SlideShare une entreprise Scribd logo
1  sur  8
Télécharger pour lire hors ligne
2.001 - MECHANICS AND MATERIALS I
                                 Lecture #4
                                 9/18/2006
                           Prof. Carol Livermore
TOPIC: FRICTION

EXAMPLE: Box on floor




μs =Coefficient of Static Friction

FBD




Equation of equilibrium


                                       Fy = 0
                                   N −W =0
                                    N =W

                                       Fx = 0




                                   1
T −F =0
                                      T =F
At impending motion only:

                                  F = μs N
For well lubricated, μs ≈ 0.05.
For very clean surfaces μs ≈ 0.4 − 1.

After it starts to move:

                                  F = μk N
μk = Coefficient of kinetic friction.

                                      μk < μs
EXAMPLE: Block on an inclined plane




Q: At what angle (α) does the block slide down the plane?

FBD:




                                        2
Equilibrium


                                     Fx = 0
                      F − W sin α = 0 ⇒ F = W sin α


                                     Fy = 0
                     N − W cos α = 0 ⇒ N = W cos α
So:


                              F
                                = tan α
                              N
When you have impending motion:


                                F = μs N
                                μs = tan α
What about where these forces act?




                                     M0 = 0
                             F L2
                                  − Na = 0
                              2
                              F L2   L2
                           a=      =    tan α
                               2N     2
So:
So:
                                    L2
                                 a=     tan α
                                     2
The resultant of the normal force and frictional force act directly ”below” the
center of mass.

EXAMPLE




Q: For what range of W0 is the block in equilibrium?

FBD
Case 1: Impending motion is down the plane.




                                      Fx = 0
                            T1 + F1 − W sin α = 0


                                      Fy = 0
                              N1 − W cos α = 0




                                      4
Case 2: Impending motion is up the plane.




                                       Fx = 0
                              T2 + F2 − W sin α = 0


                                       Fy = 0
                                 N2 − cos α = 0
What about T ?

FBD of Cable




Look at differential element




                                       5
Fx = 0
                                dθ                 dθ
                   T (θ) cos       −T (θ + dθ) cos    =0
                                2                   2
                               T (θ) = T (θ + dθ) = T

                                      Fy = 0
                                   dθ                 dθ
                 dN − T (θ) sin       −T (θ + dθ) sin    =0
                                   2                   2
                                    dθ              dθ
                      dN − T (θ)       − T (θ + dθ)    =0
                                    2                2
                                    T dθ = dN
So:


                                      T = W0
Back to block:


                                   T1 = T2 = W0
                           N1 = N2 = N = W cos α
For case 1:


                           F1 = μs N = μs W cos α

                        μs W cos α + W0 + W sin α = 0
                          W0 = W sin α − μs W cos α
The block will be stable against downward motion when:

                          W0 = W sin α − μs W cos α
For case 2:


                           F2 = μs N = μs W cos α

                        μs W cos α + W0 + W sin α = 0
                          W0 = W sin α − μs W cos α


                                         6
The block will be stable against downward motion when:

                                    W0 ≤ W sin α + μs W cos α
       So it is stable when:

                       W (sin α − μs cos α) ≤ W0 ≤ W (sin α + μs cos α)


What about pulley with friction?                             Look at a differential element.
  Recall a rope around a rod.




                                                 Fx = 0
                                     dθ                 dθ
                        T (θ) cos       −T (θ + dθ) cos    −dF = 0
                                     2                  2

                                                 Fy = 0
                                        dθ                   dθ
                     dN − T (θ) sin        −T (θ + dθ) sin      −dF = 0
                                        2                     2
                                                 dθ   dθ
                                          sin       ≈
                                                 2     2
                                                 dθ
                                           cos      ≈1
                                                 2

                dT = T (θ + dθ) − T (θ) ⇒ T (θ + dθ) = T (θ) + dT = T + dT
       So:

                                    T (θ) − T (θ + dθ) − dF = 0
                                            dT = −dF

                                         T dθ             dθ
                                dN −          + (T + dT )    =0
                                          2                2
                                            T + dT → 0
                                          dN − T dθ = 0
       With impending motion:

                                           dF = μs dN

                                          dT = −μs dN
dT
                                   dN = −
                                                   μs
Substitute:
                                   dT
                              −       − T dθ = 0
                                   μs
Thus:
                                   dT
                                      = −μs dθ
                                    T
Integrate:
                              T2                   φ
                                   dT
                                      =                −μs dθ
                             T1     T          0
                                         T2
                                  ln T        = −μs φ
                                         T1
                                     T2
                              ln        = −μs φ
                                     T1
                              T2
                                 = exp(−μs φ)
                              T1
                             T2 = T1 exp(−μs φ)
This is known as the capstan effect.

