SlideShare une entreprise Scribd logo
1  sur  46
Télécharger pour lire hors ligne
RelHy International Workshop on
High Temperature Electrolysis Limiting Factors
             June 09-10, 2009
            Karlsruhe, Germany




           S. Elangovan, J. Hartvigsen,
     Feng Zhao, Insoo Bay, and Dennis Larsen

     Office of Naval Research Contract: N00014-08-C-0680
     DOE subcontract through Idaho National Lab.
Energy, Environment & Economy
•   Environment
    – Climate Change
        • GHG sources
             – 8 tons CO2/kW-yr from coal or oil
             – Leaky natural gas pipelines
             – Ruminants
        • Ozone hole - no, that’s a different topic
    – Habitat Impacts                                         One Thing Is Clear
        • Drilling in Arctic National Wildlife Refuge
                                                        Energy Is The Key To Prosperity
        • Wind turbines in Chesapeake Bay
    – Air pollution
•   Limited Resources
    – Oil
        • National security
    – Gas
        • Heating vs. power generation
        • Transportation issues
    – Renewables
Carbon Free Energy Source Options
•   Renewable energy resources
    –   Large Scale Wind
        •   800 GW at class 4+ US wind sites
    –   Small Hydro
        •   45GW potential, 2000 sites
    –   Concentrator Photovoltaic
        •   Land area 12km2 /GW
    –   Biomass
        •   Ag/Forestry byproduct
        •   Carbon neutral cycle assuming production
            and processing are carbon free
•   Nuclear
    –   25 new plants announced
    –   Increased output of existing units
        •   Note trend in figure since 1970

•   Hydrogen production from electrolysis
        •   High temperature 29 tons/GW-hr
        •   Conventional 21 tons/GW-hr

                                                       http://www.eia.doe.gov/emeu/aer/pdf/pages/sec1_6.pdf
Storing Hydrogen With CO2
• Energy Sources
  – Wind, Solar (PV & heat), Hydro, Nuclear
• Carbon Sources
  –   Metallurgical Reduction, Cement Kilns
  –   Fermentation, Digester gas
  –   Biomass gasifiers
  –   Fossil Power Systems
• Conversion Technology
  – SOFC electrolyzer, steam+CO2=> syngas
• Products
  – SNG, Fischer Tropsch liquids
Why Electrolytic Synfuels
•   Electrolysis efficiency
•   Energy storage density
•   Fits in existing distribution infrastructure
•   Synergy with intermittent energy sources
•   No added CO2 emissions
•   Reduced work of compression
•   Compatible with existing vehicle fleet
    – 20 to 50 year crossover
The New Alchemy: C ⇒ Au
• Turning carbon into gold
  – Low value carbon
    • CO2 -$55/ton (Norway C tax)
    • Coal $20-100/ton
    • Bitumen ~ $100/ton
  – High value carbon
    • Natural Gas $444/ton carbon
      ($7/decatherm)
    • Crude Oil $888/ton carbon ($105/bbl)
    • Refined fuel (pre-tax) ~$1000/ton carbon
Synthetic methane from electrolysis of CO2
              Gas analysis in volume %
                         From                         From
                      Electrolysis                 Methanation
                                                      Unit

             CH4          CO          H2    CH4       CO          H2

Test 1        .0        14.3         60.7   42.5       0         13.8

Test 2        .7        18.5         58.0   47.7       0         9.2

Test 3        .3        20.1         63.5   50.0       0         9.4

Test 4        .1        15.8         58.9   42.0       0         4.6

Test 5        .1        15.2         59.5   40.4       0         8.2

         FEED TO ELECTROLYSIS IS CO2 + H2O + ELECTRIC ENERGY
FT- Liquid Products
•   Ceramatec produced catalyst
     – FeCuK composition
     – 8mm La promoted alumina rings
     – Automated in-situ reduction
       profile using dewpoint controlled
       temperature ramp



     – Oil fraction
     – Water fraction




                                           235   C Reactor Operation
One Technology - Multiple Modes Of Operation

                 Solid Oxide Stack Module
 NG
 Biogas
 Diesel   Fuel                                     Syngas
 JP-8
 Coal



 Electricity                                       CO2 & Steam
                                                   + Electricity



