SlideShare une entreprise Scribd logo
1  sur  63
Technische Universität München



 Workshop on Advanced Instability Methods
 Jan. 18 - 21, 2010, IIT Madras, Chennai, India



 Thermo-Acoustic
 System Modelling and Stability Analysis:
 Conventional Approaches

 Wolfgang Polifke
 Lehrstuhl für Thermodynamik
 TU München
Technische Universität München


thanks to ...

Jakob J. Keller, Oliver Paschereit, Bruno Schuermans

Stephanie Evesque, Christoph Hirsch, Thomas Sattelmayer

Alexander Gentemann, Andreas Huber, Roland Kaess, Jan
Kopitz, Robert Leandro, Christian Pankiewitz

Matthew Juniper, Raman Sujith




W. Polifke - AIM Workshop @ IITM, Jan. 2010               2
Technische Universität München


Outline of Talk

Combustion Instabilities

Stability Analysis
       Unsteady Analysis
       Eigenmodes and Eigenfrequencies
       Nyquist Plots
       Energy Balance

System Models
       CFD
       Computational Acoustics
       Galerkin Methods

Network Models (“Toy Models”)
W. Polifke - AIM Workshop @ IITM, Jan. 2010   3
Technische Universität München


A history of trouble
(from Culick, 2006)




W. Polifke - AIM Workshop @ IITM, Jan. 2010   4
Technische Universität München


Physics of Combustion Instabilities

a flame is a source of volume

a fluctuating flame is a (monopole) source of sound

combustion noise & combustion instability

Rayleighʼs Criterion:



                                                ˙
                                              p Q dt > 0

                                    Rayleigh Index

W. Polifke - AIM Workshop @ IITM, Jan. 2010                5
Technische Universität München


Thermodynamic interpretation of Rayleigh

Fluctuations produce acoustic energy, if Rayleigh Index > 0

            p                                           p’, u’


                                                                                     t
                             2'
                                           3'
                                                           Q’        2'
                      2"
                                  1                                       3'

                                           4'                    1              4'   t
                        3"
                                      4"                   Q’
                                                                 1             4"

                                                v                    2"   3"         t




W. Polifke - AIM Workshop @ IITM, Jan. 2010         6
Technische Universität München


Thermodynamic interpretation of Rayleigh

Fluctuations produce acoustic energy, if Rayleigh Index > 0

            p                                           p’, u’


                                                                                     t
                             2'
                                           3'
                                                           Q’        2'
                      2"
                                  1                                       3'

                                           4'                    1              4'   t
                        3"
                                      4"                   Q’
                                                                 1             4"

                                                v                    2"   3"         t




If production of energy > dissipation, instability occurs !

W. Polifke - AIM Workshop @ IITM, Jan. 2010         6
Technische Universität München
   Thermo-Akustische Instabilität
Flame dynamics and system acoustics
    Eingeschlossene Flamme
                (p’, u’)                                 Q’       (p’, u’)




    Rückkopplung zwischen Fluktuationen
Premix flames are velocity sensitive:                          ˙   ˙
                                                              Q = Q (u )
    der Strömung (p’,u’) und der Wärmefreisetzung Q’
    -> Selbsterregte Schwingungen !           p
System acoustics controls phase pʼ - uʼ: Z =
  Stabilitätskriterium nach Rayleigh:    ! d
                                         Q!p! u" > 0.         #
                                                              "
 W . Polifke / divide et imp era — Ercoftac TecTag / 2
                                                   ˙
                                                 p Q dt > 0
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                  7
Technische Universität München


Heat release in sync with pressure
p', u'




 Q'




p' Q'


                                              most likely
                                              unstable !


W. Polifke - AIM Workshop @ IITM, Jan. 2010                 8
Technische Universität München


Heat release in sync with velocity
p', u'




 Q'




p' Q'



                                              stable !


W. Polifke - AIM Workshop @ IITM, Jan. 2010              9
Technische Universität München


Heat release lags velocity

p’, u’




Q’




p’ Q’

                                              possibly
                                              unstable !

W. Polifke - AIM Workshop @ IITM, Jan. 2010                10
Technische Universität München


Flame front kinematics
Heat release rate of a premix flame:
                                        ˙
                                        Q = ρu φSA ∆h




W. Polifke - AIM Workshop @ IITM, Jan. 2010             11
Technische Universität München


Flame front kinematics
Heat release rate of a premix flame:
                                        ˙
                                        Q = ρu φSA ∆h




W. Polifke - AIM Workshop @ IITM, Jan. 2010             12
Technische Universität München


Modulation of Equivalence Ratio
                                                        ˙
                                                        Q = ρu φSA ∆h




         ˙
         Q          ρu     φ     S
                  =    +      +
         Q˙         ρu      φ    S
         φ            pI (t − τ ) uI (t − τ )
                  = −            −            ,
         φ               2∆p          uI
         ˙
         Q                                pI   uI
                  = −(1 + a)                 +      exp(−iωτ )
         Q˙                              2∆p uI
W. Polifke - AIM Workshop @ IITM, Jan. 2010                             13
Technische Universität München


Modulation of Equivalence Ratio
                                                        ˙
                                                        Q = ρu φSA ∆h




         ˙
         Q          ρu     φ     S
                  =    +      +
         Q˙         ρu      φ    S
         φ            pI (t − τ ) uI (t − τ )
                  = −            −            ,
         φ               2∆p          uI
         ˙
         Q                                pI   uI
                  = −(1 + a)                 +      exp(−iωτ )
         Q˙                              2∆p uI
W. Polifke - AIM Workshop @ IITM, Jan. 2010                             13
Technische Universität München


Modulation of Equivalence Ratio
                                                        ˙
                                                        Q = ρu φSA ∆h




         ˙
         Q          ρu     φ     S
                  =    +      +
         Q˙         ρu      φ    S
         φ            pI (t − τ ) uI (t − τ )
                  = −            −            ,
         φ               2∆p          uI
         ˙
         Q                                pI   uI
                  = −(1 + a)                 +      exp(−iωτ )
         Q˙                              2∆p uI
W. Polifke - AIM Workshop @ IITM, Jan. 2010                             13
Technische Universität München


Modulation of Equivalence Ratio
                                                        ˙
                                                        Q = ρu φSA ∆h




         ˙
         Q          ρu     φ     S
                  =    +      +
         Q˙         ρu      φ    S
         φ            pI (t − τ ) uI (t − τ )
                  = −            −            ,
         φ               2∆p          uI
         ˙
         Q                                pI   uI
                  = −(1 + a)                 +      exp(−iωτ )
         Q˙                              2∆p uI
W. Polifke - AIM Workshop @ IITM, Jan. 2010                             13
Technische Universität München


 Flame / Acoustic Interactions
 Fuel             Air                                   Flame        Combustor
Supply           Supply

                                                Position and
                                               Area of Flame

                                                 Burning               p’, u’
                     u’                                         Q’
                                                 Velocity

                                                Equivalence
  p’                                               Ratio




 W. Polifke - AIM Workshop @ IITM, Jan. 2010                                    14
Technische Universität München


Stability Analysis needs a System Model

“there are no unstable flames”

Rayleigh criterion is necessary, but not sufficient.

The system controls

       Impedance at the flame (→ phase between velocity and pressure)

       Losses of acoustic energy (dissipation and radiation).

       Intensity, phase and dispersion of convective waves
       (equivalence ratio, entropy).

W. Polifke - AIM Workshop @ IITM, Jan. 2010                            15
Technische Universität München


Outline of Talk

Combustion Instabilities

Stability Analysis
       Unsteady Analysis
       Eigenfrequencies
       Nyquist Plots
       Energy Balance

System Models
       CFD
       Computational Acoustics
       Galerkin Methods

Network Models
W. Polifke - AIM Workshop @ IITM, Jan. 2010   16
Q = 385 ± 7 W; vmean = 0.0218 ± 0.0002 m/s
Technische Universität München


Instability in a Rijke tube




Experiment by Lumens, Kopitz 2006
W. Polifke - AIM Workshop @ IITM, Jan. 2010                  17
Technische Universität München


Stability Analysis by Unsteady Simulation
1D CFD Model of Rijke tube
                            ˙
with source term for energy Q(t) = u(t − τ )

                                             30
                               gauze [m/s]



                                             20
                   Velocity at [m/s]




                                             10
                          c  v




                                              0




                                             -10
                                                0.0   0.1   0.2   0.3           0.4   0.5   0.6   0.7
                                                                        t [s]

Polifke et al, JSV, 2001
                                                                  Time [s]
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                                             18
Technische Universität München


Unsteady Simulation

+ Simulation of (turbulent, reacting), compressible flow
captures all relevant phenomena

- Computationally expensive

- Only the dominant mode is identified

- Numerical vs. physical instability

- Results can depend on initial perturbation

- Boundary conditions (acoustic impedance !) are a problem.




W. Polifke - AIM Workshop @ IITM, Jan. 2010                   19
Technische Universität München


Stability Analysis with
Eigenmodes and Eigenfrequencies
Mode - a pattern of vibration

Eigen - German: own, peculiar, characteristic

Eigenmode / Eigenfrequency
       - a mode / frequency that is easily excited in the system
       - once established, an eigenmode will persist for some time

Typically, a system has many eigenmodes.
       several eigenmodes may be unstable
       one mode will be most unstable (“dominant mode”)




W. Polifke - AIM Workshop @ IITM, Jan. 2010                          20
Technische Universität München


Eigenmodes / frequencies of a Rijke tube
computed with a low-order model
                                         .
                   p’=0                  Q                                   p’=0




                    i                c       h                               x



Acoustic waves travel between “i” and “c”, “h” and “x”:


                        fc                       e−ikl    0         fi       ω
                                 =                                       , k= .
                        gc                         0     eikl       gi       c
                                1                p                   1   p
                             f=                     +u        ,   g=        −u      .
                                2                ρc                  2   ρc
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                             21
Technische Universität München


Coupling relations at the heat source
                                        .
                   p’=0                 Q                p’=0




                    i               c       h            x



   At the heat source:
   • no pressure drop, ph = pc
   • time-lagged heat release, uh (t) = uc (t) + nuc (t − τ ).

