SlideShare a Scribd company logo
1 of 47
Download to read offline
PRMs Random generation Population Conclusion & ongoing work 
Génération aléatoire de réseaux Bayésiens 
relationnels 
Mouna Ben Ishak1;2, Philippe Leray2 and Nahla Ben Amor1 
1 Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de 
Processus (LARODEC), ISG Tunis, Tunisie 
2 Laboratoire d’Informatique de Nantes Atlantique (LINA), UMR CNRS 6241, 
Université de Nantes, France 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 1/27
PRMs Random generation Population Conclusion & ongoing work 
Motivation (1/3) 
f1 f2 f3 … fm 
x1 v1 v3 v2 … v1 
x2 v2 v1 V3 … v1 
x3 v1 v2 v3 … v2 
… … … … … … 
xn v1 v3 v2 … v1 
Learned model 
Features 
Observations 
Training 
set 
Learning 
algorithm 
Flat data representation 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 2/27
PRMs Random generation Population Conclusion & ongoing work 
Motivation (2/3) 
Presentation 
Presentation 
Business logic DDDaaatttaaa 
Business logic DDDaaatttaaa 
Relational 
representation!!! 
Relational 
representation!!! 
How to use relational data with classical machine learning algorithms? 
How to use this data with classical machine learning algorithms? 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 3/27
PRMs Random generation Population Conclusion & ongoing work 
Motivation (3/3) 
Propositionalization 
It has been shown that propositionalization is not always 
appropriate to perform learning in relational domains (Maier et 
al., 10) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 4/27
PRMs Random generation Population Conclusion & ongoing work 
Motivation (3/3) 
Propositionalization 
It has been shown that propositionalization is not always 
appropriate to perform learning in relational domains (Maier et 
al., 10) 
Relational transition 
Extend classical machine learning techniques in the context of 
relational data representation 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 4/27
PRMs Random generation Population Conclusion & ongoing work 
Outline ... 
1. PRMs 
2. Random generation 
2.1. Relational schema random generation 
2.2. PRM random generation 
3. Population 
4. Conclusion & ongoing work 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 5/27
PRMs Random generation Population Conclusion & ongoing work 
Bayesian networks (BN) (Pearl, 85) 
Definition 
G qualitative description of 
conditional dependences 
/ independences 
between variables 
directed acyclic graph 
(DAG) 
 quantitative description 
of these dependences 
conditional probability 
distributions (CPDs) 
Gender 
Occupation 
Age 
Low Middle High 
Age Occupation 
Oc1 Oc2 Oc3 
Low,F 0.5 0.1 0.4 
Low,M 0.3 0.5 0.2 
Middle,F 0.2 0.4 0.4 
Middle,M 0.9 0.1 0 
High,F 0.3 0.5 0.2 
High,M 0.2 0.3 0.5 
Gender 
M F 
Gender 
0.4 0.3 0.3 
Age 
0.4 0.6 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 6/27
PRMs Random generation Population Conclusion  ongoing work 
BN structure learning 
Constraint-based methods 
BN = independence model 
) find cond. indep. (CI) in data in order to build the DAG 
ex : IC (Pearl  Verma, 91), PC (Spirtes et al., 93) 
problem : reliability of CI statistical tests (ok for n  100) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27
PRMs Random generation Population Conclusion  ongoing work 
BN structure learning 
Constraint-based methods 
BN = independence model 
problem : reliability of CI statistical tests (ok for n  100) 
Score-based methods 
BN = probabilistic model that must fit data as well as 
possible 
) search the DAG space in order to maximize a scoring 
function 
ex : Maximum Weighted Spanning Tree (Chow  Liu, 68), 
Greedy Search (Chickering, 95), evolutionary approaches 
(Larranaga et al., 96) (Wang  Yang, 10) 
problem : size of search space (ok for n  1000) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27
PRMs Random generation Population Conclusion  ongoing work 
BN structure learning 
Constraint-based methods 
BN = independence model 
problem : reliability of CI statistical tests (ok for n  100) 
Score-based methods 
BN = probabilistic model that must fit data as well as 
possible 
problem : size of search space (ok for n  1000) 
Hybrid/ local search methods 
local search / neighbor identification (statistical tests) 
global (score) optimization 
usually for scalability reasons (ok for high n) 
Génératioenxalé:atoMireMdeHrésCeauax Blgayoésrieitnhs rmelatio(nTneslsamardJFinRBo’1s4 et a25l-.2,70jui6n,)IHP, Paris, France 7/27
PRMs Random generation Population Conclusion  ongoing work 
Evaluating structure learning algorithms 
Standard practice 
generating data from a reference model 
applying a structure learning algorithm with this data 
comparing the learned and reference models 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 8/27
PRMs Random generation Population Conclusion  ongoing work 
Evaluating structure learning algorithms 
Standard practice 
generating data from a reference model 
applying a structure learning algorithm with this data 
comparing the learned and reference models 
Which reference model ? 
existence of reference benchmarks (e.g., Asia, Alarm, ...). 
randomly generated models (Ide et al., 04) 
arbitrarily large BN by tiling (Tsamardinos et al., 06) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 8/27
PRMs Random generation Population Conclusion  ongoing work 
Which kind of data ? 
BN learning from data... but which kind of data ? 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 9/27
PRMs Random generation Population Conclusion  ongoing work 
Which kind of data ? 
BN learning from data... but which kind of data ? 
how to deal with structured data ? 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 9/27
PRMs Random generation Population Conclusion  ongoing work 
Relational schema 
Movie 
User 
Vote 
Movie 
User 
Rating 
Gender 
Age 
Occupation 
RealiseDate 
Genre 
A relational schema R 
classes + relational variables 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
PRMs Random generation Population Conclusion  ongoing work 
Relational schema 
Movie 
User 
Vote 
