativesanditssimpleapplications-160828144729.pptxderivativesanditssimpleapplications-160828144729.pptx
derivativesanditssimpleapplications-160828144729.pptxSnehSinha6
 
Integrales definidas y método de integración por partes
Integrales definidas y método de integración por partesIntegrales definidas y método de integración por partes
Integrales definidas y método de integración por partescrysmari mujica
 
AMS_502_13, 14,15,16 (1).pptx
AMS_502_13, 14,15,16 (1).pptxAMS_502_13, 14,15,16 (1).pptx
AMS_502_13, 14,15,16 (1).pptxbhavypatel2228
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Machine learning
Machine learningMachine learning
Machine learningShreyas G S
 
PIECEWISE FUNCTION
PIECEWISE FUNCTIONPIECEWISE FUNCTION
PIECEWISE FUNCTIONNICO MONTERO
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
 
Lecture 01-2 (Functions).pptx
Lecture 01-2 (Functions).pptxLecture 01-2 (Functions).pptx
Lecture 01-2 (Functions).pptxÅįjâž Ali
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qmAnda Tywabi
 
integration in maths pdf mathematics integration
integration in maths pdf mathematics integrationintegration in maths pdf mathematics integration
integration in maths pdf mathematics integrationDr. Karrar Alwash
 
Fuzzy portfolio optimization_Yuxiang Ou
Fuzzy portfolio optimization_Yuxiang OuFuzzy portfolio optimization_Yuxiang Ou
Fuzzy portfolio optimization_Yuxiang OuYuxiang Ou
 
General Mathematics - Exponential Functions.pptx
General Mathematics - Exponential Functions.pptxGeneral Mathematics - Exponential Functions.pptx
General Mathematics - Exponential Functions.pptxinasal105
 

Similaire à Thesis (20)

Derivatives and it’s simple applications
Derivatives and it’s simple applicationsDerivatives and it’s simple applications
Derivatives and it’s simple applications
 
lecture01-2functions-230830145652-a15c1554.pptx
lecture01-2functions-230830145652-a15c1554.pptxlecture01-2functions-230830145652-a15c1554.pptx
lecture01-2functions-230830145652-a15c1554.pptx
 
Partial Derivatives.pdf
Partial Derivatives.pdfPartial Derivatives.pdf
Partial Derivatives.pdf
 
derivativesanditssimpleapplications-160828144729.pptx
derivativesanditssimpleapplications-160828144729.pptxderivativesanditssimpleapplications-160828144729.pptx
derivativesanditssimpleapplications-160828144729.pptx
 
Derivative rules.docx
Derivative rules.docxDerivative rules.docx
Derivative rules.docx
 
Integrales definidas y método de integración por partes
Integrales definidas y método de integración por partesIntegrales definidas y método de integración por partes
Integrales definidas y método de integración por partes
 
AMS_502_13, 14,15,16 (1).pptx
AMS_502_13, 14,15,16 (1).pptxAMS_502_13, 14,15,16 (1).pptx
AMS_502_13, 14,15,16 (1).pptx
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Machine learning
Machine learningMachine learning
Machine learning
 
PIECEWISE FUNCTION
PIECEWISE FUNCTIONPIECEWISE FUNCTION
PIECEWISE FUNCTION
 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
 
Lecture 01-2 (Functions).pptx
Lecture 01-2 (Functions).pptxLecture 01-2 (Functions).pptx
Lecture 01-2 (Functions).pptx
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
integration in maths pdf mathematics integration
integration in maths pdf mathematics integrationintegration in maths pdf mathematics integration
integration in maths pdf mathematics integration
 
Fuzzy portfolio optimization_Yuxiang Ou
Fuzzy portfolio optimization_Yuxiang OuFuzzy portfolio optimization_Yuxiang Ou
Fuzzy portfolio optimization_Yuxiang Ou
 
CALCULUS 2.pptx
CALCULUS 2.pptxCALCULUS 2.pptx
CALCULUS 2.pptx
 
General Mathematics - Exponential Functions.pptx
General Mathematics - Exponential Functions.pptxGeneral Mathematics - Exponential Functions.pptx
General Mathematics - Exponential Functions.pptx
 
