SlideShare a Scribd company logo
1 of 104
REAL NUMBERS
by
Nittaya Noinan
Kanchanapisekwittayalai Phetchabun School
Real Numbers
• Real numbers consist of all the
rational and irrational numbers.
• The real number system has many
subsets:
– Natural Numbers
– Whole Numbers
– Integers
– Ect.
Natural Numbers
• Natural numbers are the set of counting
numbers.
{1, 2, 3,…}
Whole Numbers
• Whole numbers are the set of numbers
that include 0 plus the set of natural
numbers.
{0, 1, 2, 3, 4, 5,…}
Integers
• Integers are the set of whole numbers and
their opposites.
{…,-3, -2, -1, 0, 1, 2, 3,…}
Rational Numbers
• Rational numbers are any numbers that can
be expressed in the form of , where a and
b are integers, and b ≠ 0.
• They can always be expressed by using
terminating decimals or repeating decimals.
b
a
The Rational Numbers
The word ratio means fraction.
Therefore rational numbers are any numbers which
can be written as fractions.
2
3
3
4
5
1
1
5
Integers are Rational
Numbers
Like the 5 in our example, any integer can be made
into a fraction by putting it over 1. Since it can
be a fraction, it is a rational number.
2
3
3
4
5
1
1
5
Changing fractions to
decimals
It’s easy to change a fraction to a decimal, so
rational numbers can also be written as decimals.
Rational numbers convert to two different types
of decimals:
Terminating decimals – which end
Repeating decimals – which repeat
Terminating decimals
To convert a fraction to a decimal, divide the top by the
bottom.
To convert ½ to a decimal you would do:
There is no remainder. The answer just ends – or terminates.
.5
2 1.0
Terminating Decimals
• Terminating decimals are decimals that
contain a finite number of digits.
• Examples:
36.8
0.125
4.5
Repeating decimals
To convert a fraction to a decimal, divide the top by the
bottom.
To convert 1
/3 to a decimal you would do:
=0.3333…
There is a remainder. The answer just keeps repeating.
.333
3 1.000
.3
−
Repeating Decimals
• Repeating decimals are decimals that contain a
infinite number of digits.
• Examples:
 0.333…
 0.19191919…
 7.689689…
FYI…The line above the decimals indicate that number
repeats.
Repeating decimals
.3
−
The bar tells us that it is a repeating decimal.
The bar extends over the entire pattern that
repeats.
.09
Rational numbers as
decimals
Rational numbers can be converted from fractions
to either
• Terminating decimals or
• Repeating decimals
Rational numbers
The subsets of real numbers that we’ve discussed
are “nested” like Russian dolls.
Examples of Rational
Numbers
•16
•1/2
•3.56
•-8
•1.3333…
•- 3/4
To show how these number are classified, use the Venn
diagram. Place the number where it belongs on the Venn
diagram.
π
9
4
2
1
−
Rational Numbers
Integers
Whole Numbers
Natural
Numbers
Irrational Numbers
-12.64039…
117
0
6.36
9
4
-3
Irrational Numbers
• Irrational numbers are any numbers that cannot be
expressed as .
• They are expressed as non-terminating, non-
repeating decimals; decimals that go on forever
without repeating a pattern.
• Examples of irrational numbers:
– 0.34334333433334…
– 45.86745893…
– (pi)
–
b
a
π
2
Other Vocabulary Associated
with the Real Number System
• …(ellipsis)—continues without end
• { } (set)—a collection of objects or
numbers. Sets are notated by using
braces { }.
• Finite—having bounds; limited
• Infinite—having no boundaries or
limits
• Venn diagram—a diagram consisting
of circles or squares to show
relationships of a set of data.
Example
• Classify all the following numbers as natural, whole, integer,
rational, or irrational. List all that apply.
a. 117
b. 0
c. -12.64039…
d. -½
e. 6.36
f.
g. -3
π
Solution
• Now that all the numbers are placed where they belong
in the Venn diagram, you can classify each number:
– 117 is a natural number, a whole number, an integer,
and a rational number.
– is a rational number.
– 0 is a whole number, an integer, and a rational
number.
– -12.64039… is an irrational number.
– -3 is an integer and a rational number.
– 6.36 is a rational number.
– is an irrational number.
– is a rational number.
π
9
4
2
1
−
To show how these number are classified, use the Venn
diagram. Place the number where it belongs on the Venn
diagram.
π
9
4
2
1
−
Rational Numbers
Integers
Whole Numbers
Natural
Numbers
Irrational Numbers
-12.64039…
117
0
6.36
9
4
-3
FYI…For Your Information
• When taking the square root of any
number that is not a perfect square,
the resulting decimal will be non-
terminating and non-repeating.
Therefore, those numbers are
always irrational.
Irrational Numbers
• An irrational number is a
number that cannot be
written as a ratio of two
integers.
• Irrational numbers written as
decimals are non-terminating
and non-repeating.
Examples of Irrational
Numbers
• Square roots of
non-perfect
“squares”
• Pi
17
Irrational Numbers
In English, the word “irrational” means not rational -
illogical, crazy, wacky.
In math, irrational numbers are not rational.
They usually look wacky!
…and their decimals never end or repeat!
3
175 π
Irrational Numbers
There is one trick you need to watch out for!
They look wacky but because the number in the house is
a perfect square, they are really the integers 5 and 9
in disguise!
Sort of like the wolf at Grandma’s house!
25Numbers like and 81
Rounding or truncating
Some decimals are much longer than we need. There
are two ways we can make them shorter.
Truncating – just lop the extra digits off.
Rounding – use the digit to the right of the one we
want to end with to determine whether to round
up or not. If that digit is 5 or higher, round up.
Truncating
Truncating – just lop the extra digits off.
If we want to use with just 4 decimal places.
We’d just chop off the rest!
3.1415/926…
3.1415
Truncate ~ tree trunk ~ chop!
3.1415926...π =
π
Rounding
If we want to round to 4 decimal places.
We’d look at the digit in the 5th
place
9 is “5 or bigger” so the digit in the 4th
spot goes up
3.14159
3.1416
3.1415926...π =
π
CLASS WORK
1. Given the set,
list the elements of the set that are:
a) Natural numbers
b) Integers
c) Rational numbers
d) Irrational numbers
13 15
1.001,0.333..., , 11,11, , 16,3.14,
15 3
π
 