                   ρh ch
                         (fh + gh ) = (fc + gc ),
                   ρc cc
                           fh − gh = 1 + ne   −iωτ
                                                   (fc − gc ),
W. Polifke - AIM Workshop @ IITM, Jan. 2010                      22
Technische Universität München


Boundary conditions
                                        .
                   p’=0                 Q                            p’=0




                    i               c       h                        x



   open / closed ends:

                                     p          =   0 → f + g = 0,
                                     u          =   0 → f − g = 0,




W. Polifke - AIM Workshop @ IITM, Jan. 2010                                 23
Technische Universität München


Rijke tube system matrix
                                      .
            u p’=00
              =                       Q                         p’=0




                  i               c       h                     x

                                                fi
                                                        
                                                            0
                                                               
                             Matrix
                              of                  .  =  . .
                                                    .   . 
                                                    .       .
                                              
                           Coefficients              gx       0

Eigenfrequencies fulfill Det (S(ω)) = 0, which yields:

            cos kc lc cos kh lh − ξ sin kc lc sin kh lh 1 + n e−iωτ = 0,
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                24
Technische Universität München


Eigenfrequency vs. time lag (n = 0.1)




     Re w                                                  Im w
  1.03                                                    0.04
  1.02
  1.01                                                    0.02
                   1        2      3          4 tau Pi            0.5 1 1.5 2 2.5 3 tau Pi
  0.99
  0.98                                                   -0.02
  0.97




exact solution (--------------) vs. weak coupling approximation (- - - -)


W. Polifke - AIM Workshop @ IITM, Jan. 2010                                                  25
Technische Universität München


 Eigenfrequency vs. time lag (n = 0.3)



 Re w                                                   Im w

 1.1                                                   0.1
1.05                                                   0.05
               1          2       3        4 tau Pi            0.5 1 1.5 2 2.5 3 tau Pi
0.95                                                  -0.05
 0.9
                                                      -0.1




 exact solution (--------------) vs. weak coupling approximation (- - - -)


 W. Polifke - AIM Workshop @ IITM, Jan. 2010                                        26
Technische Universität München


Stability map Rijke tube:
                                     .
             p’=0                    Q                  p’=0
           u =0


               i                 c       h              x



   cos kc lc cos kh lh − ξ sin kc lc sin kh lh 1 + ne−iωt = 0,

            m=3
Mode - #




            m=2

            m=1

            m=0

                      0                       1π   2π            ω0τ

W. Polifke - AIM Workshop @ IITM, Jan. 2010                       27
Technische Universität München


Remarks on dynamic stability analysis

+ Results as presented agree with Rayleigh - because losses
are neglected. Could be included easily!

+ Build system of equations in software → network model

- Closed-form expressions for the transfer matrices are known
only for the simplest configurations.

- Eigenfrequencies give only asymptotic, long-time behaviour
→ not adequate for non-normal analysis.

- Iterative search for eigenfrequencies in complex plane can
be tedious and incomplete !

- Matrix coefficients must be known for complex-valued
frequencies → Problem for TFMs from experimental data
W. Polifke - AIM Workshop @ IITM, Jan. 2010                     28
N; ! < 4 ?*) 5)9'% ); #$ #* -"' (#+"- ",9;=59,*'B: -"'* -"' %1%-'6 #% %-,
                      " < 47
Technische Universität München
                         N; ! % 4: -"'* -"' 5)#*- !F 9#'% #*%#2' -"' G1H0#%- $)*-)0( ,*2 -"'(' 6
Nyquist              Criterion in"=59,*'7 E#+0(' @7A #990%-(,-'% 5)%#-#.' ,*2 *'+,-#.' '*$#(
                     #* -"' (#+"-=",9; Control Theory


                                              s
                                              s                  G
                                                                 HG                             H




                                                       −1                       −1




                                                       N =1                              N =0

Cauchyʼs argument principle: N = Z -); 5)%#-#.' ,*2 *'+,-#.' '*$#($9'6'*-%
                  !"#$%& '()( OP,659'% P                                                        )
N − # of anticlockG1H0#%- $)*-)0(7
                   clockwise encirclements of critical point (-1,i0)
Z − # of zeros of the open loop transfer function G(s)
P − # of poles in the right half plane
                         K% , 3*,9 ('6,(J: !' *)-' -",- -"' 5)(-#)* ); -"' G1H0#%- 5,-" ;)( "
Stable if           N-"' P !
                      = #$=59,*'7 Q-"'(!#%': -"' #*#-#,9 .,90' -"')('6 +#.'% ;)( -"' ('%5)*%'
W. Polifke - AIM Workshop @ IITM, Jan. 2010       29
                                                              ' ?& < 4MB < 9#6 "#$ ( ?"B
Technische Universität München


Open loop transfer function of a network model
(Polifke et al., 1997, Kopitz & Polifke, 2008)




        Fuel Supply

                                    Burner            1
        Air Supply                                          Combustor
                                    & Flame




  With                                           fu (ω)
                                        G(ω) ≡ −        ,
                                                   fd
  eigenfrequencies are mapped to the critical point -1


W. Polifke - AIM Workshop @ IITM, Jan. 2010      30
Technische Universität München


OLTF G(ω) as conformal mapping
(Polifke et al., 1997, Kopitz & Polifke, 2008)



         Im(ω)                           ω            Im(G(ω))
                                                                  G(ω)

                                 Re(ω) + 2i


                                 Re(ω) + i
                           ωm
                                                 -1               Re(G(ω))
                                 Re(ω)




Nyquist Criterion:
A mode is stable if the critical point “-1” lies to the left of
the image curve of the real axis.

W. Polifke - AIM Workshop @ IITM, Jan. 2010                                  31
Technische Universität München


Stability analysis with Nyquist plot

- what is “passage of the critical point” !?

- no rigorous proof !

+ this is not the “Barkhausen Criterion”
       The  Barkhausen Stability Criterion is simple, intuitive, and wrong.
       (http://web.mit.edu/klund)

+ it is sufficient to know transfer matrices / transfer functions
for real-valued frequencies ω ∈ |R.

+ no iterative searches for eigenmodes.

+ growth rate can be estimated from the OLTF

W. Polifke - AIM Workshop @ IITM, Jan. 2010                                   32
Technische Universität München


Eigenmodes of Rijke tube
o - Iterative search for eigenmodes
◆ - Nyquist plot

                                           10

                                            8

                                            6

                                            4
                         Growth Rate [%]




                                            2

                                            0

                                            -2

                                            -4

                                            -6

                                            -8

                                           -10
                                                 0   1000          2000   3000
                                                       Frequency [Hz]

W. Polifke - AIM Workshop @ IITM, Jan. 2010                                      33
Technische Universität München


Outline of Talk

Combustion Instabilities

Stability Analysis
       Unsteady Analysis
       Eigenfrequencies
       Nyquist Plots
       Energy Balance

System Models
       CFD
       Computational Acoustics
       Galerkin Methods

Network Models
W. Polifke - AIM Workshop @ IITM, Jan. 2010   34
Technische Universität München


System Modelling

                                  Time Domain                Frequency Domain
       Finite Element
       Finite Volume,




                                 CFD                Computational Acoustics
                        nonlinear PDEs -                  linearized PDEs -
                         Navier-Stokes                often extended Helmholtz
       Mode-Based




                                 Galerkin Methods              Network Models
                                         ODE                   algebraic equations




                            Nonlinear                Linearized Equations
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                          35
Technische Universität München


Computational Fluid Dynamics

Idea: use LES (or URANS) for Unsteady Analysis

+ conceptually straightforward !

- high computational cost !

- acoustic boundary conditions !?

- only dominant mode is detected.

- insight does not come easy.

Nota bene:
CFD can also be used to determine transfer functions /
matrices or to compute the OLTF !
W. Polifke - AIM Workshop @ IITM, Jan. 2010              36
Technische Universität München


Computational acoustics

Linearized Euler Equations:

             ∂ρ       ∂ρ        ∂ρ     ∂ui     ∂ui
                + ui     + ui      +ρ      +ρ        = 0,
             ∂t      ∂xi       ∂xi     ∂xi     ∂xi
          ∂ui      ∂ui       ∂ui    1 ∂p     ρ ∂p
              + uj      + uj      +       − 2        = 0,
          ∂t       ∂xj       ∂xj    ρ ∂xi   ρ ∂xi
          ∂p       ∂p        ∂p       ∂ui      ∂ui
              + ui     + ui      + γp     + γp       = (γ − 1) q .
                                                               ˙
          ∂t       ∂xi      ∂xi       ∂xi      ∂xi


+ contain acoustic, entropy and vorticity modes (→APEs)

- numerically unstable
W. Polifke - AIM Workshop @ IITM, Jan. 2010                          37
Technische Universität München


Computational Acoustics

Starting point: equation for acoustic perturbations:

                          1 D2 p     ∂            1 ∂p      γ − 1 Dq
                                                                   ˙
                           2 Dt2
                                 −ρ                       =    2
                                                                     .
                          c         ∂xi           ρ ∂xi       c   Dt

Add a model for the heat release fluctuations:

                                     q (x, t)
                                     ˙           ub (t − τ (x))
                                              =n                .
                                       ˙
                                       q(x)            ub

Apply FE-Solver (time-marching) for Unsteady Analysis !