Methods of point estimation
Methods of point estimationMethods of point estimation
Methods of point estimation
 
Ou3425912596
Ou3425912596Ou3425912596
Ou3425912596
 
Master_Thesis_Harihara_Subramanyam_Sreenivasan
Master_Thesis_Harihara_Subramanyam_SreenivasanMaster_Thesis_Harihara_Subramanyam_Sreenivasan
Master_Thesis_Harihara_Subramanyam_Sreenivasan
 

Thesis

  • 1. APPROXIMATING STATIC PORTFOLIO FOR EXOTIC PAYOFFS A project submitted to the Department of Finance of Università Commerciale Luigi Bocconi Author: Marios Aspris Supervisor: Professor Andrea Roncoroni Milano, Italy July 2015
  • 2. This page was left blank by intention.
  • 3. Abstract In a simple economic period, I assume the existence of three asset classes. A risk free Bond, a Forward Contract and a range of derivative instruments, Calls and Put options with different strike prices. I construct a portfolio in this period using these instruments with the assumption of continuous time mathematics. I construct a portfolio for two different increments, and the portfolio consists of all of the three asset classes for each one of the increment considered. In this setting of continuity, I take as assumption a complete market. Since the derivatives market is incomplete, causes to develop an approximation of the strategy for the portfolio. With the inability to make use of continuity, I make an approximation for the portfolio with the use of discrete time mathematics. In this way I find a portfolio for exotic payoffs with a small approximation error.
  • 4. Table of Contents 1. Introduction…………………………………………………………….….1 2. Replication of exotic payoffs……………………………………….….2 3. Discretization of Process…………………………………………..….7 4. Approximation Scheme…...………………………………………….10 5. Summary…...…………………………………………………………….12 6. References…..…………………………………………………………..13
  • 5. 1 Introduction Yumi Oum and Shmuel Oren [2] proposed a way of a hedging portfolio that maximizes the expected profit subject to price and volumetric risk with a VaR constraint. They represent the hedging portfolio as a general exotic option with a nonlinear payoff contingent to the price of electricity. They replicate the desired payoff function with a portfolio. The purpose of this paper is to portray the payoff function that consists of two increments that will eventually be used to derive the quantities of forwards and options at different strike prices for each increment. Peter Carr and Dilip Madan [3] demonstrated, with the use of continuous time