SlideShare une entreprise Scribd logo
1  sur  28
Télécharger pour lire hors ligne
High Temperature Electrolysis
Experimental Activities At The
Idaho National Laboratory

  Carl Stoots
  James O’Brien
  J. Stephen Herring
  Idaho National Laboratory


  Joseph Hartvigsen
  Ceramatec Inc., Salt Lake City, UT

  Thomas L. Cable
  University of Toledo, Cleveland, OH, USA


                                             High Temperature Electrolysis Limiting Factors
                                                    Karlsruhe, Germany, June 9 – 10, 2009
Overview
   • INL HTE is funded by the US DOE Nuclear Hydrogen Initiative (NHI)
       • The goal of the NHI is to demonstrate the economic, commercial-scale
          production of hydrogen using nuclear energy.
   • INL is lead lab under the NHI for studying HTE
   • Historically we have concentrated on SOEC designs from Ceramatec Inc.
   • With increasing interest in H2 production, we have tested more designs from
     various vendors
   • My talk – overview of experimental activities at INL with some Lessons Learned




                               Rolls Royce Fuel Cell Systems


Typical Ceramatec SOEC Stack
                                                               NASA BSC Stack


                                                               Stoots, HTE Limiting Factors, Karlsruhe, 2009
Electrolysis Experimental Activities




    Button cell testing
                                                                    Bench scale test stands
Bench Scale
different cell designs & vendors     Multi-cell (Stack) Testing
cell material performance
long term performance -- degradation                                 ILS Facility (15kW)


             Integrated Laboratory Scale (15kW)
             BOP issues
             • thermal management / heat recuperation
             • H2 recycle
             multi-stack manifolding / interconnects
             assess technology readiness

                                                                  Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL Bench Scale Electrolysis Test Apparatus
                          (Button Cell)
                                                                                                            To Roof
                                                                                        Cooling             Vent
                                                                                        Water
Air




                                                              T

                                                          T                                                   T
                                 T                                            T
Nitrogen


                       T              P       H                                          H       P
                                          T                                                  T
Hydrogen                         Ts                                               Ts


                                                  T


                                          V
D I Water     SV


                      Ts                                              I   T
                                                      T
                                                                  V




                           Bench Scale Capabilities
                           INL can simultaneously test:
                           • two button cells
                           • two stacks
                           • special stand for single cell testing

                                                                                   Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL Bench Scale Electrolysis Test Stands




                                Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL Bench Scale Electrolysis Test Stands




                                Stoots, HTE Limiting Factors, Karlsruhe, 2009
NASA Bi-Supported Cell (BSC)




                  Construction:

                  • Structurally symmetric
                         • Electrolyte supported by both
                           electrodes
                  • Electrodes made by freeze casting and
                    infiltration (nitrate solution)
                         • YSZ scaffolding
                         • Graded porosity
                         • Ni cathode
                         • LSF anode
                  • YSZ electrolyte
                  • High power-to-weight ratio (1 kW/kg?)




                                  Stoots, HTE Limiting Factors, Karlsruhe, 2009
NASA BSC Sweeps
                                     1.4            Initial Sweep 1
                                                    Initial Sweep 2           Inlet Dew Point T = 50 C
                                     1.3            Sweep at 20 hours
                                                    Sweep at 40 hours




                       Voltage (V)
                                     1.2            Sweep at 80 hours
                                     1.1

                                      1

                                     0.9
                                               Inlet Dew Point T = 62 C
                                     0.8
                                               T      = 850 C
                                                furnace
                                     0.5
                                               H          = 50 sccm               Inlet Dew Point T = 50 C
                                                2,inlet
                                     0.4       N          = 350 sccm




                       ASR (Ωcm )
                       2
                                                2,inlet

                                     0.3

                                     0.2

                                     0.1

                                      0
  Cell area = 2.25 cm2                     0       0.2        0.4    0.6      0.8      1      1.2        1.4
                                                                                     2
  T = 850 C                                                     Current Density (A/cm )


  H2,inlet = 50 sccm
  N2,inlet = 350 sccm
  Tdp,inlet = 50 C, 62 C
  yH2O,inlet = 0.35



                                                              Stoots, HTE Limiting Factors, Karlsruhe, 2009
NASA BSC Long Duration Test
                                        2.6                                                                                                               0.45
                                                                                                                       ASR