(Pankiewitz et al, ʼ02 - ʼ04)
W. Polifke - AIM Workshop @ IITM, Jan. 2010                              38
Technische Universität München


Eigenmodes of annular combustor
                                     (1,0,0)                      (1,1,0)             (1,0,0)   cies and
                     0.8
                                                                                                agreeme
                     0.7


                     0.6                                                                        CONCL
                                                                                                     We
                     0.5                                                                        coustic
                 f




                                                                                                especial
                     0.4                                                                        simulati
                                                                                                bitrary g
                     0.3                                                                        the prop
                                                                                                indicate
                     0.2                                                                        and hav
                       0.8       1        1.2   1.4     1.6        1.8      2   2.2    2.4
                                                              τ

FE: triangles, low-order: circles                                                               REFER
        Figure 5. FREQUENCIES AND
Unstable: filled symbols.                                 CORRESPONDING MODE TYPES
                                                                                                [1] S. H
              FOR DIFFERENT DELAY TIMES. ( , ) LOW ORDER MODEL, (•,◦)
W. Polifke - AIM Workshop @ IITM, Jan. 2010
               TIME DOMAIN SIMULATION.                ( ,•) UNSTABLE MODE, (◦, ) STABLE         39 mix
Technische Universität München


FE / iterative subspace method for eigenmodes
(Benoit and Nicoud ʼ05, Sensiau et al. 2008)


Discretize eqn. for pressure perturbation (with source term)

                        [A][P ] + ω[B][P ] + ω 2 [P ] = [D(ω)][P ].


                                                                        1
a) expand in thermo-acoustic coupling strength                        ≡         n(x) dV.
                                                                        V   V

                                 ωm      =     ωm + ωm + O( 2 ),
                                                (0)  (1)

                                 pm      =     pm + pm + O( 2 ).
                                                (0)  (1)



b) solve iteratively for sequence ω (k)

           [A] − [D(ω (k−1) )] [P ] + ω (k) [B][P ] + (ω (k) )2 [P ] = 0.
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                         40
Table I. E ect of reference position value and the grid resolution for the ÿrst eigen
                         Technische Universität München = 0:003,
                                     frequency;                  = 10−4 s. Cross ‘X’ indicates unfeasible calculation.

                         Results for “Rijke Tube” 0:24 m
                                              x ref =                                                                  x ref = 0:249 m                                x ref = 0:25 m
                         Benoit and Nicoud ʻ05
                           Coarse mesh (561 nodes)                                             270:4 − 0:087i                X                                             X
                              Reÿned mesh (5231 nodes)                                         271:3 − 0:093i          271:4 − 0:088i                                      X
                              Theoretical                                                      271:5 − 0:098i          271:6 − 0:088i                                271:6 − 0:088i
                         using the weak-coupling expansion


                                       ε=0.003                                                           ε=0.33                                                            ε=1.6
              0.4                                                                    40                                                                  200
                                                      expansion                                                       expansion                                                          expansion
                                                      theoretical                                                     theoretical                        100                             theoretical
              0.2                                                                    20
Growth rate




                                                                       Growth rate




                                                                                                                                           Growth rate
                                                                                                                                                           0
                0                                                                     0

                                                                                                                                                         -100
              -0.2                                                                   -20

                                                                                                                                                         -200
              -0.4                                                                   -40
                                                                                                                                                         -300
                     0         500       1000      1500         2000                       0      500     1000      1500            2000                        0   500     1000      1500         2000
                                       Frequency                                                        Frequency                                                         Frequency



              Figure 2. Representation in the complex plane of the theoretical and computed eigen frequencies.



                         available in Figure 2 and displayed in the complex plane. As expected, the computed
                         W. Polifke - AIM Workshop @ IITM, Jan. 2010                                 41
Technische Universität München


Computational acoustics

+ time domain: straightforward

+ fq domain: identify both stable and unstable eigenmodes

+ modest computational cost.

- acoustic boundary conditions, mean flow effects, losses !?

- needs input on flame dynamics.

Stay tuned !




W. Polifke - AIM Workshop @ IITM, Jan. 2010                   42
Technische Universität München


System Modelling

                                  Time Domain                Frequency Domain
       Finite Element
       Finite Volume,




                                 CFD                Computational Acoustics
                        nonlinear PDEs -                  linearized PDEs -
                         Navier-Stokes                often extended Helmholtz
       Mode-Based




                                 Galerkin Methods              Network Models
                                         ODE                   algebraic equations




                            Nonlinear                Linearized Equations
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                          43
Technische Universität München


Galerkin method

                                       ∂ 2 ψm
1D Helmholtz-equation without sources:      2
                                              + km ψm = 0
                                                 2
                                        ∂x


Eigenmodes ψm (x) = sin(km x) are orthogonal
                                            L
                                                ψm ψn dx = δmn .
                                        0


“Project” eigenmodes on PDE with source:
                    2
                  d ηm            γ−1                        L

                      2
                        + ωm ηm =
                           2
                                    2
                                                                 q (x) ψm (x) dx.
                                                                 ˙
                   dt              Em                    0


W. Polifke - AIM Workshop @ IITM, Jan. 2010                                         44
Technische Universität München


Galerkin

 + very efficient

 + can handle non-linearities

 + for complicated geometries, expansion functions ψ can be
 computed with FE

 + eigenmodes of full problem need not be close to the ψʼs of
 the homogeneous problem

 - non-normal modes for non-trival boundary conditions

 - input on flame dynamics is needed, determination of source
 term may be non-trivial.


W. Polifke - AIM Workshop @ IITM, Jan. 2010                     45
Technische Universität München


Outline of Talk

Combustion Instabilities

Stability Analysis
       Unsteady Analysis
       Eigenfrequencies
       Nyquist Plots
       Energy Balance

System Models
       CFD
       Computational Acoustics
       Galerkin Methods

Network Models
W. Polifke - AIM Workshop @ IITM, Jan. 2010   46
Technische Universität München


Network models


           Fuel Supply


           Air Supply                    Burner        Flame       Combustor




                                                       f1
                                                               
                                                                   0
                                                                          
                               Matrix
                                of                       .  =  . .
                                                           .   . 
                                                           .       .
                                                  
                             Coefficients                   gN       0


W. Polifke - AIM Workshop @ IITM, Jan. 2010       47
Technische Universität München


Contoured duct


         A(x)




                            1                 2                 3               4
                                                                                             (x)



               e−ikx+ l1             0            1   0         e−ikx+ l2       0              1    0
  M=                             −ikx− l1                                   −ikx− l2   ···
                  0              e                0   α1           0        e                  0   αN




W. Polifke - AIM Workshop @ IITM, Jan. 2010                48
Technische Universität München


Non-plane modes in thin annular duct




                       fd                     e−ikx+ l            0                fu
                                  =                           −ikx− l                        .
                       gd                        0            e                    gu
                                                                                           
                                                                             2
                                     ω/c                              k⊥                              m
                            kx±   =     2
                                           −M ±                   1−             (1 −   M 2 ) ,   k⊥ ≡ .
                                    1−M                                ω/c                             R

W. Polifke - AIM Workshop @ IITM, Jan. 2010              49
Technische Universität München


Compact element ( l                           λ )


                                                l

                       Au
                                                                   Ad


                           xu                                     xd

                                                                         
    p                                                                     p
   ρc  =                             1            −i k leff − ζM        ρc  .
                                    −i k lred              α
    u   d
                                                                          u   u

                                                          xd
                                                                Au
                                                leff ≈               dx.
                                                         xu    A(x)
W. Polifke - AIM Workshop @ IITM, Jan. 2010         50
Technische Universität München


Transfer matrix of (compact) flame

Linearize Rankine-Hugoniot relations
(conservation of mass, momentum, energy across discontinuity)

                p                        p            TH                uc   ˙
                                                                             Q
         ξ                       =                −      − 1 u c Mc        +      ,
                ρc       h               ρc   c       TC                uc   Q˙

                                                  TH          ˙
                                                              Q    pc
                      uh         =   uc +            − 1 uc      −        .
                                                  TC          Q˙   pc

closure with flame frequency response,
                                              ˙
                                              Q          u
                                                 = F (ω)
                                              Q˙         u

W. Polifke - AIM Workshop @ IITM, Jan. 2010                                           51
Technische Universität München


Example network calculations

Acoustics in duct system with low-Mach-# flow




                                 x
                                              L

            open end - duct - area change - duct - open end



W. Polifke - AIM Workshop @ IITM, Jan. 2010                   52
Technische Universität München


Eigenfrequencies
with reflection coefficient r = -1

                         $"$                                                                                $

                          $
                                                                                                           #"*
 /012345267238029:4-4!




                         #"*




                                                                                             /0123450637
                         #"(                                                                               #"(

                         #"&
                                                                                                           #"&
                         #"$

                          #
                                                                                                           #"$
                         !"*

                         !"(                                                                                #
                               !   !"#   !"$   !"%   !"&   !"'   !"(   !")   !"*   !"+   #                       !   !"#   !"$   !"%   !"&   !"'   !"(   !")   !"*   !"+   #
                                                           ,-.                                                                               ,-.




How is instability possible in a system without energy source?


W. Polifke - AIM Workshop @ IITM, Jan. 2010                                                                                                                                    53
Technische Universität München


Eigenfrequencies
with energy-conserving boundary conditions

                          $"$                                                                                     #

                           $
                                                                                                                !"+'
  /012345267238029:4-4!