− 
 
Properties of Real Numbers
For any real number a, b and c
Addition Multiplication
Close a + b ∈ R ab ∈ R
Commutative a + b = b + a ab = ba
Associative (a + b) + c = a + (b + c) (ab)c = a(bc)
Identity A + 0 = a = 0 + a A1 = a = 1a
Inverse A + (-a) = 0 = (-a) + a If a in note zero then
a-1
.a = 1 =a. a-1
Properties of Real Numbers
• Distributive property
– For all real numbers a, b, and c
a(b+c) = ab + ac and (b+c)a = ba + ca
Solving Equations;
5 Properties of Equality
Reflexive For any real number a, a=a
Symmetric
Property
For all real numbers a and b,
if a=b, then b=a
Transitive
Property
For all reals, a, b, and c,
if a=b and b=c, then a=c
Solving Equations;
5 Properties of Equality
Addition and
Subtraction
For any reals a, b, and c, if
a=b then a+c=b+c and a-
c=b-c
Multiplication
and Division
For any reals a, b, and c, if
a=b then a*c=b*c, and, if c is
not zero, a/c=b/c
Applications of Equations
Problem Solving Plan
1. Explore the Problem
2. Plan the solution
3. Solve the problem
4. Examine the solution
Absolute Value Equations
Absolute value: Distance from zero
For any real number a:
If , then
If , then
0a ≥ a a=
a a= −0a <
Properties of Real Numbers
Commutative Property:
a + b = b + a
ab = ba order doesn’t matter
Associative Property:
(a+b)+c = a+(b+c)
(ab)c = a(bc)
order doesn’t change
Distributive Property:
a(b+c) = ab + ac
you can add then multiply or multiply
then add.
Theory about Real Numbers
Theorem 1. Eliminated Rule for Addition
when a , b and c are real numbers.
(i) if a + c = b + c then a = b
(ii) if a + b = a + c then b = c
Theorem 2. Eliminated Rule for Multiplication
when a , b and c are real numbers.
(i) if ac = bc and c ≠ 0 then a = b
(ii) if ab = ac and a ≠ 0 then b = c
Theory about Real Numbers
Theorem 3. When a is real numbers. a.0 = 0
Theorem 4. When a is real numbers. (-1)a = -a
Theorem 5. When a and b are real numbers.
if ab = 0 then a = 0 or b = 0
Theorem 6. When a and b are real numbers.
1. a(-b) = -ab
2. (-a)b = -ab
3. (-a)(-b) = ab
Subtraction and Divisor of Real Numbers
Definition. When a and b are real numbers.
a – b = a + (-b)
Definition. When a and b are real numbers.
= a(b-1
)
Theory about Real Numbers
Theorem 7. When a , b and c are real numbers.
1. a(b – c) = ab – ac
2. (a – b)c = ac – bc
3. (-a)(b – c) = -ab + ac
Theorem 8. When a ≠ 0 then a-1
≠ 0
Theory about Real Numbers
Theorem 9. When a , b and c are real numbers.
1. when b , c ≠ 0
2. when b , c ≠ 0
3. when b , d ≠ 0
4. when b , d ≠ 0
Theory about Real Numbers
Theorem 9. When a , b and c are real numbers.
5. when b , c ≠ 0
6. when b , c ≠ 0
7. when b , d ≠ 0
CLASS WORK
State the property of real numbers
being used.
2.
3.
4.
( ) ( )2 3 5 3 5 2+ = +
( )2 2 2A B A B+ = +
( ) ( )2 3 2 3p q r p q r+ + = + +
TRUE OR FALSE
1. The set of WHOLE
numbers is closed
with respect to
multiplication.
TRUE OR FALSE
2. The set of NATURAL
numbers is closed with
respect to
multiplication.
TRUE OR FALSE
3. The product of any two
REAL numbers is a
REAL number.
TRUE OR FALSE
4. The quotient of any
two REAL numbers is a
REAL number.
TRUE OR FALSE
5. Except for 0, the set of
RATIONAL numbers is
closed under division.
TRUE OR FALSE
6. Except for 0, the set of
RATIONAL numbers
contains the
multiplicative inverse for
each of its members.
TRUE OR FALSE
7. The set of RATIONAL
numbers is associative
under multiplication.
TRUE OR FALSE
8. The set of RATIONAL
numbers contains the
additive inverse for
each of its members.
TRUE OR FALSE
9. The set of INTEGERS
is
commutative under
subtraction.
TRUE OR FALSE
10. The set of INTEGERS
is closed with respect
to division.
Solving polynomial Equations one variable.
We can write polynomial Equations of x variable that is
anxn
+ an-1xn-1
+ an-2xn-2
+ … + a1x + a0
when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be
coefficiants of the polynomail are real numbers by a ≠ 0
Then we can called anxn
+ an-1xn-1
+ an-2xn-2
+ … + a1x + a0
is polynomail of degree n.
The symbol is p(x) , q(x) , r(x) and if p(a) that mean we instead x in
p(x) by a .
Example. P(x) = x3
– 4x2
+ 3x + 2
p(1) = 13
– 4(1)2
+ 3(1) + 2 = 2
Solving polynomial Equations one variable.
Example. Find the answer of 3x3
+ 2x2
- 12x – 8 = 0
Solve.
by use Addition and Multiplication of real numbers. Then we
can multiplied by the following factor.
3x3
+ 2x2
- 12x – 8 = (3x3
+ 2x2
) – (12x + 8)
= x2
(3x + 2) – 4(3x + 2)
= (3x + 2)(x2
- 4)
= (3x + 2)(x - 2)(x + 2)
By Theory 5 then x = , or x = 2 or x = -2
Answer {-2 , , 2}
Solving polynomial Equations by remainder
Theorem Method.
Remainder theorem.
When p(x) is anxn
+ an-1xn-1
+ an-2xn-2
+ … + a1x + a0
when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be
real numbers by a ≠ 0 .
if p(x) is divied by x – c when c is real number then
the remainder is equal p(c)
Solving polynomial Equations by remainder
Theorem Method.
Proof.
Give p(x) is divied by x – c then we get quotient q(x)
And remainder be q(x)
Thus p(x) = (x – c)q(x) + r(x) ……(1)
Which r(x) is zero or polynomail of degree is less than
x – c that mean degree 0. hence r(x) is constant.
Give r(x) = d when d is constant.
Thus p(x) = (x – c)q(x) + d ……(2)
when instead x in (2) by c
We get p(c) = (c – c)q(x) + d = d
Hence remainder equal is p(c)
Solving polynomial Equations by remainder
Theorem Method.
Example 1. Find the remainder when 9x3
+ 4x - 1
is divided by x - 2
Solve.
9x2
+ 18x + 40
9x3
- 18x2
18x2
+ 4x – 1
18x2
- 36x
40x – 1
40x – 80
79
Thus remainder is 79
Solving polynomial Equations by remainder
Theorem Method.
Example 1. Find the remainder when 9x3
+ 4x - 1
is divided by x - 2
Solve.
Give p(x) = 9x3
+ 4x - 1
thus p(2) = 9(2)3
+ 4(2) - 1
= 72 + 8 – 1
= 79
Thus the remainder is 79.
Solving polynomial Equations by remainder
Theorem Method.
Example 2. Find the remainder when
2x4
- 7x3
+ x2
+ 7x – 3 is divided by x + 1
Solve.
Give p(x) = 2x4
- 7x3
+ x2
+ 7x – 3
Since x +1 = x – (-1) thus c = -1
thus p(-1) = 2(-1)4
– 7(-1)3
+ (-1)2
+ 7(-1) – 3
= 2 + 7 + 1 – 7 – 3
= 0
Thus the remainder is 0.
Factor theorem.
When p(x) is anxn
+ an-1xn-1
+ an-2xn-2
+ … + a1x + a0
when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be
real numbers by a ≠ 0 .
p(x) there is x – c that is factor iff p(c) = 0
Factor theorem.
Example. 1) Write x4
– x3
-2x2
– 4x – 24 be factor.
Solve.
Give p(x) = x4
– x3
-2x2
– 4x – 24
since integers that can divide -24 are
±1,±2,±3,±4,±6,±8,±12,
±24
Then consider p(1) ,p(-1) ,p(2) that is not equal zero.
But p(-2) = (-2)4
– (-2)3
-2(-2)2
– 4(-2) – 24
= 16 + 8 – 8 + 8 – 24
= 0
Thus x + 2 is the factor of x4
– x3
-2x2
– 4x – 24
Factor theorem.
Example. 1) Write x4
– x3
-2x2
– 4x – 24 be factor.
Solve.
Thus x + 2 is the factor of x4
– x3
-2x2
– 4x – 24
Take x + 2 divide x4
– x3
-2x2
– 4x – 24 then get x3
-3x2
+ 4x – 12
Thuse x4
– x3
-2x2
– 4x – 24 = (x + 2)(x3
-3x2
+ 4x – 12)
= (x + 2){(x3
-3x2
)+ 4(x – 3)}
= (x + 2){x2
(x -3) + 4(x – 3)}
= (x + 2)(x – 3)(x2
+ 4)
Factor theorem.
Example. 2) Write x3
-5x2
+ 2x + 8 be factor.
Solve.
Give p(x) = x3
-5x2
+ 2x + 8
since integers that can divide 28 are
±1,±2,±4,±8
Then consider p(1) ,p(-1) ,p(-2) that is not equal zero.
But p(2) = (2)3
-5(2)2
+ 2(2) + 8
= 8 - 20 + 4 + 8
= 0
Thus x - 2 is the factor of x3
-5x2
+ 2x + 28
Factor theorem.
Example. 2) Write x3
-5x2
+ 2x + 8 be factor.
Solve.
Thus x - 2 is the factor of x3
-5x2
+ 2x + 8
Take x - 2 divide x3
-5x2
+ 2x + 8 then get x2
- 3x – 4
Thuse x3
-5x2
+ 2x + 8 = (x - 2)(x2
- 3x – 4)
= (x - 2)(x – 4)(x + 1)
Factor theorem.
Example. 3) Write x3
+ 2x2
- 5x - 6 be factor.
Solve.
Give p(x) = x3
