SlideShare une entreprise Scribd logo
1  sur  26
Télécharger pour lire hors ligne
1
 
 
 
 
Molecular insight into anti-infective effects of selected fruit
phytochemicals against Streptococcus pyogenes
 
 
Admission to Candidacy Examination
M.Sc. Program Requirement
 
Research Proposal
 
Submitted by:
Soheila Abachi
Department of Environmental Sciences
Faculty of Agriculture
Dalhousie University
June 16 2014
 
 
 
 
 
 
 
 
Supervisor:
Supervisory committee members:
Dr. Vasantha Rupasinghe
Dr. Song Lee
(Faculty of Medicine)
Dr. Bruce Rathgeber
 
   
2
 
Abstract
Group A streptococci (GAS) not only is important species of gram-positive extracellular bacterial
pathogens but also is the most common cause of bacterial pharyngitis in children and adults. This
bacterium has developed complex virulence mechanisms to compete with original flora and
avoid its elimination. There are several essential steps for initiation of bacterial infectious
diseases, adherence being the most important one followed by its stable association with the
mucosal surface and formation of biofilm. Surface streptococcal ligands bind to specific
receptors on host’s pharyngeal cells and start colonizing. Without strong host-pathogen
interactions GAS cannot successfully adhere and would be eliminated by flow mechanisms of
the hosts’ environment. Therefore, one of the strategies to control GAS is to inhibit or disrupt its
adherence, biofilm formation or its metabolic activity. Various phytochemical components of
medicinal plants have shown promising inhibitory effects against pathogenic Streptococcus
pyogenes. Specific polyphenols and isoprenoids, among their broad health effects, have shown
antibacterial activity against gram positive and specifically streptococci species. The mode of
inhibition of phytochemicals against S. pyogenes is yet undefined. The proposed research aims to
advance the understanding of the antimicrobial activity of selected fruit phytochemicals against
GAS at molecular level by modern methods such as bacterial adherence assay. The results of this
research may further be investigated for incorporating the effective extracts or compounds into
antibacterial products such as HonibeTM
dehydrated honey lozenges.
List of abbreviations and symbols
ANOVA analysis of variance LC-MS liquid chromatography–mass spectrometry
ATCC American type culture collection LTA lipoteichoic acid
ATP adenosine triphosphate MBC minimum bactericidal concentration
BHI brain heart infusion MgCl2 magnesium chloride
C2H3N acetonitrile MgSO4 magnesium sulfate
CDC center for disease control &prevention MH Mueller-Hinton
CFU colony forming unit MIC minimum inhibitory concentration
DMSO dimethyl sulfoxide MS mass spectrometry
EDTA ethylenediaminetetraacetic acid NCCLS national committee of clinical laboratory
standards
EPS exopolysaccharide NH4HCO3 ammonium bicarbonate
F-ATPaseF type ATP synthase OD optical density
FBP fibronectin-binding proteins PBS phosphate-buffered saline
GABHS group A β-hemolytic streptococcus Pi inorganic phosphate
GAS group A streptococci RPMI Roswell Park Memorial Institute medium
GC-MS gas chromatography–mass
spectrometry
TE Tris-EDTA
HA hyaluronic acid THY Todd-Hewitt broth supplement with yeast
extract
HCl hydrogen chloride
HTEpiC human tonsil epithelial cells
HY hyaluronatlyase
3
 
Contents 
1.  Introduction ................................................................................................................................. 4 
2.  Literature review......................................................................................................................... 5 
2.1.  Importance of Streptococcus pyogenes ...................................................................................... 5 
2.2.  Pathogenicity of Streptococcus pyogenes ................................................................................... 5 
2.3.  Pathophysiology of pharyngitis .................................................................................................. 6 
2.4.  Modern medicine and development of drug-resistant strains ................................................ 7 
2.5.  Emerging threat of antibiotics ................................................................................................... 7 
2.6.  Folklore medicine ........................................................................................................................ 8 
2.7.  Phytochemicals of berries ......................................................................................................... 10 
3.  Research hypothesis and objectives ......................................................................................... 11 
3.1.  General objective....................................................................................................................... 11 
3.2.  Specific objectives ..................................................................................................................... 11 
4.  Research methodology .............................................................................................................. 11 
4.1.  Extract preparation .................................................................................................................. 13 
4.1.1.  Polyphenol-rich extract and subsequent fractions preparation ........................................... 13 
4.1.1.1.  Water-based extraction ............................................................................................................ 13 
4.1.1.1.1. Purification of bioactive compounds from aqueous extracts ................................................ 13 
4.1.1.2.  Ultrasonication-assisted ethanol extraction ............................................................................ 13 
4.1.2.  Isoprenoid-rich extract and subsequent fractions preparation ............................................ 14 
4.1.2.1.  Hydro-distillation technique .................................................................................................... 14 
4.1.2.2.  Solvent based reflux system ..................................................................................................... 14 
4.1.2.3.  Purification of bioactives of extracts obtained by hydro-distillation & reflux techniques . 14 
4.1.3.  Determination of total isoperenoid and polyphenol content ................................................. 14 
4.2.  Initial screening phase .............................................................................................................. 15 
4.2.1.  Susceptibility testing- micro-dilution assay ............................................................................ 15 
4.2.3.  Disk diffusion antibiotic sensitivity testing ............................................................................. 16 
4.2.4.  Preliminary phytochemical analysis ........................................................................................ 16 
4.3.  Understanding the mode of action phase ................................................................................ 16 
4.3.1.  Adherence reduction or inhibition .......................................................................................... 16 
4.3.1.1.  Preliminary bacterial adherence assay ................................................................................... 16 
4.3.1.2.  Bacterial adherence Human Tonsil Epithelial Cells and human laryngeal HEp-2 cells .... 17 
4.3.1.3.  Fibronectin cell adhesion assays .............................................................................................. 17 
4.3.2.  ATPase assay ............................................................................................................................. 18 
4.3.3.  Biofilm reduction or inhibition ................................................................................................ 18 
4.3.3.1.  Biofilm inhibition assay ............................................................................................................ 18 
4.3.3.2.  Total viable counts of biofilm ................................................................................................... 19 
5.  Statistical analysis ..................................................................................................................... 19 
6.  References .................................................................................................................................. 19 
 
4
 
1. Introduction
Group A streptococcal infections range from none life threatening conditions such as mild skin
infection or pharyngitis to life-threatening and severe conditions such as necrotizing fasciitis, or
rheumatic fever including highly lethal Streptococcal toxic shock syndrome (1). Group A β-
hemolytic streptococcus (GAS) or S. pyogenes is the common cause of acute bacterial
pharyngitis, and is often called strep throat or sore throat (2). Pharyngitis is the most common
form of GABHS infections. Recorded cases of GAS pharyngitis are 15-36 percent in children (2)
and 5-15 percent in adults (3). On global scale, over 616 million new cases of GABHS
pharyngitis occur every year (4). Economical burden of the disease is estimated to be $224 to
$539 million among U.S. school-aged children every year and on average 7.3 million outpatient
physician visits take place by children aged 3-17 years each year in U.S. (2). Penicillin,
amoxicillin, erythromycin, and first-generation cephalosporins are the recommended antibiotics
for treatment of sore throat due to GABHS (5-7). Acute infections can lead to rheumatic fever
and post-streptococcal glomerulonephritis (kidney inflammation), which distress children
worldwide with disability and death, if antibiotic treatments fail or if the disease is left
unattended (8, 9). Rheumatic fever and rheumatic heart disease are known to be the leading
causes of cardiovascular death during the first five decades of life in underdeveloped countries
mainly concerning children (10). Streptococci have very specific virulence factors, which enable
them to cause such diverse infections (11-13).
Medicinal plants have long been used for the treatment of GAS infections including pharyngitis
in the form of tea, gargle, and drop. For example, gargle of infusions of bark and or leaves of
cashew plant (Anacardium occidentale), stickwort (Agrimony), mountain daisy (Arnica),
bayberry (Myrica cerifera), baobab (Adansonia digitata) (14-18) or tea of flowers of soft leafed
honeysuckle (Lonicera confuse) and leaves of cuajilote (Parmentiera aculeate) (19, 20). Natural
5
 
products extracted from mainly medicinal plants as well as fruits of wild type, are the subject of
many studies as alternative substitutes to currently used antibiotics for the treatment of infectious
diseases and antibiotic-resistant human pathogens. With more in depth studies of the potent
components of these plant extracts and their mode of action, new drugs and antibiotics can be
developed for the soon to be post-antibiotic era.
2. Literature review
2.1. Importance of Streptococcus pyogenes
Particular virulence factors enable S. pyogenes to attach to host tissues, elude the immune
response, and spread by penetrating the host tissue layers and then colonizing (21). Hyaluronic
acid bacterial capsule, surrounds the bacterium and protects it from phagocytosis by neutrophils
(22). In addition to the capsule, several factors embedded in the cell wall facilitate attachment of
the bacteria to various host cells, including M protein, lipoteichoic acid, and fibronectin-binding
protein (23). S. pyogenes pilli promotes pharyngeal cell adhesion, aggregation to human cells and
biofilm formation (24).
2.2. Pathogenicity of Streptococcus pyogenes
There are several important steps for initiation of GAS infectious diseases. First is the bacteria’s
capacity to adhere to host tissues and its competition with the normal flora present on
nasopharynx surface. After successful attachment, they establish interaction with salivary
glycoproteins, extracellular matrix, serum components, host cells and other microbes and
assemble in cell aggregates (25). Then bacteria begin colonizing the host tissue, producing exo-
polysaccharide (EPS), differentiating into EPS-encased micro-colonies, and developingcomplex
communities called mature biofilm (25, 26). Not only biofilm offers GAS a protected
environment but also plays an important role in its pathogenicity which has been proposed and
6
 