mathematics, a way of replicating the payoff function with one increment. I extend the calculations in the two dimensional case. Because the market is incomplete and does not allow assumptions of continuity, to implement the replicating strategy I make use of discrete set providing an approximation to the replicating strategy, with a risk free bond, a forward contract and a range of call and put options with different strike prices.
  • 6. 2 1. Replication of exotic payoffs Consider a load service entity whose revenue is determined by a fixed retail price r and the uncertain demand q. Denoting uncertain wholesale electricity price per unit as p, the profit 𝑦(𝑝, 𝑞) from retail sales at time 1 depends on the two random variable p and q, i.e., 𝑦(𝑝, 𝑞) = (𝑟 − 𝑝)𝑞. Suppose the load service entity hedges the profit through an exotic electricity option maturing at time 1. Let 𝑌(𝑥) be the hedged profit, then 𝑌(𝑥) = 𝑦(𝑝, 𝑞) + 𝑥(𝑝), where 𝑥(𝑝)is a payoff function of the exotic option, which is contingent on the price p. Now considering the payoff function of the exotic option to be contingent on two prices, 𝑆1 and 𝑆2. To construct the portfolio that replicates the two dimensional function, it is necessary to make use the theory in the one dimensional case. Suppose there exists a twice continuously differentiable function x. As stated in the Fundamental Theorem of Calculus I can write the function as follows: First I state the Theorem. Theorem Statement: If x’ is an integrable function on a closed interval [a,b] , then 𝑥(𝑏) − 𝑥(𝑎) = ∫ 𝑥′(𝑢)𝑑𝑢 . 𝑏 𝑎 Notice that if I assign to a=F and b=S, then I can write the formula in the form: 𝑥(𝑆) = 𝑥(𝐹) + ∫ 𝑥′(𝑢)𝑑𝑢 . 𝑆 𝐹 If I expand the formula by adding logical components, I have: 𝑥(𝑆) = 𝑥(𝐹) + 1 𝑆>𝐹 ∗ ∫ 𝑥′(𝑢)𝑑𝑢 − 1 𝑆<𝐹 ∗ ∫ 𝑥′(𝑢)𝑑𝑢 𝐹 𝑆 . 𝑆 𝐹 Suppose now that the function depends on two variables: 𝑥(𝑆1, 𝑆2) . To apply the same logic and use the Fundamental Theorem of Calculus I will consider the function fixed in the second component and apply the theorem on the first component, and taking the partial derivative. Assuming that the function is twice continuously differentiable with respect to 𝑆1and 𝑆2. I derive the following: 𝑥(𝑆1, 𝑆2) − 𝑥(𝐹1, 𝑆2) + 𝑥(𝑆1, 𝑆2) − 𝑥(𝑆1, 𝐹2) = 1 𝑆1>𝐹1 ∫ 𝜕𝑥(𝑢1,𝑆2) 𝜕𝑆1 𝑆1 𝐹1 𝑑𝑢1 − 1 𝑆1<𝐹1 ∫ 𝜕𝑥(𝑢1,𝑆2) 𝜕𝑆1 𝐹1 𝑆1 𝑑𝑢1 + 1 𝑆2>𝐹2 ∫ 𝜕𝑥(𝑆1,𝑢2) 𝜕𝑆2 𝑆2 𝐹2 𝑑𝑢2 − 1 𝑆2<𝐹2 ∫ 𝜕𝑥(𝑆1,𝑢2) 𝜕𝑆2 𝐹2 𝑆2 𝑑𝑢2