                          #"*




                                                                                                  /0123450637
                          #"(                                                                                    !"+
                          #"&
                                                                                                                !"*'
                          #"$

                           #
                                                                                                                 !"*
                          !"*

                          !"(                                                                                   !")'
                                !   !"#   !"$   !"%   !"&   !"'   !"(   !")   !"*   !"+   #                            !   !"#   !"$   !"%   !"&    !"'   !"(   !")   !"*   !"+   #
                                                            ,-.                                                                                    ,-.


                                                                                          1        2
                                                                                p+            ρ                   =         p∞ ,
                                                                                          2
                                                                                    p
                                                                                          +M                      =         0,
                                                                       ρc
                                                            ƒ (1 + M) + g(1 − M)                                  =         0.
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                                                                                                                           54
Technische Universität München

    Riemann Twist
       The Riemann Twist




                                                                    !$
                                                     !"
              #%

                                                                              &
                   !%                                                    #$


         &'                                               #"
                                          &"
                                                               &$




Messung von Transfermatrixen (3)
       W. Polifke - AIM Workshop @ IITM, Jan. 2010                            55
Prof. Wolfgang Polifke
Technische Universität München


Network Models

+ Fast & Flexible, low computational effort

+ Great for qualitative / exploratory studies

- Not suitable for many geometries of applied interest

- Only in frequency domain ?

- Non-linear phenomena ?

- Non-normal phenomena ?



→ n3l Workshop in Munich
W. Polifke - AIM Workshop @ IITM, Jan. 2010              56
Technische Universität München


Summary

                                  Time Domain                Frequency Domain
       Finite Element
       Finite Volume,




                                 CFD                Computational Acoustics
                        nonlinear PDEs -                  linearized PDEs -
                         Navier-Stokes                often extended Helmholtz
       Mode-Based




                                 Galerkin Methods              Network Models
                                         ODE                   algebraic equations




                            Nonlinear                Linearized Equations
W. Polifke - AIM Workshop @ IITM, Jan. 2010                                          57
Technische Universität München



My questions on non-normality ...

Real-world configurations:
       how typical / important are n-n effects?
       which methods / tools are adequate for the study of n-n effects?

How to adopt exisiting modelling approaches:
       how to formulate appropriate (time-domain) network models?
       what is the proper norm?
       what are the physically realistic / permissible initial states ?

How to describe / identify the flame dynamics ?




W. Polifke - AIM Workshop @ IITM, Jan. 2010                               58
Technische Universität München
    Announcement and Call for Papers




                             Summer School and Workshop on
                  Non-Normal and Nonlinear Effects in
                      Aero- and Thermoacoustics
    In aero-acoustics, nonlinear effects play an important role in generation as well as
    dissipation of sound. Stability limits and limit cycle amplitudes of self-excited aero- or
    thermoacoustic instabilities are influenced by nonlinearities. For thermoacoustic
    interactions, standard linear modal analysis can in general not predict the response
    of the system to finite amplitude perturbations due to the non-normality of the
    corresponding evolution operator and nonorthogonality of eigenmodes.

    At TU München, a Summer School / Workshop on non-normality and nonlinearity in
    aero- and thermoacoustics will be held in May 2010.
    During the Summer School (May 17 and 18), a series of invited lectures will give an
    introduction to the workshop topics and present the state of the art. Expected
                http://www.td.mw.tum.de/n3l-conf-2010
    audience are doctoral students with some background in fluid mechanics, flow
    instabilities, aero- or thermoacoustics, or combustion. Of course, more experienced
    researchers interested in the workshop topics are also welcome.
    Tentative list of speakers:
W. Polifke - AIM Workshop (École Jan. 2010 Lyon)
               C. Bailly @ IITM, Centrale                                                        59

Contenu connexe

En vedette

Sirling Engine Project Profile (ME04M-U16)
Sirling Engine Project Profile (ME04M-U16)Sirling Engine Project Profile (ME04M-U16)
Sirling Engine Project Profile (ME04M-U16)A Q
 
Green Energy From Heat - Themo Electric Generation (TEG)
Green Energy From Heat  - Themo Electric Generation (TEG)Green Energy From Heat  - Themo Electric Generation (TEG)
Green Energy From Heat - Themo Electric Generation (TEG)jamietpe
 
Thermo electric effect
Thermo electric effectThermo electric effect
Thermo electric effectAhmed Diaa
 
Project A Thermoacoustics
Project A ThermoacousticsProject A Thermoacoustics
Project A ThermoacousticsAravind Badiger
 
Design of a Thermoacoustic Refrigerator
Design of a Thermoacoustic RefrigeratorDesign of a Thermoacoustic Refrigerator
Design of a Thermoacoustic Refrigeratorandresmurillo
 
Thermoacoustic Refrigeration
Thermoacoustic RefrigerationThermoacoustic Refrigeration
Thermoacoustic RefrigerationKonal Singh
 
thermoacoustic refrigeration
thermoacoustic refrigeration thermoacoustic refrigeration
thermoacoustic refrigeration Bhavya Rani
 
Thermoelectric materials & Applications
Thermoelectric materials & ApplicationsThermoelectric materials & Applications
Thermoelectric materials & Applicationsut09
 
Thermoelectric power generator
Thermoelectric power generatorThermoelectric power generator
Thermoelectric power generatorVikram Jaswal
 
THERMOACOUSTIC REFRIGERATION
THERMOACOUSTIC REFRIGERATIONTHERMOACOUSTIC REFRIGERATION
THERMOACOUSTIC REFRIGERATIONNimalan_I
 
Thermoelectric and Thermionic Generators
Thermoelectric and Thermionic GeneratorsThermoelectric and Thermionic Generators
Thermoelectric and Thermionic GeneratorsVigneshwaar Ponnuswamy
 
Thermo electric generator
Thermo electric generatorThermo electric generator
Thermo electric generatorsometech
 
Employment opportunity in the IIT Madras at Chennai.
Employment opportunity in the IIT Madras at Chennai.Employment opportunity in the IIT Madras at Chennai.
Employment opportunity in the IIT Madras at Chennai.thaamaraichchelvi
 
Thermo acoustic refrigeration
Thermo acoustic refrigerationThermo acoustic refrigeration
Thermo acoustic refrigerationpavan kotra
 
THERMOELECTRIC GENERATORS SEMINAR IEEE
THERMOELECTRIC GENERATORS SEMINAR IEEETHERMOELECTRIC GENERATORS SEMINAR IEEE
THERMOELECTRIC GENERATORS SEMINAR IEEEjiyadh.k. sabeer
 
Thermo acoustic refrigeration
Thermo acoustic refrigerationThermo acoustic refrigeration
Thermo acoustic refrigerationsanjuxavier
 

En vedette (19)

Final Report
Final ReportFinal Report
Final Report
 
Sirling Engine Project Profile (ME04M-U16)
Sirling Engine Project Profile (ME04M-U16)Sirling Engine Project Profile (ME04M-U16)
Sirling Engine Project Profile (ME04M-U16)
 
TAR ppt
TAR pptTAR ppt
TAR ppt
 
Green Energy From Heat - Themo Electric Generation (TEG)
Green Energy From Heat  - Themo Electric Generation (TEG)Green Energy From Heat  - Themo Electric Generation (TEG)
Green Energy From Heat - Themo Electric Generation (TEG)
 
Thermo electric effect
Thermo electric effectThermo electric effect
Thermo electric effect
 
Project A Thermoacoustics
Project A ThermoacousticsProject A Thermoacoustics
Project A Thermoacoustics
 
Design of a Thermoacoustic Refrigerator
Design of a Thermoacoustic RefrigeratorDesign of a Thermoacoustic Refrigerator
Design of a Thermoacoustic Refrigerator
 
Thermoacoustic Refrigeration
Thermoacoustic RefrigerationThermoacoustic Refrigeration
Thermoacoustic Refrigeration
 
thermoacoustic refrigeration
thermoacoustic refrigeration thermoacoustic refrigeration
thermoacoustic refrigeration
 
Thermoelectric materials & Applications
Thermoelectric materials & ApplicationsThermoelectric materials & Applications
Thermoelectric materials & Applications
 
The thermo electric effect
The thermo electric effectThe thermo electric effect
The thermo electric effect
 
Thermoelectric power generator
Thermoelectric power generatorThermoelectric power generator
Thermoelectric power generator
 
THERMOACOUSTIC REFRIGERATION
THERMOACOUSTIC REFRIGERATIONTHERMOACOUSTIC REFRIGERATION
THERMOACOUSTIC REFRIGERATION
 
Thermoelectric and Thermionic Generators
Thermoelectric and Thermionic GeneratorsThermoelectric and Thermionic Generators
Thermoelectric and Thermionic Generators
 
Thermo electric generator
Thermo electric generatorThermo electric generator
Thermo electric generator
 
Employment opportunity in the IIT Madras at Chennai.
Employment opportunity in the IIT Madras at Chennai.Employment opportunity in the IIT Madras at Chennai.
Employment opportunity in the IIT Madras at Chennai.
 