EXAMPLE: Boat on a dock




                                  φ = 3(2π) ≈ 20
                                     μs = 0.4
                              T2 = T1 exp(−8)
                                       1
                              T2 ≈         T1
                                     3000


                                          8

Contenu connexe

Tendances

Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : FourierGabriel Peyré
 
2010-2 기말고사문제(초고주파공학)
2010-2 기말고사문제(초고주파공학)2010-2 기말고사문제(초고주파공학)
2010-2 기말고사문제(초고주파공학)Yong Heui Cho
 
signal and system solution Quiz2
signal and system solution Quiz2signal and system solution Quiz2
signal and system solution Quiz2iqbal ahmad
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesFrédéric Morain-Nicolier
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabRavi Jindal
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
propagacion de onda medio dielectrico puro
 propagacion de onda medio dielectrico puro propagacion de onda medio dielectrico puro
propagacion de onda medio dielectrico puroalcajo2011
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)Abhishek Choksi
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beamsDeepak Agarwal
 

Tendances (18)

Ism et chapter_2
Ism et chapter_2Ism et chapter_2
Ism et chapter_2
 
Laplace1
Laplace1Laplace1
Laplace1
 
senior seminar
senior seminarsenior seminar
senior seminar
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 
2010-2 기말고사문제(초고주파공학)
2010-2 기말고사문제(초고주파공학)2010-2 기말고사문제(초고주파공학)
2010-2 기말고사문제(초고주파공학)
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
簡報1
簡報1簡報1
簡報1
 
signal and system solution Quiz2
signal and system solution Quiz2signal and system solution Quiz2
signal and system solution Quiz2
 
Practising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital ImagesPractising Fourier Analysis with Digital Images
Practising Fourier Analysis with Digital Images
 
Differential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlabDifferential equation & laplace transformation with matlab
Differential equation & laplace transformation with matlab
 
Ps02 cmth03 unit 1
Ps02 cmth03 unit 1Ps02 cmth03 unit 1
Ps02 cmth03 unit 1
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Desktop
DesktopDesktop
Desktop
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
propagacion de onda medio dielectrico puro
 propagacion de onda medio dielectrico puro propagacion de onda medio dielectrico puro
propagacion de onda medio dielectrico puro
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
Lecture 12 deflection in beams
Lecture 12 deflection in beamsLecture 12 deflection in beams
Lecture 12 deflection in beams
 

En vedette

Як створити відеоролик?
Як створити відеоролик? Як створити відеоролик?
Як створити відеоролик? Libinnovate
 
70:20:10 - Journey to Informal and Social Learning for Enterprise
70:20:10 - Journey to Informal and Social Learning for Enterprise70:20:10 - Journey to Informal and Social Learning for Enterprise
70:20:10 - Journey to Informal and Social Learning for EnterpriseDaniel Rongo
 
Itecn453 business strategy
Itecn453 business strategyItecn453 business strategy
Itecn453 business strategyAhmad Ammari
 
AngularJS: A framework to make your life easier
AngularJS: A framework to make your life easierAngularJS: A framework to make your life easier
AngularJS: A framework to make your life easierWilson Mendes
 
Presentazione informagiovani 14.12.10
Presentazione informagiovani 14.12.10Presentazione informagiovani 14.12.10
Presentazione informagiovani 14.12.10Ilaria Troni
 
HTML5 API's: Hero, Villain and your usage in real applications
HTML5 API's: Hero, Villain and your usage in real applicationsHTML5 API's: Hero, Villain and your usage in real applications
HTML5 API's: Hero, Villain and your usage in real applicationsWilson Mendes
 

En vedette (20)

Harbor UCLA Neuro-Radiology Case 8
Harbor UCLA Neuro-Radiology Case 8Harbor UCLA Neuro-Radiology Case 8
Harbor UCLA Neuro-Radiology Case 8
 
Calendario Land 2013
Calendario Land 2013Calendario Land 2013
Calendario Land 2013
 
David
DavidDavid
David
 
Як створити відеоролик?
Як створити відеоролик? Як створити відеоролик?
Як створити відеоролик?
 