                                        2.5                                                                                                               0.4
                                                                                                                            T             = 850 C
Cell area = 2.25 cm2                    2.4
                                                                                                                                furnace

                                                                                                                            V = 1.2 V
                                                                                                                                ref                       0.35
T = 850 C                                                                                                                   Inlet Dew Point = 62 C




                                                                                                                                                                 ASR (Ωcm )
                          Current (A)
                                                                                                                            H = 50 sccm
                                                                                                                                2
H2,inlet = 50 sccm                      2.3                                                                                 N = 350 sccm
                                                                                                                                2                         0.3
N2,inlet = 350 sccm




                                                                                                                                                                       2
                                                                          Sweep
Tdp,inlet = 50 C, 62 C                  2.2                                                                                                               0.25




                                                                       Sweep
                                                  Added insulation to valves
                                                                    Sweep
yH2O,inlet = 0.35




                                                                                                      Temporary shut down
                                                                                   Lost power
                                                                                                                                          Current (A)
                                        2.1                                                                                                               0.2



                                         2                                                                                                                0.15
                                              0                              100                200                              300                400

                                                                                   Elapsed Time (hours)



                    Experimental disruptions affect degradation
                    • Erratic steam flow due to condensation
                    • Power losses
                    • Thermal transients

                                                                                                                                                           Stoots, HTE Limiting Factors, Karlsruhe, 2009
Typical Steam Electrolysis Stack Test
              Ceramatec 10 cell, 20cm x 20cm




                                                                                                                                                                                                                                          Stack Voltage (V)
                                                              14                                                                                                                                                                                     2
                                                                        H Production (dew points)                 8000                                                                         15              Stack T #1 (C)             ASR (Ωcm )           830
                                                                            2
                                                                        H Production (current)                                                                                                                 Stack T #2 (C)
                                                                            2
                                                              13                                                  7000
                                                                                                                                                                                                               Stack T #3 (C)                                  820
                                                                                                                                                                                                                                 Stack
H2 production measured by:




                                                                                                                                                                                                                                                                     Stack Internal Temperature (C)
                                                              12                                                  6000
                                Stack Operating Voltage (V)




                                                                                                                                                    Stack Operating Voltage (V)
                                                                                                                                                                                                                                Voltage




                                                                                                                         H Production Rate (sccm)
                                                                             Stack




                                                                                                                      2
                                                                            Voltage                                                                                                            10                                                              810
 • Change in dew points                                       11                                                  5000




                                                                                                                                                                                  ASR (Ωcm )
                                                                                                                                                                                  2
                                                                                                    H
 • Cell current                                               10
                                                                                           Production
                                                                                                        2
                                                                                                                  4000                                                                                                                                         800


Measurement of internal stack                                 9                                                   3000
                                                                                                                                                                                               5                                                               790

temperatures                                                  8                                                   2000

                                                                                                                                                                                                                                                               780
                                                              7                                                   1000
                                                                                                                                                                                                                                      Per-Cell ASR

                                                              6                                                   0                                                                            0                                                               770
                                                                   0   20         40       60        80     100                                                                                     0         20       40       60        80             100
                                                                                   Stack Current (A)                                                                                                                    Stack Current (A)




                                                                                                                                                                                                        Stoots, HTE Limiting Factors, Karlsruhe, 2009
Typical Steam Electrolysis Stack Test
        Ceramatec 10 cell, 10cm x 10cm
                 15




                 10               Shunt Current (A)
                                  Vint #1
                                  Vint #2
                                  Vint #3
                                  Vint #4
                                  Power Supply Voltage (V)
                                  Stack Operating Voltage (V)
                  5               ASR




                  0
                      50    100      150        200        250   300
                                  Elapsed Time (hrs)

Humidifier performance erratic -- humidifier float valve failed and had to be replaced.

                                                                  Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL 15 kW Integrated Laboratory Scale Test




             Designed to study BOP issues:
             • thermal management
             • heat recuperation
             • H2 recycle
             • multi-stack gas manifolding
             • multi-stack electrical interconnects
             • technology readiness


                                                      Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL 15 kW Integrated Laboratory Scale Test




Full operation – September 2008
• 3 parallel semi-independent loops
• H2 recycle
• heat recuperation




                                      Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL 15 kW Integrated Laboratory Scale Test




                                 Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL 15 kW Integrated Laboratory Scale Test




Safety: One electrical disconnect point for entire experiment

                                            Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL ILS Data Acquisition and Control