experimentally supported in recent studies (25, 27, 28). Proliferation of GAS in the pharynx
leads to the invasion of the host tissues. It has been reported that streptococci adhere in two
steps. First weak reversible adhesion probably mediated by hydrophobic interactions for example
between lipoteichoic acid (LTA) and the binding domains on the host cell. Second firm
irreversible adhesion mediated by composite multivalent interactions for example adherence of
protein F1 (a fibronectin binding protein) to fibronectin (a glycoprotein of the extracellular
matrix) (29-34). GAS has several surface proteins and produces numerous extracellular products
that facilitate permeation and successive evasion of the host’s immune system. Center for disease
control and prevention (CDC) report says 65% of human bacterial infections involve biofilms
and treatment of these biofilm-associated nosocomial infections cost more than $1 billion
annually (35). Antibiotic treatment has been indicated for streptococcal pharyngitis. Even though
GABHS is the common cause of bacterial pharyngitis, but other bacteria also could cause acute
pharyngitis including Actinomyces spp., Arcanobacterium haemolyticum, Bacteroides spp.,
Borrelia spp., Bordetella pertussis, Chlamydophila pneumoniae, Chlamydia trachomatis,
Corynebacterium diphtheria, Corynebacterium pyogenes and others (36-52). Streptococcal
pharyngitis results from the proliferation of GAS in the pharynx (1, 10).
2.3. Pathophysiology of pharyngitis
Signs of GAS pharyngitis overlap the symptoms of non-streptococcal pharyngitis meaning that
proper diagnosis of the disease on the basis of clinical presentation is often impossible (3).
Clinical presentations suggestive of GAS pharyngitis in children aged 5–15 years are: sudden
onset of sore throat fever, headache, nausea, vomiting, abdominal pain, tonsillopharyngeal
inflammation, patchy tonsillopharyngeal exudates, palatal petechiae, anterior cervical adenitis
(tender nodes), winter and early spring presentation, and scarlatiniform rashes (44, 53).
7
 
2.4. Modern medicine and development of drug-resistant strains
Antimicrobials’ mechanism of action can be briefly described based on disruption of several
activities and processes including cell wall synthesis, plasma membrane integrity, nucleic acid
synthesis, ribosomal function, and folate synthesis (54). For patients with penicillin allergy, U.S.
treatment guidelines recommend erythromycin. In instances where gastrointestinal side effects of
erythromycin is observed, physicians prescribe the FDA-approved second-generation macrolides
azithromycin and clarithromycin (54). Penicillin derivatives (ampicillin or amoxicillin),
cephalosporins, and macrolides are all effective against GABHS. According to a survey, from
1995 to 2003 in U.S. physicians prescribed antibiotics to 53% of children with sore throat (2).
Amoxicillin was mostly prescribed (26% of visits), penicillin (7%), first-generation
cephalosporins (3%), and erythromycin (2%) (2). β-Lactam and macrolide class of antibiotics are
recommended and prescribed for GAS pharyngitis. The mechanisms of action of these
antibiotics differ from one another. Peptidoglycan polymerization which leads to cell wall
synthesis is inhibited by ß-lactams such as penicillins and cephalosporins (1). In other hand,
macrolides are capable of inhibiting a number of protein synthesis stages occurring on the
ribosome but do not usually interfere with amino acid activation or attachment to a particular
tRNA. Most of the macrolides have an affinity for 70S ribosomes (prokaryotic) versus 80S
(eukaryotic), resulting in macrolides selective toxicity (1). Erythromycin and clindamycin all
interfere with ribosome function (1, 10, 55). According to the researchers of internal medicine at
the University of Missouri, current GAS antibiotic treatments “interfere with critical biological
processes in the pathogen to kill or stop its growth leading to endurance of stronger strains of
harmful bacteria and prosper of resistant bacteria” (56).
2.5. Emerging threat of antibiotics
8
 
Bacteria employ some basic mechanisms to resist an antimicrobial agent such as altering the
drug receptor and making the target insensitive to inhibitor (antibiotic), or decreasing the
physiological importance of target molecule to the bacteria’s pathogenicity, producing new
enzyme molecule, and replacing the inhibited target. Some penicillin-resistant streptococci,
group D streptococci and S. pneumonia, have developed resistance by altering the penicillin-
binding proteins. Streptococci species have developed resistance to macrolides such as
clindamycin and erythromycin through altering 23S RNA (57) and as emphasized earlier in the
introduction, CDC has prioritized erythromycin-resistant GAS as concerning threat in their 2013
report. Macrolides resistance among GABHS isolates in the United States is on rise, possibly
because of azithromycin overuse (58). This climb in certain areas of the United States and
Canada reaches 8-9 percent (59). GAS is not yet resistant to penicillin but some of the
streptococci such as S. pneumonia have developed resistance to penicillin through β-lactam
hydrolysis (60). All these mechanisms put forth strong selective pressure that favors emergence
of antibiotic-resistant strains.
2.6. Folklore medicine
Plants produce diverse secondary metabolites, most of which are phenols or their oxygen-
substituted derivatives such as tannins that could be the raw materials for future drugs. Herbs and
spices used by humans contain useful medicinal compounds including antibacterial chemicals
and researches have recorded many of these compounds shown to inhibit growth of pathogenic
bacteria (61). These agents appear to have structures and modes of action that are distinct from
those of the antibiotics in current use, suggesting that cross-resistance with drugs already in use
may be minimal. Observations have shown that herbal preparations work very well, but
extensive research and purification of such antibacterial agents are required to make an
9
 
encouraging statement for the use of phytochemicals. In the period of 1981–2006, 109 new
antibacterial drugs were approved of which 69% originated from natural products, and 21% of
antifungal drugs were natural derivatives or compounds mimicking natural products (62).
Various medicinal plants have recently been tested for antimicrobial activity and all have proven
that phytochemicals particularly polyphenols exhibit significant antibacterial activity against
different strains of GAS such as HITM 100, ATCC 19615 and clinical isolates. Few examples of
these plants are: Wild maracuja (Passiflora foetida), white weed (Ageratum conyzoides),
Calabash tree (Crescentia cujete), bush-banana (Uvaria chamae), ginger (Zingiber Officinale),
bitter kola (Garcinia Kola), and little gourd (Coccinia grandis) (63-74). Adhesion reduction of
S. pyogenes DSM2071 to HEp-2 cells have been tested with (-)-epigallocatechin and (-)-
epigallocatechin-3-O-gallate, flavan-3-ols, at concentration of 30 μg/ml and the reported results
are 15% and 40% respectively (75). Also Morin, a flavonol, at concentration of 225μM reduced
the biofilm biomass of S. pyogenes MGAS6180 by 60 % (76). The anti-adhesive properties of
root extract of Pelargonium sidoides have been studied against GAS attachment to human
epithelial type 2 (HEp-2) cells. Results show that after pre-treatment of GAS with 30µg/ml of
methanol insoluble and methanol soluble fractions, adhesion of GAS to HEp-2 cells was
inhibited by 30-35 percent. Further analysis has revealed that the proanthocyanidins content of
the fraction is of prodelphinidin nature and inhibition of the adhesion is in a specific rather than
non-specific fashion. Successful inhibition of adhesion and hydrophobic interactions could
reduce and or prevent the S. pyogenes caused occurrence of sore throat (75).
 
Figure 1
reductio
(A): (-)-E
2.7. P
Berries a
There is
cranberry
specific a
Apart fro
adhesiven
triterpene
complete
Figure 2
(A): Epic
proantho
(A)
: Chemical
n activity ag
Epigallocatec
Phytochemi
are a good
fair scientif
y exert signi
approach of
om phytoche
ness attribut
e acid found
ely inhibits th
(A)
2: Chemical
catechin-(4β
cyanidins) c
 
structure of
gainst GAS.
chin-3-O-ga
icals of berr
source of p
fic evidence
ificant anti-s
ATPase acti
emical’s bac
te. Such char
d in rosehip
he adherenc
structure of
β→8, 2β→O
cranberry,(B
phytochemi
allate,(B): (-)
ries
phenolic com
e that phytoc
streptococca
ivity inhibiti
ctericidal effe
racteristic ha
p, juniper be
e of Streptoc
phytochemi
→7)-epicate
B): Procyani
10
(B)
cals with ad
)-Epigallocat
mpounds, e
chemicals fo
al effects at
ion by 85% (
fects, their m
ave been do
erry and bea
coccus muta
(B)
cals of berri
echin-(4β→8
idin A2 of cr
dhesion inhib
techin,(C): M
specially an
or example A
as low conc
(30).
main bacterio
cumented fo
arberry (25).
ans at 1024 µ
es
8)-epicatehin
ranberry,(C
bition and b
Morin.
nthocyanins,
A-type proa
centration as
ostatical strat
or ursolic aci
. Ursolic aci
µg/ml (77).
(
n (A-type
C): Ursolic a
(C)
biofilm biom
, and terpen
anthocyanidi
s 500 µg/ml
tegy is their
id, a penta-c
id (Figure 2
(C)
acid of roseh
mass
noids.
ins of
l in a
anti-
cyclic
2:(C))
hip
11
 
3. Research hypothesis and objectives
Phytochemicals of the Nova Scotia’s cultivated and wild fruits can suppress or inhibit the growth
of S. pyogenes in a specific approach of adherence and biofilm formation inhibition under
experimental conditions.
3.1. General objective
Identifying and understanding the mode of action of phytochemicals of the ten selected
cultivated edible berries and wild fruits (Table 1) with inhibition activity against S. pyogenes.
3.2. Specific objectives
1) Polyphenol-rich and isoprenoid-rich extract preparation with different techniques.
2) Assessment of inhibition activity of the selected fruit crops extracts against S. pyogenes.
3) Chemical characterization of extracts with inhibition activity against S. pyogenes.
4) Investigation of mechanism of inhibition and disruption of ATPase activity, adherence and
biofilm formation of selected extracts/phytochemicals.
4. Research methodology
S. pyogenes ATCC® 19615™ (isolated from pharynx of child following episode of sore throat)
and ATCC 49399™ will be purchased from American Type Culture Collection (ATCC) and
inoculum will be prepared according to the manufacturer’s instructions in bio-safety laboratory
level 2 (culture: ATCC® Medium 44: Brain Heart Infusion (BHI) agar/broth). I will freeze
portions of 18 -24 h culture in BHI broth in small culture tubes and will store at -80°C for use as
needed. To prepare working inoculums,0.8 ml of the thawed frozen culture will be transferred to
8 ml of BHI broth and incubated at 37°C (78).
12
 