  • 7. 3 Now I consider the first two components of the right hand side of the equation and the same calculations apply for the other two components. If I apply the Fundamental Theorem inside the integral I derive: 1 𝑆1>𝐹1 ∫ 𝜕𝑥(𝑢1, 𝑆2) 𝜕𝑆1 𝑆1 𝐹1 𝑑𝑢1 − 1 𝑆1<𝐹1 ∫ 𝜕𝑥(𝑢1, 𝑆2) 𝜕𝑆1 𝐹1 𝑆1 𝑑𝑢1= = 1 𝑆1>𝐹1 ∫[ 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 𝑆1 𝐹1 + ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑢1 𝐹1 𝑑𝑣1 ]𝑑𝑢1 − 1 𝑆1<𝐹1 ∫[ 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 𝐹1 𝑆1 − ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝐹1 𝑢1 𝑑𝑣1 ]𝑑𝑢1 Since now the component 𝜕𝑥(𝐹1,𝑆2) 𝜕𝑆1 does not depend on 𝑢1, then = 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (1 𝑆1>𝐹1 ∗ (𝑆1 − 𝐹1)) + 1 𝑆1>𝐹1 ∫( 𝑆1 𝐹1 ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑢1 𝐹1 𝑑𝑣1 )𝑑𝑢1 − 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (1 𝑆1<𝐹1 ∗ (𝐹1 − 𝑆1)) + 1 𝑆1<𝐹1 ∫ 𝐹1 𝑆1 ( ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝐹1 𝑢1 𝑑𝑣1 )𝑑𝑢1 Since the intervals [𝐹1, 𝑆1] and [𝑆1, 𝑢1] are finite measurable spaces and 𝜕2 𝑥(𝑣1,𝑆2) 𝜕𝑆1 2 is a measurable function and ∫ 𝐹1 𝑆1 (∫ l 𝜕2 𝑥(𝑣1,𝑆2) 𝜕𝑆1 2 l 𝑆1 𝑢1 𝑑𝑣1 ) 𝑑𝑢1 < ∞ , since it is a continuous function by assumption in a finite space, then I can apply Fubini theorem: Theorem Statement: Let (X, P, μ) and (Y, L, λ) be σ-finite measure spaces, and let f be an (P x L)-measurable function on X x Y. If 0≤f≤∞, and if φ(x) = ∫ 𝑓𝑥𝑌 𝑑𝜆 , 𝜓(x) = ∫ 𝑓𝑌𝑋 𝑑𝜇 (x ε X, y ε Y),
  • 8. 4 then φ is P –measurable, 𝜓 is L –measurable, and ∫ φ𝑋 𝑑𝜇 = ∫ 𝑓𝑋 𝑥 𝑌 𝑑(𝜇 𝑥 𝜆) = ∫ 𝜓𝑦 𝑑𝜆. The first and last integrals can also be written in the more usual form ∫ 𝑑𝜇(𝑥) ∫ f(x, y)𝑌 𝑑𝑋 𝜆(𝑦) = ∫ 𝑑𝜆(𝑦) ∫ f(x, y)𝑋 𝑑𝜇(𝑥)𝑌 . These are the so called iterated integrals of f. Continuing the calculations: = 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑚𝑎𝑥(𝑆1 − 𝐹1, 0)) + 1 𝑆1>𝐹1 ∫( 𝑆1 𝐹1 ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑆1 𝑣1 𝑑𝑢1 )𝑑𝑣1 − 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑚𝑎𝑥(𝐹1 − 𝑆1, 0)) + 1 𝑆1<𝐹1 ∫ 𝐹1 𝑆1 (∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑣1 𝑆1 𝑑𝑢1)𝑑𝑣1 = 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1)+ + 1 𝑆1>𝐹1 ∫ 𝑆1 𝐹1 ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑆1 𝑣1 𝑑𝑢1 𝑑𝑣1 − 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝐹1 − 𝑆1)+ − 1 𝑆1<𝐹1 ∫ 𝐹1 𝑆1 ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑣1 𝑆1 𝑑𝑢1 𝑑𝑣1 Notice that with the change of integration the function does not depend on 𝑢1 and the integration space [𝐹1, 𝑆1] equals to [𝑣1 𝑆1,] when I change position. So I can easily solve it. Now (𝑆1 − 𝐹1)+ − (𝐹1 − 𝑆1)+ = max(𝑆1 − 𝐹1, 0) + 𝑚𝑖𝑛(𝐹1 − 𝑆1, 