SlideShare une entreprise Scribd logo
1  sur  73
Persamaan Non Linier
Nana Ramadijanti
Persamaan Non Linier
 Metode Tabel
 Metode Biseksi
 Metode Regula Falsi
 Metode Iterasi Sederhana
 Metode Newton-Raphson
 Metode Secant.
Persamaan Non Linier
 penentuan akar-akar persamaan non
linier.
 Akar sebuah persamaan f(x) =0 adalah
nilai-nilai x yang menyebabkan nilai f(x)
sama dengan nol.
 akar persamaan f(x) adalah titik potong
antara kurva f(x) dan sumbu X.
Persamaan Non Linier
Persamaan Non Linier
 Penyelesaian persamaan linier mx + c = 0
dimana m dan c adalah konstanta, dapat
dihitung dengan :
mx + c = 0
x = -
 Penyelesaian persamaan kuadrat ax2 + bx +
c = 0 dapat dihitung dengan menggunakan
rumus ABC.
m
c
a
acbb
x
2
42
12
−±−
=
Penyelesaian Persamaan Non
Linier
 Metode Tertutup
 Mencari akar pada range [a,b] tertentu
 Dalam range[a,b] dipastikan terdapat satu akar
 Hasil selalu konvergen  disebut juga metode
konvergen
 Metode Terbuka
 Diperlukan tebakan awal
 xn dipakai untuk menghitung xn+1
 Hasil dapat konvergen atau divergen
Metode Tertutup
 Metode Tabel
 Metode Biseksi
 Metode Regula Falsi
Metode Terbuka
 Metode Iterasi Sederhana
 Metode Newton-Raphson
 Metode Secant.
Theorema
 Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b)
berlawanan tanda atau memenuhi f(a).f(b)<0
 Theorema di atas dapat dijelaskan dengan grafik-grafik
sebagai berikut:
Karena f(a).f(b)<0 maka pada range
x=[a,b] terdapat akar.
Karena f(a).f(b)>0 maka pada
range x=[a,b] tidak dapat dikatakan
terdapat akar.
Metode Table
 Metode Table atau
pembagian area.
 Dimana untuk x di
antara a dan b dibagi
sebanyak N bagian dan
pada masing-masing
bagian dihitung nilai f(x)
sehingga diperoleh
tabel :
X f(x)
x0
=a f(a)
x1
f(x1
)
x2
f(x2
)
x3
f(x3
)
…… ……
xn
=b f(b)
Metode Table
Contoh
 Selesaikan persamaan
: x+ex
= 0 dengan
range x =
 Untuk mendapatkan
penyelesaian dari
persamaan di atas
range x =
dibagi menjadi 10
bagian sehingga
diperoleh :
X f(x)
-1,0 -0,63212
-0,9 -0,49343
-0,8 -0,35067
-0,7 -0,20341
-0,6 -0,05119
-0,5 0,10653
-0,4 0,27032
-0,3 0,44082
-0,2 0,61873
-0,1 0,80484
0,0 1,00000
[ ]0,1−
[ ]0,1−
Contoh
 Dari table diperoleh penyelesaian berada di
antara –0,6 dan –0,5 dengan nilai f(x) masing-
masing -0,0512 dan 0,1065, sehingga dapat
diambil keputusan penyelesaiannya di x=-0,6.
 Bila pada range x =
dibagi 10 maka diperoleh f(x) terdekat
dengan nol pada x = -0,57 dengan F(x) =
0,00447
[ ]5,0,6,0 −−
Kelemahan Metode Table
 Metode table ini secara umum sulit
mendapatkan penyelesaian dengan error
yang kecil, karena itu metode ini tidak
digunakan dalam penyelesaian persamaan
non linier
 Tetapi metode ini digunakan sebagai taksiran
awal mengetahui area penyelesaian yang
benar sebelum menggunakan metode yang
lebih baik dalam menentukan penyelesaian.
Metode Biseksi
 Ide awal metode ini adalah metode table,
dimana area dibagi menjadi N bagian.
 Hanya saja metode biseksi ini membagi
range menjadi 2 bagian, dari dua bagian ini
dipilih bagian mana yang mengandung dan
bagian yang tidak mengandung akar
dibuang.Hal ini dilakukan berulang-ulang
hingga diperoleh akar persamaan.
Metode Biseksi
 Untuk menggunakan metode biseksi, terlebih dahulu
ditentukan batas bawah (a) dan batas atas (b).Kemudian
dihitung nilai tengah :
x =
 Dari nilai x ini perlu dilakukan pengecekan keberadaan akar.
Secara matematik, suatu range terdapat akar persamaan
bila f(a) dan f(b) berlawanan tanda atau dituliskan :
f(a) . f(b) < 0
 Setelah diketahui dibagian mana terdapat akar, maka batas
bawah dan batas atas di perbaharui sesuai dengan range
dari bagian yang mempunyai akar.
2
ba +
Algoritma Biseksi
Contoh Soal
 Selesaikan persamaan xe-x
+1 = 0, dengan
menggunakan range x=[-1,0], maka
diperoleh tabel biseksi sebagai berikut :
Contoh Soal
 Dimana x =
Pada iterasi ke 10 diperoleh x = -0.56738
dan f(x) = -0.00066
 Untuk menghentikan iterasi, dapat dilakukan
dengan menggunakan toleransi error atau
iterasi maksimum.
 Catatan : Dengan menggunakan metode
biseksi dengan tolerasi error 0.001
dibutuhkan 10 iterasi, semakin teliti (kecil
toleransi errorny) maka semakin besar jumlah
iterasi yang dibutuhkan.
2
ba +
Metode Regula Falsi
 metode pencarian akar persamaan
dengan memanfaatkan kemiringan dan
selisih tinggi dari dua titik batas range.
 Dua titik a dan b pada fungsi f(x)
digunakan untuk mengestimasi posisi c
dari akar interpolasi linier.
 Dikenal dengan metode False Position
Metode Regula Falsi
Metode Regula Falsi
xb
bf
ab
afbf
−
−
=
−
− 0)()()(
)()(
))((
afbf
abbf
bx
−
−
−=
)()(
)()(
afbf
abfbaf
x
−
−
=
Algoritma Metode Regula
Falsi
Contoh Soal
 Selesaikan persamaan xe-x
+1=0 pada range x= [0,-1]
Contoh Soal
Akar persamaan diperoleh di x=-0.56741 dengan
kesalahan =0,00074
Metode Iterasi Sederhana
 Metode iterasi sederhana adalah metode
yang memisahkan x dengan sebagian x yang
lain sehingga diperoleh : x = g(x).
 Contoh :
 x – ex
= 0  ubah
 x = ex
atau g(x) = ex
 g(x) inilah yang menjadi dasar iterasi pada
metode iterasi sederhana ini
Metode Iterasi Sederhana
Contoh :
 Carilah akar pers f(x) = x2
-2x-3
 x2
-2x-3 = 0
 X2
= 2x + 3
 Tebakan awal = 4
 E = 0.00001
 Hasil = 3
32 += xx
321 +=+ nn xx
Contoh :
 x2
-2x-3 = 0
 X(x-2) = 3
 X = 3 /(x-2)
 Tebakan awal = 4
 E = 0.00001
 Hasil = -1
Contoh :
 x2
-2x-3 = 0
 X = (x2
-3)/2
 Tebakan awal = 4
 E = 0.00001
 Hasil divergen
Syarat Konvergensi
 Pada range I = [s-h, s+h] dengan s titik tetap
 Jika 0<g’(x)<1 untuk setiap x Є I iterasi konvergen
monoton.
 Jika -1<g’(x)<0 untuk setiap x Є I iterasi
konvergen berosilasi.
 Jika g’(x)>1 untuk setiap x Є I, maka iterasi
divergen monoton.
 Jika g’(x)<-1 untuk setiap x Є I, maka iterasi
divergen berosilasi.
 Tebakan awal 4
 G’(4) = 0.1508 < 1
 Konvergen Monoton
322
1
)('
32)(
321
+
=
+=
+=+
r
r
rr
x
xg
xxg
xx
 Tebakan awal 4
 G’(4) = |-0.75| < 1
 Konvergen Berisolasi
2
1
)2(
3
)('
)2(
3
)(
)2(
3
−
−
=
−
=
−
=+
x
xg
x
xg
x
x
r
r
 Tebakan awal 4
 G’(4) = 4 > 1
 Divergen Monoton
xxg
x
xg
=
−
=
)('
2
)3(
)(
2
Latihan Soal
 Apa yang terjadi dengan pemilihan x0
pada
pencarian akar persamaan :
 X3
+ 6x – 3 = 0
 Dengan x
 Cari akar persamaan dengan x0
= 0.5
 X0
= 1.5, x0
= 2.2, x0
= 2.7
6
3
3
1
+−
=+
r
r
x
x
Contoh :
Metode Newton Raphson
 metode pendekatan yang
menggunakan satu titik awal dan
mendekatinya dengan memperhatikan
slope atau gradien pada titik
