SlideShare une entreprise Scribd logo
1  sur  8
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v
es la siguiente;

dEc =   1
        2
            ( dm ) v 2
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v
es la siguiente;

dEc =   1
        2
            ( dm ) v 2
Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la
velocidad:
     2πx
v=
      T
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v
es la siguiente;

dEc =   1
        2
            ( dm ) v 2
Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la
velocidad:
     2πx
v=
      T
                                                          M
                                                   dm =     dx
Sea M la masa total de la barra y L su longitud:          L
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v
es la siguiente;

dEc =   1
        2
            ( dm ) v 2
Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la
velocidad:
     2πx
v=
      T
                                                          M
                                                   dm =     dx
Sea M la masa total de la barra y L su longitud:          L
                                                                                    Ec = ∫ dEc = ∫ 1 ( dm ) v 2
                                                                                                   2
Integramos ahora la energía cinética en toda la longitud de la barra, con lo que:
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v
es la siguiente;

dEc =   1
        2
            ( dm ) v 2
Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la
velocidad:
     2πx
v=
      T
                                                             M
                                                      dm =     dx
Sea M la masa total de la barra y L su longitud:             L
                                                                                    Ec = ∫ dEc = ∫ 1 ( dm ) v 2
                                                                                                   2
Integramos ahora la energía cinética en toda la longitud de la barra, con lo que:

Sustituimos las expresiones de dm y v halladas anteriormente:
                         2
    1 L  M  2πx  4π 2 M             L           2
Ec = ∫  dx       =              ∫       x 2 dx = π 2 ML2 / T
    2 0  L  T      2T 2 L       0               3
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


Como especifica el enunciado, la barra describe 5.00 revoluciones cada 3.00 segundos, con lo cual, su
periodo vale
  3
T= s
  5
Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote
en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene
esta barra?


Como especifica el enunciado, la barra describe 5.00 revoluciones cada 3.00 segundos, con lo cual, su
periodo vale
     3
T= s
     5
Sustituyendo la masa, la longitud y el periodo, hallamos la energía cinética que posee la barra

    2               2
Ec = π 2 ML2 / T 2 = π 2 (12.0kg )(2.00 m) 2 /(3 / 5 s ) 2 = 877 J
    3               3

Contenu connexe

Tendances

Ejercicio 4.77-t
Ejercicio 4.77-tEjercicio 4.77-t
Ejercicio 4.77-tMiguel Pla
 
Ejercicio 4.51-t
Ejercicio 4.51-tEjercicio 4.51-t
Ejercicio 4.51-tMiguel Pla
 
Problemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonProblemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonVanessa Aldrete
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BESPOL
 
UPCH Clase de la semana 4
UPCH Clase de la semana 4UPCH Clase de la semana 4
UPCH Clase de la semana 4Yuri Milachay
 
Conservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealConservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealVane Pazmiño
 
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...JAVIER SOLIS NOYOLA
 
Aplicaciones a la segunda ley de newton y mecanica
Aplicaciones a la segunda ley de newton y mecanicaAplicaciones a la segunda ley de newton y mecanica
Aplicaciones a la segunda ley de newton y mecanicaSantiago Arias
 

Tendances (20)

Ejercicio 4.77-t
Ejercicio 4.77-tEjercicio 4.77-t
Ejercicio 4.77-t
 
Ejercicio 4.51-t
Ejercicio 4.51-tEjercicio 4.51-t
Ejercicio 4.51-t
 
Problemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newtonProblemas de aplicación de la segunda ley de newton
Problemas de aplicación de la segunda ley de newton
 
Problemas de fisica
Problemas de fisicaProblemas de fisica
Problemas de fisica
 
Taller newton2014
Taller newton2014Taller newton2014
Taller newton2014
 
4.69 t
4.69 t4.69 t
4.69 t
 
Problemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0BProblemas Leyes de Newton Nivel 0B
Problemas Leyes de Newton Nivel 0B
 
4.68 t
4.68 t4.68 t
4.68 t
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
UPCH Clase de la semana 4
UPCH Clase de la semana 4UPCH Clase de la semana 4
UPCH Clase de la semana 4
 
Fisica algo mas
Fisica algo masFisica algo mas
Fisica algo mas
 
Cap9
Cap9Cap9
Cap9
 
6.61
6.616.61
6.61
 
Ejemplos ley de newton
Ejemplos ley de newtonEjemplos ley de newton
Ejemplos ley de newton
 
Conservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento LinealConservación de la Cantidad de Movimiento Lineal
Conservación de la Cantidad de Movimiento Lineal
 
Fricción, Ejercicios y sus soluciones
Fricción, Ejercicios y sus solucionesFricción, Ejercicios y sus soluciones
Fricción, Ejercicios y sus soluciones
 
Leyes de newton
Leyes de newtonLeyes de newton
Leyes de newton
 
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
Dinámica (Segunda Ley de Newton). Presentación diseñada por el MTRO. JAVIER S...
 
Aplicaciones a la segunda ley de newton y mecanica
Aplicaciones a la segunda ley de newton y mecanicaAplicaciones a la segunda ley de newton y mecanica
Aplicaciones a la segunda ley de newton y mecanica
 
Problema tema 2
Problema tema 2Problema tema 2
Problema tema 2
 

En vedette (19)

6.26 t
6.26 t6.26 t
6.26 t
 
8.43
8.438.43
8.43
 
Semiesfera
SemiesferaSemiesfera
Semiesfera
 
8.54
8.548.54
8.54
 
8.50
8.508.50
8.50
 
9.26
9.269.26
9.26
 
7.25
7.257.25
7.25
 
Ejercicio 4.55-t
Ejercicio 4.55-tEjercicio 4.55-t
Ejercicio 4.55-t
 
8.55
8.558.55
8.55
 
Centro masas-semiesfera
Centro masas-semiesferaCentro masas-semiesfera
Centro masas-semiesfera
 
Ejercicio 4.62-t
Ejercicio 4.62-tEjercicio 4.62-t
Ejercicio 4.62-t
 
Ejercicio 4.46-t
Ejercicio 4.46-tEjercicio 4.46-t
Ejercicio 4.46-t
 
9.28
9.289.28
9.28
 
Ejercicio 4.61-t
Ejercicio 4.61-tEjercicio 4.61-t
Ejercicio 4.61-t
 
8.63
8.638.63
8.63
 
9.27
9.279.27
9.27
 
Ejercicio 2.113-t
Ejercicio 2.113-tEjercicio 2.113-t
Ejercicio 2.113-t
 
6.65
6.656.65
6.65
 
6.63
6.636.63
6.63
 

Similaire à Energía cinética de una barra giratoria de 12 kg y 2 m

Power Point-Oscilaciones
Power Point-OscilacionesPower Point-Oscilaciones
Power Point-OscilacionesAlberto Lopez
 
Movimiento armonico simple y péndulo
Movimiento armonico simple y pénduloMovimiento armonico simple y péndulo
Movimiento armonico simple y pénduloChristian Ryuzaki
 
Tippens_fisica_7e_diapositivas_14.ppt
Tippens_fisica_7e_diapositivas_14.pptTippens_fisica_7e_diapositivas_14.ppt
Tippens_fisica_7e_diapositivas_14.pptcursofisicaparatodos
 
PRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓN
PRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓNPRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓN
PRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓNkendalo
 
Bases de Física
Bases de FísicaBases de Física
Bases de Físicapegazos
 
Cinematica 2
Cinematica 2Cinematica 2
Cinematica 2sfs58
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bRobert
 
Sep 1 problemas de ecuaciones dimensionales040206(1)
Sep 1 problemas de ecuaciones dimensionales040206(1)Sep 1 problemas de ecuaciones dimensionales040206(1)
Sep 1 problemas de ecuaciones dimensionales040206(1)bebho29
 
Problemas Movimiento Armónico Simple resueltos
Problemas Movimiento Armónico Simple resueltosProblemas Movimiento Armónico Simple resueltos
Problemas Movimiento Armónico Simple resueltosSILVIA ESTEVE IBÁÑEZ
 

Similaire à Energía cinética de una barra giratoria de 12 kg y 2 m (20)

Power Point-Oscilaciones
Power Point-OscilacionesPower Point-Oscilaciones
Power Point-Oscilaciones
 
Movimiento armonico simple y péndulo
Movimiento armonico simple y pénduloMovimiento armonico simple y péndulo
Movimiento armonico simple y péndulo
 