Table 1: Selected fruit crops
Common name Botanical
name
Family Major phytochemicals Ref.
Cultivated berry
Blackcurrant Ribesnigrum Grossulari
aceae
PA; caffeic acid, m-coumaric acid, p-
coumaric acid, ferulic acid, sinapic acid
AN; cyanidin, delphinidin
(79-
81)
Blueberry Vacciniumco
rymbosum
Ericaceae PA; gallic acid, syringic acid, vanillic acid
and chlorogenic acid
AN; cyanidin, delphinidin, petunidin,
Malvidin, peonidin
FL; quercetin, myricetin, syringetin
(82)
Cranberry Vacciniumma
crocarpon
Ericaceae PA; benzoic acid, protocatechuic acid,
vanillic acid, p-coumaric acid
FL; quercetin, myricetin
FL3; monomer, dimer and trimer of
proanthocyanidins
(83-
85)
Honeysuckle Loniceracaer
ulea
Caprifolia
ceae
PA; chlorogenic acid, AN; cyanidin,
peonidin, pelargonidin, FL; quercetin, FL3;
proanthocyanidins, catechin
(86-
88)
Partridgeberry Vacciniumviti
s-idaea
Ericaceae AN; cyaniding, FL;quercetin, kaemferol
FL3; proanthocyanidins
(89)
Wild berry
Bearberry Arctostaphyl
osalpina
Ericaceae AN;cyanidin, peonidin, delphinidin,
petunidin, malvidin, pelargonidin
FL;quercetin
(90)
Chokeberry Aroniaarbutif
olia
Rosaceae PA;neochlorogenic acid, chlorogenic acid
AN;cyaniding, FL;quercetin
(91)
Juniper berry Juniperusco
mmunis
Cupressac
eae
TR; myrcene, α-pinene, β-pinene,
sabinene, α-cadinol
(92)
Rosehip Rosa rugosa Rosaceae PA;gallicacid, protocatechuicacid,
gentisicacid, p-hydroxybenzoicacid,
vanillicacid, caffeicacid, syringicacid, p-
coumaricacid, ferulicacid, salicylicacid
FL;quercetin, kaemferol, FL3; catechin,
procyanidin-B2, HT; ellagitannins,
gallotannins, TA; betulinic acid, oleanolic
acid, ursolic acid
(93-
95)
Staghorn Rhushirta Anacardia
ceae
PA;ellagic acid,caffeic acid
AN;peonidin, FL;quercetin
(96)
Abbreviations:AN; Anthocyanins, FL; Flavonols, FL3; Flavan-3-ols, HT; Hydrolysable tannins,
PA; Phenolic acid, TA; Triterpene acids, TR; Terpenes
13
 
4.1. Extract preparation
4.1.1. Polyphenol-rich extract and subsequent fractions preparation
4.1.1.1. Water-based extraction
Aqueous extracts will be prepared as described by Gunathilake et al. (97) with modifications.
Whole frozen fruits will be juiced. The pomace will be macerated with deionized water, 25°C for
5 min and filtered through sieves and a 1.5-μm glass microfiber filter paper. The filtrate and juice
will be combined and then concentrated.
4.1.1.1.1. Purification of bioactive compounds from aqueous extracts
Polyphenols of aqueous extracts will be fractioned as described by Sekhon-Loodu et al. (98).
Polyphenols will be eluted with step gradient of ethanol. Fractions will be concentrated by using
a rotary evaporator at 40 °C to viscous liquid followed by freeze-drying to obtain extract powder.
4.1.1.2. Ultrasonication-assisted ethanol extraction
The fruits will be processed into a dry powder using a freeze drier. Polyphenols will be extracted
using ethanol and ultrasonic bath as described by Rupasinghe et al. (99). Briefly, dehydrated fruit
will be mixed with ethanol in glass stoppered Erlenmeyer flasks. After vortexing the mixture, it
will be exposed to 60 min (10 min interval between each 15 min exposure), 20-28 °C,
ultrasonication in ultrasonic bath of 20 kHz/1000 Watts. After filtration of the mixture, the
solvent will be evaporated and freeze-dried. To eliminate the interferences of sugar in the
analysis, solid phase extraction using column chromatography will be performed. Aliquots of
sample will be loaded onto C18 Sep-Pak cartridge, which has been previously conditioned with
ethanol and will be subsequently washed with ethanol to remove the sugars. Column will be
dried with nitrogen gas. Fractionation of polyphenols will be performed as described above
(4.1.1.1.1).
14
 
4.1.2. Isoprenoid-rich extract and subsequent fractions preparation
4.1.2.1. Hydro-distillation technique
Hydro-distillation technique will be performed as described by Orio et al. (100) with
modifications. Briefly, aliquot of fresh or dried fruits will be placed in the steam distillation
system (glass balloon filled with 1.5 L deionized water with glass balloon filled with the plant
material). Each distillation timing and plant steaming would be about 1.5 h.
4.1.2.2. Solvent based reflux system
Fruit powder will be prepared as previously described in this proposal. Isoprenoid-rich extract
will be prepared by reflux as described by Thilakarathna et al. (101). Under heated reflux system
with ethyl-acetate as solvent, fruit powder will be refluxed for 2 h. The extracting solvent will be
removed under pressure followed by n-hexane wash and centrifugation. This will be repeated
until off-white solid extract is obtained. Extract will be dried under N2 and the remainder solvent
will be removed by vacuum oven, 33°C.
4.1.2.3. Purification of bioactives of extracts obtained by hydro-distillation &
reflux techniques
Fractionation of isoprenoid-rich fraction with macroporous styrenic based polymeric bead type
resin will be performed as described by Puttarak et al. (102). Briefly, beads will be conditioned
with methanol, loaded into a column, washed twice with methanol and H2O. I will dissolve crude
extract in ethanol and water, filter through cotton wool, load solution into column, elute with
25%, 75%, 100% ethanol and ethyl acetate. Under reduced pressure at 45°C elutes will be dried.
4.1.3. Determination of total isoperenoid and polyphenol content
The total phenolic, flavonoid, and anthocyanin contents will be determined by Folin-Ciocalteu
assay, aluminum chloride colorimetric method, and pH differential method, respectively as
15
 
described by Rupasinghe et al. (103) and Ratnasooriya et al. (104). Total triterpenoid content
assay will be determined by a colorimetric method as described by Chang et al. (105).
4.2. Initial screening phase
4.2.1. Susceptibility testing- micro-dilution assay
Susceptibility testing will be performed as described by Xiao et al. (106) with modifications. The
minimum inhibitory concentration (MIC) of fruit extracts and chemical fractions against GAS
will be determined by micro-dilution assay according to procedures developed by the National
Committee of Clinical Laboratory Standards (NCCLS 2006). A series of test tubes containing
different concentrations of extract or chemical fractions will be prepared by serial two-fold
dilution of the previously prepared Mueller-Hinton (MH) broth. A 96-well plate will be prepared
as follows: 100 µl of microorganism suspension (108
CFU/ml) will be added to 100 µl extract
solution and vibrated gently for 1 min and then incubated in an anaerobic incubator (37°C) for 48
h. For the determination of minimum bactericidal concentration (MBC), aliquots of incubated
test tubes with concentrations higher than the MIC will be sub-cultured on MH agar and
incubated in an anaerobic incubator (37°C under a 5% CO2 atmosphere) for 48 h. All of the
assays will be performed in triplicate using two controls (M-H broth with 1.0%, w/v, glucose as
negative control, M-H broth with 1.0%, w/v, glucose and 0.05%, w/v, penicillin as positive
control (106).
4.2.2. Bacterial growth assay
Bacterial growth assay will be performed as described by Sun et al. (107). Briefly, S. pyogenes
cultures will be grown and maintained static for 15–20 h, diluted 1:100 into 50 ml aliquots MH
medium, and cultured with different concentrations of extracts, or DMSO vehicle alone. OD600
16
 
will be measured at 2, 3, 4, 6, 8, 10, 11, 12, and 24 h to monitor growth. Bacterial growth will be
monitored by measuring OD600 and viable cell count by serial dilution method (106-108).
4.2.3. Disk diffusion antibiotic sensitivity testing 
Kirby Bauer paper method will be performed as described by Fabio et al. (65). Each extract (10
μl) will be applied to a sterile filter paper disc (6 mm) placed on the surface of inoculated plates
(duplicate plates for each extract will be used). After overnight incubation at 37 °C, the
inhibition zones will be measured. Control plates will be prepared by placing sterile water for
negative and antibiotics as positive controls (65).
4.2.4. Preliminary phytochemical analysis
The analysis by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–
mass spectrometry (LC-MS) will be performed according to the methods of Erkan et al. (109)
and Rupasinghe et al. (110, 111). Briefly, after isolating the most effective extracts or fractions
based on MIC and MBC, preliminary phytochemical analysis will be carried out for determining
the active constituents. Preliminary phytochemical analysis could be as well carried out using
chemicals and reagents as described by Jigna and Sumitra et al. (112, 113). 
4.3. Understanding the mode of action phase
4.3.1. Adherence reduction or inhibition
4.3.1.1. Preliminary bacterial adherence assay
Adherence to glass surface assay will be performed as described by Somanah et al. (114) with
modifications. To 3 ml BHI broth, 50 µl standardized microbial suspension (2 108
CFU/ml),
300 µl of the extract or its fractions, and 100 µl tween 80 (0.001%) will be added. Penicillin will
be used as positive control. All tubes will be inclined at an angle of 30° and incubated at 37°C
for 24 h. After overnight incubation, the supernatant will be decanted into a clean tube and
adhered cells will be removed by the addition of 3 ml sodium hydroxide (0.5 M). Both test tubes
17
 