tersebut.Titik pendekatan ke n+1
dituliskan dengan :
Xn+1
= xn
-
( )
( )n
n
xF
xF
1
Metode Newton Raphson
Algoritma Metode Newton
Raphson
1. Definisikan fungsi f(x) dan f1
(x)
2. Tentukan toleransi error (e) dan iterasi maksimum (n)
3. Tentukan nilai pendekatan awal x0
4. Hitung f(x0
) dan f’
(x0
)
5. Untuk iterasi I = 1 s/d n atau |f(xi
)|> e
 Hitung f(xi
) dan f1
(xi
)
6. Akar persamaan adalah nilai xi
yang terakhir diperoleh.
( )
( )i
i
ii
xf
xf
xx 11 −=+
Contoh Soal
 Selesaikan persamaan x - e-x
= 0 dengan titik
pendekatan awal x0
=0
 f(x) = x - e-x
 f’(x)=1+e-x
 f(x0
) = 0 - e-0
= -1
 f’(x0
) = 1 + e-0
= 2
( )
( )
5,0
2
1
0
0
1
0
01 =
−
−=−=
xf
xf
xx
Contoh Soal
 f(x1
) = -0,106631 dan f1
(x1
) = 1,60653 
 x2
=
 f(x2
) = -0,00130451 dan f1
(x2
) = 1,56762
 x3
=
 f(x3
) = -1,96.10-7
. Suatu bilangan yang sangat kecil.
 Sehingga akar persamaan x = 0,567143.
( )
( )
566311,0
60653,1
106531,0
5,0
1
1
1
1 =
−
−=−
xf
xf
x
( )
( )
567143,0
56762,1
00130451,0
566311,0
2
1
2
2 =
−
−=−
xf
xf
x
Contoh
 x - e-x
= 0  x0 =0, e = 0.00001
Contoh :
 x + e-x
cos x -2 = 0  x0=1
 f(x) = x + e-x
cos x - 2
 f’(x) = 1 – e-x
cos x – e-x
sin x
Permasalahan pada pemakaian
metode newton raphson
 Metode ini tidak dapat digunakan ketika titik pendekatannya
berada pada titik ekstrim atau titik puncak, karena pada titik ini
nilai F1
(x) = 0 sehingga nilai penyebut dari sama dengan nol,
secara grafis dapat dilihat sebagai berikut:
Bila titik pendekatan
berada pada titik puncak,
maka titik selanjutnya
akan berada di tak
berhingga.
( )
( )xF
xF
1
Permasalahan pada pemakaian
metode newton raphson
 Metode ini menjadi sulit atau
lama mendapatkan
penyelesaian ketika titik
pendekatannya berada di
antara dua titik stasioner.
 Bila titik pendekatan berada
pada dua tiitik puncak akan
dapat mengakibatkan
hilangnya penyelesaian
(divergensi). Hal ini
disebabkan titik selanjutnya
berada pada salah satu titik
puncak atau arah
pendekatannya berbeda.
Hasil Tidak Konvergen
Penyelesaian Permasalahan pada
pemakaian metode newton raphson
1. Bila titik pendekatan berada pada titik puncak maka
titik pendekatan tersebut harus di geser sedikit, xi
=
xi
dimana adalah konstanta yang ditentukan
dengan demikian dan metode newton
raphson tetap dapat berjalan.
2. Untuk menghindari titik-titik pendekatan yang
berada jauh, sebaiknya pemakaian metode newton
raphson ini didahului oleh metode tabel, sehingga
dapat di jamin konvergensi dari metode newton
raphson.
δ± δ
( ) 01
≠ixF
Contoh Soal
 x . e-x
+ cos(2x) = 0  x0 = 0,176281
 f(x) = x . e-x
+ cos(2x)
 f1(x) = (1-x) e-x
– 2 sin (2x)
 F(x0) = 1,086282
 F1
(x0) = -0,000015
X = 71365,2
padahal dalam range 0 sampai
dengan 1 terdapat akar di
sekitar 0.5 s/d 1.
Contoh Soal
 Untuk menghindari hal ini sebaiknya digunakan grafik atau
tabel sehingga dapat diperoleh pendekatan awal yang baik.
Digunakan pendekatan awal x0=0.5
x
Contoh Soal
 Hasil dari penyelesaian persamaan
 x * exp(-x) + cos(2x) = 0 pada range [0,5]
Contoh
 Hitunglah akar dengan metode Newthon
Raphson. Gunakan e=0.00001. Tebakan awal akar x0= 1
 Penyelesaian
 Prosedur iterasi Newthon Raphson
2
5)( xexf x
−=
2
5)( xexf x
−= xexf x
10)(' −=
xe
xe
xx x
x
rr
10
5 2
1
−
−
−=+
0 1 -2.28172
1 0.686651 -0.370399
2 0.610741 -0.0232286
3 0.605296 -0.000121011
4 0.605267 -3.35649e-009
Akar terletak di x = 0.605267
Contoh
 Tentukan bagaimana cara menentukan
Metode Secant
 Metode Newton Raphson memerlukan
perhitungan turunan fungsi f’(x).
 Tidak semua fungsi mudah dicari turunannya
terutama fungsi yang bentuknya rumit.
 Turunan fungsi dapat dihilangkan dengan cara
menggantinya dengan bentuk lain yang ekivalen
 Modifikasi metode Newton Raphson dinamakan
metode Secant.
1+rx 1−rx
rx
rx
 Metode Newton-Raphson
1
1 )()(
)('
−
−
−
−
=
∇
∇
=
rr
rr
xx
xfxf
x
y
xf
)('
)(
1
r
r
rr
xf
xf
xx −=+
)()(
))((
1
1
1
−
−
+
−
−
−=
rr
rrr
rr
xfxf
xxxf
xx
Algoritma Metode
Secant :
 Definisikan fungsi F(x)
 Definisikan torelansi error (e) dan iterasi maksimum (n)
 Masukkan dua nilai pendekatan awal yang di antaranya
terdapat akar yaitu x0 dan x1, sebaiknya gunakan metode
tabel atau grafis untuk menjamin titik pendakatannya
adalah titik pendekatan yang konvergensinya pada akar
persamaan yang diharapkan.
 Hitung F(x0) dan F(x1) sebagai y0 dan y1
 Untuk iterasi I = 1 s/d n atau |F(xi)|
hitung yi+1 = F(xi+1)
 Akar persamaan adalah nilai x yang terakhir.
1
1
1
−
−
+
−
−
−=
ii
ii
iii
yy
xx
yxx
Contoh Soal
 Penyelesaian
 x2
–(x + 1) e-x
= 0 ?
Contoh Kasus Penyelesaian
Persamaan Non Linier
 Penentuan nilai maksimal dan minimal fungsi
non linier
 Perhitungan nilai konstanta pada matrik dan
determinan, yang biasanya muncul dalam
permasalahan sistem linier, bisa digunakan
untuk menghitung nilai eigen
 Penentuan titik potong beberapa fungsi non
linier, yang banyak digunakan untuk
keperluan perhitungan-perhitungan secara
grafis.
Penentuan Nilai Maksimal dan
Minimal Fungsi Non Linier
 nilai maksimal dan minimal dari f(x) 
memenuhi f’(x)=0.
 g(x)=f’(x)  g(x)=0
 Menentukan nilai maksimal atau
minimal  f”(x)
Contoh Soal
 Tentukan nilai minimal dari f(x) = x2
-(x+1)e-2x
+1
-0.5
0
0.5
1
1.5
2
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x**2-(x+1)*exp(-2*x)+1
nilai minimal terletak antara –0.4 dan –0.2
Menghitung Titik Potong
2 Buah Kurva
x
y
y=f(x)
y=g(x)
p
f(x) = g(x)
atau
f(x) – g(x) = 0
Contoh Soal
 Tentukan titik potong y=2x3
-x dan y=e-x
-1
-0.5
0
0.5
1
1.5
2
2.5
3
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
2*x**3-x
exp(-x)
akar terletak di antara 0.8 dan 1
Soal (1)
 Tahun 1225 Leonardo da Pisa mencari akar
persamaan
 F(x) = x3
+ 2x2
+ 10x – 20 = 0
 Dan menemukan x = 1.368808107.
 Tidak seorangpun yang mengetahui cara Leonardo
menemukan nilai ini. Sekarang rahasia ini dapat
dipecahkan dengan metode iterasi sederhana.
 Carilah salah satu dari kemungkinan x = g(x). Lalu
dengan memberikan sembarang input awal, tentukan
x=g(x) yang mana yang menghasilkan akar
persamaan yang ditemukan Leonardo itu.
Soal (2)
 Hitung akar 27 dan akar 50 dengan biseksi dan regula falsi !
Bandingkan ke dua metode tersebut ! Mana yang lebih
cepat ?
 Catat hasil uji coba
a b N e Iterasi
Biseksi
Iterasi
Regula
Falsi
0.1
0.01
0.001
0.0001
Soal (3)
 Tentukan nilai puncak pada kurva y = x2
+ e-2x
sin(x) pada range x=[0,10]
 Dengan metode newthon raphson