Tippens_fisica_7e_diapositivas_14.ppt
Tippens_fisica_7e_diapositivas_14.pptTippens_fisica_7e_diapositivas_14.ppt
Tippens_fisica_7e_diapositivas_14.ppt
 
Mas
MasMas
Mas
 
PRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓN
PRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓNPRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓN
PRINCIPIOS GENERALES DE FÍSICA Y EJERCICIOS DE APLICACIÓN
 
Bases de Física
Bases de FísicaBases de Física
Bases de Física
 
Conservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimiento
 
Conservacion de la cantidad de movimiento
Conservacion de la cantidad de movimientoConservacion de la cantidad de movimiento
Conservacion de la cantidad de movimiento
 
Cinematica 2
Cinematica 2Cinematica 2
Cinematica 2
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Movimiento armonico simple
Movimiento armonico simpleMovimiento armonico simple
Movimiento armonico simple
 
Semana 6 cantidad de movimiento
Semana 6 cantidad de movimientoSemana 6 cantidad de movimiento
Semana 6 cantidad de movimiento
 
Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11b
 
Taller 4 ondas
Taller 4 ondasTaller 4 ondas
Taller 4 ondas
 
Sep 1 problemas de ecuaciones dimensionales040206(1)
Sep 1 problemas de ecuaciones dimensionales040206(1)Sep 1 problemas de ecuaciones dimensionales040206(1)
Sep 1 problemas de ecuaciones dimensionales040206(1)
 
La curva catenaria
La curva catenariaLa curva catenaria
La curva catenaria
 
cap9
cap9cap9
cap9
 
Teoria cinetica
Teoria cineticaTeoria cinetica
Teoria cinetica
 
122299.ppt
122299.ppt122299.ppt
122299.ppt
 
Problemas Movimiento Armónico Simple resueltos
Problemas Movimiento Armónico Simple resueltosProblemas Movimiento Armónico Simple resueltos
Problemas Movimiento Armónico Simple resueltos
 

Energía cinética de una barra giratoria de 12 kg y 2 m

  • 1. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra?
  • 2. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v es la siguiente; dEc = 1 2 ( dm ) v 2
  • 3. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v es la siguiente; dEc = 1 2 ( dm ) v 2 Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la velocidad: 2πx v= T
  • 4. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v es la siguiente; dEc = 1 2 ( dm ) v 2 Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la velocidad: 2πx v= T M dm = dx Sea M la masa total de la barra y L su longitud: L
  • 5. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v es la siguiente; dEc = 1 2 ( dm ) v 2 Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la velocidad: 2πx v= T M dm = dx Sea M la masa total de la barra y L su longitud: L Ec = ∫ dEc = ∫ 1 ( dm ) v 2 2 Integramos ahora la energía cinética en toda la longitud de la barra, con lo que:
  • 6. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? La energía cinética de un elemento diferencial de masa dm a una distancia x del pivote y con velocidad v es la siguiente; dEc = 1 2 ( dm ) v 2 Teniendo en cuenta el movimiento circular de cada elemento diferencial de masa, calculamos la velocidad: 2πx v= T M dm = dx Sea M la masa total de la barra y L su longitud: L Ec = ∫ dEc = ∫ 1 ( dm ) v 2 2 Integramos ahora la energía cinética en toda la longitud de la barra, con lo que: Sustituimos las expresiones de dm y v halladas anteriormente: 2 1 L  M  2πx  4π 2 M L 2 Ec = ∫  dx   = ∫ x 2 dx = π 2 ML2 / T 2 0  L  T  2T 2 L 0 3
  • 7. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? Como especifica el enunciado, la barra describe 5.00 revoluciones cada 3.00 segundos, con lo cual, su periodo vale 3 T= s 5
  • 8. Una barra delgada y uniforme de 12.0 kg y longitud de 2.00 m gira uniformemente alrededor de un pivote en un extremo, describiendo 5.00 revoluciones completas cada 3.00 segundos. ¿Qué energía cinética tiene esta barra? Como especifica el enunciado, la barra describe 5.00 revoluciones cada 3.00 segundos, con lo cual, su periodo vale 3 T= s 5 Sustituyendo la masa, la longitud y el periodo, hallamos la energía cinética que posee la barra 2 2 Ec = π 2 ML2 / T 2 = π 2 (12.0kg )(2.00 m) 2 /(3 / 5 s ) 2 = 877 J 3 3