0) = 𝑆1 − 𝐹1 , and with the change of integration I arrive at: = 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + 1 𝑆1>𝐹1 ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝑆1 𝐹1 (𝑆1 − 𝑣1)𝑑𝑣1 + 1 𝑆1<𝐹1 ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝐹1 𝑆1 (𝑣1 − 𝑆1)𝑑𝑣1 Applying the logical component on the space of integration and in the function I arrive at the final form:
  • 9. 5 = 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 ∞ 𝐹1 (𝑆1 − 𝑣1)+ 𝑑𝑣1 + ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝐹1 0 (𝑣1 − 𝑆1)+ 𝑑𝑣1 Now I can apply the same steps for the second variable therefore calculations are omitted. So the function will have the final form: 𝑥(𝑆1, 𝑆2) = 1 2 [ 𝑥(𝐹1, 𝑆2) + 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 ∞ 𝐹1 (𝑆1 − 𝑣1)+ 𝑑𝑣1 + ∫ 𝜕2 𝑥(𝑣1, 𝑆2) 𝜕𝑆1 2 𝐹1 0 (𝑣1 − 𝑆1)+ 𝑑𝑣1 ] + 1 2 [ 𝑥(𝑆1, 𝐹2) + 𝜕𝑥(𝑆1, 𝐹2) 𝜕𝑆2 (𝑆2 − 𝐹2) + ∫ 𝜕2 𝑥(𝑆1, 𝑣2) 𝜕𝑆2 2 ∞ 𝐹2 (𝑆2 − 𝑣2)+ 𝑑𝑣2 + ∫ 𝜕2 𝑥(𝑆1, 𝑣2) 𝜕𝑆2 2 𝐹2 0 (𝑣2 − 𝑆2)+ 𝑑𝑣2 ] If I consider the above function as a function that replicates the exotic payoff function and denoting as 𝑆1, 𝑆2 the uncertain price per unit and 𝐹1, 𝐹2 be a forward price for a delivery at time 1 then I construct a portfolio composed of standard instruments. Rewriting the equation: 𝑥(𝑆1, 𝑆2) = 1 2 [ 𝑥(𝐹1, 𝑆2) + 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 ∞ 𝐹1 (𝑆1 − 𝐾1)+ 𝑑𝐾1 + ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐹1 0 (𝐾1 − 𝑆1)+ 𝑑𝐾1 ] + 1 2 [ 𝑥(𝑆1, 𝐹2) + 𝜕𝑥(𝑆1, 𝐹2) 𝜕𝑆2 (𝑆2 − 𝐹2) + ∫ 𝜕2 𝑥(𝑆1, 𝐾2) 𝜕𝑆2 2 ∞ 𝐹2 (𝑆2 − 𝐾2)+ 𝑑𝐾2 + ∫ 𝜕2 𝑥(𝑆1, 𝐾2) 𝜕𝑆2 2 𝐹2 0 (𝐾2 − 𝑆2)+ 𝑑𝐾2 ]
  • 10. 6 Notice that 1,(𝑆𝑖 − 𝐹𝑖), (𝐾𝑖 − 𝑆𝑖)+ , (𝑆𝑖 − 𝐾𝑖)+ for i=1,2 in the above expression represents payoffs at time 1 of a Bond, Forward Contract, European Put options, and European Calls respectively. Therefore an exact replication can be obtained from a long cash position of size 𝑥(𝐹1, 𝑆2) for the first asset and 𝑥(𝑆1, 𝐹2) for the second asset, a long forward position of size 𝜕𝑥(𝐹1,𝑆2) 𝜕𝑆1 , 𝜕𝑥(𝑆1,𝐹2) 𝜕𝑆2 of the first and second asset respectively, long positions 𝜕2 𝑥(𝐾1,𝑆2) 𝜕𝑆1 2 𝑑𝐾1, 𝜕2 𝑥(𝑆1,𝐾2) 𝜕𝑆2 2 𝑑𝐾2 in puts struck at 𝐾𝑖, for a continuum 𝐾𝑖 < 𝐹𝑖 ,i=1,2 , and long positions 𝜕2 𝑥(𝐾1,𝑆2) 𝜕𝑆1 2 𝑑𝐾1, 𝜕2 𝑥(𝑆1,𝐾2) 𝜕𝑆2 2 𝑑𝐾2 in calls struck at 𝐾𝑖, for a continuum 𝐾𝑖 > 𝐹𝑖 ,i=1,2.