                     Steam + Hydrogen
                     Electricity   (High Purity)
SOFC - SOEC Differences
• Cells tested to date are virtually identical
  – Same electrolyte, electrodes, pattern, etc.
• SOEC seals more challenging
  – Higher back pressure on seals due to product
    collection
  – Low molecular weight stream vs. reformate
     • Diffusion mechanism more active relative to
       hydrodynamic
     • Hydrogen permeation in metal icon destabilizes air
       side scale
Repeat Unit Elements
         Ferritic Stainless Steel Separator
           Corrugated Ferritic Stainless Steel or High Ni alloy

50 µm
 50 µm                    Cobaltite (current distribution layer)
          air
          electrode       Manganite + Zirconia Composite

         electrolyte      Sc - ZrO2 (partially stabilized)

                          Ni + ceria cermet
          H
          electrode       Ni (current distribution layer)


         Corrugated Ni flow field on hydrogen side
Stack Components
SOEC Limiting Factors
• Degradation/Lifetime             • Thermodynamics
   – Oxygen bond layer stability     – Operating Voltage
   – Oxygen electrode                – Steam Utilization
     delamination                    – Co-electrolysis of CO2
   – Electrolyte stability         • High Temp Heat Duty
   – Chromium migration
                                     – 0-15% of energy input
   – Seals
                                     – Wind hydrogen feasible
   – Interconnect scale growth &
     resistance                    • Energy Cost
   – Electrode microstructure        – $50/MW-hr => $1.72/kg H2
       • Electrode coarsening      • Amortized CAPEX
• Cell Size & Stack Height           – 24 month life => $0.46/kg H2
   – Very large cells feasible
   – Porous metal support
SOFC-SOEC Contrasts
 in (Potential:Composion) Space

                                  Vtn
Energy of fuel-cell vs. electrolysis mode
                                              current density, A/cm2
           0.4             0.3          0.2     0.1      0      -0.1      -0.2       -0.3
        0.4

                                                                                    reaction
                                                                                    ohmic              Stack ASR = 1.25,
                                                                                    net                T = 927 C,
                                                fuel cell electrolysis
                                                                                                       yH2,i = 0.1,
                                                                                                       yH2,o = 0.95
     heat flux, W/cm




        0.2
 2




                                                               thermal neutral
                                                               voltage                                       −ΔhR
                                                                                                       Vtn =
                       0
                                                                                                              2F

                                        open-cell
                                                                                                      (1.291 V at 1200 K)
                                        potential        |<- 100% Efficiency Range ->|


  -0.2
     -0.4                        -0.6           -0.8          -1             -1.2              -1.4
                                              operating voltage, V
Typical SOEC and SOFC Temperature Maps




SOFC ΔT > 90°C
Resistance doubling ~ 67 °C
Thermal expansion issues
System Efficiency vs. Steam+CO2 Utilization




            INL Process Model shows little need to
            operate with utilization much beyond 50%
Humidified CO2 Cell V-I Characteristic
                                                        CO2ELEC01:800°C
                                                    80F H2O, 45CC CO2, 8CC H2
                 1.60


                 1.40
                                                             y = -0.6907x + 0.8717
                                                                      2
                                                                  R = 0.9997
                 1.20


