Conférence thématique
DOCUMATION MIS 2015 – DATA INTELLIGENCE FORUM
Jeudi 19 mars 2015
Valeur et Véracité de la donnée :
E...
Bruno Teboul est Directeur
Scientifique, R&D et Innovation du groupe
Keyrus. Il est membre de la Gouvernance
de la Chaire ...
Selon Gartner et IBM, les données
massives sont caractérisées par 6 V :
- Volume
- Variété
- Vélocité
- Visibilité
- Valeu...
Premiers constats…
Les 4 V (Volume, Variété, Vélocité, Visibilité) sont
assez facilement mesurables.
Mesurer précisément l...
Premiers constats…
Notre production atteindra les 40 Zo de données en
2020 ( 1 Zo = 10 puissance 21 octets ).
Nos projecti...
Premiers constats…
La fragmentation des projections algorithmiques
fragmente aussi leurs valeurs.
1 – Approche systémique de la valeur
d’impact d’une donnée
Un zeste de formalisme pour fixer les choses …
Définition d’une donnée : C’est un ensemble fini de mots binaires.
Un mot b...
Un zeste de formalisme pour fixer les choses …
Fixons maintenant la notion de valeur fonctionnelle
instantanée d’une donné...
Un premier exemple illustrant la Valeur avec Véracité
La vente de données clients par Microsoft au FBI :
Le 21 janvier 201...
Un premier exemple illustrant la Valeur avec Véracité
La vente de données clients par Microsoft au FBI :
La valeur instant...
Un second exemple illustrant la Valeur sans la Véracité
L’histoire du faux tweet de la SEA qui valait 136 milliards
Le 24 ...
Un second exemple illustrant la Valeur sans la Véracité
Le faux tweet de la SEA qui valait 136 milliards de dollars
Un second exemple illustrant la Valeur sans la Véracité
Un second exemple illustrant la Valeur sans la Véracité
A l'instant t = 0, le tweet de la SEA est
publié sur le compte AP ...
Un second exemple illustrant la Valeur sans la Véracité
Ce que nous disent ces exemples :
La valeur d’impact d’une donnée ...
2 – Approche de la Valeur par le gain
dans un contexte Big Data
D’où viennent les données massives ?
Définir la valeur des données massives par le gain
L'idée : Pour un jeu de données massives D, on mesure le gain obtenu su...
L’exemple des éoliennes VESTAS
L’exemple des éoliennes VESTAS
L‘analyse Big Data a permis à Vestas d’optimiser son processus
d’identification des meilleu...
L’exemple des éoliennes VESTAS
Le logiciel IBM InfoSphere BigInsights fonctionnant sur un système IBM
System x iDataPlex a...
L’exemple du Zoo de Cincinnati - Ohio
L’exemple du Zoo de Cincinnati - Ohio
Le zoo de Cincinnati a mis en place une structure d'analyse Big Data
des données iss...
3 – Véracité de la donnée
La tentation des fausses données pour se protéger…
Selon le rapport Symantec 2015 sur la protection des données
privées :
...
Des applications pour créer de fausses données
Tromper les applications Android avec de fausses données !
Xprivacy est un ...
Des applications pour créer de fausses données
Le site FakeNameGenerator permet de construire des bases de données
sous di...
Données fictives et hacking
Dans une opération de hacking, la phase d’ingénierie sociale s’appuie de plus
en plus souvent ...
L’OP Newscaster
Newscaster est une opération de cyberespionnage attribuée à l’Iran
qui s’inscrit dans le durée (2012-2014)...
L’OP Newscaster
Mesurer la confiance en une donnée ?
Pour une donnée D, nous évaluons en général la probabilité :
P ( D est vraie / Histor...
Les futurs défis du Data Scientist
- Il faut évoluer vers la certification des données.
- Certifier une donnée, c’est augm...
KEYRUS
Bruno TEBOUL
www.keyrus.fr
@brunoteboul
ECHORADAR & CYBERLAND
Thierry BERTHIER
http://cyberland.centerblog.net/
htt...
Prochain SlideShare
Chargement dans…5
×

Conférence Bruno Teboul & Thierry Berthier du jeudi 19 mars 2015 Data Intelligence Forum

1 025 vues

Publié le

Valeur et Véracité de la donnée :
Enjeux pour l’entreprise
Défis pour le Data Scientist

Publié dans : Données & analyses
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
1 025
Sur SlideShare
0
Issues des intégrations
0
Intégrations
55
Actions
Partages
0
Téléchargements
6
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Conférence Bruno Teboul & Thierry Berthier du jeudi 19 mars 2015 Data Intelligence Forum