  • 11. 7 2. Discretization of the process Notice that the above I make use of the assumption of a continuum of strike prices. The optimal strategy involves purchasing a spectrum of Calls and Puts for both increments with continuum strike prices. This result demonstrates that it should be purchased a portfolio of options. With the assumption of continuity is the counterpart of the standard assumption of continuous trading. Therefore, I consider a complete market. In practice the derivatives market is incomplete and does not offer options for the full continuum of strike prices. Consequently, I take our assumption as a reasonable approximation when there are a large but finite number of option strike prices offered and where investors can trade frequently. To implement the above replicating strategy using a discrete set of standard plain Vanilla options, I need to discretize the strike prices and approximate the payoff function using a set of discrete options at available strike prices. Therefore, I am taking the summation of integrals. The strike prices are discretized as follows: Suppose there are put options with 𝐾11 < 𝐾12 < ⋯ < 𝐾1 𝑛 = 𝐹 strikes and call options with strike prices 𝐹 = 𝐾′ 11 < ⋯ < 𝐾′ 1 𝑚 in the market for the first increment of the approximation function and with the same procedure for the second increment. I set 𝐾1 𝑛+1 = 𝐾1 𝑛 , 𝐾10 = 0, 𝐾′ 10 = 𝐾′ 11 , and 𝐾′ 1 𝑚+1 = ∞. As a result, I consider the following: ∫ 𝜕2 𝑥(𝐾1,𝑆2) 𝜕𝑆1 2 𝐹1 0 (𝐾1 − 𝑆1)+ 𝑑𝐾1 + ∫ 𝜕2 𝑥(𝐾1,𝑆2) 𝜕𝑆1 2 ∞ 𝐹1 (𝑆1 − 𝐾1)+ 𝑑𝐾1= = ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐾1 𝑖+1 𝐾1 𝑖 (𝐾1 − 𝑆1)+ 𝑑𝐾1 𝑛−1 𝑖=0 + ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐾′ 1 𝑖+1 𝐾′ 1 𝑖 (𝑆1 − 𝐾1)+ 𝑑𝐾1 𝑚 𝑖=1 I consider what applies for the first increment 𝑆1 of the function because the calculations are similar for the second increment and as a result are omitted. To proceed to the next step, I will make use of the Mean Value Theorem for integrals.
  • 12. 8 Theorem Statement: Suppose that f is a continuous function on [a, b] and that g is integrable and nonnegative on [a, b]. Then ∫ 𝑓(𝑥) 𝑏 𝑎 𝑔(𝑥)𝑑𝑥 = 𝑓(𝜉) ∫ 𝑔(𝑥) 𝑏 𝑎 𝑑𝑥 for some ξ in [a, b]. If I denote as 𝑔 = 𝜕2 𝑥(𝐾1,𝑆2) 𝜕𝑆1 2 and 𝑓 = (𝐾1 − 𝑆1)+ in each different part in the equation above then I can apply it. Another thing is the integration limits where I have to consider if 𝑆1 < 𝐾1 𝑖 𝑜𝑟 𝐾1 𝑖 < 𝑆1 < 𝐾1 𝑖+1 𝑜𝑟 𝑆1 > 𝐾1 𝑖+1 . By taking the 𝑚𝑎𝑥(𝑆1, 𝐾1 𝑖 ) 𝑎𝑛𝑑 𝑚𝑖𝑛(𝑆1, 𝐾′ 1 𝑖 ) for the payoff of the Put and Call option respectively, then I can take an approximation of the series. I also consider as 𝑓(𝜉) = 1 2 { (𝐾1 𝑖 − 𝑆1)+ + (𝐾1 𝑖+1 − 𝑆1)+ } (appropriately for the Call payoff). Therefore: ≈ ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝑚𝑎𝑥(𝑆1,𝐾1 𝑖+1 ) 