Contenu connexe

Tendances

Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13Alvin Setiawan
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linierIzhan Nassuha
 
Presentasi method secant group 1
Presentasi method secant group 1Presentasi method secant group 1
Presentasi method secant group 1Arthur Putra
 
Bab 2 perhitungan galat
Bab 2  perhitungan galatBab 2  perhitungan galat
Bab 2 perhitungan galatKelinci Coklat
 
Modul maple untuk metnum 2014
Modul maple untuk metnum 2014Modul maple untuk metnum 2014
Modul maple untuk metnum 2014Samuel Pinto'o
 
Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01Alvin Setiawan
 
Stat prob09 distribution_continue
Stat prob09 distribution_continueStat prob09 distribution_continue
Stat prob09 distribution_continueArif Rahman
 
Tugas final geokomputasi
Tugas final geokomputasiTugas final geokomputasi
Tugas final geokomputasiMawar Lestary
 
Bab 7 integrasi numerik
Bab 7 integrasi numerikBab 7 integrasi numerik
Bab 7 integrasi numerikKelinci Coklat
 
Distribusi peluang kontinu
Distribusi peluang kontinuDistribusi peluang kontinu
Distribusi peluang kontinuRizkiFitriya
 
Beberapa distribusi peluang kontinu
Beberapa distribusi peluang kontinuBeberapa distribusi peluang kontinu
Beberapa distribusi peluang kontinuRaden Maulana
 
Stat prob11 distribution_sampling
Stat prob11 distribution_samplingStat prob11 distribution_sampling
Stat prob11 distribution_samplingArif Rahman
 
Bab 3 penyl numerik aljabar tunggal
Bab 3 penyl numerik aljabar tunggalBab 3 penyl numerik aljabar tunggal
Bab 3 penyl numerik aljabar tunggalwahyuddin S.T
 