will be centrifuged (1048 g, 15 min) and the aqueous supernatant discarded. Bacterial cells will
be re-suspended in 3 ml sodium hydroxide (0.5 M) and the percentage of adherence will be
quantified at Abs.600 nm by applying Islam et al. formula (115):
Adherence %
Abs. 600nm adhered cells Abs. 600nm nonadhered cells
Abs. 600nm of adhered cells
100
4.3.1.2. Bacterial adherence Human Tonsil Epithelial Cells and human
laryngeal HEp-2 cells
Bacterial adherence to HTEpiC and HEp-2 cells (HEp2 (ATCC® CCL23 ™)) will be performed
as described by Edwards et al. (116) with modifications. HTEpiC (isolated from human normal
tonsil tissue) and HEp-2 purchased from ScienCell Research Laboratories and ATCC,
respectively, will be maintained in accordance to the manufacturer’s instructions.
For adherence assays, about 105
cells/ml will be seeded onto 12-mm-diameter glass coverslips in
the bottoms of 24-well tissue culture plates. After overnight growth at 37°C in 5% CO2
atmosphere, the cells will be washed with PBS (pH 7.4) and inoculated with 500 μl of the GAS
inoculum and the test compounds/extract. After incubation, the coverslips will be washed with
PBS, and removed by aspiration. Host cells and adherent bacteria will be fixed with 95%
methanol, air-dried, heat fixed, gram stained and viewed under microscope. The attachment will
be expressed as the average number of GAS chains per cell (116).
4.3.1.3. Fibronectin cell adhesion assays
Fibronectin binding inhibition assay will be done as described by Okada et al. (117) with
modifications. Fibronectin (extracellular matrix glycoprotein) purchased from Sigma, will be
coated onto 96-well ELISA plates. Plates will be incubated at 37 °C for 24 h. Streptococci from
overnight cultures re-suspended in PBS (pH 7.2) with a density of 1 × 108
cells/ml, and a 100 μl
aliquot of the bacterial suspension and 100 μl of extract/test compound will be added to each
18
 
well. The amount of streptococci bound to each protein will be determined by ELISA using a
rabbit antiserum specific for the S. pyogenes cell wall carbohydrate and an alkaline phosphate-
conjugated anti-rabbit IgG antiserum.
4.3.2. ATPase assay
Preparation of permeabilized cells will be performed as described by Belli et al.(118).
ATPase assay will be performed as described by Belli et al.(118)and Gregoireet al. (119) with
modifications. Using permeabilized cells of S. pyogenes F-ATPase activity will be assayed in
terms of the release of inorganic phosphate. The amount of Pi liberated is directly proportional to
the activity of the transporter. ATPase activities will be expressed as micromoles of phosphate
released from ATP per milligram of cell protein per minute extrapolated from the linear portion
of the phosphate release curve.
4.3.3. Biofilm reduction or inhibition
4.3.3.1. Biofilm inhibition assay
Biofilm biomass assay will be performed as described by O'Toole et al.(120) and Pitts et al.
(121). Briefly, S. pyogenes will be cultured overnight in MH broth and its concentration will be
standardized at 109
CFU/ml. Diluted bacterial culture (1 × 106
CFU/ml) will be used to inoculate
the MTP containing a range of concentrations of extracts or fractions. On each well 100 μl of the
bacterial culture will be added to 100 μl of the tested antibacterial compounds resulting in total
volume of 200 μl/well. Biofilms will be grown for 24 h at 37°C. Wells will be washed twice with
saline water, and then will be air dried for 30-60 min. Plates will then be stained with 125 μl
crystal violet (1% w/v) and incubated at room temperature for 15-20 min. Following 3 times of
rinsing with saline water, plates will be re-solubilized using 95% (v/v) ethanol and incubated for
another 5-10 min. Absorbance readings will be taken using microtitre plate reader at A595 nm (80).
The effect of fractions on the biomass of S. pyogenes biofilms will be determined by comparing
19
 
the biomass of treated biofilms with untreated biofilms (122). I will follow the same procedure
for 3 and 4 days old biofilms. I will add the extracts on 3-4 days old biofilms.
4.3.3.2. Total viable counts of biofilm
Biofilm viability measurement will be performed as described by Pettit et al. (123). The effect of
fractions on biofilms will be determined by comparing CFU/ml of the treated biofilms with
untreated biofilms.
5. Statistical analysis
The data will be analyzed using ANOVA (analysis of variance) with the level of significance at
1% and 5%, and difference among the groups will be tested by the F-test. If significant
difference is observed pair-wise comparisons will be used between all the groups using Tukey’s
method.
6. References
1.  Todar, K., Todar's online textbook of bacteriology. University of Wisconsin‐Madison Department 
of Bacteriology: 2006. 
2.  Linder, J. A.; Bates, D. W.; Lee, G. M.; Finkelstein, J. A., Antibiotic treatment of children with sore 
throat. JAMA : the journal of the American Medical Association 2005, 294, 2315‐22. 
3.  Shulman, S. T.; Bisno, A. L.; Clegg, H. W.; Gerber, M. A.; Kaplan, E. L.; Lee, G.; Martin, J. M.; Van 
Beneden, C., Clinical practice guideline for the diagnosis and management of group A streptococcal 
pharyngitis: 2012 update by the Infectious Diseases Society of America. Clinical Infectious Diseases 2012, 
55, e86‐e102. 
4.  Carapetis, J. R.; Steer, A. C.; Mulholland, E. K.; Weber, M., The global burden of group A 
streptococcal diseases. The Lancet Infectious Diseases 2005, 5, 685‐694. 
5.  Bisno, A. L.; Gerber, M. A.; Gwaltney, J. M., Jr.; Kaplan, E. L.; Schwartz, R. H., Practice guidelines 
for the diagnosis and management of group A streptococcal pharyngitis. Infectious Diseases Society of 
America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 
2002, 35, 113‐25. 
6.  Schwartz, B.; Marcy, S. M.; Phillips, W. R.; Gerber, M. A.; Dowell, S. F., Pharyngitis—principles of 
judicious use of antimicrobial agents. Pediatrics 1998, 101, 171‐174. 
7.  Staff, A.; Pediatrics, A. A. o., Red Book For PDA: 2003 Report Of The Committee On Infectious 
Diseases (cd‐rom For Palm Os 4.0+, Pocket Pc/windows 98/nt/me/2000/xp, 4mb Free Space Required). 
American Academy of Pediatrics: 2003. 
8.  Rodriguez‐Iturbe, B.; Musser, J. M., The current state of poststreptococcal glomerulonephritis. 
Journal of the American Society of Nephrology 2008, 19, 1855‐1864. 
9.  Cunningham, M. W., Pathogenesis of group A streptococcal infections. Clinical microbiology 
reviews 2000, 13, 470‐511. 
20
 
10.  Chahine, E. B.; Sucher, A. J., Update on the Management of Streptococcal Pharyngitis. US Pharm 
2013, 38, 51‐56. 
11.  Prevention, C. f. D. C. a., Antibiotic resistance threats. 31 Mar. 2014. 
12.  Mitchell, T. J., The pathogenesis of streptococcal infections: from tooth decay to meningitis. 
Nature Reviews Microbiology 2003, 1, 219‐230. 
13.  Dajani, A.; Taubert, K.; Ferrieri, P.; Peter, G.; Shulman, S., Treatment of acute streptococcal 
pharyngitis and prevention of rheumatic fever: a statement for health professionals. Pediatrics 1995, 96, 
758‐764. 
14.  Konan, N. A.; Bacchi, E. M.; Lincopan, N.; Varela, S. D.; Varanda, E. A., Acute, subacute toxicity 
and genotoxic effect of a hydroethanolic extract of the cashew (< i> Anacardium occidentale</i> L.). J 
Ethnopharmacol 2007, 110, 30‐38. 
15.  Menu, J. B., Agrimony (Agrimonia eupatoria, Agrimonia procera). 
16.  Clair, S., Arnica: A proven first aid remedy for injuries and accidents. 
17.  Yarnell, E.; Abascal, K.; Hooper, C. G., Chronic sinusitis. Alternative & Complementary Therapies 
2003, 9, 39‐41. 
18.  Mathieu, G.; Meissa, D., Traditional leafy vegetables in Senegal: diversity and medicinal uses. 
African Journal of Traditional, Complementary and Alternative Medicines 2008, 4, 469‐475. 
19.  Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H., < i> Lonicera japonica</i> Thunb.: 
Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J 
Ethnopharmacol 2011, 138, 1‐21. 
20.  Leonti, M.; Sticher, O.; Heinrich, M., Medicinal plants of the Popoluca, México: organoleptic 
properties as indigenous selection criteria. J Ethnopharmacol 2002, 81, 307‐315. 
21.  Kreikemeyer, B.; McIver, K. S.; Podbielski, A., Virulence factor regulation and regulatory 
networks in< i> Streptococcus pyogenes</i> and their impact on pathogen–host interactions. Trends 
Microbiol 2003, 11, 224‐232. 
22.  Sherris, J. C., Medical microbiology: an introduction to infectious diseases. Elsevier Biomedical 
Press BV: 1984. 
23.  Starr, C. R.; Engleberg, N. C., Role of hyaluronidase in subcutaneous spread and growth of group 
A streptococcus. Infection and Immunity 2006, 74, 40‐48. 
24.  Manetti, A. G.; Zingaretti, C.; Falugi, F.; Capo, S.; Bombaci, M.; Bagnoli, F.; Gambellini, G.; Bensi, 
G.; Mora, M.; Edwards, A. M., Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm 
formation. Molecular Microbiology 2007, 64, 968‐983. 
25.  Manetti, A. G. O.; Zingaretti, C.; Falugi, F.; Capo, S.; Bombaci, M.; Bagnoli, F.; Gambellini, G.; 
Bensi, G.; Mora, M.; Edwards, A. M.; Musser, J. M.; Graviss, E. A.; Telford, J. L.; Grandi, G.; Margarit, I., 
Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Molecular 
Microbiology 2007, 64, 968‐983. 
26.  Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial Biofilms: A Common Cause of 
Persistent Infections. Science 1999, 284, 1318‐1322. 
27.  Neely, M. N.; Pfeifer, J. D.; Caparon, M., Streptococcus‐zebrafish model of bacterial 
pathogenesis. Infect Immun 2002, 70, 3904‐14. 
28.  Akiyama, H.; Morizane, S.; Yamasaki, O.; Oono, T.; Iwatsuki, K., Assessment of Streptococcus 
pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. Journal of 
dermatological science 2003, 32, 193‐199. 
29.  Nobbs, A. H.; Lamont, R. J.; Jenkinson, H. F., Streptococcus adherence and colonization. 
Microbiology and Molecular Biology Reviews 2009, 73, 407‐450. 
30.  Duarte, S.; Gregoire, S.; Singh, A. P.; Vorsa, N.; Schaich, K.; Bowen, W. H.; Koo, H., Inhibitory 
effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. 
FEMS microbiology letters 2006, 257, 50‐6. 
21
 