Movie 
User 
Rating 
Gender 
Age 
Occupation 
RealiseDate 
Genre 
A relational schema R 
classes + relational variables 
reference slots (e.g., 
Vote:Movie;Vote:User) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
PRMs Random generation Population Conclusion  ongoing work 
Relational schema 
Movie 
User 
Vote 
Movie 
User 
Rating 
Gender 
Age 
Occupation 
RealiseDate 
Genre 
A relational schema R 
classes + relational variables 
reference slots (e.g., 
Vote:Movie;Vote:User) 
slot chain = a sequence of 
reference slots 
allow to walk in the relational 
schema to create new variables 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
PRMs Random generation Population Conclusion  ongoing work 
Relational schema 
Movie 
User 
Vote 
Movie 
User 
Rating 
Gender 
Age 
Occupation 
RealiseDate 
Genre 
A relational schema R 
classes + relational variables 
reference slots (e.g., 
Vote:Movie;Vote:User) 
slot chain = a sequence of 
reference slots 
allow to walk in the relational 
schema to create new variables 
ex : Vote:User:User1:Movie : 
all the movies voted by a 
particular user 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
PRMs Random generation Population Conclusion  ongoing work 
Probabilistic Relational Models 
(Koller  Pfeffer, 98) 
Definition 
A PRM  associated to R : 
a qualitative dependency 
structure S (with possible 
long slot chains and 
aggregation functions) 
a set of parameters S 
Vote 
User.Gender 
M F 
0.4 0.6 
Rating 
Movie 
User 
RealiseDate 
Genre 
Gender Age 
Occupation 
Movie.Genre Votes.Rating 
Low High 
Drama, M 0.5 0.5 
Drama, F 0.3 0.7 
Horror, M 0.2 0.8 
Horror, F 0.9 0.1 
Comedy, M 0.5 0.5 
Comedy, F 0.6 0.4 
User.Gender 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 11/27
PRMs Random generation Population Conclusion  ongoing work 
Probabilistic Relational Models 
Definition 
Vote 
User.Gender 
M F 
0.4 0.6 
Rating 
Movie 
User 
RealiseDate 
Genre 
Gender Age 
Occupation 
Movie.Genre Votes.Rating 
Low High 
Drama, M 0.5 0.5 
Drama, F 0.3 0.7 
Horror, M 0.2 0.8 
Horror, F 0.9 0.1 
Comedy, M 0.5 0.5 
Comedy, F 0.6 0.4 
User.Gender 
Aggregators 
Vote:User:User1:Movie:genre ! Vote:rating 
movie rating from one user can be dependent with the 
genre of all the movies voted by this user 
how to describe the dependency with an unknown number 
of parents ? 
solution : using an aggregated value, e.g. 
 = MODE 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 11/27
PRMs Random generation Population Conclusion  ongoing work 
Ground Bayesian Network 
GBN 
BN created from one 
PRM and an 
instantiated 
database 
= relational skeleton 
Age 
Rating 
Age 
Gender 
Occupation 
Age 
Gender 
Occupation 
Gender 
Occupation 
Genre 
RealiseDate 
Genre 
Genre 
Genre 
Genre 
U1 
U2 
U3 
M1 
M2 
M3 
M4 
M5 
#U1, #M1 
Rating 
#U1, #M2 
Rating 
#U2, #M1 
Rating 
#U2, #M3 
Rating 
#U2, #M4 
Rating 
#U3, #M1 
Rating 
#U3, #M2 
Rating 
#U3, #M3 
Rating 
#U3, #M5 
RealiseDate 
RealiseDate 
RealiseDate 
RealiseDate 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 12/27
PRMs Random generation Population Conclusion  ongoing work 
Ground Bayesian Network 
GBN 
BN created from one 
PRM and an 
instantiated 
database 
= relational skeleton 
+ probabilistic 
dependencies 
used for probabilistic 
inference 
Age 
Rating 
Age 
Gender 
Occupation 
Age 
Gender 
Occupation 
Gender 
Occupation 
Genre 
RealiseDate 
Genre 
Genre 
Genre 
Genre 
U1 
U2 
U3 
M1 
M2 
M3 
M4 
M5 
#U1, #M1 
Rating 
#U1, #M2 
Rating 
#U2, #M1 
Rating 
#U2, #M3 
Rating 
#U2, #M4 
Rating 
#U3, #M1 
Rating 
#U3, #M2 
Rating 
#U3, #M3 
Rating 
#U3, #M5 
RealiseDate 
RealiseDate 
RealiseDate 
RealiseDate 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 12/27
PRMs Random generation Population Conclusion  ongoing work 
PRM structure learning 
Constraint-based methods 
relational PC (Maier et al., 10) relational CD (Maier et al., 
13) 
don’t deal with aggregation functions 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
PRMs Random generation Population Conclusion  ongoing work 
PRM structure learning 
Constraint-based methods 
Score-based methods 
greedy search (Getoor et al., 07) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
PRMs Random generation Population Conclusion  ongoing work 
PRM structure learning 
Constraint-based methods 
Score-based methods 
Hybrid methods 
relational MMHC (Ben Ishak et al., in progress) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
PRMs Random generation Population Conclusion  ongoing work 
PRM structure learning 
Constraint-based methods 
Score-based methods 
Hybrid methods 
Critics - previous works 
lack of evaluation process, in a common framework 
absence of relational benchmarks for evaluation algorithms 
absence of relational data generation process 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
PRMs Random generation Population Conclusion  ongoing work 
PRM structure learning 
Constraint-based methods 
Score-based methods 
Hybrid methods 
Critics - previous works 
Proposition 
a synthetic approach to randomly generate and populate PRMs 
and databases 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
PRMs Random generation Population Conclusion  ongoing work 
PRMs random generation 
Related work 
(Maier et al., 10, 13) 
relational schemas are generated as tree structure ... too 
simple 
(Wuillemin et al., 12) 
object-oriented paradigm rather than relational one 
no population nor interaction with a relational database 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 14/27
PRMs Random generation Population Conclusion  ongoing work 
The overall process 
PPRRMM 
DDBB iinnssttaannccee 
Instantiate 
Sample 
Model generation 
RReellaattiioonnaall SScchheemmaa PPrroobbaabbiilliissttiiccddeeppeennddeenncciieess 
Instance generation 
RReellaattiioonnaall SSkkeelleettoonn PPrroobbaabbiilliissttiiccddeeppeennddeenncciieess GGrroouunnddBBNN 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 15/27
PRMs Random generation Population Conclusion  ongoing work 
The overall platform 
RDB 
Visualization 
Inference 
Learning PRM 