Stat prob10 distribution_normal
Stat prob10 distribution_normalStat prob10 distribution_normal
Stat prob10 distribution_normalArif Rahman
 

Tendances (19)

42514 persamaan non linier
42514 persamaan non linier42514 persamaan non linier
42514 persamaan non linier
 
Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13Penyelesaian pers-biseksi13
Penyelesaian pers-biseksi13
 
Met num 4-0
Met num 4-0Met num 4-0
Met num 4-0
 
Metode numerik persamaan non linier
Metode numerik persamaan non linierMetode numerik persamaan non linier
Metode numerik persamaan non linier
 
Presentasi method secant group 1
Presentasi method secant group 1Presentasi method secant group 1
Presentasi method secant group 1
 
Bab 2 perhitungan galat
Bab 2  perhitungan galatBab 2  perhitungan galat
Bab 2 perhitungan galat
 
Met num 2
Met num 2Met num 2
Met num 2
 
Modul maple untuk metnum 2014
Modul maple untuk metnum 2014Modul maple untuk metnum 2014
Modul maple untuk metnum 2014
 
Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01Metnum3 persnonlinierbaru2-140216091500-phpapp01
Metnum3 persnonlinierbaru2-140216091500-phpapp01
 
Stat prob09 distribution_continue
Stat prob09 distribution_continueStat prob09 distribution_continue
Stat prob09 distribution_continue
 
Tugas final geokomputasi
Tugas final geokomputasiTugas final geokomputasi
Tugas final geokomputasi
 
2. galat
2. galat2. galat
2. galat
 
Metode newton
Metode newtonMetode newton
Metode newton
 
Bab 7 integrasi numerik
Bab 7 integrasi numerikBab 7 integrasi numerik
Bab 7 integrasi numerik
 
Distribusi peluang kontinu
Distribusi peluang kontinuDistribusi peluang kontinu
Distribusi peluang kontinu
 
Beberapa distribusi peluang kontinu
Beberapa distribusi peluang kontinuBeberapa distribusi peluang kontinu
Beberapa distribusi peluang kontinu
 
Stat prob11 distribution_sampling
Stat prob11 distribution_samplingStat prob11 distribution_sampling
Stat prob11 distribution_sampling
 
Bab 3 penyl numerik aljabar tunggal
Bab 3 penyl numerik aljabar tunggalBab 3 penyl numerik aljabar tunggal
Bab 3 penyl numerik aljabar tunggal
 
Stat prob10 distribution_normal
Stat prob10 distribution_normalStat prob10 distribution_normal
Stat prob10 distribution_normal
 

En vedette

Demita Main Brochure
Demita Main BrochureDemita Main Brochure
Demita Main BrochureOliver Thomas
 
Alina beca marketing senior analyst
Alina beca   marketing senior analystAlina beca   marketing senior analyst
Alina beca marketing senior analystAlina Beca
 
You belong with me (sample)
You belong with me (sample)You belong with me (sample)
You belong with me (sample)Reality Redefine
 
Employee relations; focusing on legislations that governs employment relation...
Employee relations; focusing on legislations that governs employment relation...Employee relations; focusing on legislations that governs employment relation...
Employee relations; focusing on legislations that governs employment relation...Judith Kinya
 

En vedette (8)

Demita Main Brochure
Demita Main BrochureDemita Main Brochure
Demita Main Brochure
 
Alina beca marketing senior analyst
Alina beca   marketing senior analystAlina beca   marketing senior analyst
Alina beca marketing senior analyst
 
Permasalahan sosial
Permasalahan sosialPermasalahan sosial
Permasalahan sosial
 
Akibat perubahan sosial
Akibat perubahan sosialAkibat perubahan sosial
Akibat perubahan sosial
 
La humanidad
La humanidadLa humanidad
La humanidad
 
You belong with me (sample)
You belong with me (sample)You belong with me (sample)
You belong with me (sample)
 
Hubungan internasional
Hubungan internasionalHubungan internasional
Hubungan internasional
 
Employee relations; focusing on legislations that governs employment relation...
Employee relations; focusing on legislations that governs employment relation...Employee relations; focusing on legislations that governs employment relation...
Employee relations; focusing on legislations that governs employment relation...
 

Similaire à Metode Penyelesaian Persamaan Non Linier

Pert 3 Persamaan Non Linier .ppt
Pert 3 Persamaan Non Linier .pptPert 3 Persamaan Non Linier .ppt
Pert 3 Persamaan Non Linier .pptNafisClassic
 
materi matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).pptmateri matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).pptasmaun4
 
akarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).pptakarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).pptasmaun4
 
Persamaan non linier
Persamaan non linierPersamaan non linier
Persamaan non liniersoniyora1
 
Praktikum2 7
Praktikum2 7Praktikum2 7
Praktikum2 7Alen Pepa
 
11 algo akarpersamaan
11 algo akarpersamaan11 algo akarpersamaan
11 algo akarpersamaanArif Rahman
 
Aries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutupAries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutuparies22suharso
 
6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptx6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptxKhorsyidPasya1
 
PERSAMAAN DAN PERTIDAKSAMAAN
PERSAMAAN DAN PERTIDAKSAMAANPERSAMAAN DAN PERTIDAKSAMAAN
PERSAMAAN DAN PERTIDAKSAMAANwulan_handayani02
 
konsep dasar numerik.pptx
konsep dasar numerik.pptxkonsep dasar numerik.pptx
konsep dasar numerik.pptxFildaNurAini1
 
BAB II AKAR-AKAR PERSAMAAN.pptx
BAB II AKAR-AKAR PERSAMAAN.pptxBAB II AKAR-AKAR PERSAMAAN.pptx
BAB II AKAR-AKAR PERSAMAAN.pptxNaufalDhiyaulhaq2
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasidesiluvita
 
Dasar dasar matematika teknik optimasi (matrix hessian)
Dasar dasar matematika teknik optimasi (matrix hessian)Dasar dasar matematika teknik optimasi (matrix hessian)
Dasar dasar matematika teknik optimasi (matrix hessian)Muhammad Ali Subkhan Candra
 
INTEGRAL menggunakan MAPLE
INTEGRAL menggunakan MAPLEINTEGRAL menggunakan MAPLE
INTEGRAL menggunakan MAPLEDyas Arientiyya
 
Slide-INF308-INF308-Slide-05.pptx
Slide-INF308-INF308-Slide-05.pptxSlide-INF308-INF308-Slide-05.pptx
Slide-INF308-INF308-Slide-05.pptxKimyeol4ever
 

Similaire à Metode Penyelesaian Persamaan Non Linier (20)