• Software written in-house using LabView
• Lesson learned – high bias voltage problems
• 2 National Instruments SCXI signal measurement / conditioning systems
      • Isolate high bias voltage measurements from others
      • 233 I/O channels



                                                                          Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL H2 Recycle Components




               • Double-diaphragm H2 recycle pump
                      • Feed-back controlled via computer
                      • User-selectable product recycle split
               • H2 recycle storage tank
               • Condensation in pressurized H2 product is important




                                 Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL ILS Modules




•   Modules provided by Ceramatec Inc.
•   Each cell is 10cm x 10cm (8cm x 8cm active area)
•   Module comprised of 4 60 cell stacks
•   3 modules (total of 720 cells)
•   Stacks are electrically interconnected every 5th cell




                                                            Stoots, HTE Limiting Factors, Karlsruhe, 2009
Final Installation Of Cells




240 cells plus manifolds are heavy!




 Module measurements include voltages, currents, temperatures

                                             Stoots, HTE Limiting Factors, Karlsruhe, 2009
INL ILS Heat Recuperation Design
            • Internally manifolded, plate-fin design
            • 2 heat exchangers per module
                 • One for steam hydrogen
                 • One for air sweep
            • Heat recuperation reduced total electric
              heater power requirements by half




                   Example CFD calculation for INL
                   heat recuperation concept

                                         Stoots, HTE Limiting Factors, Karlsruhe, 2009
Three Module ILS Results
              4                                                     20                                                                                       6                                                            20
                                Electrolysis Power (Peak = 18kW)                                                                                                            3
                                                                                                                                                                 Peak 5.7 Nm /hr
                                                                                                                                                                                                              Mod 1 ASR
             3.5
                                                                                                                                                             5                                                Mod 2 ASR




                                                                                                                                H Production Rate (Nm /hr)
                                                                                                   H Production Rate (Nm /hr)
              3                                                     15                                                                                                                                        Mod 3 ASR   15




                                                                                                   2


                                                                                                                                3
                                                                         Electrolysis Power (kW)




                                                                                                                                                                                                                               Per-Cell ASR (Ωcm )
                                                                                                                                                             4
             2.5
ASR (Ωcm )
2




                                         Module 3 Per-Cell ASR
              2                                                     10                                                                                       3                                                            10
                                         Module 2 Per-Cell ASR
             1.5                         Module 1 Per-Cell ASR




                                                                                                                    3
                                                                                                                                                             2




                                                                                                                                                                                                                                           2
              1                                            3        5                                                                                                                                                     5




                                                                                                                                                      2
                          H Production Rate (Peak = 5.7 Nm /hr)                                                                                                                                                    3
                           2
                                                                                                                                                                                                  H Production (Nm /hr)
                                                                                                                                                                                                   2
                                                                                                                                                             1
             0.5


              0                                                     0                                                                                        0                                                            0
                           16                17                18                                                                                                     200          400      600         800       1000
                                Elapsed Time (hrs)                                                                                                                              Elapsed Time (hrs)
        •          18 kW peak electrolysis power
        •          5.7 Nm3/hr peak H2 production rate
        •          Ran for 1080 hours
        •          Condensation in H2 MFCs caused problems for first ~500 hours -> degradation
        •          Proper design and operation of BOP important for cell performance.
        •          Electrolyser cell performance degradation remains problem.
                                                                                                                                                                                         Stoots, HTE Limiting Factors, Karlsruhe, 2009
Steam Electrolysis Experimental Status

      •   Studying electrolysis degradation mechanisms
          through bench scale testing
           – Dr. O’Brien will speak more about this
      •   Continuing to characterize performance of cells
          from various vendors




                                                Stoots, HTE Limiting Factors, Karlsruhe, 2009
Coelectrolysis Experimental Activities




                            Stoots, HTE Limiting Factors, Karlsruhe, 2009
Coelectrolysis                 H 2O + CO2 ⎯electricity⎯ → H 2 + CO + O2
                                           ⎯ ⎯ ,heat   ⎯


                2H 2O ⎯electricit⎯⎯→ 2H 2 + O2
                       ⎯⎯ y, heat                   Steam electrolysis
                2CO2 ⎯electricit⎯ → 2CO + O2
                       ⎯⎯ y, heat⎯                  CO2 electrolysis????
                 CO2 + H2 ⎯ CO+ H2O
                             ⎯→                     Reverse shift reaction
  •   Smaller/lighter (more mobile) molecules of H2-H2O pair could favor steam electrolysis
       – Our Area Specific Resistance (ASR) measurements support this:
            • ASRcoelectrolysis ~ ASRH2O
            • ASRdry CO2 > ASRH2O