Ocean user experience-swtokyo
Ocean user experience-swtokyoOcean user experience-swtokyo
Ocean user experience-swtokyo
 
My EduWorld
My EduWorld My EduWorld
My EduWorld
 
70:20:10 - Journey to Informal and Social Learning for Enterprise
70:20:10 - Journey to Informal and Social Learning for Enterprise70:20:10 - Journey to Informal and Social Learning for Enterprise
70:20:10 - Journey to Informal and Social Learning for Enterprise
 
Harbor UCLA Neuro-Radiology Case 7
Harbor UCLA Neuro-Radiology Case 7Harbor UCLA Neuro-Radiology Case 7
Harbor UCLA Neuro-Radiology Case 7
 
Compras convencionales
Compras convencionalesCompras convencionales
Compras convencionales
 
Itecn453 business strategy
Itecn453 business strategyItecn453 business strategy
Itecn453 business strategy
 
AngularJS: A framework to make your life easier
AngularJS: A framework to make your life easierAngularJS: A framework to make your life easier
AngularJS: A framework to make your life easier
 
Medicine 2.0'10 presentation
Medicine 2.0'10 presentationMedicine 2.0'10 presentation
Medicine 2.0'10 presentation
 
Russian Neurosurgical Journal; Vol 5, No 3
Russian Neurosurgical Journal; Vol 5, No 3Russian Neurosurgical Journal; Vol 5, No 3
Russian Neurosurgical Journal; Vol 5, No 3
 
Presentazione informagiovani 14.12.10
Presentazione informagiovani 14.12.10Presentazione informagiovani 14.12.10
Presentazione informagiovani 14.12.10
 
Presentacionpresentacion
PresentacionpresentacionPresentacionpresentacion
Presentacionpresentacion
 
Ao thuat
Ao thuatAo thuat
Ao thuat
 
หนังสือแจ้งโรงเรียน 11
หนังสือแจ้งโรงเรียน 11หนังสือแจ้งโรงเรียน 11
หนังสือแจ้งโรงเรียน 11
 
\\software 1
\\software 1\\software 1
\\software 1
 
Tutorial
TutorialTutorial
Tutorial
 
HTML5 API's: Hero, Villain and your usage in real applications
HTML5 API's: Hero, Villain and your usage in real applicationsHTML5 API's: Hero, Villain and your usage in real applications
HTML5 API's: Hero, Villain and your usage in real applications
 

Similaire à Lec4 MECH ENG STRucture

Lec10 MECH ENG STRucture
Lec10   MECH ENG  STRuctureLec10   MECH ENG  STRucture
Lec10 MECH ENG STRuctureMohamed Yaser
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterionsrkrishna341
 
Lec3 MECH ENG STRucture
Lec3   MECH ENG  STRuctureLec3   MECH ENG  STRucture
Lec3 MECH ENG STRuctureMohamed Yaser
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesSEENET-MTP
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejadaoriolespinal
 
Fractional Calculus
Fractional CalculusFractional Calculus
Fractional CalculusVRRITC
 
Laplace table
Laplace tableLaplace table
Laplace tablenoori734
 
Laplace table
Laplace tableLaplace table
Laplace tableprathsel
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Angle between 2 lines
Angle between 2 linesAngle between 2 lines
Angle between 2 linesSimon Borgert
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFTtaha25
 
Beam theory
Beam theoryBeam theory
Beam theorybissla19
 
Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)Eko Wijayanto
 
Lec7 MECH ENG STRucture
Lec7   MECH ENG  STRuctureLec7   MECH ENG  STRucture
Lec7 MECH ENG STRuctureMohamed Yaser
 

Similaire à Lec4 MECH ENG STRucture (20)

Chapter 5 (maths 3)
Chapter 5 (maths 3)Chapter 5 (maths 3)
Chapter 5 (maths 3)
 
Lec10 MECH ENG STRucture
Lec10   MECH ENG  STRuctureLec10   MECH ENG  STRucture
Lec10 MECH ENG STRucture
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
Lec3
Lec3Lec3
Lec3
 
Lec3 MECH ENG STRucture
Lec3   MECH ENG  STRuctureLec3   MECH ENG  STRucture
Lec3 MECH ENG STRucture
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Friction
FrictionFriction
Friction
 