Pert 3 Persamaan Non Linier .ppt
Pert 3 Persamaan Non Linier .pptPert 3 Persamaan Non Linier .ppt
Pert 3 Persamaan Non Linier .ppt
 
materi matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).pptmateri matkul MetNum3-PersNonLInier (1).ppt
materi matkul MetNum3-PersNonLInier (1).ppt
 
1. Pers_Non_Linier.ppt
1. Pers_Non_Linier.ppt1. Pers_Non_Linier.ppt
1. Pers_Non_Linier.ppt
 
akarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).pptakarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
akarakarpersamaannonlinier-140220044419-phpapp01 (1).ppt
 
Persamaan non linier
Persamaan non linierPersamaan non linier
Persamaan non linier
 
Praktikum2 7
Praktikum2 7Praktikum2 7
Praktikum2 7
 
11 algo akarpersamaan
11 algo akarpersamaan11 algo akarpersamaan
11 algo akarpersamaan
 
PERSAMAAN NONLINEAR
PERSAMAAN NONLINEARPERSAMAAN NONLINEAR
PERSAMAAN NONLINEAR
 
42514 persamaan non linier
42514 persamaan non linier42514 persamaan non linier
42514 persamaan non linier
 
Aries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutupAries suharso 0422037701_metode tertutup
Aries suharso 0422037701_metode tertutup
 
6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptx6A_Kelompok 3_PPT.pptx
6A_Kelompok 3_PPT.pptx
 
PERSAMAAN DAN PERTIDAKSAMAAN
PERSAMAAN DAN PERTIDAKSAMAANPERSAMAAN DAN PERTIDAKSAMAAN
PERSAMAAN DAN PERTIDAKSAMAAN
 
konsep dasar numerik.pptx
konsep dasar numerik.pptxkonsep dasar numerik.pptx
konsep dasar numerik.pptx
 
BAB II AKAR-AKAR PERSAMAAN.pptx
BAB II AKAR-AKAR PERSAMAAN.pptxBAB II AKAR-AKAR PERSAMAAN.pptx
BAB II AKAR-AKAR PERSAMAAN.pptx
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
 
Metnum p 2 compressed
Metnum p 2 compressedMetnum p 2 compressed
Metnum p 2 compressed
 
2679 3639-1-sm
2679 3639-1-sm2679 3639-1-sm
2679 3639-1-sm
 
Dasar dasar matematika teknik optimasi (matrix hessian)
Dasar dasar matematika teknik optimasi (matrix hessian)Dasar dasar matematika teknik optimasi (matrix hessian)
Dasar dasar matematika teknik optimasi (matrix hessian)
 
INTEGRAL menggunakan MAPLE
INTEGRAL menggunakan MAPLEINTEGRAL menggunakan MAPLE
INTEGRAL menggunakan MAPLE
 
Slide-INF308-INF308-Slide-05.pptx
Slide-INF308-INF308-Slide-05.pptxSlide-INF308-INF308-Slide-05.pptx
Slide-INF308-INF308-Slide-05.pptx
 

Dernier

Normalisasi Database dan pengertian database
Normalisasi Database dan pengertian databaseNormalisasi Database dan pengertian database
Normalisasi Database dan pengertian databasethinkplusx1
 
Klasifikasi jenis pompa berdasarkan cara kerjanya
Klasifikasi jenis pompa berdasarkan cara kerjanyaKlasifikasi jenis pompa berdasarkan cara kerjanya
Klasifikasi jenis pompa berdasarkan cara kerjanyafaizalabdillah10
 
Analisis Struktur Statis Tak Tentu dengan Force Method.pdf
Analisis Struktur Statis Tak Tentu dengan Force Method.pdfAnalisis Struktur Statis Tak Tentu dengan Force Method.pdf
Analisis Struktur Statis Tak Tentu dengan Force Method.pdfAgusTriyono78
 
PPT PENILAIAN PERKERASAN JALAN Metode PCI.pptx
PPT PENILAIAN PERKERASAN JALAN Metode PCI.pptxPPT PENILAIAN PERKERASAN JALAN Metode PCI.pptx
PPT PENILAIAN PERKERASAN JALAN Metode PCI.pptxYehezkielAkwila3
 
PPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptx
PPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptxPPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptx
PPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptxHamidNurMukhlis
 
MEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIK
MEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIKMEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIK
MEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIKFerdinandus9
 
MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555
MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555
MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555zannialzur
 
PPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptx
PPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptxPPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptx
PPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptxdpcaskonasoki
 
Teknik Tenaga Listrik, Sejarah dan Komponen
Teknik Tenaga Listrik, Sejarah dan KomponenTeknik Tenaga Listrik, Sejarah dan Komponen
Teknik Tenaga Listrik, Sejarah dan KomponenRatihPuspitaSiwi
 
TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1
TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1
TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1RifkiIntipeNerakajah
 
Minggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptx
Minggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptxMinggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptx
Minggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptxRahmiAulia20
 
QCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptx
QCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptxQCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptx
QCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptxdjam11
 
Thermodynamics analysis of energy, entropy and exergy
Thermodynamics analysis of energy, entropy and exergyThermodynamics analysis of energy, entropy and exergy
Thermodynamics analysis of energy, entropy and exergyEndarto Yudo
 
Sesi_02_Rangkaian_Hubungan_Seri_Paralel.pptx
Sesi_02_Rangkaian_Hubungan_Seri_Paralel.pptxSesi_02_Rangkaian_Hubungan_Seri_Paralel.pptx
Sesi_02_Rangkaian_Hubungan_Seri_Paralel.pptx185TsabitSujud
 
Teori Pembakaran bahan kimia organik .ppt
Teori Pembakaran bahan kimia organik .pptTeori Pembakaran bahan kimia organik .ppt
Teori Pembakaran bahan kimia organik .pptEndarto Yudo
 
struktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptx
struktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptxstruktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptx
struktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptxAgusTriyono78
 

Dernier (16)

Normalisasi Database dan pengertian database
Normalisasi Database dan pengertian databaseNormalisasi Database dan pengertian database
Normalisasi Database dan pengertian database
 
Klasifikasi jenis pompa berdasarkan cara kerjanya
Klasifikasi jenis pompa berdasarkan cara kerjanyaKlasifikasi jenis pompa berdasarkan cara kerjanya
Klasifikasi jenis pompa berdasarkan cara kerjanya
 
Analisis Struktur Statis Tak Tentu dengan Force Method.pdf
Analisis Struktur Statis Tak Tentu dengan Force Method.pdfAnalisis Struktur Statis Tak Tentu dengan Force Method.pdf
Analisis Struktur Statis Tak Tentu dengan Force Method.pdf
 