  •   Seems that:
       – H2O consumed in electrochemical reaction
       – CO2 consumed in RSR

  •   Dry CO2 electrolysis is not desirable
       – High ASR
       – Possibility of further reduction of CO to C



                                                                   Stoots, HTE Limiting Factors, Karlsruhe, 2009
Steam vs. Coelectrolysis ASRs
                                 14
                                          CO Electrolysis
                                            2
                                                   ~ 3.84 Ωcm
                                                             2
                                 13        ASR
                                               CO2




   Stack Operating Voltage (V)
                                 12
                                                                                            Same stack
                                 11
                                                                                            800 C operating temperature
                                                           H O Electrolysis
                                 10                         2
                                                                     ~ 1.36 Ωcm
                                                                                 2
                                                            ASR
                                                                H2O
                                  9                        H O/CO Coelectrolysis
                                                            2     2
                                                                         ~ 1.38 Ωcm
                                                                                   2
                                                            ASR
                                                                  H2O/CO2
                                  8

                                  7

                                  6
                                      0         5       10        15        20         25
                                                      Stack Current (A)



 • Dry CO2 ASR significantly higher than steam ASR
 • Stack performance same for steam electrolysis or coelectrolysis
 • Explanation (as stated earlier):
     • H2O consumed in electrochemical reaction
     • CO2 consumed in RSR




                                                                                                    Stoots, HTE Limiting Factors, Karlsruhe, 2009
Typical Coelectrolysis Stack Results
                                 20
                                               Inlet CO2

                                                                             H
                                                                              2
                                 15




            Mole % (Dry Basis)
                                 10                                                         Experimental Results
                                                               CO
                                                                    2
                                              Inlet H2

                                  5
                                                                        CO

                                               Inlet CO
                                  0
                                      0   2        4       6    8        10       12
                                                                                              Model Results
                                                Electrolysis Current (A)

    • At zero current (no electrolysis)
        • CO2, H2 consumed
                                    Reverse shift reaction
        • CO produced
    • Yield of syngas increased linearly with current
        • oxygen is removed from gas mixture
    • Good agreement with INL-developed coelectrolysis model


                                                                                       Stoots, HTE Limiting Factors, Karlsruhe, 2009
Coelectrolysis With Subsequent Methanation
100


80                                                                                                                                                                        Ceramatec extended coelectrolysis with
                                                                                                                                                                          downstream methanation reactor
                                                                                                                                                                 CH         • 18mm x 1.5m tube
60                                                                                                                                                                    4
                                                                                                                                                                 CO
                                                                                                                                                                            • Commercial steam reforming
                                                                                                                                                                              catalyst (R-67R, Haldor Topsoe)
                                                                                                                                                                 CO
40                                                                                                                                                                    2     • Outer sleeve to reduce axial
                                                                                                                                                                 N
                                                                                                                                                                  2           temperature gradient
                                                                                                                                                                 H
20
                                                                                                                                                                  2         • Reactor T = 300 C
                                                                                                                                                                            • 40% - 50% CH4 (by volume)
                                                                                                                                                                              produced
 0
                                                                    Test 3, Methanation Outlet
      Test 1, Methanation Outlet




                                                                                                   Test 4, Methanation Outlet
                                     Test 2, Methanation Outlet




                                                                                                                                  Test 5, Methanation Outlet
             Test 1, Stack Outlet



                                            Test 2, Stack Outlet




                                                                                                          Test 4, Stack Outlet
               Test 1, Stack Inlet




                                                                                                            Test 4, Stack Inlet




                                                                                                                                         Test 5, Stack Outlet
                                                                                                                                           Test 5, Stack Inlet
                                              Test 2, Stack Inlet



                                                                             Test 3, Stack Inlet
                                                                           Test 3, Stack Outlet




                                                                                                                                                                                        Stoots, HTE Limiting Factors, Karlsruhe, 2009
Coelectrolysis Experimental Status
•   Designing and constructing an integrated demonstration
     – Syngas via electrolysis
     – Methane via methanation of syngas
     – Liquid synfuel
         • Methanol
         • Fischer-Tropsch liquids