𝑚𝑎𝑥(𝑆1,𝐾1 𝑖 ) 𝑑𝐾1 𝑛−1 𝑖=0 ∗ 1 2 { (𝐾1 𝑖 − 𝑆1)+ + (𝐾1 𝑖+1 − 𝑆1)+ } + ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝑚𝑖𝑛(𝑆1,𝐾′ 1 𝑖+1 ) 𝑚𝑖𝑛(𝑆1,𝐾′ 1 𝑖 ) 𝑑𝐾1 𝑚 𝑖=0 ∗ 1 2 { (𝑆1−𝐾′ 1 𝑖 )+ + (𝑆1−𝐾′ 1 𝑖+1 )+ } Now I can take another approximation in the calculations integrating from 𝐾1 𝑖 𝑡𝑜 𝐾1 𝑖+1 : ≈ ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐾1 𝑖+1 𝐾1 𝑖 𝑑𝐾1 𝑛−1 𝑖=0 ∗ 1 2 { (𝐾1 𝑖 − 𝑆1)+ + (𝐾1 𝑖+1 − 𝑆1)+ } + ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐾′ 1 𝑖+1 𝐾′ 1 𝑖 𝑑𝐾1 ∗ 1 2 { (𝑆1−𝐾′ 1 𝑖 )+ + (𝑆1−𝐾′ 1 𝑖+1 )+ } 𝑚 𝑖=1
  • 13. 9 Now I defined as 𝐾11 < 𝐾12 < ⋯ < 𝐾1 𝑛 = 𝐹 as the strikes of the Put options and 𝐹 = 𝐾′ 11 < ⋯ < 𝐾′ 1 𝑚 the strike prices of the Call options. Also 𝐾1 𝑛+1 = 𝐾1 𝑛 , 𝐾10 = 0, 𝐾′ 10 = 𝐾′ 11 , and 𝐾′ 1 𝑚+1 = ∞. In this way if I write the limits of the series and changing appropriately the integration limits I arrive at the final form. = ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐾1 𝑖+1 𝐾1 𝑖−1 𝑑𝐾1 𝑛 𝑖=1 ∗ 1 2 { (𝐾1 𝑖 − 𝑆1)+ } + ∑ ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐾′ 1 𝑖+1 𝐾′ 1 𝑖−1 𝑑𝐾1 ∗ 1 2 { (𝑆1−𝐾′ 1 𝑖 )+ } 𝑚 𝑖=1 = ∑ 1 2 [ 𝜕𝑥(𝐾1 𝑖+1 , 𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾1 𝑖−1 , 𝑆2) 𝜕𝑆1 ] ∗ { (𝐾1 𝑖 − 𝑆1)+ } 𝑛 𝑖=1 + ∑ 1 2 [ 𝜕𝑥(𝐾′ 1 𝑖+1 , 𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾′ 1 𝑖−1 , 𝑆2) 𝜕𝑆1 ] ∗ { (𝑆1−𝐾′ 1 𝑖 )+ } 𝑚 𝑖=1
  • 14. 10 3. Approximation Scheme With the calculations above I have derived the final form of the replication strategy: 𝑥(𝑆1, 𝑆2) = 1 2 [ 𝑥(𝐹1, 𝑆2) + 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 ∞ 𝐹1 (𝑆1 − 𝐾1)+ 𝑑𝐾1 + ∫ 𝜕2 𝑥(𝐾1, 𝑆2) 𝜕𝑆1 2 𝐹1 0 (𝐾1 − 𝑆1)+ 𝑑𝐾1 ] + 1 2 [ 𝑥(𝑆1, 𝐹2) + 𝜕𝑥(𝑆1, 𝐹2) 𝜕𝑆2 (𝑆2 − 𝐹2) + ∫ 𝜕2 𝑥(𝑆1, 𝐾2) 𝜕𝑆2 2 ∞ 𝐹2 (𝑆2 − 𝐾2)+ 𝑑𝐾2 + ∫ 𝜕2 𝑥(𝑆1, 𝐾2) 𝜕𝑆2 2 𝐹2 0 (𝐾2 − 𝑆2)+ 𝑑𝐾2 ] ≈ 1 2 [ 𝑥(𝐹1, 𝑆2) + 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + ∑ 1 2 [ 𝜕𝑥(𝐾1 𝑖+1 , 𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾1 𝑖−1 , 𝑆2) 𝜕𝑆1 ] ∗ { (𝐾1 𝑖 − 𝑆1)+ } 𝑛 𝑖=1 + ∑ 1 2 [ 𝜕𝑥(𝐾′ 1 𝑖+1 , 𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾′ 1 𝑖−1 , 𝑆2) 𝜕𝑆1 ] ∗ { (𝑆1−𝐾′ 1 𝑖 )+ } 𝑚 𝑖=1 ] + 1 2 [ 𝑥(𝑆1, 𝐹2) + 𝜕𝑥(𝑆1, 𝐹2) 𝜕𝑆2 (𝑆2 − 𝐹2) + ∑ 1 2 [ 𝜕𝑥(𝑆1, 𝐾2 𝑖+1 ) 𝜕𝑆2 − 𝜕𝑥(𝑆1, 𝐾2 𝑖−1 ) 𝜕𝑆2 ] ∗ { (𝐾2 𝑖 − 𝑆2)+ } 𝑛 𝑖=1 + ∑ 1 2 [ 𝜕𝑥(𝑆1, 𝐾′ 2 𝑖+1 ) 𝜕𝑆2 − 𝜕𝑥(𝑆1, 𝐾′ 2 𝑖−1 ) 𝜕𝑆2 ] ∗ { (𝑆2−𝐾′ 2 𝑖 )+ } 𝑚 𝑖=1 ]