Thermo acoustic refrigeration
Thermo acoustic refrigerationThermo acoustic refrigeration
Thermo acoustic refrigeration
 
THERMOELECTRIC GENERATORS SEMINAR IEEE
THERMOELECTRIC GENERATORS SEMINAR IEEETHERMOELECTRIC GENERATORS SEMINAR IEEE
THERMOELECTRIC GENERATORS SEMINAR IEEE
 
Thermo acoustic refrigeration
Thermo acoustic refrigerationThermo acoustic refrigeration
Thermo acoustic refrigeration
 

Dernier

Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGSujit Pal
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Dernier (20)

Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Google AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAGGoogle AI Hackathon: LLM based Evaluator for RAG
Google AI Hackathon: LLM based Evaluator for RAG
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

Iitm10.Key

  • 1. Technische Universität München Workshop on Advanced Instability Methods Jan. 18 - 21, 2010, IIT Madras, Chennai, India Thermo-Acoustic System Modelling and Stability Analysis: Conventional Approaches Wolfgang Polifke Lehrstuhl für Thermodynamik TU München
  • 2. Technische Universität München thanks to ... Jakob J. Keller, Oliver Paschereit, Bruno Schuermans Stephanie Evesque, Christoph Hirsch, Thomas Sattelmayer Alexander Gentemann, Andreas Huber, Roland Kaess, Jan Kopitz, Robert Leandro, Christian Pankiewitz Matthew Juniper, Raman Sujith W. Polifke - AIM Workshop @ IITM, Jan. 2010 2
  • 3. Technische Universität München Outline of Talk Combustion Instabilities Stability Analysis Unsteady Analysis Eigenmodes and Eigenfrequencies Nyquist Plots Energy Balance System Models CFD Computational Acoustics Galerkin Methods Network Models (“Toy Models”) W. Polifke - AIM Workshop @ IITM, Jan. 2010 3
  • 4. Technische Universität München A history of trouble (from Culick, 2006) W. Polifke - AIM Workshop @ IITM, Jan. 2010 4
  • 5. Technische Universität München Physics of Combustion Instabilities a flame is a source of volume a fluctuating flame is a (monopole) source of sound combustion noise & combustion instability Rayleighʼs Criterion: ˙ p Q dt > 0 Rayleigh Index W. Polifke - AIM Workshop @ IITM, Jan. 2010 5
  • 6. Technische Universität München Thermodynamic interpretation of Rayleigh Fluctuations produce acoustic energy, if Rayleigh Index > 0 p p’, u’ t 2' 3' Q’ 2' 2" 1 3' 4' 1 4' t 3" 4" Q’ 1 4" v 2" 3" t W. Polifke - AIM Workshop @ IITM, Jan. 2010 6
  • 7. Technische Universität München Thermodynamic interpretation of Rayleigh Fluctuations produce acoustic energy, if Rayleigh Index > 0 p p’, u’ t 2' 3' Q’ 2' 2" 1 3' 4' 1 4' t 3" 4" Q’ 1 4" v 2" 3" t If production of energy > dissipation, instability occurs ! W. Polifke - AIM Workshop @ IITM, Jan. 2010 6
  • 8. Technische Universität München Thermo-Akustische Instabilität Flame dynamics and system acoustics Eingeschlossene Flamme (p’, u’) Q’ (p’, u’) Rückkopplung zwischen Fluktuationen Premix flames are velocity sensitive: ˙ ˙ Q = Q (u ) der Strömung (p’,u’) und der Wärmefreisetzung Q’ -> Selbsterregte Schwingungen ! p System acoustics controls phase pʼ - uʼ: Z = Stabilitätskriterium nach Rayleigh: ! d Q!p! u" > 0. # " W . Polifke / divide et imp era — Ercoftac TecTag / 2 ˙ p Q dt > 0 W. Polifke - AIM Workshop @ IITM, Jan. 2010 7
  • 9. Technische Universität München Heat release in sync with pressure p', u' Q' p' Q' most likely unstable ! W. Polifke - AIM Workshop @ IITM, Jan. 2010 8
  • 10. Technische Universität München Heat release in sync with velocity p', u' Q' p' Q' stable ! W. Polifke - AIM Workshop @ IITM, Jan. 2010 9
  • 11. Technische Universität München Heat release lags velocity p’, u’ Q’ p’ Q’ possibly unstable ! W. Polifke - AIM Workshop @ IITM, Jan. 2010 10
  • 12. Technische Universität München Flame front kinematics Heat release rate of a premix flame: ˙ Q = ρu φSA ∆h W. Polifke - AIM Workshop @ IITM, Jan. 2010 11
  • 13. Technische Universität München Flame front kinematics Heat release rate of a premix flame: ˙ Q = ρu φSA ∆h W. Polifke - AIM Workshop @ IITM, Jan. 2010 12
  • 14. Technische Universität München Modulation of Equivalence Ratio ˙ Q = ρu φSA ∆h ˙ Q ρu φ S = + + Q˙ ρu φ S φ pI (t − τ ) uI (t − τ ) = − − , φ 2∆p uI ˙ Q pI uI = −(1 + a) + exp(−iωτ ) Q˙ 2∆p uI W. Polifke - AIM Workshop @ IITM, Jan. 2010 13
  • 15. Technische Universität München Modulation of Equivalence Ratio ˙ Q = ρu φSA ∆h ˙ Q ρu φ S = + + Q˙ ρu φ S φ pI (t − τ ) uI (t − τ ) = − − , φ 2∆p uI ˙ Q pI uI = −(1 + a) + exp(−iωτ ) Q˙ 2∆p uI W. Polifke - AIM Workshop @ IITM, Jan. 2010 13
  • 16. Technische Universität München Modulation of Equivalence Ratio ˙ Q = ρu φSA ∆h ˙ Q ρu φ S = + + Q˙ ρu φ S φ pI (t − τ ) uI (t − τ ) = − − , φ 2∆p uI ˙ Q pI uI = −(1 + a) + exp(−iωτ ) Q˙ 2∆p uI W. Polifke - AIM Workshop @ IITM, Jan. 2010 13
  • 17. Technische Universität München Modulation of Equivalence Ratio ˙ Q = ρu φSA ∆h ˙ Q ρu φ S = + + Q˙ ρu φ S φ pI (t − τ ) uI (t − τ ) = − − , φ 2∆p uI ˙ Q pI uI = −(1 + a) + exp(−iωτ ) Q˙ 2∆p uI W. Polifke - AIM Workshop @ IITM, Jan. 2010 13
  • 18. Technische Universität München Flame / Acoustic Interactions Fuel Air Flame Combustor Supply Supply Position and Area of Flame Burning p’, u’ u’ Q’ Velocity Equivalence p’ Ratio W. Polifke - AIM Workshop @ IITM, Jan. 2010 14
  • 19. Technische Universität München Stability Analysis needs a System Model “there are no unstable flames” Rayleigh criterion is necessary, but not sufficient. The system controls Impedance at the flame (→ phase between velocity and pressure) Losses of acoustic energy (dissipation and radiation). Intensity, phase and dispersion of convective waves (equivalence ratio, entropy). W. Polifke - AIM Workshop @ IITM, Jan. 2010 15
  • 20. Technische Universität München Outline of Talk Combustion Instabilities Stability Analysis Unsteady Analysis Eigenfrequencies Nyquist Plots Energy Balance System Models CFD Computational Acoustics Galerkin Methods Network Models W. Polifke - AIM Workshop @ IITM, Jan. 2010 16
  • 21. Q = 385 ± 7 W; vmean = 0.0218 ± 0.0002 m/s Technische Universität München Instability in a Rijke tube Experiment by Lumens, Kopitz 2006 W. Polifke - AIM Workshop @ IITM, Jan. 2010 17
  • 22. Technische Universität München Stability Analysis by Unsteady Simulation 1D CFD Model of Rijke tube ˙ with source term for energy Q(t) = u(t − τ ) 30 gauze [m/s] 20 Velocity at [m/s] 10 c v 0 -10 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 t [s] Polifke et al, JSV, 2001 Time [s] W. Polifke - AIM Workshop @ IITM, Jan. 2010 18
  • 23. Technische Universität München Unsteady Simulation + Simulation of (turbulent, reacting), compressible flow captures all relevant phenomena - Computationally expensive - Only the dominant mode is identified - Numerical vs. physical instability - Results can depend on initial perturbation - Boundary conditions (acoustic impedance !) are a problem. W. Polifke - AIM Workshop @ IITM, Jan. 2010 19
  • 24. Technische Universität München Stability Analysis with Eigenmodes and Eigenfrequencies Mode - a pattern of vibration Eigen - German: own, peculiar, characteristic Eigenmode / Eigenfrequency - a mode / frequency that is easily excited in the system - once established, an eigenmode will persist for some time Typically, a system has many eigenmodes. several eigenmodes may be unstable one mode will be most unstable (“dominant mode”) W. Polifke - AIM Workshop @ IITM, Jan. 2010 20
  • 25. Technische Universität München Eigenmodes / frequencies of a Rijke tube computed with a low-order model . p’=0 Q p’=0 i c h x Acoustic waves travel between “i” and “c”, “h” and “x”: fc e−ikl 0 fi ω = , k= . gc 0 eikl gi c 1 p 1 p f= +u , g= −u . 2 ρc 2 ρc W. Polifke - AIM Workshop @ IITM, Jan. 2010 21