                                                    Stoots, HTE Limiting Factors, Karlsruhe, 2009

Contenu connexe

Similaire à D09.06.04.presentation

Expert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentExpert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentRAF Tabtronics LLC
 
001 thermodynamic system
001 thermodynamic system001 thermodynamic system
001 thermodynamic systemphysics101
 
Thermal Management: MCPCBs for LED Applications
Thermal Management: MCPCBs for LED ApplicationsThermal Management: MCPCBs for LED Applications
Thermal Management: MCPCBs for LED ApplicationsDomestic PCB Fabrication
 
12.45 o14 s hendy
12.45 o14 s hendy12.45 o14 s hendy
12.45 o14 s hendyNZIP
 
D09.06.06.presentation
D09.06.06.presentationD09.06.06.presentation
D09.06.06.presentationRelhy project
 
Characterization of Thermoelectric Properties and Power Generation Efficienc...
Characterization of Thermoelectric Properties and Power Generation Efficienc...Characterization of Thermoelectric Properties and Power Generation Efficienc...
Characterization of Thermoelectric Properties and Power Generation Efficienc...andymuto
 
Thermal power plant
Thermal power plant Thermal power plant
Thermal power plant Ankur Mahajan
 
Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)chrisrobschu
 
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Ninggang Shen
 
Introduction to rtd and thermocouple by yogesh k. kirange
Introduction to rtd and thermocouple by yogesh k. kirangeIntroduction to rtd and thermocouple by yogesh k. kirange
Introduction to rtd and thermocouple by yogesh k. kirangeYogesh Kirange
 
Mark Woods Career Excerpts
Mark Woods Career ExcerptsMark Woods Career Excerpts
Mark Woods Career Excerptsmarkwoodsmsme
 
Differential scanning calorimetry
Differential scanning calorimetryDifferential scanning calorimetry
Differential scanning calorimetryKhalid Hussain
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transferspsu
 
Edo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection system
Edo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection systemEdo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection system
Edo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection systemErol DAG
 
Temperature measurement ppt
Temperature measurement pptTemperature measurement ppt
Temperature measurement pptAVISHEK KUMAR
 
Temparature measurement presentation
Temparature measurement presentationTemparature measurement presentation
Temparature measurement presentationAVISHEK KUMAR
 
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCBClemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCBDomestic PCB Fabrication
 

Similaire à D09.06.04.presentation (20)

Expert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentExpert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer Development
 
001 thermodynamic system
001 thermodynamic system001 thermodynamic system
001 thermodynamic system
 
Thermal Management: MCPCBs for LED Applications
Thermal Management: MCPCBs for LED ApplicationsThermal Management: MCPCBs for LED Applications
Thermal Management: MCPCBs for LED Applications
 
12.45 o14 s hendy
12.45 o14 s hendy12.45 o14 s hendy
12.45 o14 s hendy
 
D09.06.06.presentation
D09.06.06.presentationD09.06.06.presentation
D09.06.06.presentation
 
Sr#1 Jp Cortes
Sr#1 Jp CortesSr#1 Jp Cortes
Sr#1 Jp Cortes
 
Characterization of Thermoelectric Properties and Power Generation Efficienc...
Characterization of Thermoelectric Properties and Power Generation Efficienc...Characterization of Thermoelectric Properties and Power Generation Efficienc...
Characterization of Thermoelectric Properties and Power Generation Efficienc...
 
Thermal power plant
Thermal power plant Thermal power plant
Thermal power plant
 
Thermal Transfer - LED PCB
Thermal Transfer - LED PCBThermal Transfer - LED PCB
Thermal Transfer - LED PCB
 
Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)
 
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
Thermal Modeling of Electron Beam Additive Manufacturing Process–Powder Sinte...
 
Introduction to rtd and thermocouple by yogesh k. kirange
Introduction to rtd and thermocouple by yogesh k. kirangeIntroduction to rtd and thermocouple by yogesh k. kirange
Introduction to rtd and thermocouple by yogesh k. kirange
 
Mark Woods Career Excerpts
Mark Woods Career ExcerptsMark Woods Career Excerpts
Mark Woods Career Excerpts
 
Differential scanning calorimetry
Differential scanning calorimetryDifferential scanning calorimetry
Differential scanning calorimetry
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
11 Heat Transfer
11 Heat Transfer11 Heat Transfer
11 Heat Transfer
 
Edo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection system
Edo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection systemEdo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection system
Edo ppp-coe-cor-int-xxx-014-208-236-rev-a-tml lisco cathodic protection system
 