PRM API 
Parameters learning Structure learning 
+ 
score-based 
+ 
constraint-based 
+ 
Hybrid 
Statistical learning 
+ 
Bayesian learning 
Benchmarking 
+ 
Evaluation 
FIGURE: PRM API under the PILGRIM platform 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 16/27
PRMs Random generation Population Conclusion  ongoing work 
Outline ... 
1. PRMs 
2. Random generation 
2.1. Relational schema random generation 
2.2. PRM random generation 
3. Population 
4. Conclusion  ongoing work 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 17/27
PRMs Random generation Population Conclusion  ongoing work 
Generating the relational schema 
Hypotheses 
with respect to the relational model definition (Date, 08) : 
avoid referential cycles when generating constraints 
8Xi ;Xi 2 X there exist a referential path from Xi to Xj : 
searching for DAG structures with a single connected 
component 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 18/27
PRMs Random generation Population Conclusion  ongoing work 
Example 
Clazz0 
Clazz1 
Clazz2 
Clazz3 
n1 
n0 
n2 
n3 
Clazz0 
Clazz1 
Clazz2 
Clazz3 
att0 
att1 
att0 
att1 
att2 
att0 
att1 
att2 
att3 
att0 
Clazz0 
Clazz1 
Clazz2 
Clazz3 
clazz0id 
clazz1id 
clazz3id 
clazz2id 
clazz1id 
clazz0id 
clazz3id 
clazz2id 
Clazz0 
Clazz1 
#clazz1fkatt10 
Clazz2 
Clazz3 
att0 
att1 
att0 
att1 
att2 
att0 
att1 
att2 
att3 
att0 
clazz1id 
clazz0id 
clazz3id 
clazz2id 
#clazz0fkatt03 
#claszz1fkatt13 
#clazz2fkatt23 
#clazz1fkatt12 
G 
generate primary keys 
generate attributes 
generate foreign keys 
generate foreign keys 
1 
2 
3 
3 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 19/27
PRMs Random generation Population Conclusion  ongoing work 
Generating the PRM 
Goal 
randomly generating probabilistic dependencies S 
between the attributes of the classes structure 
sampling CPDs like for usual BNs 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27
PRMs Random generation Population Conclusion  ongoing work 
Generating the PRM 
Goal 
Hypothesis 
the dependency structure S should be a DAG 
one descriptive attribute is dependent with another one, 
but with which slot chain ? 
we need a user-defined maximum slot chain length Kmax 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27
PRMs Random generation Population Conclusion  ongoing work 
Generating the PRM 
Goal 
Hypothesis 
Principle 
step I : add dependencies while keeping a DAG structure, 
first into classes, then intra classes 
step II : random choice of a legal slot chain weighted by its 
length 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27
PRMs Random generation Population Conclusion  ongoing work 
Example 
Clazz0 
Clazz1 
claszz1fkatt13. clazz1fkatt10-1] 
Clazz2 
Clazz3 
att0 
att1 
att0 
att0 
att0 
clazz1fkatt10 
clazz0fkatt03 
claszz1fkatt13 
clazz2fkatt23 
clazz1fkatt12 
att2 
att1 
att3 
att1 
att2 
[Clazz0.clazz1fkatt10] 
[Clazz2.clazz1fkatt12] 
-1] 
clazz2fkatt23Calzz2.MODE 
[-1] 
MODE 
clazz1fkatt12clazz1fkatt12. [Clazz2.[Calzz2.clazz2fkatt23-1. 
MODE 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 21/27
PRMs Random generation Population Conclusion  ongoing work 
Outline ... 
1. PRMs 
2. Random generation 
2.1. Relational schema random generation 
2.2. PRM random generation 
3. Population 
4. Conclusion  ongoing work 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 22/27
PRMs Random generation Population Conclusion  ongoing work 
GBN creation and sampling 
Generating the relational skeleton 
by generating a random number of objects per class 
adding links between objects : all referencing classes have 
their generated objects related to objects from referenced 
classes 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27
PRMs Random generation Population Conclusion  ongoing work 
GBN creation and sampling 
Generating the relational skeleton 
Creating the GBN 
the GBN is constructed by using the CPDs already defined 
by the PRM 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27
PRMs Random generation Population Conclusion  ongoing work 
GBN creation and sampling 
Generating the relational skeleton 
Creating the GBN 
Populating the database 
sampling from the GBN 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27
PRMs Random generation Population Conclusion  ongoing work 
Example 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 24/27
PRMs Random generation Population Conclusion  ongoing work 
Outline ... 
1. PRMs 
2. Random generation 
2.1. Relational schema random generation 
2.2. PRM random generation 
3. Population 
4. Conclusion  ongoing work 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 25/27
PRMs Random generation Population Conclusion  ongoing work 
Conclusion - Perspectives 
Conclusion 
we proposed one process to randomly generate PRMs and 
instantiate them to populate a relational database 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 26/27
PRMs Random generation Population Conclusion  ongoing work 
Conclusion - Perspectives 
Conclusion 
we proposed one process to randomly generate PRMs and 
instantiate them to populate a relational database 
Ongoing work 
propose a new approach to learn PRM structure from 
relational data 
comparing it with existing state-of-the-art approaches, with 
databases using our random generation process 
extend our generation approach to address other relational 
probabilistic graphical models (e.g., DAPER) 
Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 26/27
A suivre :-) 
Jeudi 9h30 - Ghada Trabelsi - 
Evaluation des algos 
d’apprentissage de structure des 
RB dynamiques 
Jeudi 10h - Anthony Coutant - 
Apprentissage d’une extension 
des PRM 
Vendredi 10h30 - Maroua 
Haddad - Apprentissage des 
réseaux possibilistes 
D Données 
Data 
U Connaissances 
Utilisateurs 
User 
Ke 
Knowledge
A suivre :-) 
Jeudi 9h30 - Ghada Trabelsi - 
Evaluation des algos 
d’apprentissage de structure des 
RB dynamiques 
Jeudi 10h - Anthony Coutant - 
Apprentissage d’une extension 
des PRM 
Vendredi 10h30 - Maroua 
Haddad - Apprentissage des 
réseaux possibilistes 
Any question ?