  1. 1. Conférence thématique DOCUMATION MIS 2015 – DATA INTELLIGENCE FORUM Jeudi 19 mars 2015 Valeur et Véracité de la donnée : Enjeux pour l’entreprise Défis pour le Data Scientist Bruno Teboul & Thierry Berthier
  2. 2. Bruno Teboul est Directeur Scientifique, R&D et Innovation du groupe Keyrus. Il est membre de la Gouvernance de la Chaire Data Scientist de l’Ecole Polytechnique (Keyrus/Thales/Orange). Il est également Doctorant et Enseignant à l'Université Paris-Dauphine. Thierry Berthier est Maitre de conférences en mathématiques à l'Université de Limoges. Il effectue ses recherches au sein de la Chaire de Cybersécurité & Cyberdéfense, Saint-Cyr - Thales – Sogeti, est membre de l'Institut Fredrik Bull et du comité d'études de la Défense Nationale. Il est cofondateur du site d’analyse stratégique EchoRadar et de Cyberland.
  3. 3. Selon Gartner et IBM, les données massives sont caractérisées par 6 V : - Volume - Variété - Vélocité - Visibilité - Valeur - Véracité Nous allons évoquer la Valeur et la Véracité d’une donnée
  4. 4. Premiers constats… Les 4 V (Volume, Variété, Vélocité, Visibilité) sont assez facilement mesurables. Mesurer précisément la valeur et la véracité d’une donnée, c’est en général un problème difficile. Valeur et Véracité de la donnée dépendent fortement du contexte et de l’instant d’évaluation. La Valeur et la Véracité d’une donnée sont parfois indépendantes.
  5. 5. Premiers constats… Notre production atteindra les 40 Zo de données en 2020 ( 1 Zo = 10 puissance 21 octets ). Nos projections algorithmiques volontaires ou systémiques contribuent au déluge des données. Elles témoignent de la fusion de l’espace physique avec le cyberespace. L’information ubiquitaire renforce cette tendance. Les projections algorithmiques des utilisateurs ont une valeur pour le data scientist.
  6. 6. Premiers constats… La fragmentation des projections algorithmiques fragmente aussi leurs valeurs.
  7. 7. 1 – Approche systémique de la valeur d’impact d’une donnée
  8. 8. Un zeste de formalisme pour fixer les choses … Définition d’une donnée : C’est un ensemble fini de mots binaires. Un mot binaire est une suite finie formée de 0 et de 1. On note désormais D une donnée définie par : D = {M1,M2,......,Mn} où les Mj sont des mots binaires avec Mj = b1b2.....bk et bi = 0 ou 1. Définition d’un contexte : On parlera de contexte C pour désigner un ensemble d'infrastructures humaines, physiques et algorithmiques liées entre elles par des relations et des transferts d'information assurant une cohérence systémique globale. Un contexte est constitué de groupements humains et de systèmes physiques et algorithmiques assurant son interconnexion.
  9. 9. Un zeste de formalisme pour fixer les choses … Fixons maintenant la notion de valeur fonctionnelle instantanée d’une donnée D sur un contexte C selon un algorithme A : Val t ( D / C, A) Si D est une donnée accessible au contexte C, et A un algorithme interprétant D, exécutable sur un système de calcul S du contexte, on notera alors Val t ( D / C, A) la valeur à l'instant t de D relativement au contexte C et à l'algorithme A exploitant D sur C. Val t ( D / C, A) est une valeur numérique instantanée, positive ou nulle dépendant du contexte et de l'algorithme d'exploitation.
  10. 10. Un premier exemple illustrant la Valeur avec Véracité La vente de données clients par Microsoft au FBI : Le 21 janvier 2014, la SEA (Syrian Electronic Army) publie sur son site web la copie de nombreuses factures Microsoft envoyées au FBI ainsi que des listings de données personnelles vendues. Celles-ci concernent les utilisateurs d'Outlook ou de Skype et contiennent l'identité, l'identifiant, l'adresse IP, le nom de compte en hotmail.com et le mot de passe. D'après les factures publiées par la SEA, le coût unitaire d'un jeu de données concernant un utilisateur varie entre 50 dollars et 200 dollars en fonction du contenu transmis. La véracité des données clients vendues était certifiée par Microsoft.
  11. 11. Un premier exemple illustrant la Valeur avec Véracité La vente de données clients par Microsoft au FBI : La valeur instantanée d'une donnée client D vendue par Microsoft au FBI vérifie : Val t ( D / C, A) = 200 USD pour t > 0 sur le contexte de production Microsoft. A est un algorithme de structuration (ou de mise au format) et de lecture de la donnée. V0 est le coût de structuration, de mise au format et de stockage de la donnée pour Microsoft. V1 désigne le prix de vente unitaire par Microsoft au FBI. V∞ est la valeur résiduelle de la donnée.