+ 2x2
- 5x - 6
since integers that can divide 6 are
±1,±2,±3,±6
Then consider p(1) that is not equal zero.
But p(-1) = (-1)3
+ 2(-1)2
– 5(-1) - 6
= -1 + 2 + 5 - 6
= 0
Thus x + 1 is the factor of x3
+ 2x2
- 5x - 6
Factor theorem.
Example. 3) Write x3
+ 2x2
- 5x - 6 be factor.
Solve.
Thus x + 1 is the factor of x3
+ 2x2
- 5x - 6
Take x + 1 divide x3
+ 2x2
- 5x - 6 then get x2
+ x – 6
Thuse x3
+ 2x2
- 5x - 6 = (x + 1)(x2
+ x – 6)
= (x + 1)(x – 2)(x + 3)
Solving polynomial Equations by remainder
Theorem Method.
Rational factorization theorem.
When p(x) is anxn
+ an-1xn-1
+ an-2xn-2
+ … + a1x + a0
when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be
real numbers by a ≠ 0 .
if x - is factor of polynomial p(x) by m and k are integer
which m ≠ 0 and greatest common factor of m and k is equal 1
Then m can divied an and k can divided a0 .
Example. 1) Write 12x3
+ 16x2
- 5x – 3 be factor.
Solve.
Give p(x) = 12x3
+ 16x2
- 5x – 3
since integers that can divide -3 are ±1,±2,±3
And integers that can divide 12 are ±1,±2,±3,
±4,±6,±12
Then the rational number that p( ) = 0 in among
±1,±2,±3,
Then consider p( ) that is equal zero.
Example. 1) Write 12x3
+ 16x2
- 5x – 3 be factor.
Solve.
Thus x - is the factor of 12x3
+ 16x2
- 5x – 3
Take x - divide 12x3
+ 16x2
- 5x – 3 then get 12x2
+ 22x + 6
Thuse 12x3
+ 16x2
- 5x – 3 = (x - )(12x2
+ 22x + 6)
= (x - )(2) (6x2
+ 11x + 3)
= (2x – 1)(6x2
+ 11x + 3)
= (2x – 1)(3x + 1)(2x + 3)
Example. 2) Solving Equation 6x3
- 11x2
+ 6x = 1
Solve.
Since 6x3
- 11x2
+ 6x = 1
Then we get 6x3
- 11x2
+ 6x -1 = 0
Give p(x) = 6x3
- 11x2
+ 6x -1
p(1) = 6 – 11 + 6 – 1 = 0
Thus p(x) = (x -1)(6x2
- 5x + 1)
= (x – 1)(2x – 1)(3x – 1)
Since 6x3
- 11x2
+ 6x -1 = 0
(x – 1)(2x – 1)(3x – 1) = 0
Then x – 1 = 0 or 2x -1 = 0 or 3x – 1 = 0
Thus x = 1 or x = or x =
Answer {1 , , }
Example. 1) Write 12x3
+ 16x2
- 5x – 3 be factor.
Solve.
Thus x - is the factor of 12x3
+ 16x2
- 5x – 3
Take x - divide 12x3
+ 16x2
- 5x – 3 then get 12x2
+ 22x + 6
Thuse 12x3
+ 16x2
- 5x – 3 = (x - )(12x2
+ 22x + 6)
= (x - )(2) (6x2
+ 11x + 3)
= (2x – 1)(6x2
+ 11x + 3)
= (2x – 1)(3x + 1)(2x + 3)
Properties of inequalities.
IN real number system we use symbol < , > , ≤ ,≥ , ≠
be less than , more than , less than or equal to ,
more than or equal to ,not equal sort by order
if a and be be real number the symbol a < b that
mean a less than b and a > b that mean a more than b
Trichotomy property.
if a and b be real number then a = b , a < b and a > b
That was actually only one .
Definition.
a ≤ b that mean a less than or equal to b
a ≥ b that mean a more than or equal to b
a < b < c that mean a < b and b < c
a ≤ b ≤ c that mean a ≤ b and b ≤ c
a < b ≤ c that mean a < b and b ≤ c
a ≤ b < c that mean a ≤ b and b < c
Properties of inequalities.
Give a , b , c be real numbers
1. Transitive Property.
if a > b and b > c then a > c
Such as 5 > 3 and 3 > 1 then 5 > 1
2. Properties of Addition and Subtraction.
So adding (or subtracting) the same value to both a and
b will not change the inequality
if a > b then a + c > b + c
Such as 4 > 2 then 4 + 1 > 2 + 1
Properties of inequalities.
Give a , b , c be real numbers
3.Positive and Negative number when compare with zero
a is positive number iff a > 0
a is negative number iff a < 0
4. Property of Multiplication but not with zero.
Case 1 if a > b and c > 0 then ac > bc
Case 2 if a > b and c < o then ac < bc
Properties of inequalities.
Give a , b , c be real numbers
5. Properties excision for Addition.
if a + c > b + c then a > b
Such as 5 + 2 > 3 + 2 then 5 > 3
6. Properties excision for Multiplication.
Case 1 if ac > bc and c > 0 then a > b
Such as 6 × 3 > 4 × 3 and 3 > 0 then 6 > 4
Case 2 if ac > bc and c < 0 then a < b
Such as 3 × (-3) > 4 × (-3) and -3 < 0 then 3 < 4
Intervals
Notation Graph Set-builder
Notation
(a, b)
[a, b]
[a, b)
(a, b]
(a, ∞)
[a, ∞)
(-∞, b)
(-∞, b]
(-∞, ∞)
b
b
Solving inequalities.
Exmaple. Solving inequalities following problems.
1. 3x + 5 < x – 7
Solve.
Since 3x + 5 < x – 7
3x – x < -7 – 5
2x < -12
x < -6
Answer {x/x < -6} or (-∝ , -6)
Solving inequalities.
Exmaple. Solving inequalities following problems.
2. 4y + 7 > 2(y + 1)
Solve.
Since 4y + 7 > 2(y + 1)
4y + 7 > 2y + 2
4y – 2y > 2 - 7
2y > -5
y >
Answer {y/y > } or ( , ∝)
Solving inequalities.
Exmaple. Solving inequalities following problems.
3. x2
– x – 6 ≤ 0
Solve.
Since x2
– x – 6 ≤ 0
(x – 3)(x + 2) ≤ 0
Then x – 3 = 0 or x + 2 = 0
We get x = 3 or x = -2
Thus + - +
-2 3
Answer { x / -2 ≤ x ≤3 } or [-2 , 3]
Solving inequalities.
Exmaple. Solving inequalities following problems.
4. 2x2
+ 7x + 3 ≥ 0
Solve.
Since 2x2
+ 7x + 3 ≥ 0
(2x + 1)(x + 3) ≤ 0
Then 2x + 1 = 0 or x + 3 = 0
We get x = or x = -3
Thus + - +
-3
Answer (-∝ , -3) ∪ ( , ∝)
Solving inequalities.
Exmaple. Solving inequalities following problems.
5.
Solve.
Since
Solving inequalities.
Exmaple. Solving inequalities following problems.
5.
Solve.
Take multiplicate all sides
Then
(x – 4)2
then we take (-1) multiplicate all sides
We get
Then x – 5 = 0 or x + 2 = 0 or x – 4 = 0
x = 5 or x = -2 or x = 4
- + - +
-2 4 5
(x2
– 3x – 10)(x – 4) ≥ 0
(x – 5)(x + 2)(x – 4) ≥ 0
And if the inequalities to a degree
greater than two.
We can use the Remainder Theorem
Method .
Absolute value inequalities.
Definition.
give a be real number
a if a > 0
| a | = 0 if a = 0
-a if a < 0
Absolute value inequalities.
Theorem.
when x and y be real number
1.| x | = | -x |
2.| xy | = | x || y |
3. = , y ≠ 0
4.| x - y | = | y - x |
5.| x | = x
6.| x + y | ≤ | x | + | y |
2 2
Solving equations and
inequalities in Absolute value.
Theory 11.
when a be positive number
set of the answers of |a| = a is {a , -a}
Example.
Find the answer of the following equations.
1. |2x - 3| = 9
Solve.
since |2x - 3| = 9
then 2x -3 = 9 or 2x – 3 = -9
x = 6 or x = -3
Answer {-3 , 6}
Example.
Find the answer of the following equations.
2. |3x - 1| = |x + 5|
Solve.
since |3x - 1| = |x + 5|
then 3x -1 = x + 5 or 3x -1 = -(x + 5)
2x = 6 or 4x = -4
x = 3 or x = -1
Answer {-1 , 3}
Example.
Find the answer of the following equations.
3. |2x + 1| = 3x - 5
Solve.
since |2x + 1| = 3x - 5
then 3x – 5 ≥ 0 and [2x +1 = 3x - 5 or 2x +1 = -(3x - 5)
x ≥ and x = 6 0r x =
Answer { 6 }
Solving equations and
inequalities in Absolute value.
Theory 12. when a be positive number
1. |a| < a that mean -a < x < a
2. |a| ≤ a that mean -a ≤ x ≤ a
3. |a| > a that mean x <-a or x > a
4. |a| ≥ a that mean x ≤-a or x ≥ a
Example.
Find the answer of the following equations.
1. |4x - 3| < 1
Solve.
since |4x - 3| < 1
then -1 < 4x – 3 < 1
2 < 4x < 4
< x < 1
Answer ( , 1)
Example.
Find the answer of the following equations.
2. |x - 3| ≥ 2
Solve.
since |x - 3| ≥ 2
then x -3 ≤ -2 or x - 3 ≥ 2
x ≤ 1 or x ≥ 5
Answer (-∝ , 1] ∪ [ 5 , ∝)
Example.
Find the answer of the following equations.
3. |x + 1| ≤ 2x - 3
Solve.
since |x + 1| ≤ 2x – 3
Then -(2x – 3) ≤ x + 1 ≤ 2x – 3
-(2x – 3) ≤ x + 1 and x + 1 ≤ 2x – 3
-3x ≤ -2 and -x ≤ -4
x ≥ and x ≥ 4
Answer [4 , ∝)
Example.
Find the answer of the following equations.
4. |2x + 4| > x + 1
Solve.
since |2x + 4| > x + 1
Then 2x + 4 <-(x + 1) or 2x + 4 > x + 1
3x < -5 or x > -3
x < - or x > -3
Answer (-∝ , - ) ∪ (-3 , ∝)
Example.
Find the answer of the following equations.
5. |x| < |2x - 1|
Solve.
since |x| < |2x - 1|
Then x < (2x – 1)2
2
x2
< 4x2
– 4x + 1
0 < 3x2
– 4x + 1
0 < (3x -1)(x – 1)
Example.
Find the answer of the following equations.
5. |x| < |2x - 1|
Solve.
Then 3x – 1 = 0 or x – 1 = 0
x = or x = 1
+ - +
1
Answer (-∝ , ) ∪ (1 , ∝)
0 < (3x -1)(x – 1)
นำเสนอจำนวนจริงเพิ่มเติม