                 1.00
Voltage, Volts




                 0.80


                 0.60
                        No reduction in performance compared to cells with steam electrolysis
                 0.40


                 0.20


                 0.00
                    -0.80   -0.70   -0.60   -0.50    -0.40    -0.30       -0.20   -0.10   0.00   0.10   0.20   0.30
                                                         Current Density, A/cm^2
Electrolysis Cells at 20cm Scale
Half ILS 2x60 Cell Stack Module
Pre-ILS Module Test at Ceramatec
• “Half-ILS Module” test at Ceramatec
  –   Integrated Laboratory Scale (ILS) Demonstration
  –   2x60 cell stacks, 10x10 cm cells
  –   Summer 2006, ~2000 hr operation
  –   Cells & Stacks same as full ILS modules 2007,2008
  –   Show performance scales with stack height
  –   Assess system issues with tall stacks
  –   Exercise component production capacity
  –   Probably most extensive post test examination
• Tested component examination
  – ANL, MIT, UNLV, Ceramatec
Half ILS Initial Performance
– 3.8 kW
– 1,200 Liters/hr
– Electrical Efficiency = 96.4%
– System thermal distribution issues
– 2,000 hrs total operation
– 1,000 hrs on CO2/H2O
  • Syngas production sufficient for 100
    gallons of FT diesel
Half ILS module load history
Half-ILS Post-Test Observations
•   Electrodes
     – Oxygen electrode delamination for 2,000 hr test
         • No delamination in short stacks tested for shorter periods (~300 hrs)
     – Hydrogen electrode & current distribution layer in good condition
•   Electrolyte
     – No cracking
     – Some cubic to tetragonal/mono-clinic transition noted
•   Metal Interconnect Edge Corrosion
     – Edge rail coating & elimination of silica in seal eliminated the corrosion seen
       in early SOEC stacks
     – Cr transport to air electrode bond layer
     – Sr migration from air electrode/bond layer
         • Gross changes in bond layer chemistry, phase assemblage, conductivity and performance
•   Initial Performance Reproducible – short to tall stacks
•   Unacceptably High Initial Degradation
720 Cell Full-ILS System at INL
5.7 Nm3/hr - 17.5kW H2 Production
Full-ILS Module #3 Post Test Examination



                           Hydrogen electrode attached,
                           bond layer separated with icon




                           Oxygen electrode delamination
ILS Module #3 Post Test Examination


                       It appears a layer deposited
                       at electrode interface is causing
                       the delamination




                       Oxygen electrode and icon
                       contacting layer (bond layer)
ILS Module #3 Post Test Examination


                       EDS Indicates only ScSz at the
                       interface. The apparent deposition
                       layer is a layer of zirconia that
                       has spalled off. Our hypothesis is
                       that Mn diffusing in from the
                       manganite electrode introduces
                       enough electronic conductivity
                       to allow oxygen to evolve inside
                       the electrolyte, build up pressure
                       and split off a layer near the
                       electrode.
ILS Module #3 Post Test Examination
 Electrode section in following EDS Maps



                                           Manganite-Zirconia Composite




                                           Manganite Electrode




                                           Cobaltite (LSCo) icon
                                           contacting layer (bond layer)
Co-Mn Inter-diffusion in Oxygen Electrode
SOFC Button Cell (early - mid ‘90s)




      Fully stabilized custom electrolyte from undoped zirconia
         LaSrMnO3; Ni-YSZ
SOFC Button Cell (2002)



  YSZ electrolyte; Ni-ceria anode; modified manganite
SOFC Stack (1996)




 YSZ electrolyte; Ni-ceria; Modified manganite;
 ceramic interconnect (doped lanthanum chromite)
Prioritized Areas of Focus
• O2 Electrode Delamination – inherent to SOEC operation?
   – Electronic conductivity due to Mn diffusion into electrolyte
       • Barrier layer & alternative compositions

• O2 Electrode Bond Layer Stability
   – Sintering-shrinkage, phase change, Cr tol, stoichiometry changes
• O2 Electrode Chromium Poisoning
   – Solid state diffusion by interconnect contact
       • CrMn & CuMn spinel coatings
   – Evaporation/Condensation from interconnect, manifold, piping
• Electrolyte Stability
   – Minimum dopant level (strength trade-off)
   – How much degradation is allowable
• System BOP Reliability
• Seal Stability
Electrolyte Composition Effect
Fully Stabilized (FS-ScSZ) Cell Performance




                     30% Reduction in initial ASR
                     vs. PS-ScSZ
Initial O2 Electrode Microstructure
Initial O2 Electrode Microstructure
Initial H2 Electrode Microstructure
Initial H2 Electrode Microstructure
Hydrogen Electrode & Bond Layer

    Adherent and conductive hydrogen electrode
    Most areas of bond layer separated with flowfield
Oxygen Electrode and Bond Layer
Extensive delamination of standard manganite Perovskite electrodes




    No delamination of new cobalt-ferrite Perovskite electrodes
O2 Electrode Comparison Stack
New O2 Electrode Improves Stack Stability
Metal Interconnect Contact Resistance
High Temperature Electrolysis
• Leverage decades of SOFC R&D
• Inputs
   –   e- (green electrons)
   –   steam => hydrogen
   –   co-electrolysis of H2O + CO2 => syngas
   –   heat input optional, depends on operating point
• Most efficiency means of hydrogen production
   – e- to hydrogen
        • η=100% at 1.285V
        • η= 95% at 1.35V
        • η=107% at 1.20V, (heat required)
• Hot O2 and steam byproduct
   – Valuable for biomass gasification