PPT PENILAIAN PERKERASAN JALAN Metode PCI.pptx
PPT PENILAIAN PERKERASAN JALAN Metode PCI.pptxPPT PENILAIAN PERKERASAN JALAN Metode PCI.pptx
PPT PENILAIAN PERKERASAN JALAN Metode PCI.pptx
 
PPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptx
PPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptxPPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptx
PPT Manajemen Konstruksi Unsur Unsur Proyek 1.pptx
 
MEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIK
MEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIKMEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIK
MEKANIKA TEKNIK TEKNIK PERTAMBANGAN FAK. TEKNIK
 
MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555
MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555
MATERI PRESENTASI KEPALA TEKNIK TAMBANG KEPMEN 555
 
PPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptx
PPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptxPPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptx
PPT PPT Pelaksana lapangan Pekerasan Jalan Beton lvl 6.pptx
 
Teknik Tenaga Listrik, Sejarah dan Komponen
Teknik Tenaga Listrik, Sejarah dan KomponenTeknik Tenaga Listrik, Sejarah dan Komponen
Teknik Tenaga Listrik, Sejarah dan Komponen
 
TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1
TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1
TUGAS KULIAH PPT PRESENTASI STRUKTUR BETON 1
 
Minggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptx
Minggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptxMinggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptx
Minggu 5 Pepistimlogy berbasis wawasan politik_Ekonomi.pptx
 
QCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptx
QCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptxQCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptx
QCC MANAJEMEN TOOL MAINTENANCE (MAINTENANCE TEAM).pptx
 
Thermodynamics analysis of energy, entropy and exergy
Thermodynamics analysis of energy, entropy and exergyThermodynamics analysis of energy, entropy and exergy
Thermodynamics analysis of energy, entropy and exergy
 
Sesi_02_Rangkaian_Hubungan_Seri_Paralel.pptx
Sesi_02_Rangkaian_Hubungan_Seri_Paralel.pptxSesi_02_Rangkaian_Hubungan_Seri_Paralel.pptx
Sesi_02_Rangkaian_Hubungan_Seri_Paralel.pptx
 
Teori Pembakaran bahan kimia organik .ppt
Teori Pembakaran bahan kimia organik .pptTeori Pembakaran bahan kimia organik .ppt
Teori Pembakaran bahan kimia organik .ppt
 
struktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptx
struktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptxstruktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptx
struktur statis tak tentu dengan persamaan-tiga-momen-apdf.pptx
 