  12. 12. Un second exemple illustrant la Valeur sans la Véracité L’histoire du faux tweet de la SEA qui valait 136 milliards Le 24 avril 2013, la SEA attaque le compte Twitter de l'agence Associated Press (AP). Elle en prend momentanément le contrôle et publie à 13h07 le message suivant : « Breaking : Two Explosions in the White House and Barack Obama is injured » Les 1.9 millions d'abonnés au compte Twitter d'Associated Press reçoivent le faux message posté par la SEA en le considérant comme authentique. La réaction des marchés financiers est presque immédiate : entre 13h08 et 13h10, l'indice principal de Wallstreet, le Dow Jones (DJIA) perd 145 points soit l'équivalent de 136 milliards de dollars (105 milliards d'euros) en raison notamment du trading haute fréquence (HFT) qui a interprété et « réagi » au faux tweet. Les actions Microsoft, Apple, Mobil perdent plus de 1% presque instantanément. Quelques minutes plus tard, Associated Press reprend le contrôle de son compte et publie immédiatement un tweet annonçant que le message précédent était un faux et qu'il résultait du piratage de son compte.
  13. 13. Un second exemple illustrant la Valeur sans la Véracité Le faux tweet de la SEA qui valait 136 milliards de dollars
  14. 14. Un second exemple illustrant la Valeur sans la Véracité
  15. 15. Un second exemple illustrant la Valeur sans la Véracité A l'instant t = 0, le tweet de la SEA est publié sur le compte AP et reste accessible et crédible durant quatre minutes. A l'instant t1 , AP et la Maison Blanche publient un démenti qui annule immédiatement la valeur instantanée de la donnée D. V0 désigne la valeur de production et d'insertion de la donnée sur le compte d'AP. Cette valeur tient compte du coût global du piratage du compte par la SEA. V1 est la valeur maximale de la donnée avant la reprise de contrôle du compte AP. Elle peut prendre en compte la valeur d'impact du faux tweet sur les marchés.
  16. 16. Un second exemple illustrant la Valeur sans la Véracité Ce que nous disent ces exemples : La valeur d’impact d’une donnée peut être indépendante de sa Véracité. C’est bien la confiance qu’on accorde à une donnée qui lui permet de fonder sa valeur. Interroger la donnée, c’est d’abord évaluer la confiance qu’elle suscite, mesurer sa véracité puis sa valeur sur un contexte.
  17. 17. 2 – Approche de la Valeur par le gain dans un contexte Big Data
  18. 18. D’où viennent les données massives ?
  19. 19. Définir la valeur des données massives par le gain L'idée : Pour un jeu de données massives D, on mesure le gain obtenu sur une ligne de contrainte L après exploitation de D via un système de calcul S. Une ligne de contrainte L pour une entreprise, une institution ou un laboratoire peut être temporelle (le temps nécessaire à un processus de production), spatiale (une distance, une surface à prospecter). Elle peut concerner un effectif (le nombre d'ingénieurs sur un projet) ou un coût de développement. Elle est mesurée par CL(t). Le gain obtenu sur la ligne de contrainte L après exploitation de D par S s'écrit : GL( D , S ) = CL ( après exploitation de D ) – CL ( avant exploitation de D ) La valeur du jeu de données D sur la ligne de contrainte L est définie par le maximum des gains obtenus lorsque l'on fait varier le système de calcul S (algorithmes et machines) : VL( D ) = Max S ( GL( D , S ) )
  20. 20. L’exemple des éoliennes VESTAS
  21. 21. L’exemple des éoliennes VESTAS L‘analyse Big Data a permis à Vestas d’optimiser son processus d’identification des meilleurs emplacements pour implanter ses éoliennes . L’analyse des données a permis d’augmenter la production d’électricité et de réduire les coûts énergétiques. Grâce aux données massives, Vestas est en mesure de décrire avec précision le comportement du vent et de fournir une analyse de rentabilisation solide à ses clients. Le système Big Data VESTAS (IBM) induit une réduction de 97 % du temps de réponse sur les prévisions éoliennes passant de plusieurs semaines à seulement quelques heures aujourd’hui. Il réduit le coût de production par kilowattheure pour les clients et réduit le coût et l’encombrement informatique avec une diminution de 40 % de la consommation énergétique. La base de données « Vestas-Eoliennes » atteint les 24 pétaoctets .
  22. 22. L’exemple des éoliennes VESTAS Le logiciel IBM InfoSphere BigInsights fonctionnant sur un système IBM System x iDataPlex assiste VESTAS dans sa gestion des données météorologiques et de localisation. Ainsi, l’entreprise a diminué la résolution de base de ses grilles de données éoliennes qui passent d’une aire de 27 x 27 kilomètres à 3 x 3 kilomètres après exploitation du jeu de données. Ceci représente une réduction de 90% de l’incertitude. Ce gain donne aux dirigeants un aperçu immédiat des sites potentiels d’implantation d’éoliennes. La ligne de contrainte L est la résolution de base des grilles de données (une surface) et le gain après exploitation du jeu de données météo s’élève à : GL( D , S ) = + 90 % et VL( D ) > 90 %