Temperature measurement ppt
Temperature measurement pptTemperature measurement ppt
Temperature measurement ppt
 
Temparature measurement presentation
Temparature measurement presentationTemparature measurement presentation
Temparature measurement presentation
 
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCBClemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCB
 

Plus de Relhy project

Plus de Relhy project (11)

The Nimes call
The Nimes callThe Nimes call
The Nimes call
 
L'appel de-nimes
L'appel de-nimesL'appel de-nimes
L'appel de-nimes
 
Departementales 2015 maurepas
Departementales 2015 maurepasDepartementales 2015 maurepas
Departementales 2015 maurepas
 
D09.06.07.abstract
D09.06.07.abstractD09.06.07.abstract
D09.06.07.abstract
 
D09.06.05.abstract
D09.06.05.abstractD09.06.05.abstract
D09.06.05.abstract
 
D09.06.04.abstract
D09.06.04.abstractD09.06.04.abstract
D09.06.04.abstract
 
D09.06.03.presentation
D09.06.03.presentationD09.06.03.presentation
D09.06.03.presentation
 
D09.06.03.abstract
D09.06.03.abstractD09.06.03.abstract
D09.06.03.abstract
 
D09.06.02.abstract
D09.06.02.abstractD09.06.02.abstract
D09.06.02.abstract
 
D09.06.01.presentation
D09.06.01.presentationD09.06.01.presentation
D09.06.01.presentation
 