Contenu connexe

Tendances

Evlib2009forum7
Evlib2009forum7Evlib2009forum7
Evlib2009forum7jatpack
 
Poster Pisaroni
Poster PisaroniPoster Pisaroni
Poster Pisaronipisa88sp
 
Development Of Non Aqueous Asymmetric Hybrid Supercapacitors Part Iii
Development Of Non Aqueous Asymmetric Hybrid Supercapacitors   Part IiiDevelopment Of Non Aqueous Asymmetric Hybrid Supercapacitors   Part Iii
Development Of Non Aqueous Asymmetric Hybrid Supercapacitors Part IiiNakkiran Arulmozhi
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикиSergey Sozykin
 
Atomic absorption spectrometer 13.4.17
Atomic absorption spectrometer  13.4.17Atomic absorption spectrometer  13.4.17
Atomic absorption spectrometer 13.4.17IBRAHIM Aminu Shehu
 
Ev os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effectEv os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effectJohn Hutchison
 
Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...
Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...
Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...Global CCS Institute
 
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF CavitiesXiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavitiesthinfilmsworkshop
 

Tendances (12)

Evlib2009forum7
Evlib2009forum7Evlib2009forum7
Evlib2009forum7
 
Poster Pisaroni
Poster PisaroniPoster Pisaroni
Poster Pisaroni
 
ILS_target
ILS_targetILS_target
ILS_target
 
Development Of Non Aqueous Asymmetric Hybrid Supercapacitors Part Iii
Development Of Non Aqueous Asymmetric Hybrid Supercapacitors   Part IiiDevelopment Of Non Aqueous Asymmetric Hybrid Supercapacitors   Part Iii
Development Of Non Aqueous Asymmetric Hybrid Supercapacitors Part Iii
 
srm suite applications
srm suite applicationssrm suite applications
srm suite applications
 
лекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физикилекция 1 обзор методов вычислительной физики
лекция 1 обзор методов вычислительной физики
 
Atomic absorption spectrometer 13.4.17
Atomic absorption spectrometer  13.4.17Atomic absorption spectrometer  13.4.17
Atomic absorption spectrometer 13.4.17
 
Ev os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effectEv os%20and%20 hutchison%20effect
Ev os%20and%20 hutchison%20effect
 
Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...
Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...
Jeffrey Brown – Summit Power Group – Texas Clean Energy Project: coal feedsto...
 
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF CavitiesXiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
 
Sm Co Magnet
Sm Co MagnetSm Co Magnet
Sm Co Magnet
 
Nuclear energy (1)
Nuclear energy (1)Nuclear energy (1)
Nuclear energy (1)
 

En vedette

D09.06.05.presentation
D09.06.05.presentationD09.06.05.presentation
D09.06.05.presentationRelhy project
 
Departementales 2015 maurepas
Departementales 2015 maurepasDepartementales 2015 maurepas
Departementales 2015 maurepasRelhy project
 
D09.06.04.presentation
D09.06.04.presentationD09.06.04.presentation
D09.06.04.presentationRelhy project
 
D09.06.02.presentation
D09.06.02.presentationD09.06.02.presentation
D09.06.02.presentationRelhy project
 

En vedette (8)

D09.06.05.presentation
D09.06.05.presentationD09.06.05.presentation
D09.06.05.presentation
 
D09.06.05.abstract
D09.06.05.abstractD09.06.05.abstract
D09.06.05.abstract
 
D09.06.07.abstract
D09.06.07.abstractD09.06.07.abstract
D09.06.07.abstract
 
The Nimes call
The Nimes callThe Nimes call
The Nimes call
 
Departementales 2015 maurepas
Departementales 2015 maurepasDepartementales 2015 maurepas
Departementales 2015 maurepas
 
D09.06.04.presentation
D09.06.04.presentationD09.06.04.presentation
D09.06.04.presentation
 
D09.06.02.presentation
D09.06.02.presentationD09.06.02.presentation
D09.06.02.presentation
 