  23. 23. L’exemple du Zoo de Cincinnati - Ohio
  24. 24. L’exemple du Zoo de Cincinnati - Ohio Le zoo de Cincinnati a mis en place une structure d'analyse Big Data des données issues de capteurs et des données clients. L'image globale en temps réel de la clientèle et son interprétation ont permis d'augmenter de 25 % les dépenses des visiteurs, soit 350 000 dollars de recettes supplémentaires par an. La compréhension fine des données clients a été appliquée à l'optimisation des ressources humaines et a libéré du temps pour le personnel. La ligne de contrainte L est la dépense annuelle des visiteurs et le gain après exploitation de l’ensemble annuel des données client s’élève à : GL( D , S ) = + 25 % et VL( D ) > 25 %
  25. 25. 3 – Véracité de la donnée
  26. 26. La tentation des fausses données pour se protéger… Selon le rapport Symantec 2015 sur la protection des données privées : 57 % des européens se déclarent inquiets quant à la sécurité de leurs informations personnelles. 81 % estiment que leurs données ont de la valeur (>1000 euros). 31 % n’hésitent plus à communiquer de fausses données pour protéger leurs données personnelles.
  27. 27. Des applications pour créer de fausses données Tromper les applications Android avec de fausses données ! Xprivacy est un outil qui permet de nourrir les applications Android avec de faux contacts, de fausses coordonnées géographiques, de faux dictionnaires user, de faux presses papiers, de faux historiques d’appels, de faux SMS… L’objectif étant de créer de fausses données pour mieux protéger sa vie privée.
  28. 28. Des applications pour créer de fausses données Le site FakeNameGenerator permet de construire des bases de données sous divers formats (MS SQL, MySQL,IBM DB2, Oracle,…) de 50 000 identités cohérentes incluant l’identité, l’âge, l’adresse, le métier, etc…
  29. 29. Données fictives et hacking Dans une opération de hacking, la phase d’ingénierie sociale s’appuie de plus en plus souvent sur la création d’un ensemble de données fictives. L’objectif est d’installer la confiance auprès des cibles et de les pousser à exécuter un code viral (malware, spyware, rançonware…). Un exemple emblématique : l’Opération Newscaster - NewsOnLine
  30. 30. L’OP Newscaster Newscaster est une opération de cyberespionnage attribuée à l’Iran qui s’inscrit dans le durée (2012-2014) ciblant plus de 2000 personnes (USA, Europe, Israël) , des officiers supérieurs de l’US Army, des ingénieurs de l’industrie de l’armement, des membres du congrès, etc. C’est une APT longue, structurée et furtive. La première phase de l’opération s’est appuyée sur la construction d’un faux site web d’information NewsOnLine, hébergé sur des serveurs US et supervisé par une rédaction américaine fictive. Des contacts ont été noués avec les futures cibles pour qu’elles participent à la rédaction d’articles du site. Un noyau de profils fictifs américains (sur Facebook, Twitter, LinkedIn) a été construit de toute pièce pour échanger avec les cibles. La confiance s’installe durant près d’un an puis, les attaquants profitent des échanges de fichiers d’articles pour injecter des spywares sur les machines des cibles et collecter des données sensibles ou classifiées.
  31. 31. L’OP Newscaster
  32. 32. Mesurer la confiance en une donnée ? Pour une donnée D, nous évaluons en général la probabilité : P ( D est vraie / Historique et réputation ) L’historique du contexte et la réputation de l’émetteur de la donnée. Nous devrions plutôt évaluer : P ( D est vraie / Historique, réputation et P(Hacking(D)) > 0 ) C’est cette probabilité qui permet d’exprimer la confiance que l’on porte en une donnée.
  33. 33. Les futurs défis du Data Scientist - Il faut évoluer vers la certification des données. - Certifier une donnée, c’est augmenter sa valeur ! - L’analyse Big Data doit s’appuyer sur des données globalement certifiées. - Nous devons pouvoir détecter les corpus de données fictives pour anticiper le hacking et les cybermanipulations. - Il faut pour cela former des Data Scientists qui possèdent une vraie culture de cybersécurité et croiser les compétences de sorte que les deux derniers V (Volume et Véracité) occupent toute leur place. - Il faut construire des infrastructures algorithmiques pour le Big Data qui soient résilientes, antifragiles, capables d’évaluer en temps réel la véracité et la valeur des données en streaming.
  34. 34. KEYRUS Bruno TEBOUL www.keyrus.fr @brunoteboul ECHORADAR & CYBERLAND Thierry BERTHIER http://cyberland.centerblog.net/ http://echoradar.eu/ @echo_radar

×