More Related Content

What's hot

Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationArjen de Vries
 
Topic Modeling for Information Retrieval and Word Sense Disambiguation tasks
Topic Modeling for Information Retrieval and Word Sense Disambiguation tasksTopic Modeling for Information Retrieval and Word Sense Disambiguation tasks
Topic Modeling for Information Retrieval and Word Sense Disambiguation tasksLeonardo Di Donato
 
Neural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progressNeural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progressBhaskar Mitra
 
Task oriented word embedding for text classification
Task oriented word embedding for text classificationTask oriented word embedding for text classification
Task oriented word embedding for text classificationPC LO
 
Practical machine learning - Part 1
Practical machine learning - Part 1Practical machine learning - Part 1
Practical machine learning - Part 1Traian Rebedea
 
NLP_Project_Paper_up276_vec241
NLP_Project_Paper_up276_vec241NLP_Project_Paper_up276_vec241
NLP_Project_Paper_up276_vec241Urjit Patel
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Bhaskar Mitra
 
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Arjen de Vries
 
Word Tagging with Foundational Ontology Classes
Word Tagging with Foundational Ontology ClassesWord Tagging with Foundational Ontology Classes
Word Tagging with Foundational Ontology ClassesAndre Freitas
 
Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...
Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...
Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...Alexander Panchenko
 
An Approach to Automated Learning of Conceptual Graphs from Text
An Approach to Automated Learning of Conceptual Graphs from TextAn Approach to Automated Learning of Conceptual Graphs from Text
An Approach to Automated Learning of Conceptual Graphs from TextFulvio Rotella
 
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and BeyondBenchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and BeyondBhaskar Mitra
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalBhaskar Mitra
 
Weakly Supervised Machine Reading
Weakly Supervised Machine ReadingWeakly Supervised Machine Reading
Weakly Supervised Machine ReadingIsabelle Augenstein
 
Interactive Analysis of Word Vector Embeddings
Interactive Analysis of Word Vector EmbeddingsInteractive Analysis of Word Vector Embeddings
Interactive Analysis of Word Vector Embeddingsgleicher
 

What's hot (19)

Models for Information Retrieval and Recommendation
Models for Information Retrieval and RecommendationModels for Information Retrieval and Recommendation
Models for Information Retrieval and Recommendation
 
Icml2018 naver review
Icml2018 naver reviewIcml2018 naver review
Icml2018 naver review
 
Understanding GloVe
Understanding GloVeUnderstanding GloVe
Understanding GloVe
 
Topic Modeling for Information Retrieval and Word Sense Disambiguation tasks
Topic Modeling for Information Retrieval and Word Sense Disambiguation tasksTopic Modeling for Information Retrieval and Word Sense Disambiguation tasks
Topic Modeling for Information Retrieval and Word Sense Disambiguation tasks
 
Neural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progressNeural Information Retrieval: In search of meaningful progress
Neural Information Retrieval: In search of meaningful progress
 
Task oriented word embedding for text classification
Task oriented word embedding for text classificationTask oriented word embedding for text classification
Task oriented word embedding for text classification
 
Practical machine learning - Part 1
Practical machine learning - Part 1Practical machine learning - Part 1
Practical machine learning - Part 1
 
NLP_Project_Paper_up276_vec241
NLP_Project_Paper_up276_vec241NLP_Project_Paper_up276_vec241
NLP_Project_Paper_up276_vec241
 
Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)Neural Text Embeddings for Information Retrieval (WSDM 2017)
Neural Text Embeddings for Information Retrieval (WSDM 2017)
 
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
Similarity & Recommendation - CWI Scientific Meeting - Sep 27th, 2013
 
Word Tagging with Foundational Ontology Classes
Word Tagging with Foundational Ontology ClassesWord Tagging with Foundational Ontology Classes
Word Tagging with Foundational Ontology Classes
 
Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...
Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...
Unsupervised Does Not Mean Uninterpretable: The Case for Word Sense Induction...
 
An Approach to Automated Learning of Conceptual Graphs from Text
An Approach to Automated Learning of Conceptual Graphs from TextAn Approach to Automated Learning of Conceptual Graphs from Text
An Approach to Automated Learning of Conceptual Graphs from Text
 
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and BeyondBenchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
 
Using Text Embeddings for Information Retrieval
Using Text Embeddings for Information RetrievalUsing Text Embeddings for Information Retrieval
Using Text Embeddings for Information Retrieval
 
ylchen
ylchenylchen
ylchen
 
Sentence generation
Sentence generationSentence generation
Sentence generation
 
Weakly Supervised Machine Reading
Weakly Supervised Machine ReadingWeakly Supervised Machine Reading
Weakly Supervised Machine Reading
 
Interactive Analysis of Word Vector Embeddings
Interactive Analysis of Word Vector EmbeddingsInteractive Analysis of Word Vector Embeddings
Interactive Analysis of Word Vector Embeddings
 

Similar to Random Generation of Relational Bayesian Networks

Nimrita koul Machine Learning
Nimrita koul  Machine LearningNimrita koul  Machine Learning
Nimrita koul Machine LearningNimrita Koul
 
Statistical software for Sampling from Finite Populations: an analysis using ...
Statistical software for Sampling from Finite Populations: an analysis using ...Statistical software for Sampling from Finite Populations: an analysis using ...
Statistical software for Sampling from Finite Populations: an analysis using ...michele de meo
 
slides of ABC talk at i-like workshop, Warwick, May 16
slides of ABC talk at i-like workshop, Warwick, May 16slides of ABC talk at i-like workshop, Warwick, May 16
slides of ABC talk at i-like workshop, Warwick, May 16Christian Robert
 
Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석datasciencekorea
 
Knowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender SystemsKnowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender SystemsEnrico Palumbo
 
Pittsburgh and Toronto "Halloween US trip" seminars
Pittsburgh and Toronto "Halloween US trip" seminarsPittsburgh and Toronto "Halloween US trip" seminars
Pittsburgh and Toronto "Halloween US trip" seminarsChristian Robert
 
Es credit scoring_2020
Es credit scoring_2020Es credit scoring_2020
Es credit scoring_2020Eero Siljander
 