L'appel de-nimes
L'appel de-nimesL'appel de-nimes
L'appel de-nimes
 

Similaire à D09.06.06.presentation

Thermoelectric research in CSIRO
Thermoelectric research in CSIROThermoelectric research in CSIRO
Thermoelectric research in CSIROHoward Lovatt
 
Slide nhiên liệu sạch
Slide nhiên liệu sạchSlide nhiên liệu sạch
Slide nhiên liệu sạchPhạm Tuấn
 
Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...
Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...
Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...Smart Villages
 
Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)chrisrobschu
 
Solid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells PresentationSolid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells PresentationFarbod Moghadam
 
Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)Sum K
 
Aquion technical presentation
Aquion technical presentationAquion technical presentation
Aquion technical presentationramukolaki
 
Hydrogen production using solar energy (PV cell)
Hydrogen production using solar energy (PV cell)Hydrogen production using solar energy (PV cell)
Hydrogen production using solar energy (PV cell)Mohamed Bn Younes
 
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCBClemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCBDomestic PCB Fabrication
 
Dinesh Mullangi Departmental seminar 12th August 2015
Dinesh Mullangi Departmental seminar  12th August 2015Dinesh Mullangi Departmental seminar  12th August 2015
Dinesh Mullangi Departmental seminar 12th August 2015mullangi dinesh
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
Battery Types and Battery technology
Battery Types and Battery technologyBattery Types and Battery technology
Battery Types and Battery technologySRM UNIVERSITY
 
Direct Ethanol Fuel Cells Def Cs
Direct Ethanol Fuel Cells Def CsDirect Ethanol Fuel Cells Def Cs
Direct Ethanol Fuel Cells Def CsAhmed ElSheikh
 
Electrochemical Stroage Devices_Alkaline Fuel Cell.ppt
Electrochemical Stroage Devices_Alkaline Fuel Cell.pptElectrochemical Stroage Devices_Alkaline Fuel Cell.ppt
Electrochemical Stroage Devices_Alkaline Fuel Cell.pptKrishnaveniKrishnara1
 

Similaire à D09.06.06.presentation (20)

Thermoelectric research in CSIRO
Thermoelectric research in CSIROThermoelectric research in CSIRO
Thermoelectric research in CSIRO
 
Slide nhiên liệu sạch
Slide nhiên liệu sạchSlide nhiên liệu sạch
Slide nhiên liệu sạch
 
Fuelcell
FuelcellFuelcell
Fuelcell
 
Fuel cell car
Fuel cell carFuel cell car
Fuel cell car
 
Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...
Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...
Dhaka | Aug-15 | A Study on Electrochemistry of PKL (Pathor Kuchi Leaf) Elect...
 
Introduction_to_Fuel_Cells.pdf
Introduction_to_Fuel_Cells.pdfIntroduction_to_Fuel_Cells.pdf
Introduction_to_Fuel_Cells.pdf
 
Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)Presentation Power Sources Lithium Seawater Battery (LiSWB)
Presentation Power Sources Lithium Seawater Battery (LiSWB)
 
Solid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells PresentationSolid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells Presentation
 
Tungsten
TungstenTungsten
Tungsten
 
Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)Ceramic nanocomposites in solid oxide fuel cells (SOFC)
Ceramic nanocomposites in solid oxide fuel cells (SOFC)
 
Aquion technical presentation
Aquion technical presentationAquion technical presentation
Aquion technical presentation
 
Electrochemistry.pdf
Electrochemistry.pdfElectrochemistry.pdf
Electrochemistry.pdf
 
Hydrogen production using solar energy (PV cell)
Hydrogen production using solar energy (PV cell)Hydrogen production using solar energy (PV cell)
Hydrogen production using solar energy (PV cell)
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCBClemens Lasance: LED Junction Temperature, Thermal Resistance PCB
Clemens Lasance: LED Junction Temperature, Thermal Resistance PCB
 
Dinesh Mullangi Departmental seminar 12th August 2015
Dinesh Mullangi Departmental seminar  12th August 2015Dinesh Mullangi Departmental seminar  12th August 2015
Dinesh Mullangi Departmental seminar 12th August 2015
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
Battery Types and Battery technology
Battery Types and Battery technologyBattery Types and Battery technology
Battery Types and Battery technology
 