  • 26. Technische Universität München Coupling relations at the heat source . p’=0 Q p’=0 i c h x At the heat source: • no pressure drop, ph = pc • time-lagged heat release, uh (t) = uc (t) + nuc (t − τ ). ρh ch (fh + gh ) = (fc + gc ), ρc cc fh − gh = 1 + ne −iωτ (fc − gc ), W. Polifke - AIM Workshop @ IITM, Jan. 2010 22
  • 27. Technische Universität München Boundary conditions . p’=0 Q p’=0 i c h x open / closed ends: p = 0 → f + g = 0, u = 0 → f − g = 0, W. Polifke - AIM Workshop @ IITM, Jan. 2010 23
  • 28. Technische Universität München Rijke tube system matrix . u p’=00 = Q p’=0 i c h x   fi   0  Matrix of  .  =  . . .   .  . .   Coefficients gx 0 Eigenfrequencies fulfill Det (S(ω)) = 0, which yields: cos kc lc cos kh lh − ξ sin kc lc sin kh lh 1 + n e−iωτ = 0, W. Polifke - AIM Workshop @ IITM, Jan. 2010 24
  • 29. Technische Universität München Eigenfrequency vs. time lag (n = 0.1) Re w Im w 1.03 0.04 1.02 1.01 0.02 1 2 3 4 tau Pi 0.5 1 1.5 2 2.5 3 tau Pi 0.99 0.98 -0.02 0.97 exact solution (--------------) vs. weak coupling approximation (- - - -) W. Polifke - AIM Workshop @ IITM, Jan. 2010 25
  • 30. Technische Universität München Eigenfrequency vs. time lag (n = 0.3) Re w Im w 1.1 0.1 1.05 0.05 1 2 3 4 tau Pi 0.5 1 1.5 2 2.5 3 tau Pi 0.95 -0.05 0.9 -0.1 exact solution (--------------) vs. weak coupling approximation (- - - -) W. Polifke - AIM Workshop @ IITM, Jan. 2010 26
  • 31. Technische Universität München Stability map Rijke tube: . p’=0 Q p’=0 u =0 i c h x cos kc lc cos kh lh − ξ sin kc lc sin kh lh 1 + ne−iωt = 0, m=3 Mode - # m=2 m=1 m=0 0 1π 2π ω0τ W. Polifke - AIM Workshop @ IITM, Jan. 2010 27
  • 32. Technische Universität München Remarks on dynamic stability analysis + Results as presented agree with Rayleigh - because losses are neglected. Could be included easily! + Build system of equations in software → network model - Closed-form expressions for the transfer matrices are known only for the simplest configurations. - Eigenfrequencies give only asymptotic, long-time behaviour → not adequate for non-normal analysis. - Iterative search for eigenfrequencies in complex plane can be tedious and incomplete ! - Matrix coefficients must be known for complex-valued frequencies → Problem for TFMs from experimental data W. Polifke - AIM Workshop @ IITM, Jan. 2010 28
  • 33. N; ! < 4 ?*) 5)9'% ); #$ #* -"' (#+"- ",9;=59,*'B: -"'* -"' %1%-'6 #% %-, " < 47 Technische Universität München N; ! % 4: -"'* -"' 5)#*- !F 9#'% #*%#2' -"' G1H0#%- $)*-)0( ,*2 -"'(' 6 Nyquist Criterion in"=59,*'7 E#+0(' @7A #990%-(,-'% 5)%#-#.' ,*2 *'+,-#.' '*$#( #* -"' (#+"-=",9; Control Theory s s G HG H −1 −1 N =1 N =0 Cauchyʼs argument principle: N = Z -); 5)%#-#.' ,*2 *'+,-#.' '*$#($9'6'*-% !"#$%& '()( OP,659'% P ) N − # of anticlockG1H0#%- $)*-)0(7 clockwise encirclements of critical point (-1,i0) Z − # of zeros of the open loop transfer function G(s) P − # of poles in the right half plane K% , 3*,9 ('6,(J: !' *)-' -",- -"' 5)(-#)* ); -"' G1H0#%- 5,-" ;)( " Stable if N-"' P ! = #$=59,*'7 Q-"'(!#%': -"' #*#-#,9 .,90' -"')('6 +#.'% ;)( -"' ('%5)*%' W. Polifke - AIM Workshop @ IITM, Jan. 2010 29 ' ?& < 4MB < 9#6 "#$ ( ?"B
  • 34. Technische Universität München Open loop transfer function of a network model (Polifke et al., 1997, Kopitz & Polifke, 2008) Fuel Supply Burner 1 Air Supply Combustor & Flame With fu (ω) G(ω) ≡ − , fd eigenfrequencies are mapped to the critical point -1 W. Polifke - AIM Workshop @ IITM, Jan. 2010 30
  • 35. Technische Universität München OLTF G(ω) as conformal mapping (Polifke et al., 1997, Kopitz & Polifke, 2008) Im(ω) ω Im(G(ω)) G(ω) Re(ω) + 2i Re(ω) + i ωm -1 Re(G(ω)) Re(ω) Nyquist Criterion: A mode is stable if the critical point “-1” lies to the left of the image curve of the real axis. W. Polifke - AIM Workshop @ IITM, Jan. 2010 31
  • 36. Technische Universität München Stability analysis with Nyquist plot - what is “passage of the critical point” !? - no rigorous proof ! + this is not the “Barkhausen Criterion” The  Barkhausen Stability Criterion is simple, intuitive, and wrong. (http://web.mit.edu/klund) + it is sufficient to know transfer matrices / transfer functions for real-valued frequencies ω ∈ |R. + no iterative searches for eigenmodes. + growth rate can be estimated from the OLTF W. Polifke - AIM Workshop @ IITM, Jan. 2010 32
  • 37. Technische Universität München Eigenmodes of Rijke tube o - Iterative search for eigenmodes ◆ - Nyquist plot 10 8 6 4 Growth Rate [%] 2 0 -2 -4 -6 -8 -10 0 1000 2000 3000 Frequency [Hz] W. Polifke - AIM Workshop @ IITM, Jan. 2010 33
  • 38. Technische Universität München Outline of Talk Combustion Instabilities Stability Analysis Unsteady Analysis Eigenfrequencies Nyquist Plots Energy Balance System Models CFD Computational Acoustics Galerkin Methods Network Models W. Polifke - AIM Workshop @ IITM, Jan. 2010 34
  • 39. Technische Universität München System Modelling Time Domain Frequency Domain Finite Element Finite Volume, CFD Computational Acoustics nonlinear PDEs - linearized PDEs - Navier-Stokes often extended Helmholtz Mode-Based Galerkin Methods Network Models ODE algebraic equations Nonlinear Linearized Equations W. Polifke - AIM Workshop @ IITM, Jan. 2010 35
  • 40. Technische Universität München Computational Fluid Dynamics Idea: use LES (or URANS) for Unsteady Analysis + conceptually straightforward ! - high computational cost ! - acoustic boundary conditions !? - only dominant mode is detected. - insight does not come easy. Nota bene: CFD can also be used to determine transfer functions / matrices or to compute the OLTF ! W. Polifke - AIM Workshop @ IITM, Jan. 2010 36
  • 41. Technische Universität München Computational acoustics Linearized Euler Equations: ∂ρ ∂ρ ∂ρ ∂ui ∂ui + ui + ui +ρ +ρ = 0, ∂t ∂xi ∂xi ∂xi ∂xi ∂ui ∂ui ∂ui 1 ∂p ρ ∂p + uj + uj + − 2 = 0, ∂t ∂xj ∂xj ρ ∂xi ρ ∂xi ∂p ∂p ∂p ∂ui ∂ui + ui + ui + γp + γp = (γ − 1) q . ˙ ∂t ∂xi ∂xi ∂xi ∂xi + contain acoustic, entropy and vorticity modes (→APEs) - numerically unstable W. Polifke - AIM Workshop @ IITM, Jan. 2010 37
  • 42. Technische Universität München Computational Acoustics Starting point: equation for acoustic perturbations: 1 D2 p ∂ 1 ∂p γ − 1 Dq ˙ 2 Dt2 −ρ = 2 . c ∂xi ρ ∂xi c Dt Add a model for the heat release fluctuations: q (x, t) ˙ ub (t − τ (x)) =n . ˙ q(x) ub Apply FE-Solver (time-marching) for Unsteady Analysis ! (Pankiewitz et al, ʼ02 - ʼ04) W. Polifke - AIM Workshop @ IITM, Jan. 2010 38
  • 43. Technische Universität München Eigenmodes of annular combustor (1,0,0) (1,1,0) (1,0,0) cies and 0.8 agreeme 0.7 0.6 CONCL We 0.5 coustic f especial 0.4 simulati bitrary g 0.3 the prop indicate 0.2 and hav 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 τ FE: triangles, low-order: circles REFER Figure 5. FREQUENCIES AND Unstable: filled symbols. CORRESPONDING MODE TYPES [1] S. H FOR DIFFERENT DELAY TIMES. ( , ) LOW ORDER MODEL, (•,◦) W. Polifke - AIM Workshop @ IITM, Jan. 2010 TIME DOMAIN SIMULATION. ( ,•) UNSTABLE MODE, (◦, ) STABLE 39 mix
  • 44. Technische Universität München FE / iterative subspace method for eigenmodes (Benoit and Nicoud ʼ05, Sensiau et al. 2008) Discretize eqn. for pressure perturbation (with source term) [A][P ] + ω[B][P ] + ω 2 [P ] = [D(ω)][P ]. 1 a) expand in thermo-acoustic coupling strength ≡ n(x) dV. V V ωm = ωm + ωm + O( 2 ), (0) (1) pm = pm + pm + O( 2 ). (0) (1) b) solve iteratively for sequence ω (k) [A] − [D(ω (k−1) )] [P ] + ω (k) [B][P ] + (ω (k) )2 [P ] = 0. W. Polifke - AIM Workshop @ IITM, Jan. 2010 40