PhD Consortium ADBIS presetation.
PhD Consortium ADBIS presetation.PhD Consortium ADBIS presetation.
PhD Consortium ADBIS presetation.Giuseppe Ricci
 
[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...
[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...
[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...Sou Yoshihara
 
SPSS statistics - get help using SPSS
SPSS statistics - get help using SPSSSPSS statistics - get help using SPSS
SPSS statistics - get help using SPSScsula its training
 
The Success of Deep Generative Models
The Success of Deep Generative ModelsThe Success of Deep Generative Models
The Success of Deep Generative Modelsinside-BigData.com
 
32_Nov07_MachineLear..
32_Nov07_MachineLear..32_Nov07_MachineLear..
32_Nov07_MachineLear..butest
 
SVD and the Netflix Dataset
SVD and the Netflix DatasetSVD and the Netflix Dataset
SVD and the Netflix DatasetBen Mabey
 
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian NetworksCriminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian NetworksCSCJournals
 
Adversarial examples in deep learning (Gregory Chatel)
Adversarial examples in deep learning (Gregory Chatel)Adversarial examples in deep learning (Gregory Chatel)
Adversarial examples in deep learning (Gregory Chatel)MeetupDataScienceRoma
 
Lecture17 xing fei-fei
Lecture17 xing fei-feiLecture17 xing fei-fei
Lecture17 xing fei-feiTianlu Wang
 
Phylogenomic Supertrees. ORP Bininda-Emond
Phylogenomic Supertrees. ORP Bininda-EmondPhylogenomic Supertrees. ORP Bininda-Emond
Phylogenomic Supertrees. ORP Bininda-EmondRoderic Page
 

Similar to Random Generation of Relational Bayesian Networks (20)

Nimrita koul Machine Learning
Nimrita koul  Machine LearningNimrita koul  Machine Learning
Nimrita koul Machine Learning
 
Statistical software for Sampling from Finite Populations: an analysis using ...
Statistical software for Sampling from Finite Populations: an analysis using ...Statistical software for Sampling from Finite Populations: an analysis using ...
Statistical software for Sampling from Finite Populations: an analysis using ...
 
slides of ABC talk at i-like workshop, Warwick, May 16
slides of ABC talk at i-like workshop, Warwick, May 16slides of ABC talk at i-like workshop, Warwick, May 16
slides of ABC talk at i-like workshop, Warwick, May 16
 
Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석Bayesian Network 을 활용한 예측 분석
Bayesian Network 을 활용한 예측 분석
 
Knowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender SystemsKnowledge Graph Embeddings for Recommender Systems
Knowledge Graph Embeddings for Recommender Systems
 
Pittsburgh and Toronto "Halloween US trip" seminars
Pittsburgh and Toronto "Halloween US trip" seminarsPittsburgh and Toronto "Halloween US trip" seminars
Pittsburgh and Toronto "Halloween US trip" seminars
 
Es credit scoring_2020
Es credit scoring_2020Es credit scoring_2020
Es credit scoring_2020
 
PhD Consortium ADBIS presetation.
PhD Consortium ADBIS presetation.PhD Consortium ADBIS presetation.
PhD Consortium ADBIS presetation.
 
[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...
[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...
[Explained] "Partial Success in Closing the Gap between Human and Machine Vis...
 
SPSS statistics - get help using SPSS
SPSS statistics - get help using SPSSSPSS statistics - get help using SPSS
SPSS statistics - get help using SPSS
 
The Success of Deep Generative Models
The Success of Deep Generative ModelsThe Success of Deep Generative Models
The Success of Deep Generative Models
 
Basen Network
Basen NetworkBasen Network
Basen Network
 
32_Nov07_MachineLear..
32_Nov07_MachineLear..32_Nov07_MachineLear..
32_Nov07_MachineLear..
 
SVD and the Netflix Dataset
SVD and the Netflix DatasetSVD and the Netflix Dataset
SVD and the Netflix Dataset
 
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian NetworksCriminal and Civil Identification with DNA Databases Using Bayesian Networks
Criminal and Civil Identification with DNA Databases Using Bayesian Networks
 
Image generative modeling for design inspiration and image editing by Camille...
Image generative modeling for design inspiration and image editing by Camille...Image generative modeling for design inspiration and image editing by Camille...
Image generative modeling for design inspiration and image editing by Camille...
 
Adversarial examples in deep learning (Gregory Chatel)
Adversarial examples in deep learning (Gregory Chatel)Adversarial examples in deep learning (Gregory Chatel)
Adversarial examples in deep learning (Gregory Chatel)
 
Lecture17 xing fei-fei
Lecture17 xing fei-feiLecture17 xing fei-fei
Lecture17 xing fei-fei
 
Lecture20 xing
Lecture20 xingLecture20 xing
Lecture20 xing
 
Phylogenomic Supertrees. ORP Bininda-Emond
Phylogenomic Supertrees. ORP Bininda-EmondPhylogenomic Supertrees. ORP Bininda-Emond
Phylogenomic Supertrees. ORP Bininda-Emond
 

More from University of Nantes

Une introduction aux Réseaux bayésiens
Une introduction aux Réseaux bayésiensUne introduction aux Réseaux bayésiens
Une introduction aux Réseaux bayésiensUniversity of Nantes
 
Les Challenges de l'Intelligence Artificielle
Les Challenges de l'Intelligence ArtificielleLes Challenges de l'Intelligence Artificielle
Les Challenges de l'Intelligence ArtificielleUniversity of Nantes
 
Advances in Bayesian network learning
Advances in Bayesian network learningAdvances in Bayesian network learning
Advances in Bayesian network learningUniversity of Nantes
 
Learning possibilistic networks from data: a survey
Learning possibilistic networks from data: a surveyLearning possibilistic networks from data: a survey
Learning possibilistic networks from data: a surveyUniversity of Nantes
 
Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...
Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...
Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...University of Nantes
 
Introduction aux modèles graphiques probabilistes
Introduction aux modèles graphiques probabilistesIntroduction aux modèles graphiques probabilistes
Introduction aux modèles graphiques probabilistesUniversity of Nantes
 