Direct Ethanol Fuel Cells Def Cs
Direct Ethanol Fuel Cells Def CsDirect Ethanol Fuel Cells Def Cs
Direct Ethanol Fuel Cells Def Cs
 
Electrochemical Stroage Devices_Alkaline Fuel Cell.ppt
Electrochemical Stroage Devices_Alkaline Fuel Cell.pptElectrochemical Stroage Devices_Alkaline Fuel Cell.ppt
Electrochemical Stroage Devices_Alkaline Fuel Cell.ppt
 

Plus de Relhy project

Plus de Relhy project (6)

D09.06.04.abstract
D09.06.04.abstractD09.06.04.abstract
D09.06.04.abstract
 
D09.06.03.presentation
D09.06.03.presentationD09.06.03.presentation
D09.06.03.presentation
 
D09.06.03.abstract
D09.06.03.abstractD09.06.03.abstract
D09.06.03.abstract
 
D09.06.02.abstract
D09.06.02.abstractD09.06.02.abstract
D09.06.02.abstract
 
D09.06.01.presentation
D09.06.01.presentationD09.06.01.presentation
D09.06.01.presentation
 
D09.06.01.abstract
D09.06.01.abstractD09.06.01.abstract
D09.06.01.abstract
 

D09.06.06.presentation

  • 1. RelHy International Workshop on High Temperature Electrolysis Limiting Factors June 09-10, 2009 Karlsruhe, Germany S. Elangovan, J. Hartvigsen, Feng Zhao, Insoo Bay, and Dennis Larsen Office of Naval Research Contract: N00014-08-C-0680 DOE subcontract through Idaho National Lab.
  • 2. Energy, Environment & Economy • Environment – Climate Change • GHG sources – 8 tons CO2/kW-yr from coal or oil – Leaky natural gas pipelines – Ruminants • Ozone hole - no, that’s a different topic – Habitat Impacts One Thing Is Clear • Drilling in Arctic National Wildlife Refuge Energy Is The Key To Prosperity • Wind turbines in Chesapeake Bay – Air pollution • Limited Resources – Oil • National security – Gas • Heating vs. power generation • Transportation issues – Renewables
  • 3. Carbon Free Energy Source Options • Renewable energy resources – Large Scale Wind • 800 GW at class 4+ US wind sites – Small Hydro • 45GW potential, 2000 sites – Concentrator Photovoltaic • Land area 12km2 /GW – Biomass • Ag/Forestry byproduct • Carbon neutral cycle assuming production and processing are carbon free • Nuclear – 25 new plants announced – Increased output of existing units • Note trend in figure since 1970 • Hydrogen production from electrolysis • High temperature 29 tons/GW-hr • Conventional 21 tons/GW-hr http://www.eia.doe.gov/emeu/aer/pdf/pages/sec1_6.pdf
  • 4. Storing Hydrogen With CO2 • Energy Sources – Wind, Solar (PV & heat), Hydro, Nuclear • Carbon Sources – Metallurgical Reduction, Cement Kilns – Fermentation, Digester gas – Biomass gasifiers – Fossil Power Systems • Conversion Technology – SOFC electrolyzer, steam+CO2=> syngas • Products – SNG, Fischer Tropsch liquids
  • 5. Why Electrolytic Synfuels • Electrolysis efficiency • Energy storage density • Fits in existing distribution infrastructure • Synergy with intermittent energy sources • No added CO2 emissions • Reduced work of compression • Compatible with existing vehicle fleet – 20 to 50 year crossover
  • 6. The New Alchemy: C ⇒ Au • Turning carbon into gold – Low value carbon • CO2 -$55/ton (Norway C tax) • Coal $20-100/ton • Bitumen ~ $100/ton – High value carbon • Natural Gas $444/ton carbon ($7/decatherm) • Crude Oil $888/ton carbon ($105/bbl) • Refined fuel (pre-tax) ~$1000/ton carbon
  • 7. Synthetic methane from electrolysis of CO2 Gas analysis in volume % From From Electrolysis Methanation Unit CH4 CO H2 CH4 CO H2 Test 1 .0 14.3 60.7 42.5 0 13.8 Test 2 .7 18.5 58.0 47.7 0 9.2 Test 3 .3 20.1 63.5 50.0 0 9.4 Test 4 .1 15.8 58.9 42.0 0 4.6 Test 5 .1 15.2 59.5 40.4 0 8.2 FEED TO ELECTROLYSIS IS CO2 + H2O + ELECTRIC ENERGY