  • 45. Table I. E ect of reference position value and the grid resolution for the ÿrst eigen Technische Universität München = 0:003, frequency; = 10−4 s. Cross ‘X’ indicates unfeasible calculation. Results for “Rijke Tube” 0:24 m x ref = x ref = 0:249 m x ref = 0:25 m Benoit and Nicoud ʻ05 Coarse mesh (561 nodes) 270:4 − 0:087i X X Reÿned mesh (5231 nodes) 271:3 − 0:093i 271:4 − 0:088i X Theoretical 271:5 − 0:098i 271:6 − 0:088i 271:6 − 0:088i using the weak-coupling expansion ε=0.003 ε=0.33 ε=1.6 0.4 40 200 expansion expansion expansion theoretical theoretical 100 theoretical 0.2 20 Growth rate Growth rate Growth rate 0 0 0 -100 -0.2 -20 -200 -0.4 -40 -300 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 Frequency Frequency Frequency Figure 2. Representation in the complex plane of the theoretical and computed eigen frequencies. available in Figure 2 and displayed in the complex plane. As expected, the computed W. Polifke - AIM Workshop @ IITM, Jan. 2010 41
  • 46. Technische Universität München Computational acoustics + time domain: straightforward + fq domain: identify both stable and unstable eigenmodes + modest computational cost. - acoustic boundary conditions, mean flow effects, losses !? - needs input on flame dynamics. Stay tuned ! W. Polifke - AIM Workshop @ IITM, Jan. 2010 42
  • 47. Technische Universität München System Modelling Time Domain Frequency Domain Finite Element Finite Volume, CFD Computational Acoustics nonlinear PDEs - linearized PDEs - Navier-Stokes often extended Helmholtz Mode-Based Galerkin Methods Network Models ODE algebraic equations Nonlinear Linearized Equations W. Polifke - AIM Workshop @ IITM, Jan. 2010 43
  • 48. Technische Universität München Galerkin method ∂ 2 ψm 1D Helmholtz-equation without sources: 2 + km ψm = 0 2 ∂x Eigenmodes ψm (x) = sin(km x) are orthogonal L ψm ψn dx = δmn . 0 “Project” eigenmodes on PDE with source: 2 d ηm γ−1 L 2 + ωm ηm = 2 2 q (x) ψm (x) dx. ˙ dt Em 0 W. Polifke - AIM Workshop @ IITM, Jan. 2010 44
  • 49. Technische Universität München Galerkin + very efficient + can handle non-linearities + for complicated geometries, expansion functions ψ can be computed with FE + eigenmodes of full problem need not be close to the ψʼs of the homogeneous problem - non-normal modes for non-trival boundary conditions - input on flame dynamics is needed, determination of source term may be non-trivial. W. Polifke - AIM Workshop @ IITM, Jan. 2010 45
  • 50. Technische Universität München Outline of Talk Combustion Instabilities Stability Analysis Unsteady Analysis Eigenfrequencies Nyquist Plots Energy Balance System Models CFD Computational Acoustics Galerkin Methods Network Models W. Polifke - AIM Workshop @ IITM, Jan. 2010 46
  • 51. Technische Universität München Network models Fuel Supply Air Supply Burner Flame Combustor   f1  0   Matrix of  .  =  . . .   .  . .   Coefficients gN 0 W. Polifke - AIM Workshop @ IITM, Jan. 2010 47
  • 52. Technische Universität München Contoured duct A(x) 1 2 3 4 (x) e−ikx+ l1 0 1 0 e−ikx+ l2 0 1 0 M= −ikx− l1 −ikx− l2 ··· 0 e 0 α1 0 e 0 αN W. Polifke - AIM Workshop @ IITM, Jan. 2010 48
  • 53. Technische Universität München Non-plane modes in thin annular duct fd e−ikx+ l 0 fu = −ikx− l . gd 0 e gu   2 ω/c  k⊥ m kx± = 2 −M ± 1− (1 − M 2 ) , k⊥ ≡ . 1−M ω/c R W. Polifke - AIM Workshop @ IITM, Jan. 2010 49
  • 54. Technische Universität München Compact element ( l λ ) l Au Ad xu xd     p p  ρc  = 1 −i k leff − ζM  ρc  . −i k lred α u d u u xd Au leff ≈ dx. xu A(x) W. Polifke - AIM Workshop @ IITM, Jan. 2010 50
  • 55. Technische Universität München Transfer matrix of (compact) flame Linearize Rankine-Hugoniot relations (conservation of mass, momentum, energy across discontinuity) p p TH uc ˙ Q ξ = − − 1 u c Mc + , ρc h ρc c TC uc Q˙ TH ˙ Q pc uh = uc + − 1 uc − . TC Q˙ pc closure with flame frequency response, ˙ Q u = F (ω) Q˙ u W. Polifke - AIM Workshop @ IITM, Jan. 2010 51
  • 56. Technische Universität München Example network calculations Acoustics in duct system with low-Mach-# flow x L open end - duct - area change - duct - open end W. Polifke - AIM Workshop @ IITM, Jan. 2010 52
  • 57. Technische Universität München Eigenfrequencies with reflection coefficient r = -1 $"$ $ $ #"* /012345267238029:4-4! #"* /0123450637 #"( #"( #"& #"& #"$ # #"$ !"* !"( # ! !"# !"$ !"% !"& !"' !"( !") !"* !"+ # ! !"# !"$ !"% !"& !"' !"( !") !"* !"+ # ,-. ,-. How is instability possible in a system without energy source? W. Polifke - AIM Workshop @ IITM, Jan. 2010 53
  • 58. Technische Universität München Eigenfrequencies with energy-conserving boundary conditions $"$ # $ !"+' /012345267238029:4-4! #"* /0123450637 #"( !"+ #"& !"*' #"$ # !"* !"* !"( !")' ! !"# !"$ !"% !"& !"' !"( !") !"* !"+ # ! !"# !"$ !"% !"& !"' !"( !") !"* !"+ # ,-. ,-. 1 2 p+ ρ = p∞ , 2 p +M = 0, ρc ƒ (1 + M) + g(1 − M) = 0. W. Polifke - AIM Workshop @ IITM, Jan. 2010 54
  • 59. Technische Universität München Riemann Twist The Riemann Twist !$ !" #% & !% #$ &' #" &" &$ Messung von Transfermatrixen (3) W. Polifke - AIM Workshop @ IITM, Jan. 2010 55 Prof. Wolfgang Polifke
  • 60. Technische Universität München Network Models + Fast & Flexible, low computational effort + Great for qualitative / exploratory studies - Not suitable for many geometries of applied interest - Only in frequency domain ? - Non-linear phenomena ? - Non-normal phenomena ? → n3l Workshop in Munich W. Polifke - AIM Workshop @ IITM, Jan. 2010 56
  • 61. Technische Universität München Summary Time Domain Frequency Domain Finite Element Finite Volume, CFD Computational Acoustics nonlinear PDEs - linearized PDEs - Navier-Stokes often extended Helmholtz Mode-Based Galerkin Methods Network Models ODE algebraic equations Nonlinear Linearized Equations W. Polifke - AIM Workshop @ IITM, Jan. 2010 57
  • 62. Technische Universität München My questions on non-normality ... Real-world configurations: how typical / important are n-n effects? which methods / tools are adequate for the study of n-n effects? How to adopt exisiting modelling approaches: how to formulate appropriate (time-domain) network models? what is the proper norm? what are the physically realistic / permissible initial states ? How to describe / identify the flame dynamics ? W. Polifke - AIM Workshop @ IITM, Jan. 2010 58
  • 63. Technische Universität München Announcement and Call for Papers Summer School and Workshop on Non-Normal and Nonlinear Effects in Aero- and Thermoacoustics In aero-acoustics, nonlinear effects play an important role in generation as well as dissipation of sound. Stability limits and limit cycle amplitudes of self-excited aero- or thermoacoustic instabilities are influenced by nonlinearities. For thermoacoustic interactions, standard linear modal analysis can in general not predict the response of the system to finite amplitude perturbations due to the non-normality of the corresponding evolution operator and nonorthogonality of eigenmodes. At TU München, a Summer School / Workshop on non-normality and nonlinearity in aero- and thermoacoustics will be held in May 2010. During the Summer School (May 17 and 18), a series of invited lectures will give an introduction to the workshop topics and present the state of the art. Expected http://www.td.mw.tum.de/n3l-conf-2010 audience are doctoral students with some background in fluid mechanics, flow instabilities, aero- or thermoacoustics, or combustion. Of course, more experienced researchers interested in the workshop topics are also welcome. Tentative list of speakers: W. Polifke - AIM Workshop (École Jan. 2010 Lyon) C. Bailly @ IITM, Centrale 59