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learningOntological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learningUniversity of Nantes
 
Des modèles graphiques probabilistes aux modeles graphiques de durée
Des modèles graphiques probabilistes aux modeles graphiques de duréeDes modèles graphiques probabilistes aux modeles graphiques de durée
Des modèles graphiques probabilistes aux modeles graphiques de duréeUniversity of Nantes
 

More from University of Nantes (10)

SlidesTRAIL.pdf
SlidesTRAIL.pdfSlidesTRAIL.pdf
SlidesTRAIL.pdf
 
SlidesJS-PhLeray.pdf
SlidesJS-PhLeray.pdfSlidesJS-PhLeray.pdf
SlidesJS-PhLeray.pdf
 
Une introduction aux Réseaux bayésiens
Une introduction aux Réseaux bayésiensUne introduction aux Réseaux bayésiens
Une introduction aux Réseaux bayésiens
 
Les Challenges de l'Intelligence Artificielle
Les Challenges de l'Intelligence ArtificielleLes Challenges de l'Intelligence Artificielle
Les Challenges de l'Intelligence Artificielle
 
Advances in Bayesian network learning
Advances in Bayesian network learningAdvances in Bayesian network learning
Advances in Bayesian network learning
 
Learning possibilistic networks from data: a survey
Learning possibilistic networks from data: a surveyLearning possibilistic networks from data: a survey
Learning possibilistic networks from data: a survey
 
Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...
Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...
Evaluation des algorithmes d’apprentissage de structure pour les réseaux Bayé...
 
Introduction aux modèles graphiques probabilistes
Introduction aux modèles graphiques probabilistesIntroduction aux modèles graphiques probabilistes
Introduction aux modèles graphiques probabilistes
 
Ontological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learningOntological knowledge integration for Bayesian network structure learning
Ontological knowledge integration for Bayesian network structure learning
 
Des modèles graphiques probabilistes aux modeles graphiques de durée
Des modèles graphiques probabilistes aux modeles graphiques de duréeDes modèles graphiques probabilistes aux modeles graphiques de durée
Des modèles graphiques probabilistes aux modeles graphiques de durée
 

Recently uploaded

The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...navyadasi1992
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)Tamer Koksalan, PhD
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 

Recently uploaded (20)

The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...Radiation physics in Dental Radiology...
Radiation physics in Dental Radiology...
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)Carbon Dioxide Capture and Storage (CSS)
Carbon Dioxide Capture and Storage (CSS)
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 