More Related Content

What's hot

Math for 800 03 real numbers
Math for 800   03 real numbersMath for 800   03 real numbers
Math for 800 03 real numbersEdwin Lapuerta
 
1.3 Real Numbers and the Number Line
1.3 Real Numbers and the Number Line1.3 Real Numbers and the Number Line
1.3 Real Numbers and the Number LineDee Black
 
Real number system full
Real  number  system fullReal  number  system full
Real number system fullAon Narinchoti
 
Subsets of real numbers
Subsets of real numbersSubsets of real numbers
Subsets of real numbersGrace Robledo
 
The real Number system
The real Number systemThe real Number system
The real Number systemRawabi Alz
 
1.1 Real Numbers and Number Operations
1.1 Real Numbers and Number Operations1.1 Real Numbers and Number Operations
1.1 Real Numbers and Number OperationsSarah Stillwell
 
Algebra 1 Slide Show
Algebra 1 Slide ShowAlgebra 1 Slide Show
Algebra 1 Slide Showjordysmith13
 
Lesson 1.9 the set of rational numbers
Lesson 1.9   the set of rational numbersLesson 1.9   the set of rational numbers
Lesson 1.9 the set of rational numbersJohnnyBallecer
 
Rational irrational and_real_number_practice
Rational irrational and_real_number_practiceRational irrational and_real_number_practice
Rational irrational and_real_number_practiceeixarc
 
Real Numbers & Number Lines (Geometry 2_1)
Real Numbers & Number Lines (Geometry 2_1)Real Numbers & Number Lines (Geometry 2_1)
Real Numbers & Number Lines (Geometry 2_1)rfant
 
1.1/1.2 Properties of Real Numbers
1.1/1.2 Properties of Real Numbers1.1/1.2 Properties of Real Numbers
1.1/1.2 Properties of Real Numbersleblance
 
The real number system
The real number systemThe real number system
The real number systemShawn Burke
 

What's hot (20)

Math for 800 03 real numbers
Math for 800   03 real numbersMath for 800   03 real numbers
Math for 800 03 real numbers
 
1.3 Real Numbers and the Number Line
1.3 Real Numbers and the Number Line1.3 Real Numbers and the Number Line
1.3 Real Numbers and the Number Line
 
The Real Numbers
The Real NumbersThe Real Numbers
The Real Numbers
 
Number system
Number systemNumber system
Number system
 
Real number system full
Real  number  system fullReal  number  system full
Real number system full
 
real numbers
real numbersreal numbers
real numbers
 
Real numbers
Real numbersReal numbers
Real numbers
 
Subsets of real numbers
Subsets of real numbersSubsets of real numbers
Subsets of real numbers
 
Real numbers
Real numbersReal numbers
Real numbers
 
Real number system
Real number systemReal number system
Real number system
 
The real Number system
The real Number systemThe real Number system
The real Number system
 
REAL NUMBERS
REAL NUMBERSREAL NUMBERS
REAL NUMBERS
 
1.1 Real Numbers and Number Operations
1.1 Real Numbers and Number Operations1.1 Real Numbers and Number Operations
1.1 Real Numbers and Number Operations
 
Algebra 1 Slide Show
Algebra 1 Slide ShowAlgebra 1 Slide Show
Algebra 1 Slide Show
 
Lesson 1.9 the set of rational numbers
Lesson 1.9   the set of rational numbersLesson 1.9   the set of rational numbers
Lesson 1.9 the set of rational numbers
 
Number System
Number SystemNumber System
Number System
 
Rational irrational and_real_number_practice
Rational irrational and_real_number_practiceRational irrational and_real_number_practice
Rational irrational and_real_number_practice
 
Real Numbers & Number Lines (Geometry 2_1)
Real Numbers & Number Lines (Geometry 2_1)Real Numbers & Number Lines (Geometry 2_1)
Real Numbers & Number Lines (Geometry 2_1)
 
1.1/1.2 Properties of Real Numbers
1.1/1.2 Properties of Real Numbers1.1/1.2 Properties of Real Numbers
1.1/1.2 Properties of Real Numbers
 
The real number system
The real number systemThe real number system
The real number system
 

Viewers also liked

Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริงNittaya Noinan
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมNittaya Noinan
 
แบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริงแบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริงNittaya Noinan
 
Use r 2013 tutorial - r and cloud computing for higher education and research
Use r 2013   tutorial - r and cloud computing for higher education and researchUse r 2013   tutorial - r and cloud computing for higher education and research
Use r 2013 tutorial - r and cloud computing for higher education and researchkchine3
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมNittaya Noinan
 
Introduction to set theory
Introduction to set theoryIntroduction to set theory
Introduction to set theoryNittaya Noinan
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงNittaya Noinan
 
ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5
ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5
ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5คุณครูพี่อั๋น
 

Viewers also liked (12)

Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริง
 
นำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติมนำเสนอจำนวนจริงเพิ่มเติม
นำเสนอจำนวนจริงเพิ่มเติม
 
เซต
เซตเซต
เซต
 
แบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริงแบบฝึกทักษะฟังก์ชันตัวจริง
แบบฝึกทักษะฟังก์ชันตัวจริง
 
Use r 2013 tutorial - r and cloud computing for higher education and research
Use r 2013   tutorial - r and cloud computing for higher education and researchUse r 2013   tutorial - r and cloud computing for higher education and research
Use r 2013 tutorial - r and cloud computing for higher education and research
 