Notes de l'éditeur

  1. ABB (now Alstom) TU M&amp;#xFC;nchen Doctoral students in M
  2. network models in more detail
  3. Noise: flame is an amplifier of turbulent fluctuations Instability: intense interaction with feedback between flow, acoustics, heat release oint p&apos; ; dot Q&apos; ; dt &gt; 0
  4. p-v Diagram - thermodynamic cycle Heat release, pressure in phase -&gt; clockwise -&gt; output of mechanical energy -&gt; instability obvious Question: what determines the phase of Q&amp;#x2019; w.r.t. p&amp;#x2019; ? oint p&apos; ; dv&apos; = - frac{v}{gamma p} oint p&apos; ; dp&apos; + oint p&apos; ; dv&apos;^{(Q)} = 0 + oint p&apos; ; d{v&apos;^{(Q)}}{t} ; dt sim oint p&apos; ; dot Q&apos; ; dt
  5. Flammendynamik density -- equiv ratio -- flame speed -- flame surface area -- stoichiometric heat release dot Q = ho_u , S , Red A Black , Delta h
  6. Flammendynamik density -- equiv ratio -- flame speed -- flame surface area -- stoichiometric heat release dot Q = ho_u , S , Red A Black , Delta h
  7. Zeitverzug f&amp;#xFC;r Brennstofftransport ~ L/U again: a time lag appears here - which can bring heat release and pressure fluctuations in phase. Note there&amp;#x2019;s not one single time lag dot Q = ho_u Red phi S Black A Black , Delta h egin{eqnarray*} flct{dot Q} &amp;=&amp; frac{ ho&apos;_u}{ ho_u} + frac{phi&apos;}{phi} + frac{S&apos;}{S} \ flct{phi} &amp;=&amp; - frac{p&apos;_I (t- au)}{2 Delta p} - frac{u&apos;_I (t- au)}{u_I}, \ flct{dot Q} &amp;=&amp; - (1+a) left( frac{p&apos;_I }{2 Delta p} + frac{u&apos;_I }{u_I} ight) exp ( -i omega au ) end{eqnarray*}
  8. viele r&amp;#xFC;ckgekoppelte Wechselwirkungen ! interdisziplin&amp;#xE4;r: Verbrennung / Akustik / Regelungstechnik plenty of interactions - we concentrate on Front kinematics &amp;#x201C;wrinkling&amp;#x201D; flow instabilities/ coherent structures equiv. ratio / mixture inhomogeneities Note that there is much more than just the flame - combustion system
  9. Linear instability is the conventional wisdom. a mode is a pattern of vibration
  10. one dominant frequency !
  11. Limit cycle with negative velocity amplitudes - explain
  12. pattern - the number and location of nodes and anti-nodes one mode or degenerate pairs of modes are most unstable
  13. Explain what a Rijke tube is f - wave traveling left to right (&amp;#x201D;downward&amp;#x201D;). g - wave traveling right to left (&amp;#x201D;upward&amp;#x201D;) k - wave number Note: you can change (f,g) to (p&amp;#x2019;, u&amp;#x2019;) and vice versa. Time difference between departure of f at &amp;#x201C;i&amp;#x201D; and arrival at &amp;#x201C;c&amp;#x2019; gives phase lag equal to kl. left( egin{array}{c} f_c \ g_c end{array} ight) = left( egin{array}{cc} e^{-ikl} &amp; 0 \ 0 &amp; e^{ikl} end{array} ight) left( egin{array}{c} f_i \ g_i end{array} ight), ; ; k = frac {omega }{c}. f = inv{2} left( frac{p&apos;}{ ho c} + u&apos; ight), quad g= inv{2} left( frac{p&apos;}{ ho c} - u&apos; ight).
  14. n - interaction index tau - time lag !!! that&amp;#x2019;s why we can have instability Physics: time-lag required for boundary layer to adjust to change in flow speed. (Linearization of King&amp;#x2019;s Law, not exact, see below ! known from hot wire anemometry) NB: here I mix time domain and frequency domain (bad habit) time lag - phase shift in frequency space u&apos;_h (t) = u&apos;_c(t) + n u&apos;_c (t- au). egin{eqnarray*} frac{ ho_h c_h}{ ho_c c_c} (f_h + g_h ) &amp;=&amp; (f_c+g_c) , \ f_h - g_h &amp;=&amp; left(1 + n e^{-i omega au} ight) (f_c-g_c) , label{eq:nTau} end{eqnarray*}
  15. p&apos; = 0 ; ; o ; ; f_i + g_i = f_x + g_x =0,
  16. putting everything together - homogeneous system of equations ! what to do with the system is dicussed in the next section. now: more complicated system mmm &amp; mbox{Matrix} &amp; \ &amp; mbox{of} &amp; \ &amp; mbox{Coefficients} &amp; \ emmm v f_i \ vdots \ g_x ev = v 0 \ vdots \ 0 ev .
  17. Example: Rijke tube, see above. Stability map (for cold flame, heat source in the middle), blue regions indicate stability Time lag tau controls stability Note: some mode seems to be always unstable !? No losses! ewcommand{ Et}{n e^{-iomega t}} $ cos k_c l_c cos k_h l_h - xi sin k_c l_c sin k_h l_h left(1 + Et ight) = 0,$
  18. 2 slides for control theory G1 - system, G2 - controller, G&amp;#x2019;s are described by ordinary diff. eqn., which is Laplace-transformed to frequency space -&gt; simple polynomial expressions system without input x oscillates in its eigenfrequencies, which are determined from the open loop gain so again, this is just algebra or root finding !? No, alternative approaches have been developed based on complex mapping egin{eqnarray*} y &amp;=&amp; G_1(omega) x&apos; = \ &amp;=&amp; G_1(omega) left( x - r ight) = \ &amp;=&amp; G_1(omega) left( x - G_2(omega) y ight) . end{eqnarray*} $y = - G_1(omega) G_2(omega) y;$ or $; G(omega) = -1, $
  19. 2 slides for control theory G1 - system, G2 - controller, G&amp;#x2019;s are described by ordinary diff. eqn., which is Laplace-transformed to frequency space -&gt; simple polynomial expressions system without input x oscillates in its eigenfrequencies, which are determined from the open loop gain so again, this is just algebra or root finding !? No, alternative approaches have been developed based on complex mapping egin{eqnarray*} y &amp;=&amp; G_1(omega) x&apos; = \ &amp;=&amp; G_1(omega) left( x - r ight) = \ &amp;=&amp; G_1(omega) left( x - G_2(omega) y ight) . end{eqnarray*} $y = - G_1(omega) G_2(omega) y;$ or $; G(omega) = -1, $
  20. diagnostic dummy inserted in a network, defines a mapping with the desired property why: sol&amp;#x2019;n of the modified network are not eigenmodes of homogeneous network, but if f_u and f_d match up, it&amp;#x2019;s as if the diagnostic dummy was not there - and the solution of the modified network is an eigenmode of the original network G(omega) equiv - frac{f_u( omega)}{f_d},
  21. omg -&gt; G(omg) so, e.g. real axis (blue line) is mapped to blue curve on the r.h.s. Whenever the OLTF passes the critical point, it passes the image of an eigenmode But I don&amp;#x2019;t know the omg_m&amp;#x2019;s !? Don&amp;#x2019;t need to know, every time the image passes the &amp;#x2018;&amp;#x2019;critical point&amp;#x2019;&amp;#x2019; -1, an eigenmode is passed. if -1 to the left, Im(omg_m) &gt; 0, stable if -1 to the right, Im(omg_m) &lt; 0, unstable But what is the open loop gain of an acoustic system???
  22. indeed, Sattelmayer and Polifke showed that Barkhousen Criteria gives wrong answers, while Nyquist Criterion is o.k. !
  23. pressure loss coefficent !?
  24. Note: only dominant mode detected - FE does better in this respect.
  25. [P] is the vector of unknowns $p&apos;$, [A] represents the spatial-derivative operator [B] represents the boundary terms. [D] source terms.
  26. how is such a network analyzed -&gt; next section of talk now: more acoustic elements (paper and pencil) (here we had four elements: duct / open end / closed end / heat source mmm &amp; mbox{Matrix} &amp; \ &amp; mbox{of} &amp; \ &amp; mbox{Coefficients} &amp; \ emmm v f_i \ vdots \ g_x ev = v 0 \ vdots \ 0 ev .
  27. validation against exponential horn: one dozen elements is o.k. Note: not all elements can be derived with paper &amp; pencil - FLAME (coming soon)! &amp;#x2022; experiment &amp;#x2022; CFD (next lecture this afternoon) But next: stability analysis (we pretend we have a complete network) M = mm e^{-ik_{x+}l_1} &amp; 0 \ 0 &amp; e^{-ik_{x-}l_1} emm mm1 &amp; 0 \ 0 &amp; alpha_1 emm mm e^{-ik_{x+}l_2} &amp; 0 \ 0 &amp; e^{-ik_{x-}l_2} emm cdots mm1 &amp; 0 \ 0 &amp; alpha_N emm
  28. application: gas turbine - &amp;#x2018;thin&amp;#x2019; means no radial dependence of acoustic field pure axial mode in annulus - propagates just like a plane wave in pipe pure aximuthal mode - does not propagate at all mixed mode NB: other approaches &amp;#x2018;link&amp;#x2019; pipe-elements to make an annular &amp;#x2018;mesh&amp;#x2019; - WRONG! left( egin{array}{c} f_d \ g_d end{array} ight) = left( egin{array}{cc} e^{-ik_{x+}l} &amp; 0 \ 0 &amp; e^{-ik_{x-}l} end{array} ight) left( egin{array}{c} f_u\ g_u end{array} ight). k_{x_pm} = frac{omega/c}{1-M^2} left( -M pm sqrt{1 - left( frac{k_perp}{omega/c} ight)^2 (1-M^2) } ight), ; k_perp equiv frac{m}{R}.
  29. &amp;#x2018;any&amp;#x2019; element, even a swirl burner how - linearization of mass and momentum conservation assumption: compact element, i.e. shorter than wave length (Helmholtz-# kL &lt;&lt; 1) l_eff - inertia of fluid between &amp;#x2018;u&amp;#x2019; and &amp;#x2018;d&amp;#x2019;, pressure difference leads to acceleration, but not immediate change in velocity. depends on shape click zeta - loss coefficient (vanishes for M -&gt; 0). l_red - compressibility alpha - area change ewcommand{lf}{l_{mbox{footnotesize m eff}}} ewcommand{lrd}{l_{mbox{footnotesize m red}}} [ vD frac{ p&apos;}{ ho c} \ u&apos; ev_d = mm 1 &amp; - i, k, lf - zeta M\ -i, k,lrd &amp; alpha emm vD frac{ p&apos;}{ ho c} \ u&apos; ev_u. ] ewcommand{lx}{l_{mbox{footnotesize m eff}}} [ lx approx int_{x_u}^{x_d} frac{A_u}{A(x)} dx. ]
  30. how detect n-n effects in frequency-domain network models ? &gt; what is the norm