31.  Gregoire, S.; Singh, A.; Vorsa, N.; Koo, H., Influence of cranberry phenolics on glucan synthesis by 
glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol 2007, 103, 1960‐1968. 
32.  He, J.; Chen, L.; Heber, D.; Shi, W.; Lu, Q.‐Y., Antibacterial Compounds from Glycyrrhiza u 
ralensis. Journal of natural products 2006, 69, 121‐124. 
33.  Furiga, A.; Lonvaud‐Funel, A.; Dorignac, G.; Badet, C., In vitro anti‐bacterial and anti‐adherence 
effects of natural polyphenolic compounds on oral bacteria. J Appl Microbiol 2008, 105, 1470‐1476. 
34.  Almeida, L. S. B. d.; Murata, R. M.; Yatsuda, R.; Dos Santos, M.; Nagem, T. J.; Alencar, S. M. d.; 
Koo, H.; Rosalen, P. L., Antimicrobial activity of< i> Rheedia brasiliensis</i> and 7‐epiclusianone against< 
i> Streptococcus mutans</i>. Phytomedicine 2008, 15, 886‐891. 
35.  Mah, T.‐F. C.; O'Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends 
Microbiol 2001, 9, 34‐39. 
36.  Simon, H. B., XIX BACTERIAL INFECTIONS OF THE UPPER RESPIRATORY TRACT. 2009. 
37.  Constantiniu, S.; Scripcaru, M.; Romaniuc, A.; Dumbrava, M.; Nistor, A.; Onu, P., Isolation of 
Arcanobacterium haemolyticum from patients with pharyngitis. J. J. Medicina Preventiva 2001, 9, 49‐53. 
38.  Shannon, G.; Ellis, C.; Stepp, W., Oropharyngeal bacteroides melaninogenicus infection with 
septicemia: Lemierre's syndrome. The Journal of family practice 1983, 16, 159. 
39.  Bisno, A. L.; Gerber, M. A.; Gwaltney, J. M.; Kaplan, E. L.; Schwartz, R. H., Practice guidelines for 
the diagnosis and management of group A streptococcal pharyngitis. Clinical Infectious Diseases 2002, 
35, 113‐125. 
40.  Mattoo, S.; Cherry, J. D., Molecular pathogenesis, epidemiology, and clinical manifestations of 
respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical microbiology 
reviews 2005, 18, 326‐382. 
41.  Grayston, J. T.; Campbell, L. A.; Kuo, C.‐C.; Mordhorst, C. H.; Saikku, P.; Thorn, D. H.; Wang, S.‐P., 
A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. Journal of Infectious Diseases 
1990, 161, 618‐625. 
42.  Gerber, M. A.; Ryan, R.; Tilton, R.; Watson, J., Role of Chlamydia trachomatis in acute pharyngitis 
in young adults. Journal of Clinical Microbiology 1984, 20, 993‐994. 
43.  Von Hunolstein, C.; Scopetti, F.; Efstratiou, A.; Engler, K., Penicillin tolerance amongst non‐
toxigenic Corynebacterium diphtheriae isolated from cases of pharyngitis. Journal of Antimicrobial 
Chemotherapy 2002, 50, 125‐128. 
44.  Bisno, A. L., Acute pharyngitis: etiology and diagnosis. Pediatrics 1996, 97, 949‐954. 
45.  MILLER, R. A.; BRANCATO, F.; HOLMES, K. K., Corynebacterium hemolyticum as a cause of 
pharyngitis and scarlatiniform rash in young adults. Ann Intern Med 1986, 105, 867‐872. 
46.  NASSAR, W., Nasopharyngeal Corynebacterium ulcerans: a different diptheria. The Journal of 
Laryngology and Otology 1992, 106, 824‐826. 
47.  Aliyu, S.; Marriott, R.; Curran, M.; Parmar, S.; Bentley, N.; Brown, N.; Brazier, J.; Ludlam, H., Real‐
time PCR investigation into the importance of Fusobacterium necrophorum as a cause of acute 
pharyngitis in general practice. Journal of Medical Microbiology 2004, 53, 1029‐1035. 
48.  Radosz‐Komoniewska, H.; Rogala‐Zawada, D.; Zientara, M.; Rudy, M.; Nowakowska, M., 
[Bacterial flora in pharyngitis and tonsillitis]. Medycyna doswiadczalna i mikrobiologia 1997, 50, 63‐68. 
49.  Evans, P.; Miser, W. F., Sinusitis and pharyngitis. In Fundamentals of Family Medicine, Springer: 
2003; pp 191‐207. 
50.  Rosen, E. J.; Quinn, F. B., Microbiology, Infections, and Antibiotic Therapy. Grand Rounds 
Presentation, UTMB, Dept. of Otolaryngology. March 2000, 22, 1‐13. 
51.  Klug, T. E.; Henriksen, J.‐J.; Fuursted, K.; Ovesen, T., Similar recovery rates of Fusobacterium 
necrophorum from recurrently infected and non‐infected tonsils. Dan Med Bull 2011, 58, A4295. 
22
 
52.  Peterson, L. R.; Thomson, R. B., Use of the clinical microbiology laboratory for the diagnosis and 
management of infectious diseases related to the oral cavity. Infectious Disease Clinics of North America 
1999, 13, 775‐795. 
53.  Wannamaker, L. W., Perplexity and precision in the diagnosis of streptococcal pharyngitis. 
Archives of Pediatrics & Adolescent Medicine 1972, 124, 352. 
54.  Choby, B. A., Diagnosis and treatment of streptococcal pharyngitis. Am Fam Physician 2009, 79, 
383‐90. 
55.  Neu, H.; Gootz, T., Antimicrobial chemotherapy. 1996. 
56.  Sun, H.; Xu, Y.; Sitkiewicz, I.; Ma, Y.; Wang, X.; Yestrepsky, B. D.; Huang, Y.; Lapadatescu, M. C.; 
Larsen, M. J.; Larsen, S. D.; Musser, J. M.; Ginsburg, D., Inhibitor of streptokinase gene expression 
improves survival after group A streptococcus infection in mice. Proceedings of the National Academy of 
Sciences 2012, 109, 3469‐3474. 
57.  Baron, S., Bacteriology. 1996. 
58.  Martin, J. M.; Green, M.; Barbadora, K. A.; Wald, E. R., Erythromycin‐resistant group A 
streptococci in schoolchildren in Pittsburgh. New England Journal of Medicine 2002, 346, 1200‐1206. 
59.  Marcy, S. M., Treatment options for streptococcal pharyngitis. Clinical Pediatrics 2007, 46, 36S‐
45S. 
60.  JACOBS, M. R., Worldwide trends in antimicrobial resistance among common respiratory tract 
pathogens in children. The Pediatric Infectious Disease Journal 2003, 22, S109‐S119. 
61.  Benzie, I. F.; Wachtel‐Galor, S., Herbal Medicine. 2011. 
62.  Savoia, D., Plant‐derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 
2012, 7, 979‐990. 
63.  Mohanasundari, C.; Natarajan, D.; Srinivasan, K.; Umamaheswari, S.; Ramachandran, A., 
Antibacterial properties of Passiflora foetida L.–a common exotic medicinal plant. African Journal of 
biotechnology 2007, 6. 
64.  Geyid, A.; Abebe, D.; Debella, A.; Makonnen, Z.; Aberra, F.; Teka, F.; Kebede, T.; Urga, K.; Yersaw, 
K.; Biza, T., Screening of some medicinal plants of Ethiopia for their anti‐microbial properties and 
chemical profiles. J Ethnopharmacol 2005, 97, 421‐427. 
65.  Fabio, A. C. C. F. G. N. P. Q. P., Screening of the antibacterial effects of a variety of essential oils 
on microorganisms responsible for respiratory infections. PTR Phytotherapy Research 2007, 21, 374‐377. 
66.  Ogbulie, J.; Ogueke, C.; Nwanebu, F., Antibacterial properties of Uvaria chamae, Congronema 
latifolium, Garcinia kola, Vemonia amygdalina and Aframomium melegueta. African Journal of 
biotechnology 2007, 6. 
67.  Akoachere, J. T.; Ndip, R.; Chenwi, E.; Ndip, L.; Njock, T.; Anong, D., Antibacterial effects of 
Zingiber Officinale and Garcinia Kola on respiratory tract pathogens. East African medical journal 2002, 
79, 588‐592. 
68.  Farrukh, U.; Shareef, H.; Mahmud, S.; Ali, S. A.; Rizwani, G. H., Antibacterial activities of Coccinia 
grandis L. Pak. J. Bot 2008, 40, 1259‐1262. 
69.  Salari, M.; Amine, G.; Shirazi, M.; Hafezi, R.; Mohammadypour, M., Antibacterial effects of 
Eucalyptus globulus leaf extract on pathogenic bacteria isolated from specimens of patients with 
respiratory tract disorders. Clinical Microbiology and Infection 2006, 12, 194‐196. 
70.  Berahou, A.; Auhmani, A.; Fdil, N.; Benharref, A.; Jana, M.; Gadhi, C., Antibacterial activity of< i> 
Quercus ilex</i> bark's extracts. J Ethnopharmacol 2007, 112, 426‐429. 
71.  Rashid, F.; Ahmed, R.; Mahmood, A.; Ahmad, Z.; Bibi, N.; Kazmi, S. U., Flavonoid glycosides 
fromPrunus armeniaca and the antibacterial activity of a crude extract. Archives of pharmacal research 
2007, 30, 932‐937. 
72.  Cichewicz, R. H.; Thorpe, P. A., The antimicrobial properties of chile peppers (< i> Capsicum</i> 
species) and their uses in Mayan medicine. J Ethnopharmacol 1996, 52, 61‐70. 
23
 