  • 8. FT- Liquid Products • Ceramatec produced catalyst – FeCuK composition – 8mm La promoted alumina rings – Automated in-situ reduction profile using dewpoint controlled temperature ramp – Oil fraction – Water fraction 235 C Reactor Operation
  • 9. One Technology - Multiple Modes Of Operation Solid Oxide Stack Module NG Biogas Diesel Fuel Syngas JP-8 Coal Electricity CO2 & Steam + Electricity Steam + Hydrogen Electricity (High Purity)
  • 10. SOFC - SOEC Differences • Cells tested to date are virtually identical – Same electrolyte, electrodes, pattern, etc. • SOEC seals more challenging – Higher back pressure on seals due to product collection – Low molecular weight stream vs. reformate • Diffusion mechanism more active relative to hydrodynamic • Hydrogen permeation in metal icon destabilizes air side scale
  • 11. Repeat Unit Elements Ferritic Stainless Steel Separator Corrugated Ferritic Stainless Steel or High Ni alloy 50 µm 50 µm Cobaltite (current distribution layer) air electrode Manganite + Zirconia Composite electrolyte Sc - ZrO2 (partially stabilized) Ni + ceria cermet H electrode Ni (current distribution layer) Corrugated Ni flow field on hydrogen side
  • 13. SOEC Limiting Factors • Degradation/Lifetime • Thermodynamics – Oxygen bond layer stability – Operating Voltage – Oxygen electrode – Steam Utilization delamination – Co-electrolysis of CO2 – Electrolyte stability • High Temp Heat Duty – Chromium migration – 0-15% of energy input – Seals – Wind hydrogen feasible – Interconnect scale growth & resistance • Energy Cost – Electrode microstructure – $50/MW-hr => $1.72/kg H2 • Electrode coarsening • Amortized CAPEX • Cell Size & Stack Height – 24 month life => $0.46/kg H2 – Very large cells feasible – Porous metal support
  • 14. SOFC-SOEC Contrasts in (Potential:Composion) Space Vtn
  • 15. Energy of fuel-cell vs. electrolysis mode current density, A/cm2 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 0.4 reaction ohmic Stack ASR = 1.25, net T = 927 C, fuel cell electrolysis yH2,i = 0.1, yH2,o = 0.95 heat flux, W/cm 0.2 2 thermal neutral voltage −ΔhR Vtn = 0 2F open-cell (1.291 V at 1200 K) potential |<- 100% Efficiency Range ->| -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 operating voltage, V
  • 16. Typical SOEC and SOFC Temperature Maps SOFC ΔT > 90°C Resistance doubling ~ 67 °C Thermal expansion issues
  • 17. System Efficiency vs. Steam+CO2 Utilization INL Process Model shows little need to operate with utilization much beyond 50%
  • 18. Humidified CO2 Cell V-I Characteristic CO2ELEC01:800°C 80F H2O, 45CC CO2, 8CC H2 1.60 1.40 y = -0.6907x + 0.8717 2 R = 0.9997 1.20 1.00 Voltage, Volts 0.80 0.60 No reduction in performance compared to cells with steam electrolysis 0.40 0.20 0.00 -0.80 -0.70 -0.60 -0.50 -0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 Current Density, A/cm^2
  • 19. Electrolysis Cells at 20cm Scale
  • 20. Half ILS 2x60 Cell Stack Module
  • 21. Pre-ILS Module Test at Ceramatec • “Half-ILS Module” test at Ceramatec – Integrated Laboratory Scale (ILS) Demonstration – 2x60 cell stacks, 10x10 cm cells – Summer 2006, ~2000 hr operation – Cells & Stacks same as full ILS modules 2007,2008 – Show performance scales with stack height – Assess system issues with tall stacks – Exercise component production capacity – Probably most extensive post test examination • Tested component examination – ANL, MIT, UNLV, Ceramatec
  • 22. Half ILS Initial Performance – 3.8 kW – 1,200 Liters/hr – Electrical Efficiency = 96.4% – System thermal distribution issues – 2,000 hrs total operation – 1,000 hrs on CO2/H2O • Syngas production sufficient for 100 gallons of FT diesel
  • 23. Half ILS module load history