Metode Penyelesaian Persamaan Non Linier

  • 2. Persamaan Non Linier  Metode Tabel  Metode Biseksi  Metode Regula Falsi  Metode Iterasi Sederhana  Metode Newton-Raphson  Metode Secant.
  • 3. Persamaan Non Linier  penentuan akar-akar persamaan non linier.  Akar sebuah persamaan f(x) =0 adalah nilai-nilai x yang menyebabkan nilai f(x) sama dengan nol.  akar persamaan f(x) adalah titik potong antara kurva f(x) dan sumbu X.
  • 5. Persamaan Non Linier  Penyelesaian persamaan linier mx + c = 0 dimana m dan c adalah konstanta, dapat dihitung dengan : mx + c = 0 x = -  Penyelesaian persamaan kuadrat ax2 + bx + c = 0 dapat dihitung dengan menggunakan rumus ABC. m c a acbb x 2 42 12 −±− =
  • 6. Penyelesaian Persamaan Non Linier  Metode Tertutup  Mencari akar pada range [a,b] tertentu  Dalam range[a,b] dipastikan terdapat satu akar  Hasil selalu konvergen  disebut juga metode konvergen  Metode Terbuka  Diperlukan tebakan awal  xn dipakai untuk menghitung xn+1  Hasil dapat konvergen atau divergen
  • 7. Metode Tertutup  Metode Tabel  Metode Biseksi  Metode Regula Falsi
  • 8. Metode Terbuka  Metode Iterasi Sederhana  Metode Newton-Raphson  Metode Secant.
  • 9. Theorema  Suatu range x=[a,b] mempunyai akar bila f(a) dan f(b) berlawanan tanda atau memenuhi f(a).f(b)<0  Theorema di atas dapat dijelaskan dengan grafik-grafik sebagai berikut: Karena f(a).f(b)<0 maka pada range x=[a,b] terdapat akar. Karena f(a).f(b)>0 maka pada range x=[a,b] tidak dapat dikatakan terdapat akar.
  • 10. Metode Table  Metode Table atau pembagian area.  Dimana untuk x di antara a dan b dibagi sebanyak N bagian dan pada masing-masing bagian dihitung nilai f(x) sehingga diperoleh tabel : X f(x) x0 =a f(a) x1 f(x1 ) x2 f(x2 ) x3 f(x3 ) …… …… xn =b f(b)
  • 12. Contoh  Selesaikan persamaan : x+ex = 0 dengan range x =  Untuk mendapatkan penyelesaian dari persamaan di atas range x = dibagi menjadi 10 bagian sehingga diperoleh : X f(x) -1,0 -0,63212 -0,9 -0,49343 -0,8 -0,35067 -0,7 -0,20341 -0,6 -0,05119 -0,5 0,10653 -0,4 0,27032 -0,3 0,44082 -0,2 0,61873 -0,1 0,80484 0,0 1,00000 [ ]0,1− [ ]0,1−
  • 13. Contoh  Dari table diperoleh penyelesaian berada di antara –0,6 dan –0,5 dengan nilai f(x) masing- masing -0,0512 dan 0,1065, sehingga dapat diambil keputusan penyelesaiannya di x=-0,6.  Bila pada range x = dibagi 10 maka diperoleh f(x) terdekat dengan nol pada x = -0,57 dengan F(x) = 0,00447 [ ]5,0,6,0 −−
  • 14. Kelemahan Metode Table  Metode table ini secara umum sulit mendapatkan penyelesaian dengan error yang kecil, karena itu metode ini tidak digunakan dalam penyelesaian persamaan non linier  Tetapi metode ini digunakan sebagai taksiran awal mengetahui area penyelesaian yang benar sebelum menggunakan metode yang lebih baik dalam menentukan penyelesaian.
  • 15. Metode Biseksi  Ide awal metode ini adalah metode table, dimana area dibagi menjadi N bagian.  Hanya saja metode biseksi ini membagi range menjadi 2 bagian, dari dua bagian ini dipilih bagian mana yang mengandung dan bagian yang tidak mengandung akar dibuang.Hal ini dilakukan berulang-ulang hingga diperoleh akar persamaan.
  • 16.
  • 17. Metode Biseksi  Untuk menggunakan metode biseksi, terlebih dahulu ditentukan batas bawah (a) dan batas atas (b).Kemudian dihitung nilai tengah : x =  Dari nilai x ini perlu dilakukan pengecekan keberadaan akar. Secara matematik, suatu range terdapat akar persamaan bila f(a) dan f(b) berlawanan tanda atau dituliskan : f(a) . f(b) < 0  Setelah diketahui dibagian mana terdapat akar, maka batas bawah dan batas atas di perbaharui sesuai dengan range dari bagian yang mempunyai akar. 2 ba +
  • 19. Contoh Soal  Selesaikan persamaan xe-x +1 = 0, dengan menggunakan range x=[-1,0], maka diperoleh tabel biseksi sebagai berikut :
  • 20. Contoh Soal  Dimana x = Pada iterasi ke 10 diperoleh x = -0.56738 dan f(x) = -0.00066  Untuk menghentikan iterasi, dapat dilakukan dengan menggunakan toleransi error atau iterasi maksimum.  Catatan : Dengan menggunakan metode biseksi dengan tolerasi error 0.001 dibutuhkan 10 iterasi, semakin teliti (kecil toleransi errorny) maka semakin besar jumlah iterasi yang dibutuhkan. 2 ba +
  • 21. Metode Regula Falsi  metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range.  Dua titik a dan b pada fungsi f(x) digunakan untuk mengestimasi posisi c dari akar interpolasi linier.  Dikenal dengan metode False Position
  • 23. Metode Regula Falsi xb bf ab afbf − − = − − 0)()()( )()( ))(( afbf abbf bx − − −= )()( )()( afbf abfbaf x − − =
  • 25. Contoh Soal  Selesaikan persamaan xe-x +1=0 pada range x= [0,-1]
  • 26. Contoh Soal Akar persamaan diperoleh di x=-0.56741 dengan kesalahan =0,00074
  • 27. Metode Iterasi Sederhana  Metode iterasi sederhana adalah metode yang memisahkan x dengan sebagian x yang lain sehingga diperoleh : x = g(x).  Contoh :  x – ex = 0  ubah  x = ex atau g(x) = ex  g(x) inilah yang menjadi dasar iterasi pada metode iterasi sederhana ini
  • 29. Contoh :  Carilah akar pers f(x) = x2 -2x-3  x2 -2x-3 = 0  X2 = 2x + 3  Tebakan awal = 4  E = 0.00001  Hasil = 3 32 += xx 321 +=+ nn xx
  • 30.
  • 31. Contoh :  x2 -2x-3 = 0  X(x-2) = 3  X = 3 /(x-2)  Tebakan awal = 4  E = 0.00001  Hasil = -1
  • 32.
  • 33. Contoh :  x2 -2x-3 = 0  X = (x2 -3)/2  Tebakan awal = 4  E = 0.00001  Hasil divergen
  • 34. Syarat Konvergensi  Pada range I = [s-h, s+h] dengan s titik tetap  Jika 0<g’(x)<1 untuk setiap x Є I iterasi konvergen monoton.  Jika -1<g’(x)<0 untuk setiap x Є I iterasi konvergen berosilasi.  Jika g’(x)>1 untuk setiap x Є I, maka iterasi divergen monoton.  Jika g’(x)<-1 untuk setiap x Є I, maka iterasi divergen berosilasi.
  • 35.  Tebakan awal 4  G’(4) = 0.1508 < 1  Konvergen Monoton 322 1 )(' 32)( 321 + = += +=+ r r rr x xg xxg xx  Tebakan awal 4  G’(4) = |-0.75| < 1  Konvergen Berisolasi 2 1 )2( 3 )(' )2( 3 )( )2( 3 − − = − = − =+ x xg x xg x x r r
  • 36.  Tebakan awal 4  G’(4) = 4 > 1  Divergen Monoton xxg x xg = − = )(' 2 )3( )( 2
  • 37. Latihan Soal  Apa yang terjadi dengan pemilihan x0 pada pencarian akar persamaan :  X3 + 6x – 3 = 0  Dengan x  Cari akar persamaan dengan x0 = 0.5  X0 = 1.5, x0 = 2.2, x0 = 2.7 6 3 3 1 +− =+ r r x x
  • 39. Metode Newton Raphson  metode pendekatan yang menggunakan satu titik awal dan mendekatinya dengan memperhatikan slope atau gradien pada titik tersebut.Titik pendekatan ke n+1 dituliskan dengan : Xn+1 = xn - ( ) ( )n n xF xF 1