The logic
The logicThe logic
The logic
 
Project in math
Project in mathProject in math
Project in math
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
 
Introduction to set theory
Introduction to set theoryIntroduction to set theory
Introduction to set theory
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
 
ตัวจริง
ตัวจริงตัวจริง
ตัวจริง
 
ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5
ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5
ปลายภาค คณิต ม.5 เทอม 1 ชุดที่ 5
 

Similar to นำเสนอจำนวนจริงเพิ่มเติม

Saburi Maths ppt.pptx
Saburi Maths ppt.pptxSaburi Maths ppt.pptx
Saburi Maths ppt.pptxMohiniPatil70
 
Realnumbersystemnotes (1)
Realnumbersystemnotes (1)Realnumbersystemnotes (1)
Realnumbersystemnotes (1)Sourav Rider
 
Introduction Combined Number And Dp
Introduction Combined Number And DpIntroduction Combined Number And Dp
Introduction Combined Number And DpAwais Khan
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersTerry Gastauer
 
An applied approach to calculas
An applied approach to calculasAn applied approach to calculas
An applied approach to calculasTarun Gehlot
 
9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...
9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...
9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...ghghghg3
 
Aditya Class 8th
Aditya Class 8thAditya Class 8th
Aditya Class 8thBasantOjha1
 
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfCBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfShavetaSharma37
 
8 maths-ncert-chapter-1
8 maths-ncert-chapter-18 maths-ncert-chapter-1
8 maths-ncert-chapter-1akstudy1024
 

Similar to นำเสนอจำนวนจริงเพิ่มเติม (20)

Saburi Maths ppt.pptx
Saburi Maths ppt.pptxSaburi Maths ppt.pptx
Saburi Maths ppt.pptx
 
Realnumbersystemnotes (1)
Realnumbersystemnotes (1)Realnumbersystemnotes (1)
Realnumbersystemnotes (1)
 
Aji
AjiAji
Aji
 
College algebra -REAL Numbers
College algebra -REAL NumbersCollege algebra -REAL Numbers
College algebra -REAL Numbers
 
Introduction Combined Number And Dp
Introduction Combined Number And DpIntroduction Combined Number And Dp
Introduction Combined Number And Dp
 
Math1 1
Math1 1Math1 1
Math1 1
 
Number Systems
Number Systems Number Systems
Number Systems
 
Real Number System
Real Number SystemReal Number System
Real Number System
 
number system
number systemnumber system
number system
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
 
An applied approach to calculas
An applied approach to calculasAn applied approach to calculas
An applied approach to calculas
 
9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...
9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...
9+&+10+English+_+Class+09+CBSE+2020+_Formula+Cheat+Sheet+_+Number+System+&+Po...
 
Aditya Class 8th
Aditya Class 8thAditya Class 8th
Aditya Class 8th
 
Hemh101
Hemh101Hemh101
Hemh101
 
1059331.pdf
1059331.pdf1059331.pdf
1059331.pdf
 
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfCBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
 
8 maths-ncert-chapter-1
8 maths-ncert-chapter-18 maths-ncert-chapter-1
8 maths-ncert-chapter-1
 
1 1 number theory
1 1 number theory1 1 number theory
1 1 number theory
 
Math Chapter 1 - Integers
Math Chapter 1 - IntegersMath Chapter 1 - Integers
Math Chapter 1 - Integers
 
Realnumbersystems
RealnumbersystemsRealnumbersystems
Realnumbersystems
 

More from Nittaya Noinan

แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์Nittaya Noinan
 
โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3Nittaya Noinan
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมNittaya Noinan
 
แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์Nittaya Noinan
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์Nittaya Noinan
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์Nittaya Noinan
 
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้นแบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้นNittaya Noinan
 
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงแบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงNittaya Noinan
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมNittaya Noinan
 
แบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริงแบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริงNittaya Noinan
 
แบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานแบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานNittaya Noinan
 
แบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผลแบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผลNittaya Noinan
 
งานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริงงานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริงNittaya Noinan
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงNittaya Noinan
 
Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริงNittaya Noinan
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandNittaya Noinan
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandNittaya Noinan
 

More from Nittaya Noinan (18)

แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์แบบฝึกหัดเมทริกซ์
แบบฝึกหัดเมทริกซ์
 
โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3โครงงานคณิตศาสตร์3
โครงงานคณิตศาสตร์3
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
 
แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์แบบฝึกหัดเรขาคณิตวิเคราะห์
แบบฝึกหัดเรขาคณิตวิเคราะห์
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์
 
แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์แบบฝึกทักษะตรรกศาสตร์
แบบฝึกทักษะตรรกศาสตร์
 
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้นแบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
แบบฝึกหัดทฤษฏีจำนวนเบื้องต้น
 
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริงแบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
แบบฝึกทักษะฟังก์ชัน(เพิ่มเติม)ตัวจริง
 
แบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติมแบบฝึกหัดจำนวนจริงเพิ่มเติม
แบบฝึกหัดจำนวนจริงเพิ่มเติม
 
แบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริงแบบฝึกทักษะตรีโกณมิติตัวจริง
แบบฝึกทักษะตรีโกณมิติตัวจริง
 
แบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐานแบบฝึกหัดจำนวนจริงพื้นฐาน
แบบฝึกหัดจำนวนจริงพื้นฐาน
 
แบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผลแบบฝึกทักษะการให้เหตุผล
แบบฝึกทักษะการให้เหตุผล
 
งานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริงงานนำเสนอMatrixของจริง
งานนำเสนอMatrixของจริง
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
 
Number theoryตัวจริง
Number theoryตัวจริงNumber theoryตัวจริง
Number theoryตัวจริง
 
ตัวจริง
ตัวจริงตัวจริง
ตัวจริง
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demand
 
ตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demandตรีโกณมิตินำเสนอOn demand
ตรีโกณมิตินำเสนอOn demand
 

Recently uploaded

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024The Digital Insurer
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...apidays
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Principled Technologies
 

Recently uploaded (20)