Random Generation of Relational Bayesian Networks

  • 1. PRMs Random generation Population Conclusion & ongoing work Génération aléatoire de réseaux Bayésiens relationnels Mouna Ben Ishak1;2, Philippe Leray2 and Nahla Ben Amor1 1 Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus (LARODEC), ISG Tunis, Tunisie 2 Laboratoire d’Informatique de Nantes Atlantique (LINA), UMR CNRS 6241, Université de Nantes, France Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 1/27
  • 2. PRMs Random generation Population Conclusion & ongoing work Motivation (1/3) f1 f2 f3 … fm x1 v1 v3 v2 … v1 x2 v2 v1 V3 … v1 x3 v1 v2 v3 … v2 … … … … … … xn v1 v3 v2 … v1 Learned model Features Observations Training set Learning algorithm Flat data representation Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 2/27
  • 3. PRMs Random generation Population Conclusion & ongoing work Motivation (2/3) Presentation Presentation Business logic DDDaaatttaaa Business logic DDDaaatttaaa Relational representation!!! Relational representation!!! How to use relational data with classical machine learning algorithms? How to use this data with classical machine learning algorithms? Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 3/27
  • 4. PRMs Random generation Population Conclusion & ongoing work Motivation (3/3) Propositionalization It has been shown that propositionalization is not always appropriate to perform learning in relational domains (Maier et al., 10) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 4/27
  • 5. PRMs Random generation Population Conclusion & ongoing work Motivation (3/3) Propositionalization It has been shown that propositionalization is not always appropriate to perform learning in relational domains (Maier et al., 10) Relational transition Extend classical machine learning techniques in the context of relational data representation Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 4/27
  • 6. PRMs Random generation Population Conclusion & ongoing work Outline ... 1. PRMs 2. Random generation 2.1. Relational schema random generation 2.2. PRM random generation 3. Population 4. Conclusion & ongoing work Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 5/27
  • 7. PRMs Random generation Population Conclusion & ongoing work Bayesian networks (BN) (Pearl, 85) Definition G qualitative description of conditional dependences / independences between variables directed acyclic graph (DAG) quantitative description of these dependences conditional probability distributions (CPDs) Gender Occupation Age Low Middle High Age Occupation Oc1 Oc2 Oc3 Low,F 0.5 0.1 0.4 Low,M 0.3 0.5 0.2 Middle,F 0.2 0.4 0.4 Middle,M 0.9 0.1 0 High,F 0.3 0.5 0.2 High,M 0.2 0.3 0.5 Gender M F Gender 0.4 0.3 0.3 Age 0.4 0.6 Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 6/27
  • 8. PRMs Random generation Population Conclusion ongoing work BN structure learning Constraint-based methods BN = independence model ) find cond. indep. (CI) in data in order to build the DAG ex : IC (Pearl Verma, 91), PC (Spirtes et al., 93) problem : reliability of CI statistical tests (ok for n 100) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27
  • 9. PRMs Random generation Population Conclusion ongoing work BN structure learning Constraint-based methods BN = independence model problem : reliability of CI statistical tests (ok for n 100) Score-based methods BN = probabilistic model that must fit data as well as possible ) search the DAG space in order to maximize a scoring function ex : Maximum Weighted Spanning Tree (Chow Liu, 68), Greedy Search (Chickering, 95), evolutionary approaches (Larranaga et al., 96) (Wang Yang, 10) problem : size of search space (ok for n 1000) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27
  • 10. PRMs Random generation Population Conclusion ongoing work BN structure learning Constraint-based methods BN = independence model problem : reliability of CI statistical tests (ok for n 100) Score-based methods BN = probabilistic model that must fit data as well as possible problem : size of search space (ok for n 1000) Hybrid/ local search methods local search / neighbor identification (statistical tests) global (score) optimization usually for scalability reasons (ok for high n) Génératioenxalé:atoMireMdeHrésCeauax Blgayoésrieitnhs rmelatio(nTneslsamardJFinRBo’1s4 et a25l-.2,70jui6n,)IHP, Paris, France 7/27
  • 11. PRMs Random generation Population Conclusion ongoing work Evaluating structure learning algorithms Standard practice generating data from a reference model applying a structure learning algorithm with this data comparing the learned and reference models Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 8/27
  • 12. PRMs Random generation Population Conclusion ongoing work Evaluating structure learning algorithms Standard practice generating data from a reference model applying a structure learning algorithm with this data comparing the learned and reference models Which reference model ? existence of reference benchmarks (e.g., Asia, Alarm, ...). randomly generated models (Ide et al., 04) arbitrarily large BN by tiling (Tsamardinos et al., 06) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 8/27
  • 13. PRMs Random generation Population Conclusion ongoing work Which kind of data ? BN learning from data... but which kind of data ? Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 9/27
  • 14. PRMs Random generation Population Conclusion ongoing work Which kind of data ? BN learning from data... but which kind of data ? how to deal with structured data ? Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 9/27
  • 15. PRMs Random generation Population Conclusion ongoing work Relational schema Movie User Vote Movie User Rating Gender Age Occupation RealiseDate Genre A relational schema R classes + relational variables Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
  • 16. PRMs Random generation Population Conclusion ongoing work Relational schema Movie User Vote Movie User Rating Gender Age Occupation RealiseDate Genre A relational schema R classes + relational variables reference slots (e.g., Vote:Movie;Vote:User) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
  • 17. PRMs Random generation Population Conclusion ongoing work Relational schema Movie User Vote Movie User Rating Gender Age Occupation RealiseDate Genre A relational schema R classes + relational variables reference slots (e.g., Vote:Movie;Vote:User) slot chain = a sequence of reference slots allow to walk in the relational schema to create new variables Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
  • 18. PRMs Random generation Population Conclusion ongoing work Relational schema Movie User Vote Movie User Rating Gender Age Occupation RealiseDate Genre A relational schema R classes + relational variables reference slots (e.g., Vote:Movie;Vote:User) slot chain = a sequence of reference slots allow to walk in the relational schema to create new variables ex : Vote:User:User1:Movie : all the movies voted by a particular user Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27
  • 19. PRMs Random generation Population Conclusion ongoing work Probabilistic Relational Models (Koller Pfeffer, 98) Definition A PRM associated to R : a qualitative dependency structure S (with possible long slot chains and aggregation functions) a set of parameters S Vote User.Gender M F 0.4 0.6 Rating Movie User RealiseDate Genre Gender Age Occupation Movie.Genre Votes.Rating Low High Drama, M 0.5 0.5 Drama, F 0.3 0.7 Horror, M 0.2 0.8 Horror, F 0.9 0.1 Comedy, M 0.5 0.5 Comedy, F 0.6 0.4 User.Gender Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 11/27
  • 20. PRMs Random generation Population Conclusion ongoing work Probabilistic Relational Models Definition Vote User.Gender M F 0.4 0.6 Rating Movie User RealiseDate Genre Gender Age Occupation Movie.Genre Votes.Rating Low High Drama, M 0.5 0.5 Drama, F 0.3 0.7 Horror, M 0.2 0.8 Horror, F 0.9 0.1 Comedy, M 0.5 0.5 Comedy, F 0.6 0.4 User.Gender Aggregators Vote:User:User1:Movie:genre ! Vote:rating movie rating from one user can be dependent with the genre of all the movies voted by this user how to describe the dependency with an unknown number of parents ? solution : using an aggregated value, e.g. = MODE Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 11/27
  • 21. PRMs Random generation Population Conclusion ongoing work Ground Bayesian Network GBN BN created from one PRM and an instantiated database = relational skeleton Age Rating Age Gender Occupation Age Gender Occupation Gender Occupation Genre RealiseDate Genre Genre Genre Genre U1 U2 U3 M1 M2 M3 M4 M5 #U1, #M1 Rating #U1, #M2 Rating #U2, #M1 Rating #U2, #M3 Rating #U2, #M4 Rating #U3, #M1 Rating #U3, #M2 Rating #U3, #M3 Rating #U3, #M5 RealiseDate RealiseDate RealiseDate RealiseDate Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 12/27