Nanomagnetism, Javier Tejada
Nanomagnetism, Javier TejadaNanomagnetism, Javier Tejada
Nanomagnetism, Javier Tejada
 
Fractional Calculus
Fractional CalculusFractional Calculus
Fractional Calculus
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Laplace table
Laplace tableLaplace table
Laplace table
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Angle between 2 lines
Angle between 2 linesAngle between 2 lines
Angle between 2 lines
 
Dsp U Lec10 DFT And FFT
Dsp U   Lec10  DFT And  FFTDsp U   Lec10  DFT And  FFT
Dsp U Lec10 DFT And FFT
 
Beam theory
Beam theoryBeam theory
Beam theory
 
Chapter 9(laplace transform)
Chapter 9(laplace transform)Chapter 9(laplace transform)
Chapter 9(laplace transform)
 
Lec7 MECH ENG STRucture
Lec7   MECH ENG  STRuctureLec7   MECH ENG  STRucture
Lec7 MECH ENG STRucture
 

Plus de Mohamed Yaser

7 habits of highly effective people
7 habits of highly effective people7 habits of highly effective people
7 habits of highly effective peopleMohamed Yaser
 
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...Mohamed Yaser
 
Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2Mohamed Yaser
 
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]Mohamed Yaser
 
The 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_managementThe 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_managementMohamed Yaser
 
حياة بلا توتر
حياة بلا توترحياة بلا توتر
حياة بلا توترMohamed Yaser
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكيرMohamed Yaser
 
المفاتيح العشرة للنجاح
المفاتيح العشرة للنجاحالمفاتيح العشرة للنجاح
المفاتيح العشرة للنجاحMohamed Yaser
 
أدارة الوقت
أدارة الوقتأدارة الوقت
أدارة الوقتMohamed Yaser
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكيرMohamed Yaser
 
The 10 Natural Laws Of Successful Time And Life Management
The 10  Natural  Laws Of  Successful  Time And  Life  ManagementThe 10  Natural  Laws Of  Successful  Time And  Life  Management
The 10 Natural Laws Of Successful Time And Life ManagementMohamed Yaser
 
Theory Of Wing Sections
Theory  Of  Wing  SectionsTheory  Of  Wing  Sections
Theory Of Wing SectionsMohamed Yaser
 
Copy of book1 in c++
Copy of book1  in  c++Copy of book1  in  c++
Copy of book1 in c++Mohamed Yaser
 
structure for aerospace eng
structure for aerospace engstructure for aerospace eng
structure for aerospace engMohamed Yaser
 
realitivistic relativity 2.0
  realitivistic relativity 2.0  realitivistic relativity 2.0
realitivistic relativity 2.0Mohamed Yaser
 

Plus de Mohamed Yaser (20)

7 habits of highly effective people
7 habits of highly effective people7 habits of highly effective people
7 habits of highly effective people
 
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...Us navy   introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
Us navy introduction to helicopter aerodynamics workbook cnatra p-401 [us n...
 
Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2Aerodynamics of the helicopter 2
Aerodynamics of the helicopter 2
 
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]Seddon j.   basic helicopter aerodynamics [bsp prof. books 1990]
Seddon j. basic helicopter aerodynamics [bsp prof. books 1990]
 
The 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_managementThe 10 natural_laws_of_successful_time_and_life_management
The 10 natural_laws_of_successful_time_and_life_management
 
حياة بلا توتر
حياة بلا توترحياة بلا توتر
حياة بلا توتر
 
فن التفاوض
فن التفاوضفن التفاوض
فن التفاوض
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكير
 
المفاتيح العشرة للنجاح
المفاتيح العشرة للنجاحالمفاتيح العشرة للنجاح
المفاتيح العشرة للنجاح
 
أدارة الوقت
أدارة الوقتأدارة الوقت
أدارة الوقت
 
¨قوة التفكير
¨قوة التفكير¨قوة التفكير
¨قوة التفكير
 
The 10 Natural Laws Of Successful Time And Life Management
The 10  Natural  Laws Of  Successful  Time And  Life  ManagementThe 10  Natural  Laws Of  Successful  Time And  Life  Management
The 10 Natural Laws Of Successful Time And Life Management
 
Theory Of Wing Sections
Theory  Of  Wing  SectionsTheory  Of  Wing  Sections
Theory Of Wing Sections
 