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 

นำเสนอจำนวนจริงเพิ่มเติม

  • 2. Real Numbers • Real numbers consist of all the rational and irrational numbers. • The real number system has many subsets: – Natural Numbers – Whole Numbers – Integers – Ect.
  • 3. Natural Numbers • Natural numbers are the set of counting numbers. {1, 2, 3,…}
  • 4. Whole Numbers • Whole numbers are the set of numbers that include 0 plus the set of natural numbers. {0, 1, 2, 3, 4, 5,…}
  • 5. Integers • Integers are the set of whole numbers and their opposites. {…,-3, -2, -1, 0, 1, 2, 3,…}
  • 6. Rational Numbers • Rational numbers are any numbers that can be expressed in the form of , where a and b are integers, and b ≠ 0. • They can always be expressed by using terminating decimals or repeating decimals. b a
  • 7. The Rational Numbers The word ratio means fraction. Therefore rational numbers are any numbers which can be written as fractions. 2 3 3 4 5 1 1 5
  • 8. Integers are Rational Numbers Like the 5 in our example, any integer can be made into a fraction by putting it over 1. Since it can be a fraction, it is a rational number. 2 3 3 4 5 1 1 5
  • 9. Changing fractions to decimals It’s easy to change a fraction to a decimal, so rational numbers can also be written as decimals. Rational numbers convert to two different types of decimals: Terminating decimals – which end Repeating decimals – which repeat
  • 10. Terminating decimals To convert a fraction to a decimal, divide the top by the bottom. To convert ½ to a decimal you would do: There is no remainder. The answer just ends – or terminates. .5 2 1.0
  • 11. Terminating Decimals • Terminating decimals are decimals that contain a finite number of digits. • Examples: 36.8 0.125 4.5
  • 12. Repeating decimals To convert a fraction to a decimal, divide the top by the bottom. To convert 1 /3 to a decimal you would do: =0.3333… There is a remainder. The answer just keeps repeating. .333 3 1.000 .3 −
  • 13. Repeating Decimals • Repeating decimals are decimals that contain a infinite number of digits. • Examples:  0.333…  0.19191919…  7.689689… FYI…The line above the decimals indicate that number repeats.
  • 14. Repeating decimals .3 − The bar tells us that it is a repeating decimal. The bar extends over the entire pattern that repeats. .09
  • 15. Rational numbers as decimals Rational numbers can be converted from fractions to either • Terminating decimals or • Repeating decimals
  • 16. Rational numbers The subsets of real numbers that we’ve discussed are “nested” like Russian dolls.
  • 18. To show how these number are classified, use the Venn diagram. Place the number where it belongs on the Venn diagram. π 9 4 2 1 − Rational Numbers Integers Whole Numbers Natural Numbers Irrational Numbers -12.64039… 117 0 6.36 9 4 -3
  • 19. Irrational Numbers • Irrational numbers are any numbers that cannot be expressed as . • They are expressed as non-terminating, non- repeating decimals; decimals that go on forever without repeating a pattern. • Examples of irrational numbers: – 0.34334333433334… – 45.86745893… – (pi) – b a π 2
  • 20. Other Vocabulary Associated with the Real Number System • …(ellipsis)—continues without end • { } (set)—a collection of objects or numbers. Sets are notated by using braces { }. • Finite—having bounds; limited • Infinite—having no boundaries or limits • Venn diagram—a diagram consisting of circles or squares to show relationships of a set of data.
  • 21. Example • Classify all the following numbers as natural, whole, integer, rational, or irrational. List all that apply. a. 117 b. 0 c. -12.64039… d. -½ e. 6.36 f. g. -3 π
  • 22. Solution • Now that all the numbers are placed where they belong in the Venn diagram, you can classify each number: – 117 is a natural number, a whole number, an integer, and a rational number. – is a rational number. – 0 is a whole number, an integer, and a rational number. – -12.64039… is an irrational number. – -3 is an integer and a rational number. – 6.36 is a rational number. – is an irrational number. – is a rational number. π 9 4 2 1 −
  • 23. To show how these number are classified, use the Venn diagram. Place the number where it belongs on the Venn diagram. π 9 4 2 1 − Rational Numbers Integers Whole Numbers Natural Numbers Irrational Numbers -12.64039… 117 0 6.36 9 4 -3
  • 24. FYI…For Your Information • When taking the square root of any number that is not a perfect square, the resulting decimal will be non- terminating and non-repeating. Therefore, those numbers are always irrational.
  • 25. Irrational Numbers • An irrational number is a number that cannot be written as a ratio of two integers. • Irrational numbers written as decimals are non-terminating and non-repeating.
  • 26. Examples of Irrational Numbers • Square roots of non-perfect “squares” • Pi 17
  • 27. Irrational Numbers In English, the word “irrational” means not rational - illogical, crazy, wacky. In math, irrational numbers are not rational. They usually look wacky! …and their decimals never end or repeat! 3 175 π
  • 28. Irrational Numbers There is one trick you need to watch out for! They look wacky but because the number in the house is a perfect square, they are really the integers 5 and 9 in disguise! Sort of like the wolf at Grandma’s house! 25Numbers like and 81
  • 29. Rounding or truncating Some decimals are much longer than we need. There are two ways we can make them shorter. Truncating – just lop the extra digits off. Rounding – use the digit to the right of the one we want to end with to determine whether to round up or not. If that digit is 5 or higher, round up.
  • 30. Truncating Truncating – just lop the extra digits off. If we want to use with just 4 decimal places. We’d just chop off the rest! 3.1415/926… 3.1415 Truncate ~ tree trunk ~ chop! 3.1415926...π = π
  • 31. Rounding If we want to round to 4 decimal places. We’d look at the digit in the 5th place 9 is “5 or bigger” so the digit in the 4th spot goes up 3.14159 3.1416 3.1415926...π = π
  • 32. CLASS WORK 1. Given the set, list the elements of the set that are: a) Natural numbers b) Integers c) Rational numbers d) Irrational numbers 13 15 1.001,0.333..., , 11,11, , 16,3.14, 15 3 π   −   
  • 33. Properties of Real Numbers For any real number a, b and c Addition Multiplication Close a + b ∈ R ab ∈ R Commutative a + b = b + a ab = ba Associative (a + b) + c = a + (b + c) (ab)c = a(bc) Identity A + 0 = a = 0 + a A1 = a = 1a Inverse A + (-a) = 0 = (-a) + a If a in note zero then a-1 .a = 1 =a. a-1
  • 34. Properties of Real Numbers • Distributive property – For all real numbers a, b, and c a(b+c) = ab + ac and (b+c)a = ba + ca
  • 35. Solving Equations; 5 Properties of Equality Reflexive For any real number a, a=a Symmetric Property For all real numbers a and b, if a=b, then b=a Transitive Property For all reals, a, b, and c, if a=b and b=c, then a=c
  • 36. Solving Equations; 5 Properties of Equality Addition and Subtraction For any reals a, b, and c, if a=b then a+c=b+c and a- c=b-c Multiplication and Division For any reals a, b, and c, if a=b then a*c=b*c, and, if c is not zero, a/c=b/c
  • 37. Applications of Equations Problem Solving Plan 1. Explore the Problem 2. Plan the solution 3. Solve the problem 4. Examine the solution