  • 15. 11 𝑥(𝑆1, 𝑆2) = [ 1 2 𝑥(𝐹1, 𝑆2) + 1 2 𝜕𝑥(𝐹1, 𝑆2) 𝜕𝑆1 (𝑆1 − 𝐹1) + ∑ 1 4 [( 𝜕𝑥(𝐾1 𝑖+1 , 𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾1 𝑖−1 , 𝑆2) 𝜕𝑆1 )] ∗ { (𝐾1 𝑖 − 𝑆1)+ } 𝑛 𝑖=1 + ∑ 1 4 [( 𝜕𝑥(𝐾′ 1 𝑖+1 , 𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾′ 1 𝑖−1 , 𝑆2) 𝜕𝑆1 )] ∗ { (𝑆1−𝐾′ 1 𝑖 )+ } 𝑚 𝑖=1 ] + [ 1 2 𝑥(𝑆1, 𝐹2) + 1 2 𝜕𝑥(𝑆1, 𝐹2) 𝜕𝑆2 (𝑆2 − 𝐹2) + ∑ 1 4 [ ( 𝜕𝑥(𝑆1, 𝐾2 𝑖+1 ) 𝜕𝑆2 − 𝜕𝑥(𝑆1, 𝐾2 𝑖−1 ) 𝜕𝑆2 ) ] ∗ { (𝐾2 𝑖 − 𝑆2)+ } 𝑛 𝑖=1 + ∑ 1 4 [ ( 𝜕𝑥(𝑆1, 𝐾′ 2 𝑖+1 ) 𝜕𝑆2 − 𝜕𝑥(𝑆1, 𝐾′ 2 𝑖−1 ) 𝜕𝑆2 )] ∗ { (𝑆2−𝐾′ 2 𝑖 )+ } 𝑚 𝑖=1 ] Here is provided an approximate replication of an exotic payoff function using the existing plain vanilla options so that the total payoff from those options is close to the exotic payoff. As a result, the strategy consists of:  a long cash position of size 1 2 ∗ 𝑥(𝐹1, 𝑆2) for the price of 𝑆1 and 1 2 𝑥(𝑆1, 𝐹2) for the price 𝑆2,  a long forward position of 1 2 𝜕𝑥(𝐹1,𝑆2) 𝜕𝑆1 and 1 2 𝜕𝑥(𝑆1,𝐹2) 𝜕𝑆2 for 𝑆1 and 𝑆2 respectively,  long positions of size 1 4 [( 𝜕𝑥(𝐾1 𝑖+1 ,𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾1 𝑖−1 ,𝑆2) 𝜕𝑆1 )] in put options struck at 𝐾1 𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 . Respectively for the price 𝑆2 long position of size 1 4 [ ( 𝜕𝑥(𝑆1,𝐾2 𝑖+1 ) 𝜕𝑆2 − 𝜕𝑥(𝑆1,𝐾2 𝑖−1 ) 𝜕𝑆2 ) ] in puts with strike price 𝐾2 𝑖 ,  long positions of size 1 4 [( 𝜕𝑥(𝐾′ 1 𝑖+1 ,𝑆2) 𝜕𝑆1 − 𝜕𝑥(𝐾′ 1 𝑖−1 ,𝑆2) 𝜕𝑆1 )] in calls struck at 𝐾′ 1 𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚 for the price 𝑆1 and of size 1 4 [ ( 𝜕𝑥(𝑆1,𝐾′ 2 𝑖+1 ) 𝜕𝑆2 − 𝜕𝑥(𝑆1,𝐾′ 2 𝑖−1 ) 𝜕𝑆2 )] for price 𝑆2 struck at 𝐾′ 2 𝑖 𝑓𝑜𝑟 𝑖 = 1, … , 𝑚.
  • 16. 12 In this approximation form, I will have a small error if 𝜕2 𝑥(𝐾1,𝑆2) 𝜕𝑆1 2 , for appropriate index, is constant in each interval between two consecutive strike prices. I can also reduce the error by refining the strike price discretization in the range where there is high probability that 𝑆𝑖 ,for i=1,2 , will fall. Summary To obtain a realistic hedging portfolio for two dimensions, I solved for the payoff function what represents the payoff of two exotic options as a function of price. Then it is shown how we can replicate the function using a portfolio of forward contracts and options and how can we take an approximation of the function with a small approximation error.
  • 17. 13 References [1] Michael D. Spivak, Calculus 3rd Edition (1994), 282-288. [2] Y. Oum and S. Oren, VaR constrained hedging of fixed price load-following obligations in competitive electricity markets, Risk and Decision Analysis 1 (2009), 50-54. [3] P. Carr and D.Madan, Optimal Positioning in derivative securities, Quantitative Finance 1 (2001), 34-36. [4] Walter Rudin, Real and Complex Analysis 3rd Edition (1987), 164-165.