  • 24. Half-ILS Post-Test Observations • Electrodes – Oxygen electrode delamination for 2,000 hr test • No delamination in short stacks tested for shorter periods (~300 hrs) – Hydrogen electrode & current distribution layer in good condition • Electrolyte – No cracking – Some cubic to tetragonal/mono-clinic transition noted • Metal Interconnect Edge Corrosion – Edge rail coating & elimination of silica in seal eliminated the corrosion seen in early SOEC stacks – Cr transport to air electrode bond layer – Sr migration from air electrode/bond layer • Gross changes in bond layer chemistry, phase assemblage, conductivity and performance • Initial Performance Reproducible – short to tall stacks • Unacceptably High Initial Degradation
  • 25. 720 Cell Full-ILS System at INL 5.7 Nm3/hr - 17.5kW H2 Production
  • 26. Full-ILS Module #3 Post Test Examination Hydrogen electrode attached, bond layer separated with icon Oxygen electrode delamination
  • 27. ILS Module #3 Post Test Examination It appears a layer deposited at electrode interface is causing the delamination Oxygen electrode and icon contacting layer (bond layer)
  • 28. ILS Module #3 Post Test Examination EDS Indicates only ScSz at the interface. The apparent deposition layer is a layer of zirconia that has spalled off. Our hypothesis is that Mn diffusing in from the manganite electrode introduces enough electronic conductivity to allow oxygen to evolve inside the electrolyte, build up pressure and split off a layer near the electrode.
  • 29. ILS Module #3 Post Test Examination Electrode section in following EDS Maps Manganite-Zirconia Composite Manganite Electrode Cobaltite (LSCo) icon contacting layer (bond layer)
  • 30. Co-Mn Inter-diffusion in Oxygen Electrode
  • 31. SOFC Button Cell (early - mid ‘90s) Fully stabilized custom electrolyte from undoped zirconia LaSrMnO3; Ni-YSZ
  • 32. SOFC Button Cell (2002) YSZ electrolyte; Ni-ceria anode; modified manganite
  • 33. SOFC Stack (1996) YSZ electrolyte; Ni-ceria; Modified manganite; ceramic interconnect (doped lanthanum chromite)
  • 34. Prioritized Areas of Focus • O2 Electrode Delamination – inherent to SOEC operation? – Electronic conductivity due to Mn diffusion into electrolyte • Barrier layer & alternative compositions • O2 Electrode Bond Layer Stability – Sintering-shrinkage, phase change, Cr tol, stoichiometry changes • O2 Electrode Chromium Poisoning – Solid state diffusion by interconnect contact • CrMn & CuMn spinel coatings – Evaporation/Condensation from interconnect, manifold, piping • Electrolyte Stability – Minimum dopant level (strength trade-off) – How much degradation is allowable • System BOP Reliability • Seal Stability
  • 36. Fully Stabilized (FS-ScSZ) Cell Performance 30% Reduction in initial ASR vs. PS-ScSZ
  • 37. Initial O2 Electrode Microstructure
  • 38. Initial O2 Electrode Microstructure
  • 39. Initial H2 Electrode Microstructure
  • 40. Initial H2 Electrode Microstructure
  • 41. Hydrogen Electrode & Bond Layer Adherent and conductive hydrogen electrode Most areas of bond layer separated with flowfield
  • 42. Oxygen Electrode and Bond Layer Extensive delamination of standard manganite Perovskite electrodes No delamination of new cobalt-ferrite Perovskite electrodes
  • 44. New O2 Electrode Improves Stack Stability
  • 46. High Temperature Electrolysis • Leverage decades of SOFC R&D • Inputs – e- (green electrons) – steam => hydrogen – co-electrolysis of H2O + CO2 => syngas – heat input optional, depends on operating point • Most efficiency means of hydrogen production – e- to hydrogen • η=100% at 1.285V • η= 95% at 1.35V • η=107% at 1.20V, (heat required) • Hot O2 and steam byproduct – Valuable for biomass gasification