  • 38. Absolute Value Equations Absolute value: Distance from zero For any real number a: If , then If , then 0a ≥ a a= a a= −0a <
  • 39. Properties of Real Numbers Commutative Property: a + b = b + a ab = ba order doesn’t matter Associative Property: (a+b)+c = a+(b+c) (ab)c = a(bc) order doesn’t change
  • 40. Distributive Property: a(b+c) = ab + ac you can add then multiply or multiply then add.
  • 41. Theory about Real Numbers Theorem 1. Eliminated Rule for Addition when a , b and c are real numbers. (i) if a + c = b + c then a = b (ii) if a + b = a + c then b = c Theorem 2. Eliminated Rule for Multiplication when a , b and c are real numbers. (i) if ac = bc and c ≠ 0 then a = b (ii) if ab = ac and a ≠ 0 then b = c
  • 42. Theory about Real Numbers Theorem 3. When a is real numbers. a.0 = 0 Theorem 4. When a is real numbers. (-1)a = -a Theorem 5. When a and b are real numbers. if ab = 0 then a = 0 or b = 0 Theorem 6. When a and b are real numbers. 1. a(-b) = -ab 2. (-a)b = -ab 3. (-a)(-b) = ab
  • 43. Subtraction and Divisor of Real Numbers Definition. When a and b are real numbers. a – b = a + (-b) Definition. When a and b are real numbers. = a(b-1 )
  • 44. Theory about Real Numbers Theorem 7. When a , b and c are real numbers. 1. a(b – c) = ab – ac 2. (a – b)c = ac – bc 3. (-a)(b – c) = -ab + ac Theorem 8. When a ≠ 0 then a-1 ≠ 0
  • 45. Theory about Real Numbers Theorem 9. When a , b and c are real numbers. 1. when b , c ≠ 0 2. when b , c ≠ 0 3. when b , d ≠ 0 4. when b , d ≠ 0
  • 46. Theory about Real Numbers Theorem 9. When a , b and c are real numbers. 5. when b , c ≠ 0 6. when b , c ≠ 0 7. when b , d ≠ 0
  • 47. CLASS WORK State the property of real numbers being used. 2. 3. 4. ( ) ( )2 3 5 3 5 2+ = + ( )2 2 2A B A B+ = + ( ) ( )2 3 2 3p q r p q r+ + = + +
  • 48. TRUE OR FALSE 1. The set of WHOLE numbers is closed with respect to multiplication.
  • 49. TRUE OR FALSE 2. The set of NATURAL numbers is closed with respect to multiplication.
  • 50. TRUE OR FALSE 3. The product of any two REAL numbers is a REAL number.
  • 51. TRUE OR FALSE 4. The quotient of any two REAL numbers is a REAL number.
  • 52. TRUE OR FALSE 5. Except for 0, the set of RATIONAL numbers is closed under division.
  • 53. TRUE OR FALSE 6. Except for 0, the set of RATIONAL numbers contains the multiplicative inverse for each of its members.
  • 54. TRUE OR FALSE 7. The set of RATIONAL numbers is associative under multiplication.
  • 55. TRUE OR FALSE 8. The set of RATIONAL numbers contains the additive inverse for each of its members.
  • 56. TRUE OR FALSE 9. The set of INTEGERS is commutative under subtraction.
  • 57. TRUE OR FALSE 10. The set of INTEGERS is closed with respect to division.
  • 58. Solving polynomial Equations one variable. We can write polynomial Equations of x variable that is anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0 when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be coefficiants of the polynomail are real numbers by a ≠ 0 Then we can called anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0 is polynomail of degree n. The symbol is p(x) , q(x) , r(x) and if p(a) that mean we instead x in p(x) by a . Example. P(x) = x3 – 4x2 + 3x + 2 p(1) = 13 – 4(1)2 + 3(1) + 2 = 2
  • 59. Solving polynomial Equations one variable. Example. Find the answer of 3x3 + 2x2 - 12x – 8 = 0 Solve. by use Addition and Multiplication of real numbers. Then we can multiplied by the following factor. 3x3 + 2x2 - 12x – 8 = (3x3 + 2x2 ) – (12x + 8) = x2 (3x + 2) – 4(3x + 2) = (3x + 2)(x2 - 4) = (3x + 2)(x - 2)(x + 2) By Theory 5 then x = , or x = 2 or x = -2 Answer {-2 , , 2}
  • 60. Solving polynomial Equations by remainder Theorem Method. Remainder theorem. When p(x) is anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0 when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be real numbers by a ≠ 0 . if p(x) is divied by x – c when c is real number then the remainder is equal p(c)
  • 61. Solving polynomial Equations by remainder Theorem Method. Proof. Give p(x) is divied by x – c then we get quotient q(x) And remainder be q(x) Thus p(x) = (x – c)q(x) + r(x) ……(1) Which r(x) is zero or polynomail of degree is less than x – c that mean degree 0. hence r(x) is constant. Give r(x) = d when d is constant. Thus p(x) = (x – c)q(x) + d ……(2) when instead x in (2) by c We get p(c) = (c – c)q(x) + d = d Hence remainder equal is p(c)
  • 62. Solving polynomial Equations by remainder Theorem Method. Example 1. Find the remainder when 9x3 + 4x - 1 is divided by x - 2 Solve. 9x2 + 18x + 40 9x3 - 18x2 18x2 + 4x – 1 18x2 - 36x 40x – 1 40x – 80 79 Thus remainder is 79
  • 63. Solving polynomial Equations by remainder Theorem Method. Example 1. Find the remainder when 9x3 + 4x - 1 is divided by x - 2 Solve. Give p(x) = 9x3 + 4x - 1 thus p(2) = 9(2)3 + 4(2) - 1 = 72 + 8 – 1 = 79 Thus the remainder is 79.
  • 64. Solving polynomial Equations by remainder Theorem Method. Example 2. Find the remainder when 2x4 - 7x3 + x2 + 7x – 3 is divided by x + 1 Solve. Give p(x) = 2x4 - 7x3 + x2 + 7x – 3 Since x +1 = x – (-1) thus c = -1 thus p(-1) = 2(-1)4 – 7(-1)3 + (-1)2 + 7(-1) – 3 = 2 + 7 + 1 – 7 – 3 = 0 Thus the remainder is 0.
  • 65. Factor theorem. When p(x) is anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0 when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be real numbers by a ≠ 0 . p(x) there is x – c that is factor iff p(c) = 0
  • 66. Factor theorem. Example. 1) Write x4 – x3 -2x2 – 4x – 24 be factor. Solve. Give p(x) = x4 – x3 -2x2 – 4x – 24 since integers that can divide -24 are ±1,±2,±3,±4,±6,±8,±12, ±24 Then consider p(1) ,p(-1) ,p(2) that is not equal zero. But p(-2) = (-2)4 – (-2)3 -2(-2)2 – 4(-2) – 24 = 16 + 8 – 8 + 8 – 24 = 0 Thus x + 2 is the factor of x4 – x3 -2x2 – 4x – 24
  • 67. Factor theorem. Example. 1) Write x4 – x3 -2x2 – 4x – 24 be factor. Solve. Thus x + 2 is the factor of x4 – x3 -2x2 – 4x – 24 Take x + 2 divide x4 – x3 -2x2 – 4x – 24 then get x3 -3x2 + 4x – 12 Thuse x4 – x3 -2x2 – 4x – 24 = (x + 2)(x3 -3x2 + 4x – 12) = (x + 2){(x3 -3x2 )+ 4(x – 3)} = (x + 2){x2 (x -3) + 4(x – 3)} = (x + 2)(x – 3)(x2 + 4)
  • 68. Factor theorem. Example. 2) Write x3 -5x2 + 2x + 8 be factor. Solve. Give p(x) = x3 -5x2 + 2x + 8 since integers that can divide 28 are ±1,±2,±4,±8 Then consider p(1) ,p(-1) ,p(-2) that is not equal zero. But p(2) = (2)3 -5(2)2 + 2(2) + 8 = 8 - 20 + 4 + 8 = 0 Thus x - 2 is the factor of x3 -5x2 + 2x + 28
  • 69. Factor theorem. Example. 2) Write x3 -5x2 + 2x + 8 be factor. Solve. Thus x - 2 is the factor of x3 -5x2 + 2x + 8 Take x - 2 divide x3 -5x2 + 2x + 8 then get x2 - 3x – 4 Thuse x3 -5x2 + 2x + 8 = (x - 2)(x2 - 3x – 4) = (x - 2)(x – 4)(x + 1)
  • 70. Factor theorem. Example. 3) Write x3 + 2x2 - 5x - 6 be factor. Solve. Give p(x) = x3 + 2x2 - 5x - 6 since integers that can divide 6 are ±1,±2,±3,±6 Then consider p(1) that is not equal zero. But p(-1) = (-1)3 + 2(-1)2 – 5(-1) - 6 = -1 + 2 + 5 - 6 = 0 Thus x + 1 is the factor of x3 + 2x2 - 5x - 6
  • 71. Factor theorem. Example. 3) Write x3 + 2x2 - 5x - 6 be factor. Solve. Thus x + 1 is the factor of x3 + 2x2 - 5x - 6 Take x + 1 divide x3 + 2x2 - 5x - 6 then get x2 + x – 6 Thuse x3 + 2x2 - 5x - 6 = (x + 1)(x2 + x – 6) = (x + 1)(x – 2)(x + 3)