D09.06.01.abstract
D09.06.01.abstractD09.06.01.abstract
D09.06.01.abstract
 

D09.06.04.presentation

  • 1. High Temperature Electrolysis Experimental Activities At The Idaho National Laboratory Carl Stoots James O’Brien J. Stephen Herring Idaho National Laboratory Joseph Hartvigsen Ceramatec Inc., Salt Lake City, UT Thomas L. Cable University of Toledo, Cleveland, OH, USA High Temperature Electrolysis Limiting Factors Karlsruhe, Germany, June 9 – 10, 2009
  • 2. Overview • INL HTE is funded by the US DOE Nuclear Hydrogen Initiative (NHI) • The goal of the NHI is to demonstrate the economic, commercial-scale production of hydrogen using nuclear energy. • INL is lead lab under the NHI for studying HTE • Historically we have concentrated on SOEC designs from Ceramatec Inc. • With increasing interest in H2 production, we have tested more designs from various vendors • My talk – overview of experimental activities at INL with some Lessons Learned Rolls Royce Fuel Cell Systems Typical Ceramatec SOEC Stack NASA BSC Stack Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 3. Electrolysis Experimental Activities Button cell testing Bench scale test stands Bench Scale different cell designs & vendors Multi-cell (Stack) Testing cell material performance long term performance -- degradation ILS Facility (15kW) Integrated Laboratory Scale (15kW) BOP issues • thermal management / heat recuperation • H2 recycle multi-stack manifolding / interconnects assess technology readiness Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 4. INL Bench Scale Electrolysis Test Apparatus (Button Cell) To Roof Cooling Vent Water Air T T T T T Nitrogen T P H H P T T Hydrogen Ts Ts T V D I Water SV Ts I T T V Bench Scale Capabilities INL can simultaneously test: • two button cells • two stacks • special stand for single cell testing Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 5. INL Bench Scale Electrolysis Test Stands Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 6. INL Bench Scale Electrolysis Test Stands Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 7. NASA Bi-Supported Cell (BSC) Construction: • Structurally symmetric • Electrolyte supported by both electrodes • Electrodes made by freeze casting and infiltration (nitrate solution) • YSZ scaffolding • Graded porosity • Ni cathode • LSF anode • YSZ electrolyte • High power-to-weight ratio (1 kW/kg?) Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 8. NASA BSC Sweeps 1.4 Initial Sweep 1 Initial Sweep 2 Inlet Dew Point T = 50 C 1.3 Sweep at 20 hours Sweep at 40 hours Voltage (V) 1.2 Sweep at 80 hours 1.1 1 0.9 Inlet Dew Point T = 62 C 0.8 T = 850 C furnace 0.5 H = 50 sccm Inlet Dew Point T = 50 C 2,inlet 0.4 N = 350 sccm ASR (Ωcm ) 2 2,inlet 0.3 0.2 0.1 0 Cell area = 2.25 cm2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 2 T = 850 C Current Density (A/cm ) H2,inlet = 50 sccm N2,inlet = 350 sccm Tdp,inlet = 50 C, 62 C yH2O,inlet = 0.35 Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 9. NASA BSC Long Duration Test 2.6 0.45 ASR 2.5 0.4 T = 850 C Cell area = 2.25 cm2 2.4 furnace V = 1.2 V ref 0.35 T = 850 C Inlet Dew Point = 62 C ASR (Ωcm ) Current (A) H = 50 sccm 2 H2,inlet = 50 sccm 2.3 N = 350 sccm 2 0.3 N2,inlet = 350 sccm 2 Sweep Tdp,inlet = 50 C, 62 C 2.2 0.25 Sweep Added insulation to valves Sweep yH2O,inlet = 0.35 Temporary shut down Lost power Current (A) 2.1 0.2 2 0.15 0 100 200 300 400 Elapsed Time (hours) Experimental disruptions affect degradation • Erratic steam flow due to condensation • Power losses • Thermal transients Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 10. Typical Steam Electrolysis Stack Test Ceramatec 10 cell, 20cm x 20cm Stack Voltage (V) 14 2 H Production (dew points) 8000 15 Stack T #1 (C) ASR (Ωcm ) 830 2 H Production (current) Stack T #2 (C) 2 13 7000 Stack T #3 (C) 820 Stack H2 production measured by: Stack Internal Temperature (C) 12 6000 Stack Operating Voltage (V) Stack Operating Voltage (V) Voltage H Production Rate (sccm) Stack 2 Voltage 10 810 • Change in dew points 11 5000 ASR (Ωcm ) 2 H • Cell current 10 Production 2 4000 800 Measurement of internal stack 9 3000 5 790 temperatures 8 2000 780 7 1000 Per-Cell ASR 6 0 0 770 0 20 40 60 80 100 0 20 40 60 80 100 Stack Current (A) Stack Current (A) Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 11. Typical Steam Electrolysis Stack Test Ceramatec 10 cell, 10cm x 10cm 15 10 Shunt Current (A) Vint #1 Vint #2 Vint #3 Vint #4 Power Supply Voltage (V) Stack Operating Voltage (V) 5 ASR 0 50 100 150 200 250 300 Elapsed Time (hrs) Humidifier performance erratic -- humidifier float valve failed and had to be replaced. Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 12. INL 15 kW Integrated Laboratory Scale Test Designed to study BOP issues: • thermal management • heat recuperation • H2 recycle • multi-stack gas manifolding • multi-stack electrical interconnects • technology readiness Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 13. INL 15 kW Integrated Laboratory Scale Test Full operation – September 2008 • 3 parallel semi-independent loops • H2 recycle • heat recuperation Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 14. INL 15 kW Integrated Laboratory Scale Test Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 15. INL 15 kW Integrated Laboratory Scale Test Safety: One electrical disconnect point for entire experiment Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 16. INL ILS Data Acquisition and Control • Software written in-house using LabView • Lesson learned – high bias voltage problems • 2 National Instruments SCXI signal measurement / conditioning systems • Isolate high bias voltage measurements from others • 233 I/O channels Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 17. INL H2 Recycle Components • Double-diaphragm H2 recycle pump • Feed-back controlled via computer • User-selectable product recycle split • H2 recycle storage tank • Condensation in pressurized H2 product is important Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 18. INL ILS Modules • Modules provided by Ceramatec Inc. • Each cell is 10cm x 10cm (8cm x 8cm active area) • Module comprised of 4 60 cell stacks • 3 modules (total of 720 cells) • Stacks are electrically interconnected every 5th cell Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 19. Final Installation Of Cells 240 cells plus manifolds are heavy! Module measurements include voltages, currents, temperatures Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 20. INL ILS Heat Recuperation Design • Internally manifolded, plate-fin design • 2 heat exchangers per module • One for steam hydrogen • One for air sweep • Heat recuperation reduced total electric heater power requirements by half Example CFD calculation for INL heat recuperation concept Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 21. Three Module ILS Results 4 20 6 20 Electrolysis Power (Peak = 18kW) 3 Peak 5.7 Nm /hr Mod 1 ASR 3.5 5 Mod 2 ASR H Production Rate (Nm /hr) H Production Rate (Nm /hr) 3 15 Mod 3 ASR 15 2 3 Electrolysis Power (kW) Per-Cell ASR (Ωcm ) 4 2.5 ASR (Ωcm ) 2 Module 3 Per-Cell ASR 2 10 3 10 Module 2 Per-Cell ASR 1.5 Module 1 Per-Cell ASR 3 2 2 1 3 5 5 2 H Production Rate (Peak = 5.7 Nm /hr) 3 2 H Production (Nm /hr) 2 1 0.5 0 0 0 0 16 17 18 200 400 600 800 1000 Elapsed Time (hrs) Elapsed Time (hrs) • 18 kW peak electrolysis power • 5.7 Nm3/hr peak H2 production rate • Ran for 1080 hours • Condensation in H2 MFCs caused problems for first ~500 hours -> degradation • Proper design and operation of BOP important for cell performance. • Electrolyser cell performance degradation remains problem. Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 22. Steam Electrolysis Experimental Status • Studying electrolysis degradation mechanisms through bench scale testing – Dr. O’Brien will speak more about this • Continuing to characterize performance of cells from various vendors Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 23. Coelectrolysis Experimental Activities Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 24. Coelectrolysis H 2O + CO2 ⎯electricity⎯ → H 2 + CO + O2 ⎯ ⎯ ,heat ⎯ 2H 2O ⎯electricit⎯⎯→ 2H 2 + O2 ⎯⎯ y, heat Steam electrolysis 2CO2 ⎯electricit⎯ → 2CO + O2 ⎯⎯ y, heat⎯ CO2 electrolysis???? CO2 + H2 ⎯ CO+ H2O ⎯→ Reverse shift reaction • Smaller/lighter (more mobile) molecules of H2-H2O pair could favor steam electrolysis – Our Area Specific Resistance (ASR) measurements support this: • ASRcoelectrolysis ~ ASRH2O • ASRdry CO2 > ASRH2O • Seems that: – H2O consumed in electrochemical reaction – CO2 consumed in RSR • Dry CO2 electrolysis is not desirable – High ASR – Possibility of further reduction of CO to C Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 25. Steam vs. Coelectrolysis ASRs 14 CO Electrolysis 2 ~ 3.84 Ωcm 2 13 ASR CO2 Stack Operating Voltage (V) 12 Same stack 11 800 C operating temperature H O Electrolysis 10 2 ~ 1.36 Ωcm 2 ASR H2O 9 H O/CO Coelectrolysis 2 2 ~ 1.38 Ωcm 2 ASR H2O/CO2 8 7 6 0 5 10 15 20 25 Stack Current (A) • Dry CO2 ASR significantly higher than steam ASR • Stack performance same for steam electrolysis or coelectrolysis • Explanation (as stated earlier): • H2O consumed in electrochemical reaction • CO2 consumed in RSR Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 26. Typical Coelectrolysis Stack Results 20 Inlet CO2 H 2 15 Mole % (Dry Basis) 10 Experimental Results CO 2 Inlet H2 5 CO Inlet CO 0 0 2 4 6 8 10 12 Model Results Electrolysis Current (A) • At zero current (no electrolysis) • CO2, H2 consumed Reverse shift reaction • CO produced • Yield of syngas increased linearly with current • oxygen is removed from gas mixture • Good agreement with INL-developed coelectrolysis model Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 27. Coelectrolysis With Subsequent Methanation 100 80 Ceramatec extended coelectrolysis with downstream methanation reactor CH • 18mm x 1.5m tube 60 4 CO • Commercial steam reforming catalyst (R-67R, Haldor Topsoe) CO 40 2 • Outer sleeve to reduce axial N 2 temperature gradient H 20 2 • Reactor T = 300 C • 40% - 50% CH4 (by volume) produced 0 Test 3, Methanation Outlet Test 1, Methanation Outlet Test 4, Methanation Outlet Test 2, Methanation Outlet Test 5, Methanation Outlet Test 1, Stack Outlet Test 2, Stack Outlet Test 4, Stack Outlet Test 1, Stack Inlet Test 4, Stack Inlet Test 5, Stack Outlet Test 5, Stack Inlet Test 2, Stack Inlet Test 3, Stack Inlet Test 3, Stack Outlet Stoots, HTE Limiting Factors, Karlsruhe, 2009
  • 28. Coelectrolysis Experimental Status • Designing and constructing an integrated demonstration – Syngas via electrolysis – Methane via methanation of syngas – Liquid synfuel • Methanol • Fischer-Tropsch liquids Stoots, HTE Limiting Factors, Karlsruhe, 2009