73.  Prachayasittikul, S.; Suphapong, S.; Worachartcheewan, A.; Lawung, R.; Ruchirawat, S.; 
Prachayasittikul, V., Bioactive metabolites from Spilanthes acmella Murr. Molecules 2009, 14, 850‐867. 
74.  Ordoñez, A.; Gomez, J.; Cudmani, N.; Vattuone, M.; Isla, M., Antimicrobial activity of nine 
extracts of Sechium edule (Jacq.) Swartz. Microbial ecology in health and disease 2003, 15, 33‐39. 
75.  Janecki, A.; Kolodziej, H., Anti‐adhesive activities of flavan‐3‐ols and proanthocyanidins in the 
interaction of group A‐streptococci and human epithelial cells. Molecules 2010, 15, 7139‐7152. 
76.  Green, A. E.; Rowlands, R. S.; Cooper, R. A.; Maddocks, S. E., The effect of the flavonol morin on 
adhesion and aggregation of Streptococcus pyogenes. FEMS microbiology letters 2012, 333, 54‐58. 
77.  Zhou, L. D. Y. C. W. Z. P. C. Y. L. X., The <i>in vitro</i> study of ursolic acid and oleanolic acid 
inhibiting cariogenic microorganisms as well as biofilm. ODI Oral Diseases 2013, 19, 494‐500. 
78.  Mickelson, M., Chemically defined medium for growth of Streptococcus pyogenes. J Bacteriol 
1964, 88, 158‐164. 
79.  Boath, A. S.; Stewart, D.; McDougall, G. J., Berry components inhibit α‐glucosidase< i> in 
vitro</i>: Synergies between acarbose and polyphenols from black currant and rowanberry. Food 
chemistry 2012, 135, 929‐936. 
80.  Anttonen, M. J.; Karjalainen, R. O., High‐performance liquid chromatography analysis of black 
currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J Agric Food Chem 
2006, 54, 7530‐7538. 
81.  Rubinskiene, M.; Jasutiene, I.; Venskutonis, P. R.; Viskelis, P., HPLC determination of the 
composition and stability of blackcurrant anthocyanins. Journal of chromatographic science 2005, 43, 
478‐482. 
82.  Vrhovsek, U.; Masuero, D.; Palmieri, L.; Mattivi, F., Identification and quantification of flavonol 
glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis 2012, 25, 9‐16. 
83.  Singh, A. P.; Wilson, T.; Kalk, A. J.; Cheong, J.; Vorsa, N., Isolation of specific cranberry flavonoids 
for biological activity assessment. Food chemistry 2009, 116, 963‐968. 
84.  Kylli, P.; Nohynek, L.; Puupponen‐Pimiä, R.; Westerlund‐Wikström, B.; Leppänen, T.; Welling, J.; 
Moilanen, E.; Heinonen, M., Lingonberry (Vaccinium vitis‐idaea) and European cranberry (Vaccinium 
microcarpon) proanthocyanidins: isolation, identification, and bioactivities. J Agric Food Chem 2011, 59, 
3373‐3384. 
85.  Zuo, Y.; Wang, C.; Zhan, J., Separation, characterization, and quantitation of benzoic and 
phenolic antioxidants in American cranberry fruit by GC‐MS. J Agric Food Chem 2002, 50, 3789‐3794. 
86.  Kusznierewicz, B.; Piekarska, A.; Mrugalska, B.; Konieczka, P.; Namieśnik, J.; Bartoszek, A., 
Phenolic composition and antioxidant properties of Polish blue‐berried honeysuckle genotypes by HPLC‐
DAD‐MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. J Agric Food 
Chem 2012, 60, 1755‐1763. 
87.  Chaovanalikit, A.; Thompson, M. M.; Wrolstad, R. E., Characterization and quantification of 
anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J Agric Food Chem 2004, 52, 
848‐852. 
88.  Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.; 
Adam, V.; Kizek, R., Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological 
effects. Molecules 2011, 17, 61‐79. 
89.  Ek, S.; Kartimo, H.; Mattila, S.; Tolonen, A., Characterization of phenolic compounds from 
lingonberry (Vaccinium vitis‐idaea). J Agric Food Chem 2006, 54, 9834‐9842. 
90.  Linderborg, K.; Laaksonen, O.; Kallio, H.; Yang, B., Flavonoids, sugars and fruit acids of alpine 
bearberry (< i> Arctostaphylos alpina</i>) from Finnish Lapland. Food Research International 2011, 44, 
2027‐2033. 
24
 
91.  Jakobek, L.; Drenjančević, M.; Jukić, V.; Šeruga, M., Phenolic acids, flavonols, anthocyanins and 
antiradical activity of “Nero”,“Viking”,“Galicianka” and wild chokeberries. Scientia Horticulturae 2012, 
147, 56‐63. 
92.  Butkienë, R.; Nivinskienë, O.; Mockutë, D., Chemical composition of unripe and ripe berry 
essential oils of Juniperus communis L. growing wild in Vilnius district. Chemija 2004, 15, 57‐63. 
93.  Xiao, Z.; Wu, H.; Wu, T.; Shi, H.; Hang, B.; Aisa, H., Kaempferol and quercetin flavonoids from 
Rosa rugosa. Chemistry of Natural Compounds 2006, 42, 736‐737. 
94.  Wenzig, E.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucar, F.; Knauder, E.; Bauer, R., 
Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) 
preparations. Phytomedicine 2008, 15, 826‐835. 
95.  Demir, N.; Yıldız, O.; Alpaslan, M.; Hayaloglu, A., Evaluation of volatiles, phenolic compounds 
and antioxidant activities of rose hip (< i> Rosa</i> L.) fruits in Turkey. LWT‐Food Science and Technology 
2014. 
96.  Wu, T.; McCallum, J. L.; Wang, S.; Liu, R.; Zhu, H.; Tsao, R., Evaluation of antioxidant activities 
and chemical characterisation of staghorn sumac fruit (< i> Rhus hirta</i> L.). Food chemistry 2013, 138, 
1333‐1340. 
97.  Gunathilake, K.; Rupasinghe, H. V., Inhibition of Human Low‐Density Lipoprotein Oxidation In 
Vitro by Ginger Extracts. Journal of medicinal food 2014. 
98.  Sekhon‐Loodu, S.; Warnakulasuriya, S. N.; Rupasinghe, H.; Shahidi, F., Antioxidant ability of 
fractionated apple peel phenolics to inhibit fish oil oxidation. Food chemistry 2013, 140, 189‐196. 
99.  Vasantha Rupasinghe, H.; Kathirvel, P.; Huber, G. M., Ultrasonication‐assisted solvent extraction 
of quercetin glycosides from ‘Idared’Apple Peels. Molecules 2011, 16, 9783‐9791. 
100.  Orio, L.; Cravotto, G.; Binello, A.; Pignata, G.; Nicola, S.; Chemat, F., Hydrodistillation and in situ 
microwave‐generated hydrodistillation of fresh and dried mint leaves: a comparison study. Journal of 
the Science of Food and Agriculture 2012, 92, 3085‐3090. 
101.  Thilakarathna, S. H.; Wang, Y.; Rupasinghe, H. P. V.; Ghanam, K., Apple peel flavonoid‐ and 
triterpene‐enriched extracts differentially affect cholesterol homeostasis in hamsters. Journal of 
Functional Foods 2012, 4, 963‐971. 
102.  Puttarak, P.; Panichayupakaranant, P., A new method for preparing pentacyclic triterpene rich 
Centella asiatica extracts. Natural product research 2013, 27, 684‐6. 
103.  Rupasinghe, H. V.; Yu, L. J.; Bhullar, K. S.; Bors, B., Short Communication: Haskap (Lonicera 
caerulea): A new berry crop with high antioxidant capacity. Canadian Journal of Plant Science 2012, 92, 
1311‐1317. 
104.  Ratnasooriya, C. C.; Rupasinghe, H. P. V.; Jamieson, A. R., Juice quality and polyphenol 
concentration of fresh fruits and pomace of selected Nova Scotia‐grown grape cultivars. Canadian 
Journal of Plant Science 2010, 90, 193‐205. 
105.  Chang, C. L.; Lin, C. S.; Lai, G. H., Phytochemical characteristics, free radical scavenging activities, 
and neuroprotection of five medicinal plant extracts. Evidence‐Based Complementary and Alternative 
Medicine 2011, 2012. 
106.  Xiao, J.; Liu, Y.; Zuo, Y. L.; Li, J. Y.; Ye, L.; Zhou, X. D., Effects of Nidus Vespae extract and chemical 
fractions on the growth and acidogenicity of oral microorganisms. Archives of oral biology 2006, 51, 804‐
13. 
107.  Sun, H.; Xu, Y.; Sitkiewicz, I.; Ma, Y.; Wang, X.; Yestrepsky, B. D.; Huang, Y.; Lapadatescu, M. C.; 
Larsen, M. J.; Larsen, S. D., Inhibitor of streptokinase gene expression improves survival after group A 
streptococcus infection in mice. Proceedings of the National Academy of Sciences 2012, 109, 3469‐3474. 
108.  Wood, D. N.; Chaussee, M. A.; Chaussee, M. S.; Buttaro, B. A., Persistence of Streptococcus 
pyogenes in Stationary‐Phase Cultures. J Bacteriol 2005, 187, 3319‐3328. 
25
 