F- 20
F- 20F- 20
F- 20
 
Copy of book1 in c++
Copy of book1  in  c++Copy of book1  in  c++
Copy of book1 in c++
 
structure for aerospace eng
structure for aerospace engstructure for aerospace eng
structure for aerospace eng
 
Tutorial 2
Tutorial     2Tutorial     2
Tutorial 2
 
1
11
1
 
realitivistic relativity 2.0
  realitivistic relativity 2.0  realitivistic relativity 2.0
realitivistic relativity 2.0
 
Lec5
Lec5Lec5
Lec5
 

Lec4 MECH ENG STRucture

  • 1. 2.001 - MECHANICS AND MATERIALS I Lecture #4 9/18/2006 Prof. Carol Livermore TOPIC: FRICTION EXAMPLE: Box on floor μs =Coefficient of Static Friction FBD Equation of equilibrium Fy = 0 N −W =0 N =W Fx = 0 1
  • 2. T −F =0 T =F At impending motion only: F = μs N For well lubricated, μs ≈ 0.05. For very clean surfaces μs ≈ 0.4 − 1. After it starts to move: F = μk N μk = Coefficient of kinetic friction. μk < μs EXAMPLE: Block on an inclined plane Q: At what angle (α) does the block slide down the plane? FBD: 2
  • 3. Equilibrium Fx = 0 F − W sin α = 0 ⇒ F = W sin α Fy = 0 N − W cos α = 0 ⇒ N = W cos α So: F = tan α N When you have impending motion: F = μs N μs = tan α What about where these forces act? M0 = 0 F L2 − Na = 0 2 F L2 L2 a= = tan α 2N 2 So:
  • 4. So: L2 a= tan α 2 The resultant of the normal force and frictional force act directly ”below” the center of mass. EXAMPLE Q: For what range of W0 is the block in equilibrium? FBD Case 1: Impending motion is down the plane. Fx = 0 T1 + F1 − W sin α = 0 Fy = 0 N1 − W cos α = 0 4
  • 5. Case 2: Impending motion is up the plane. Fx = 0 T2 + F2 − W sin α = 0 Fy = 0 N2 − cos α = 0 What about T ? FBD of Cable Look at differential element 5
  • 6. Fx = 0 dθ dθ T (θ) cos −T (θ + dθ) cos =0 2 2 T (θ) = T (θ + dθ) = T Fy = 0 dθ dθ dN − T (θ) sin −T (θ + dθ) sin =0 2 2 dθ dθ dN − T (θ) − T (θ + dθ) =0 2 2 T dθ = dN So: T = W0 Back to block: T1 = T2 = W0 N1 = N2 = N = W cos α For case 1: F1 = μs N = μs W cos α μs W cos α + W0 + W sin α = 0 W0 = W sin α − μs W cos α The block will be stable against downward motion when: W0 = W sin α − μs W cos α For case 2: F2 = μs N = μs W cos α μs W cos α + W0 + W sin α = 0 W0 = W sin α − μs W cos α 6
  • 7. The block will be stable against downward motion when: W0 ≤ W sin α + μs W cos α So it is stable when: W (sin α − μs cos α) ≤ W0 ≤ W (sin α + μs cos α) What about pulley with friction? Look at a differential element. Recall a rope around a rod. Fx = 0 dθ dθ T (θ) cos −T (θ + dθ) cos −dF = 0 2 2 Fy = 0 dθ dθ dN − T (θ) sin −T (θ + dθ) sin −dF = 0 2 2 dθ dθ sin ≈ 2 2 dθ cos ≈1 2 dT = T (θ + dθ) − T (θ) ⇒ T (θ + dθ) = T (θ) + dT = T + dT So: T (θ) − T (θ + dθ) − dF = 0 dT = −dF T dθ dθ dN − + (T + dT ) =0 2 2 T + dT → 0 dN − T dθ = 0 With impending motion: dF = μs dN dT = −μs dN
  • 8. dT dN = − μs Substitute: dT − − T dθ = 0 μs Thus: dT = −μs dθ T Integrate: T2 φ dT = −μs dθ T1 T 0 T2 ln T = −μs φ T1 T2 ln = −μs φ T1 T2 = exp(−μs φ) T1 T2 = T1 exp(−μs φ) This is known as the capstan effect. EXAMPLE: Boat on a dock φ = 3(2π) ≈ 20 μs = 0.4 T2 = T1 exp(−8) 1 T2 ≈ T1 3000 8