  • 72. Solving polynomial Equations by remainder Theorem Method. Rational factorization theorem. When p(x) is anxn + an-1xn-1 + an-2xn-2 + … + a1x + a0 when n be positive integers and an ,an-1,an-2 ,…,a1,a0 be real numbers by a ≠ 0 . if x - is factor of polynomial p(x) by m and k are integer which m ≠ 0 and greatest common factor of m and k is equal 1 Then m can divied an and k can divided a0 .
  • 73. Example. 1) Write 12x3 + 16x2 - 5x – 3 be factor. Solve. Give p(x) = 12x3 + 16x2 - 5x – 3 since integers that can divide -3 are ±1,±2,±3 And integers that can divide 12 are ±1,±2,±3, ±4,±6,±12 Then the rational number that p( ) = 0 in among ±1,±2,±3, Then consider p( ) that is equal zero.
  • 74. Example. 1) Write 12x3 + 16x2 - 5x – 3 be factor. Solve. Thus x - is the factor of 12x3 + 16x2 - 5x – 3 Take x - divide 12x3 + 16x2 - 5x – 3 then get 12x2 + 22x + 6 Thuse 12x3 + 16x2 - 5x – 3 = (x - )(12x2 + 22x + 6) = (x - )(2) (6x2 + 11x + 3) = (2x – 1)(6x2 + 11x + 3) = (2x – 1)(3x + 1)(2x + 3)
  • 75. Example. 2) Solving Equation 6x3 - 11x2 + 6x = 1 Solve. Since 6x3 - 11x2 + 6x = 1 Then we get 6x3 - 11x2 + 6x -1 = 0 Give p(x) = 6x3 - 11x2 + 6x -1 p(1) = 6 – 11 + 6 – 1 = 0 Thus p(x) = (x -1)(6x2 - 5x + 1) = (x – 1)(2x – 1)(3x – 1) Since 6x3 - 11x2 + 6x -1 = 0 (x – 1)(2x – 1)(3x – 1) = 0 Then x – 1 = 0 or 2x -1 = 0 or 3x – 1 = 0 Thus x = 1 or x = or x = Answer {1 , , }
  • 76. Example. 1) Write 12x3 + 16x2 - 5x – 3 be factor. Solve. Thus x - is the factor of 12x3 + 16x2 - 5x – 3 Take x - divide 12x3 + 16x2 - 5x – 3 then get 12x2 + 22x + 6 Thuse 12x3 + 16x2 - 5x – 3 = (x - )(12x2 + 22x + 6) = (x - )(2) (6x2 + 11x + 3) = (2x – 1)(6x2 + 11x + 3) = (2x – 1)(3x + 1)(2x + 3)
  • 77. Properties of inequalities. IN real number system we use symbol < , > , ≤ ,≥ , ≠ be less than , more than , less than or equal to , more than or equal to ,not equal sort by order if a and be be real number the symbol a < b that mean a less than b and a > b that mean a more than b Trichotomy property. if a and b be real number then a = b , a < b and a > b That was actually only one .
  • 78. Definition. a ≤ b that mean a less than or equal to b a ≥ b that mean a more than or equal to b a < b < c that mean a < b and b < c a ≤ b ≤ c that mean a ≤ b and b ≤ c a < b ≤ c that mean a < b and b ≤ c a ≤ b < c that mean a ≤ b and b < c
  • 79. Properties of inequalities. Give a , b , c be real numbers 1. Transitive Property. if a > b and b > c then a > c Such as 5 > 3 and 3 > 1 then 5 > 1 2. Properties of Addition and Subtraction. So adding (or subtracting) the same value to both a and b will not change the inequality if a > b then a + c > b + c Such as 4 > 2 then 4 + 1 > 2 + 1
  • 80. Properties of inequalities. Give a , b , c be real numbers 3.Positive and Negative number when compare with zero a is positive number iff a > 0 a is negative number iff a < 0 4. Property of Multiplication but not with zero. Case 1 if a > b and c > 0 then ac > bc Case 2 if a > b and c < o then ac < bc
  • 81. Properties of inequalities. Give a , b , c be real numbers 5. Properties excision for Addition. if a + c > b + c then a > b Such as 5 + 2 > 3 + 2 then 5 > 3 6. Properties excision for Multiplication. Case 1 if ac > bc and c > 0 then a > b Such as 6 × 3 > 4 × 3 and 3 > 0 then 6 > 4 Case 2 if ac > bc and c < 0 then a < b Such as 3 × (-3) > 4 × (-3) and -3 < 0 then 3 < 4
  • 82. Intervals Notation Graph Set-builder Notation (a, b) [a, b] [a, b) (a, b] (a, ∞) [a, ∞) (-∞, b) (-∞, b] (-∞, ∞) b b
  • 83. Solving inequalities. Exmaple. Solving inequalities following problems. 1. 3x + 5 < x – 7 Solve. Since 3x + 5 < x – 7 3x – x < -7 – 5 2x < -12 x < -6 Answer {x/x < -6} or (-∝ , -6)
  • 84. Solving inequalities. Exmaple. Solving inequalities following problems. 2. 4y + 7 > 2(y + 1) Solve. Since 4y + 7 > 2(y + 1) 4y + 7 > 2y + 2 4y – 2y > 2 - 7 2y > -5 y > Answer {y/y > } or ( , ∝)
  • 85. Solving inequalities. Exmaple. Solving inequalities following problems. 3. x2 – x – 6 ≤ 0 Solve. Since x2 – x – 6 ≤ 0 (x – 3)(x + 2) ≤ 0 Then x – 3 = 0 or x + 2 = 0 We get x = 3 or x = -2 Thus + - + -2 3 Answer { x / -2 ≤ x ≤3 } or [-2 , 3]
  • 86. Solving inequalities. Exmaple. Solving inequalities following problems. 4. 2x2 + 7x + 3 ≥ 0 Solve. Since 2x2 + 7x + 3 ≥ 0 (2x + 1)(x + 3) ≤ 0 Then 2x + 1 = 0 or x + 3 = 0 We get x = or x = -3 Thus + - + -3 Answer (-∝ , -3) ∪ ( , ∝)
  • 87. Solving inequalities. Exmaple. Solving inequalities following problems. 5. Solve. Since
  • 88. Solving inequalities. Exmaple. Solving inequalities following problems. 5. Solve. Take multiplicate all sides Then (x – 4)2
  • 89. then we take (-1) multiplicate all sides We get Then x – 5 = 0 or x + 2 = 0 or x – 4 = 0 x = 5 or x = -2 or x = 4 - + - + -2 4 5 (x2 – 3x – 10)(x – 4) ≥ 0 (x – 5)(x + 2)(x – 4) ≥ 0
  • 90. And if the inequalities to a degree greater than two. We can use the Remainder Theorem Method .
  • 91. Absolute value inequalities. Definition. give a be real number a if a > 0 | a | = 0 if a = 0 -a if a < 0
  • 92. Absolute value inequalities. Theorem. when x and y be real number 1.| x | = | -x | 2.| xy | = | x || y | 3. = , y ≠ 0 4.| x - y | = | y - x | 5.| x | = x 6.| x + y | ≤ | x | + | y | 2 2
  • 93. Solving equations and inequalities in Absolute value. Theory 11. when a be positive number set of the answers of |a| = a is {a , -a}
  • 94. Example. Find the answer of the following equations. 1. |2x - 3| = 9 Solve. since |2x - 3| = 9 then 2x -3 = 9 or 2x – 3 = -9 x = 6 or x = -3 Answer {-3 , 6}
  • 95. Example. Find the answer of the following equations. 2. |3x - 1| = |x + 5| Solve. since |3x - 1| = |x + 5| then 3x -1 = x + 5 or 3x -1 = -(x + 5) 2x = 6 or 4x = -4 x = 3 or x = -1 Answer {-1 , 3}
  • 96. Example. Find the answer of the following equations. 3. |2x + 1| = 3x - 5 Solve. since |2x + 1| = 3x - 5 then 3x – 5 ≥ 0 and [2x +1 = 3x - 5 or 2x +1 = -(3x - 5) x ≥ and x = 6 0r x = Answer { 6 }
  • 97. Solving equations and inequalities in Absolute value. Theory 12. when a be positive number 1. |a| < a that mean -a < x < a 2. |a| ≤ a that mean -a ≤ x ≤ a 3. |a| > a that mean x <-a or x > a 4. |a| ≥ a that mean x ≤-a or x ≥ a
  • 98. Example. Find the answer of the following equations. 1. |4x - 3| < 1 Solve. since |4x - 3| < 1 then -1 < 4x – 3 < 1 2 < 4x < 4 < x < 1 Answer ( , 1)
  • 99. Example. Find the answer of the following equations. 2. |x - 3| ≥ 2 Solve. since |x - 3| ≥ 2 then x -3 ≤ -2 or x - 3 ≥ 2 x ≤ 1 or x ≥ 5 Answer (-∝ , 1] ∪ [ 5 , ∝)
  • 100. Example. Find the answer of the following equations. 3. |x + 1| ≤ 2x - 3 Solve. since |x + 1| ≤ 2x – 3 Then -(2x – 3) ≤ x + 1 ≤ 2x – 3 -(2x – 3) ≤ x + 1 and x + 1 ≤ 2x – 3 -3x ≤ -2 and -x ≤ -4 x ≥ and x ≥ 4 Answer [4 , ∝)
  • 101. Example. Find the answer of the following equations. 4. |2x + 4| > x + 1 Solve. since |2x + 4| > x + 1 Then 2x + 4 <-(x + 1) or 2x + 4 > x + 1 3x < -5 or x > -3 x < - or x > -3 Answer (-∝ , - ) ∪ (-3 , ∝)
  • 102. Example. Find the answer of the following equations. 5. |x| < |2x - 1| Solve. since |x| < |2x - 1| Then x < (2x – 1)2 2 x2 < 4x2 – 4x + 1 0 < 3x2 – 4x + 1 0 < (3x -1)(x – 1)
  • 103. Example. Find the answer of the following equations. 5. |x| < |2x - 1| Solve. Then 3x – 1 = 0 or x – 1 = 0 x = or x = 1 + - + 1 Answer (-∝ , ) ∪ (1 , ∝) 0 < (3x -1)(x – 1)