  • 22. PRMs Random generation Population Conclusion ongoing work Ground Bayesian Network GBN BN created from one PRM and an instantiated database = relational skeleton + probabilistic dependencies used for probabilistic inference Age Rating Age Gender Occupation Age Gender Occupation Gender Occupation Genre RealiseDate Genre Genre Genre Genre U1 U2 U3 M1 M2 M3 M4 M5 #U1, #M1 Rating #U1, #M2 Rating #U2, #M1 Rating #U2, #M3 Rating #U2, #M4 Rating #U3, #M1 Rating #U3, #M2 Rating #U3, #M3 Rating #U3, #M5 RealiseDate RealiseDate RealiseDate RealiseDate Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 12/27
  • 23. PRMs Random generation Population Conclusion ongoing work PRM structure learning Constraint-based methods relational PC (Maier et al., 10) relational CD (Maier et al., 13) don’t deal with aggregation functions Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
  • 24. PRMs Random generation Population Conclusion ongoing work PRM structure learning Constraint-based methods Score-based methods greedy search (Getoor et al., 07) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
  • 25. PRMs Random generation Population Conclusion ongoing work PRM structure learning Constraint-based methods Score-based methods Hybrid methods relational MMHC (Ben Ishak et al., in progress) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
  • 26. PRMs Random generation Population Conclusion ongoing work PRM structure learning Constraint-based methods Score-based methods Hybrid methods Critics - previous works lack of evaluation process, in a common framework absence of relational benchmarks for evaluation algorithms absence of relational data generation process Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
  • 27. PRMs Random generation Population Conclusion ongoing work PRM structure learning Constraint-based methods Score-based methods Hybrid methods Critics - previous works Proposition a synthetic approach to randomly generate and populate PRMs and databases Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27
  • 28. PRMs Random generation Population Conclusion ongoing work PRMs random generation Related work (Maier et al., 10, 13) relational schemas are generated as tree structure ... too simple (Wuillemin et al., 12) object-oriented paradigm rather than relational one no population nor interaction with a relational database Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 14/27
  • 29. PRMs Random generation Population Conclusion ongoing work The overall process PPRRMM DDBB iinnssttaannccee Instantiate Sample Model generation RReellaattiioonnaall SScchheemmaa PPrroobbaabbiilliissttiiccddeeppeennddeenncciieess Instance generation RReellaattiioonnaall SSkkeelleettoonn PPrroobbaabbiilliissttiiccddeeppeennddeenncciieess GGrroouunnddBBNN Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 15/27
  • 30. PRMs Random generation Population Conclusion ongoing work The overall platform RDB Visualization Inference Learning PRM PRM API Parameters learning Structure learning + score-based + constraint-based + Hybrid Statistical learning + Bayesian learning Benchmarking + Evaluation FIGURE: PRM API under the PILGRIM platform Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 16/27
  • 31. PRMs Random generation Population Conclusion ongoing work Outline ... 1. PRMs 2. Random generation 2.1. Relational schema random generation 2.2. PRM random generation 3. Population 4. Conclusion ongoing work Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 17/27
  • 32. PRMs Random generation Population Conclusion ongoing work Generating the relational schema Hypotheses with respect to the relational model definition (Date, 08) : avoid referential cycles when generating constraints 8Xi ;Xi 2 X there exist a referential path from Xi to Xj : searching for DAG structures with a single connected component Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 18/27
  • 33. PRMs Random generation Population Conclusion ongoing work Example Clazz0 Clazz1 Clazz2 Clazz3 n1 n0 n2 n3 Clazz0 Clazz1 Clazz2 Clazz3 att0 att1 att0 att1 att2 att0 att1 att2 att3 att0 Clazz0 Clazz1 Clazz2 Clazz3 clazz0id clazz1id clazz3id clazz2id clazz1id clazz0id clazz3id clazz2id Clazz0 Clazz1 #clazz1fkatt10 Clazz2 Clazz3 att0 att1 att0 att1 att2 att0 att1 att2 att3 att0 clazz1id clazz0id clazz3id clazz2id #clazz0fkatt03 #claszz1fkatt13 #clazz2fkatt23 #clazz1fkatt12 G generate primary keys generate attributes generate foreign keys generate foreign keys 1 2 3 3 Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 19/27
  • 34. PRMs Random generation Population Conclusion ongoing work Generating the PRM Goal randomly generating probabilistic dependencies S between the attributes of the classes structure sampling CPDs like for usual BNs Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27
  • 35. PRMs Random generation Population Conclusion ongoing work Generating the PRM Goal Hypothesis the dependency structure S should be a DAG one descriptive attribute is dependent with another one, but with which slot chain ? we need a user-defined maximum slot chain length Kmax Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27
  • 36. PRMs Random generation Population Conclusion ongoing work Generating the PRM Goal Hypothesis Principle step I : add dependencies while keeping a DAG structure, first into classes, then intra classes step II : random choice of a legal slot chain weighted by its length Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27
  • 37. PRMs Random generation Population Conclusion ongoing work Example Clazz0 Clazz1 claszz1fkatt13. clazz1fkatt10-1] Clazz2 Clazz3 att0 att1 att0 att0 att0 clazz1fkatt10 clazz0fkatt03 claszz1fkatt13 clazz2fkatt23 clazz1fkatt12 att2 att1 att3 att1 att2 [Clazz0.clazz1fkatt10] [Clazz2.clazz1fkatt12] -1] clazz2fkatt23Calzz2.MODE [-1] MODE clazz1fkatt12clazz1fkatt12. [Clazz2.[Calzz2.clazz2fkatt23-1. MODE Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 21/27
  • 38. PRMs Random generation Population Conclusion ongoing work Outline ... 1. PRMs 2. Random generation 2.1. Relational schema random generation 2.2. PRM random generation 3. Population 4. Conclusion ongoing work Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 22/27
  • 39. PRMs Random generation Population Conclusion ongoing work GBN creation and sampling Generating the relational skeleton by generating a random number of objects per class adding links between objects : all referencing classes have their generated objects related to objects from referenced classes Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27
  • 40. PRMs Random generation Population Conclusion ongoing work GBN creation and sampling Generating the relational skeleton Creating the GBN the GBN is constructed by using the CPDs already defined by the PRM Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27
  • 41. PRMs Random generation Population Conclusion ongoing work GBN creation and sampling Generating the relational skeleton Creating the GBN Populating the database sampling from the GBN Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27
  • 42. PRMs Random generation Population Conclusion ongoing work Example Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 24/27
  • 43. PRMs Random generation Population Conclusion ongoing work Outline ... 1. PRMs 2. Random generation 2.1. Relational schema random generation 2.2. PRM random generation 3. Population 4. Conclusion ongoing work Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 25/27
  • 44. PRMs Random generation Population Conclusion ongoing work Conclusion - Perspectives Conclusion we proposed one process to randomly generate PRMs and instantiate them to populate a relational database Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 26/27
  • 45. PRMs Random generation Population Conclusion ongoing work Conclusion - Perspectives Conclusion we proposed one process to randomly generate PRMs and instantiate them to populate a relational database Ongoing work propose a new approach to learn PRM structure from relational data comparing it with existing state-of-the-art approaches, with databases using our random generation process extend our generation approach to address other relational probabilistic graphical models (e.g., DAPER) Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 26/27
  • 46. A suivre :-) Jeudi 9h30 - Ghada Trabelsi - Evaluation des algos d’apprentissage de structure des RB dynamiques Jeudi 10h - Anthony Coutant - Apprentissage d’une extension des PRM Vendredi 10h30 - Maroua Haddad - Apprentissage des réseaux possibilistes D Données Data U Connaissances Utilisateurs User Ke Knowledge
  • 47. A suivre :-) Jeudi 9h30 - Ghada Trabelsi - Evaluation des algos d’apprentissage de structure des RB dynamiques Jeudi 10h - Anthony Coutant - Apprentissage d’une extension des PRM Vendredi 10h30 - Maroua Haddad - Apprentissage des réseaux possibilistes Any question ?