  • 41. Algoritma Metode Newton Raphson 1. Definisikan fungsi f(x) dan f1 (x) 2. Tentukan toleransi error (e) dan iterasi maksimum (n) 3. Tentukan nilai pendekatan awal x0 4. Hitung f(x0 ) dan f’ (x0 ) 5. Untuk iterasi I = 1 s/d n atau |f(xi )|> e  Hitung f(xi ) dan f1 (xi ) 6. Akar persamaan adalah nilai xi yang terakhir diperoleh. ( ) ( )i i ii xf xf xx 11 −=+
  • 42. Contoh Soal  Selesaikan persamaan x - e-x = 0 dengan titik pendekatan awal x0 =0  f(x) = x - e-x  f’(x)=1+e-x  f(x0 ) = 0 - e-0 = -1  f’(x0 ) = 1 + e-0 = 2 ( ) ( ) 5,0 2 1 0 0 1 0 01 = − −=−= xf xf xx
  • 43. Contoh Soal  f(x1 ) = -0,106631 dan f1 (x1 ) = 1,60653   x2 =  f(x2 ) = -0,00130451 dan f1 (x2 ) = 1,56762  x3 =  f(x3 ) = -1,96.10-7 . Suatu bilangan yang sangat kecil.  Sehingga akar persamaan x = 0,567143. ( ) ( ) 566311,0 60653,1 106531,0 5,0 1 1 1 1 = − −=− xf xf x ( ) ( ) 567143,0 56762,1 00130451,0 566311,0 2 1 2 2 = − −=− xf xf x
  • 44. Contoh  x - e-x = 0  x0 =0, e = 0.00001
  • 45. Contoh :  x + e-x cos x -2 = 0  x0=1  f(x) = x + e-x cos x - 2  f’(x) = 1 – e-x cos x – e-x sin x
  • 46.
  • 47. Permasalahan pada pemakaian metode newton raphson  Metode ini tidak dapat digunakan ketika titik pendekatannya berada pada titik ekstrim atau titik puncak, karena pada titik ini nilai F1 (x) = 0 sehingga nilai penyebut dari sama dengan nol, secara grafis dapat dilihat sebagai berikut: Bila titik pendekatan berada pada titik puncak, maka titik selanjutnya akan berada di tak berhingga. ( ) ( )xF xF 1
  • 48. Permasalahan pada pemakaian metode newton raphson  Metode ini menjadi sulit atau lama mendapatkan penyelesaian ketika titik pendekatannya berada di antara dua titik stasioner.  Bila titik pendekatan berada pada dua tiitik puncak akan dapat mengakibatkan hilangnya penyelesaian (divergensi). Hal ini disebabkan titik selanjutnya berada pada salah satu titik puncak atau arah pendekatannya berbeda.
  • 50. Penyelesaian Permasalahan pada pemakaian metode newton raphson 1. Bila titik pendekatan berada pada titik puncak maka titik pendekatan tersebut harus di geser sedikit, xi = xi dimana adalah konstanta yang ditentukan dengan demikian dan metode newton raphson tetap dapat berjalan. 2. Untuk menghindari titik-titik pendekatan yang berada jauh, sebaiknya pemakaian metode newton raphson ini didahului oleh metode tabel, sehingga dapat di jamin konvergensi dari metode newton raphson. δ± δ ( ) 01 ≠ixF
  • 51. Contoh Soal  x . e-x + cos(2x) = 0  x0 = 0,176281  f(x) = x . e-x + cos(2x)  f1(x) = (1-x) e-x – 2 sin (2x)  F(x0) = 1,086282  F1 (x0) = -0,000015 X = 71365,2 padahal dalam range 0 sampai dengan 1 terdapat akar di sekitar 0.5 s/d 1.
  • 52.
  • 53. Contoh Soal  Untuk menghindari hal ini sebaiknya digunakan grafik atau tabel sehingga dapat diperoleh pendekatan awal yang baik. Digunakan pendekatan awal x0=0.5 x
  • 54. Contoh Soal  Hasil dari penyelesaian persamaan  x * exp(-x) + cos(2x) = 0 pada range [0,5]
  • 55.
  • 56. Contoh  Hitunglah akar dengan metode Newthon Raphson. Gunakan e=0.00001. Tebakan awal akar x0= 1  Penyelesaian  Prosedur iterasi Newthon Raphson 2 5)( xexf x −= 2 5)( xexf x −= xexf x 10)(' −= xe xe xx x x rr 10 5 2 1 − − −=+ 0 1 -2.28172 1 0.686651 -0.370399 2 0.610741 -0.0232286 3 0.605296 -0.000121011 4 0.605267 -3.35649e-009 Akar terletak di x = 0.605267
  • 57.
  • 58. Contoh  Tentukan bagaimana cara menentukan
  • 59. Metode Secant  Metode Newton Raphson memerlukan perhitungan turunan fungsi f’(x).  Tidak semua fungsi mudah dicari turunannya terutama fungsi yang bentuknya rumit.  Turunan fungsi dapat dihilangkan dengan cara menggantinya dengan bentuk lain yang ekivalen  Modifikasi metode Newton Raphson dinamakan metode Secant.
  • 61.  Metode Newton-Raphson 1 1 )()( )(' − − − − = ∇ ∇ = rr rr xx xfxf x y xf )(' )( 1 r r rr xf xf xx −=+ )()( ))(( 1 1 1 − − + − − −= rr rrr rr xfxf xxxf xx
  • 62. Algoritma Metode Secant :  Definisikan fungsi F(x)  Definisikan torelansi error (e) dan iterasi maksimum (n)  Masukkan dua nilai pendekatan awal yang di antaranya terdapat akar yaitu x0 dan x1, sebaiknya gunakan metode tabel atau grafis untuk menjamin titik pendakatannya adalah titik pendekatan yang konvergensinya pada akar persamaan yang diharapkan.  Hitung F(x0) dan F(x1) sebagai y0 dan y1  Untuk iterasi I = 1 s/d n atau |F(xi)| hitung yi+1 = F(xi+1)  Akar persamaan adalah nilai x yang terakhir. 1 1 1 − − + − − −= ii ii iii yy xx yxx
  • 63. Contoh Soal  Penyelesaian  x2 –(x + 1) e-x = 0 ?
  • 64. Contoh Kasus Penyelesaian Persamaan Non Linier  Penentuan nilai maksimal dan minimal fungsi non linier  Perhitungan nilai konstanta pada matrik dan determinan, yang biasanya muncul dalam permasalahan sistem linier, bisa digunakan untuk menghitung nilai eigen  Penentuan titik potong beberapa fungsi non linier, yang banyak digunakan untuk keperluan perhitungan-perhitungan secara grafis.
  • 65. Penentuan Nilai Maksimal dan Minimal Fungsi Non Linier  nilai maksimal dan minimal dari f(x)  memenuhi f’(x)=0.  g(x)=f’(x)  g(x)=0  Menentukan nilai maksimal atau minimal  f”(x)
  • 66. Contoh Soal  Tentukan nilai minimal dari f(x) = x2 -(x+1)e-2x +1 -0.5 0 0.5 1 1.5 2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 x**2-(x+1)*exp(-2*x)+1 nilai minimal terletak antara –0.4 dan –0.2
  • 67.
  • 68. Menghitung Titik Potong 2 Buah Kurva x y y=f(x) y=g(x) p f(x) = g(x) atau f(x) – g(x) = 0
  • 69. Contoh Soal  Tentukan titik potong y=2x3 -x dan y=e-x -1 -0.5 0 0.5 1 1.5 2 2.5 3 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 2*x**3-x exp(-x) akar terletak di antara 0.8 dan 1
  • 70.
  • 71. Soal (1)  Tahun 1225 Leonardo da Pisa mencari akar persamaan  F(x) = x3 + 2x2 + 10x – 20 = 0  Dan menemukan x = 1.368808107.  Tidak seorangpun yang mengetahui cara Leonardo menemukan nilai ini. Sekarang rahasia ini dapat dipecahkan dengan metode iterasi sederhana.  Carilah salah satu dari kemungkinan x = g(x). Lalu dengan memberikan sembarang input awal, tentukan x=g(x) yang mana yang menghasilkan akar persamaan yang ditemukan Leonardo itu.
  • 72. Soal (2)  Hitung akar 27 dan akar 50 dengan biseksi dan regula falsi ! Bandingkan ke dua metode tersebut ! Mana yang lebih cepat ?  Catat hasil uji coba a b N e Iterasi Biseksi Iterasi Regula Falsi 0.1 0.01 0.001 0.0001
  • 73. Soal (3)  Tentukan nilai puncak pada kurva y = x2 + e-2x sin(x) pada range x=[0,10]  Dengan metode newthon raphson