109.  Erkan, N.; Tao, Z.; Rupasinghe, H.; Uysal, B.; Oksal, B. S., Antibacterial activities of essential oils 
extracted from leaves of Murraya koenigii by solvent‐free microwave extraction and hydro‐distillation. 
Nat Prod Commun 2012, 7, 121‐124. 
110.  Rupasinghe, H. P. V.; Erkan, N.; Yasmin, A., Antioxidant Protection of Eicosapentaenoic Acid and 
Fish Oil Oxidation by Polyphenolic‐Enriched Apple Skin Extract. J Agric Food Chem 2009, 58, 1233‐1239. 
111.  Rupasinghe, H. V.; Erkan, N.; Yasmin, A., Antioxidant protection of eicosapentaenoic acid and 
fish oil oxidation by polyphenolic‐enriched apple skin extract. J Agric Food Chem 2009, 58, 1233‐1239. 
112.  Osman, M.; Ahmed, E.; Eltohami, S., Preliminary phytochemical evaluation and seed proximate 
analysis of Surib (Sesbanialeptocarpa DC.). Sudan Journal of Medical Sciences 2014, 8, 29‐34. 
113.  Parekh, J.; Chanda, S. V., In vitro antimicrobial activity and phytochemical analysis of some 
Indian medicinal plants. Turk J Biol 2007, 31, 53‐58. 
114.  Somanah, J.; Bourdon, E.; Bahorun, T.; Aruoma, O. I., The inhibitory effect of a fermented 
papaya preparation on growth, hydrophobicity, and acid production of Streptococcus mutans, 
Streptococcus mitis, and Lactobacillus acidophilus: its implications in oral health improvement of 
diabetics. Food Science & Nutrition 2013, 1, 416‐421. 
115.  Islam, B.; Khan, S. N.; Haque, I.; Alam, M.; Mushfiq, M.; Khan, A. U., Novel anti‐adherence 
activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1‐deoxynojirimycin isolated 
from Morus alba. The Journal of antimicrobial chemotherapy 2008, 62, 751‐7. 
116.  Edwards, M. L.; Fagan, P. K.; Smith‐Vaughan, H.; Currie, B. J.; Sriprakash, K. S., Strains of 
Streptococcus pyogenes from Severe Invasive Infections Bind HEp2 and HaCaT Cells More Avidly than 
Strains from Uncomplicated Infections. Journal of Clinical Microbiology 2003, 41, 3936‐3938. 
117.  Okada, N.; Watarai, M.; Ozeri, V.; Hanski, E.; Caparon, M.; Sasakawa, C., A Matrix Form of 
Fibronectin Mediates Enhanced Binding ofStreptococcus pyogenes to Host Tissue. Journal of Biological 
Chemistry 1997, 272, 26978‐26984. 
118.  Belli, W.; Fryklund, J., Partial characterization and effect of omeprazole on ATPase activity in 
Helicobacter pylori by using permeabilized cells. Antimicrob Agents Chemother 1995, 39, 1717‐1720. 
119.  Gregoire, S. S. A. P. V. N. K. H., Influence of cranberry phenolics on glucan synthesis by 
glucosyltransferases and <i>Streptococcus mutans</i> acidogenicity. JAM Journal of Applied 
Microbiology 2007, 103, 1960‐1968. 
120.  O'Toole, G. A., Microtiter dish biofilm formation assay. Journal of visualized experiments: JoVE 
2010. 
121.  Pitts, B.; Hamilton, M. A.; Zelver, N.; Stewart, P. S., A microtiter‐plate screening method for 
biofilm disinfection and removal. Journal of microbiological methods 2003, 54, 269‐276. 
122.  Hasty, D.; Ofek, I.; Courtney, H.; Doyle, R., Multiple adhesins of streptococci. Infection and 
Immunity 1992, 60, 2147. 
123.  Pettit, R. K.; Weber, C. A.; Kean, M. J.; Hoffmann, H.; Pettit, G. R.; Tan, R.; Franks, K. S.; Horton, 
M. L., Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. 
Antimicrob Agents Chemother 2005, 49, 2612‐2617. 
 
 
   
26
 
Timeline
Year Semester Course work Research
1
Winter2014
AGRI5730 – directed studies in food
& bio-product sciences
AGRI5700 – communication skills
SATI3000 – statistics
ATC preparation
Summer2014
- ATC completion
Crude extraction & fractionation
Fall2014
AGRI5630 – intermediate statistical
methods
Crude extraction & fractionation
continued
Initial screening phase
2
Winter2015 To be determined Mode of action (MOA) study
Summer2015
Teaching assistantship MOA study continued
Data analysis, article writing
Fall2015
- Data analysis,
Thesis writing and defense
 

Contenu connexe

Tendances

Nutraceuticals (Durgashree).pptx
Nutraceuticals (Durgashree).pptxNutraceuticals (Durgashree).pptx
Nutraceuticals (Durgashree).pptxDurgashree Diwakar
 
adulteration in Herbal drugs
adulteration in Herbal drugsadulteration in Herbal drugs
adulteration in Herbal drugsManoj Mankala
 
Recent Advances in Extraction
Recent Advances in ExtractionRecent Advances in Extraction
Recent Advances in ExtractionKaustav Dey
 
Review isolation and characterization of bioactive compounds from plant resou...
Review isolation and characterization of bioactive compounds from plant resou...Review isolation and characterization of bioactive compounds from plant resou...
Review isolation and characterization of bioactive compounds from plant resou...Nguyen Vinh
 
Extraction and phytochemical analysis of medicinal plants
Extraction and phytochemical analysis of medicinal plantsExtraction and phytochemical analysis of medicinal plants
Extraction and phytochemical analysis of medicinal plantsShameem_Byadgi
 
Natural product based drug discovery and SAR studies
Natural product based drug discovery and SAR studiesNatural product based drug discovery and SAR studies
Natural product based drug discovery and SAR studieskeerthanan77
 
Drug discovery and development
Drug discovery and developmentDrug discovery and development
Drug discovery and developmentKarun Kumar
 
In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial
 In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial  In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial
In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial ZakiyaUsmani
 
evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...
evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...
evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...PATHEPARAPU HANUMANTHA RAO
 
MICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONS
MICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONSMICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONS
MICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONSVK VIKRAM VARMA
 
Biosynthetic pathways by pooja
Biosynthetic pathways by poojaBiosynthetic pathways by pooja
Biosynthetic pathways by poojaPOOJA KHANPARA
 
Pharmacological activity of flavonoids
Pharmacological activity of flavonoidsPharmacological activity of flavonoids
Pharmacological activity of flavonoidsrajani14397
 
antimicrobial activity
antimicrobial activity antimicrobial activity
antimicrobial activity Laann Swick
 

Tendances (20)

How to find antioxidant properties from selected plants
How to find antioxidant properties from selected plantsHow to find antioxidant properties from selected plants
How to find antioxidant properties from selected plants
 
Nutraceuticals (Durgashree).pptx
Nutraceuticals (Durgashree).pptxNutraceuticals (Durgashree).pptx
Nutraceuticals (Durgashree).pptx
 
adulteration in Herbal drugs
adulteration in Herbal drugsadulteration in Herbal drugs
adulteration in Herbal drugs
 
Recent Advances in Extraction
Recent Advances in ExtractionRecent Advances in Extraction
Recent Advances in Extraction
 
Review isolation and characterization of bioactive compounds from plant resou...
Review isolation and characterization of bioactive compounds from plant resou...Review isolation and characterization of bioactive compounds from plant resou...
Review isolation and characterization of bioactive compounds from plant resou...
 
PHYTOCHEMICAL EXTRACTION
PHYTOCHEMICAL EXTRACTIONPHYTOCHEMICAL EXTRACTION
PHYTOCHEMICAL EXTRACTION
 
Carica papaya Linn.
Carica papaya Linn.Carica papaya Linn.
Carica papaya Linn.
 
Extraction and phytochemical analysis of medicinal plants
Extraction and phytochemical analysis of medicinal plantsExtraction and phytochemical analysis of medicinal plants
Extraction and phytochemical analysis of medicinal plants
 
Glycosides
GlycosidesGlycosides
Glycosides
 
Natural product based drug discovery and SAR studies
Natural product based drug discovery and SAR studiesNatural product based drug discovery and SAR studies
Natural product based drug discovery and SAR studies
 
Drug discovery and development
Drug discovery and developmentDrug discovery and development
Drug discovery and development
 
In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial
 In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial  In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial
In-vitro evaluation techniques of anticancer, anti oxidant, anti microbial
 
Phytochemistry
Phytochemistry Phytochemistry
Phytochemistry
 
evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...
evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...
evaluation of phytochemical, anti-oxidant, anti-inflammatory, and cytotoxicit...
 
MICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONS
MICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONSMICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONS
MICROBIAL CONTAMINATION IN HERBS AND THEIR FORMULATIONS
 
Biosynthetic pathways by pooja
Biosynthetic pathways by poojaBiosynthetic pathways by pooja
Biosynthetic pathways by pooja
 
Pharmacological activity of flavonoids
Pharmacological activity of flavonoidsPharmacological activity of flavonoids
Pharmacological activity of flavonoids
 
Herbal medicine intro
Herbal medicine  introHerbal medicine  intro
Herbal medicine intro
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
antimicrobial activity
antimicrobial activity antimicrobial activity
antimicrobial activity
 

En vedette

Dissertation Proposal Abstract
Dissertation Proposal AbstractDissertation Proposal Abstract
Dissertation Proposal AbstractRuchika Mehresh
 
Primerica Smart Loan
Primerica Smart LoanPrimerica Smart Loan
Primerica Smart Loan1dra
 
Research Proposal Template/Sample
Research Proposal Template/SampleResearch Proposal Template/Sample
Research Proposal Template/SampleFahad Aziz
 
Sample Research proposal
Sample Research proposal Sample Research proposal
Sample Research proposal Monica Betz
 
8 Elements In A Research Proposal
8 Elements In A Research Proposal8 Elements In A Research Proposal
8 Elements In A Research ProposalAzmi Latiff
 
Antibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoir
Antibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoirAntibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoir
Antibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoiralmaples
 
Research proposal sample
Research proposal sampleResearch proposal sample
Research proposal sampleVanessa Cuesta
 
文件传输技术发展与产品趋势
文件传输技术发展与产品趋势文件传输技术发展与产品趋势
文件传输技术发展与产品趋势PMCamp
 
BNI 10 Minute Presentation from Supply My School
BNI 10 Minute Presentation from Supply My SchoolBNI 10 Minute Presentation from Supply My School
BNI 10 Minute Presentation from Supply My SchoolDavid du Plessis
 
Paradigmas tecnoeconomicos
Paradigmas tecnoeconomicosParadigmas tecnoeconomicos
Paradigmas tecnoeconomicosMARIELIPALENCIA
 
2012 DuPage Environmental Summit
2012 DuPage Environmental Summit2012 DuPage Environmental Summit
2012 DuPage Environmental SummitNapervilleNCEC
 
La auténtica felicidad alicia hp
La  auténtica felicidad alicia hpLa  auténtica felicidad alicia hp
La auténtica felicidad alicia hpdehp1961
 
JourneyCare Discover Your Balance Week 7 Gratitude & Gratefulness
JourneyCare Discover Your Balance Week 7 Gratitude & GratefulnessJourneyCare Discover Your Balance Week 7 Gratitude & Gratefulness
JourneyCare Discover Your Balance Week 7 Gratitude & Gratefulnessaltonbaird
 
Reasons for foreign listings by South African junior mining and exploration c...
Reasons for foreign listings by South African junior mining and exploration c...Reasons for foreign listings by South African junior mining and exploration c...
Reasons for foreign listings by South African junior mining and exploration c...Vicki Shaw
 
BNI Lake Business Builders- LOZ Vice President report
BNI Lake Business Builders- LOZ Vice President reportBNI Lake Business Builders- LOZ Vice President report
BNI Lake Business Builders- LOZ Vice President reportMike Tobin
 

En vedette (20)

Dissertation Proposal Abstract
Dissertation Proposal AbstractDissertation Proposal Abstract
Dissertation Proposal Abstract
 
Primerica Smart Loan
Primerica Smart LoanPrimerica Smart Loan
Primerica Smart Loan
 
Loan Proposal
Loan ProposalLoan Proposal
Loan Proposal
 
Research Proposal Template/Sample
Research Proposal Template/SampleResearch Proposal Template/Sample
Research Proposal Template/Sample
 
Sample Research proposal
Sample Research proposal Sample Research proposal
Sample Research proposal
 
8 Elements In A Research Proposal
8 Elements In A Research Proposal8 Elements In A Research Proposal
8 Elements In A Research Proposal
 
Writing Research Proposal
Writing Research Proposal Writing Research Proposal
Writing Research Proposal
 
Antibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoir
Antibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoirAntibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoir
Antibiotic-resistant Staphylococcus aureus: Investigation of a poultry reservoir
 
Research proposal sample
Research proposal sampleResearch proposal sample
Research proposal sample
 
文件传输技术发展与产品趋势
文件传输技术发展与产品趋势文件传输技术发展与产品趋势
文件传输技术发展与产品趋势
 
BNI 10 Minute Presentation from Supply My School
BNI 10 Minute Presentation from Supply My SchoolBNI 10 Minute Presentation from Supply My School
BNI 10 Minute Presentation from Supply My School
 
Paradigmas tecnoeconomicos
Paradigmas tecnoeconomicosParadigmas tecnoeconomicos
Paradigmas tecnoeconomicos
 
Walmart
WalmartWalmart
Walmart
 
2012 DuPage Environmental Summit
2012 DuPage Environmental Summit2012 DuPage Environmental Summit
2012 DuPage Environmental Summit
 
La auténtica felicidad alicia hp
La  auténtica felicidad alicia hpLa  auténtica felicidad alicia hp
La auténtica felicidad alicia hp
 
JourneyCare Discover Your Balance Week 7 Gratitude & Gratefulness
JourneyCare Discover Your Balance Week 7 Gratitude & GratefulnessJourneyCare Discover Your Balance Week 7 Gratitude & Gratefulness
JourneyCare Discover Your Balance Week 7 Gratitude & Gratefulness
 
Presentacion departamentales
Presentacion departamentalesPresentacion departamentales
Presentacion departamentales
 
Del mito a la actualidad
Del mito a la actualidadDel mito a la actualidad
Del mito a la actualidad
 
Reasons for foreign listings by South African junior mining and exploration c...
Reasons for foreign listings by South African junior mining and exploration c...Reasons for foreign listings by South African junior mining and exploration c...
Reasons for foreign listings by South African junior mining and exploration c...
 
BNI Lake Business Builders- LOZ Vice President report
BNI Lake Business Builders- LOZ Vice President reportBNI Lake Business Builders- LOZ Vice President report
BNI Lake Business Builders- LOZ Vice President report
 

Similaire à Sample research proposal

EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS
EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS
EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS Mohd Asif Kanth
 
Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...
Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...
Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...pryloock
 
Poster rovida lorenzetti v2.0
Poster rovida lorenzetti v2.0Poster rovida lorenzetti v2.0
Poster rovida lorenzetti v2.0crovida
 
Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...pryloock
 
In vitro models of hepatotoxicity
In vitro models of hepatotoxicityIn vitro models of hepatotoxicity
In vitro models of hepatotoxicityimprovemed
 
Comparative analysis of gene expression reulation in mouse rat and human Spri...
Comparative analysis of gene expression reulation in mouse rat and human Spri...Comparative analysis of gene expression reulation in mouse rat and human Spri...
Comparative analysis of gene expression reulation in mouse rat and human Spri...constantina mylona
 
Analysis of secondary metabolites released by pseudomonas fluorescens using g...
Analysis of secondary metabolites released by pseudomonas fluorescens using g...Analysis of secondary metabolites released by pseudomonas fluorescens using g...
Analysis of secondary metabolites released by pseudomonas fluorescens using g...Rafidhady
 
Immunomodulatory Potential of Probiotic Lactobacillus casei
Immunomodulatory Potential of Probiotic Lactobacillus caseiImmunomodulatory Potential of Probiotic Lactobacillus casei
Immunomodulatory Potential of Probiotic Lactobacillus caseiKarthikeyanThirugnan3
 
Determination and comparison rate of expression markers of osteoblast derived...
Determination and comparison rate of expression markers of osteoblast derived...Determination and comparison rate of expression markers of osteoblast derived...
Determination and comparison rate of expression markers of osteoblast derived...IJERD Editor
 
Rubisco Lab Report
Rubisco Lab ReportRubisco Lab Report
Rubisco Lab ReportTammy Lacy
 

Similaire à Sample research proposal (20)

Dihydrotanshinone I Induces Apoptosis Through Reactive Oxygen Species–Mediate...
Dihydrotanshinone I Induces Apoptosis Through Reactive Oxygen Species–Mediate...Dihydrotanshinone I Induces Apoptosis Through Reactive Oxygen Species–Mediate...
Dihydrotanshinone I Induces Apoptosis Through Reactive Oxygen Species–Mediate...
 
phenolic disinfactants moa.pdf
phenolic disinfactants moa.pdfphenolic disinfactants moa.pdf
phenolic disinfactants moa.pdf
 
Evaluation of the Effectiveness of Docosahexaenoic acid in protecting Liver c...
Evaluation of the Effectiveness of Docosahexaenoic acid in protecting Liver c...Evaluation of the Effectiveness of Docosahexaenoic acid in protecting Liver c...
Evaluation of the Effectiveness of Docosahexaenoic acid in protecting Liver c...
 
International Journal of Proteomics & Bioinformatics
International Journal of Proteomics & BioinformaticsInternational Journal of Proteomics & Bioinformatics
International Journal of Proteomics & Bioinformatics
 
TUDCA Protects Retinal Pigment Epithelial cells
TUDCA Protects Retinal Pigment Epithelial cellsTUDCA Protects Retinal Pigment Epithelial cells
TUDCA Protects Retinal Pigment Epithelial cells
 
EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS
EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS
EFFECT OF CYCLOPHOSPHAMIDE(anticancer drug) ON TESTIS
 
Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...
Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...
Conceição et al, 2006. orpotrin a novel vasoconstrictor peptide from the veno...
 
Poster rovida lorenzetti v2.0
Poster rovida lorenzetti v2.0Poster rovida lorenzetti v2.0
Poster rovida lorenzetti v2.0
 
Full Thesis
Full ThesisFull Thesis
Full Thesis
 
Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...Conceição et al, 2009. characterization of a new bioactive peptide from potam...
Conceição et al, 2009. characterization of a new bioactive peptide from potam...
 
In vitro models of hepatotoxicity
In vitro models of hepatotoxicityIn vitro models of hepatotoxicity
In vitro models of hepatotoxicity
 
Comparative analysis of gene expression reulation in mouse rat and human Spri...
Comparative analysis of gene expression reulation in mouse rat and human Spri...Comparative analysis of gene expression reulation in mouse rat and human Spri...
Comparative analysis of gene expression reulation in mouse rat and human Spri...
 
QS
QSQS
QS
 
Analysis of secondary metabolites released by pseudomonas fluorescens using g...
Analysis of secondary metabolites released by pseudomonas fluorescens using g...Analysis of secondary metabolites released by pseudomonas fluorescens using g...
Analysis of secondary metabolites released by pseudomonas fluorescens using g...
 
د.رافد هادي حميد
د.رافد هادي حميدد.رافد هادي حميد
د.رافد هادي حميد
 
Immunomodulatory Potential of Probiotic Lactobacillus casei
Immunomodulatory Potential of Probiotic Lactobacillus caseiImmunomodulatory Potential of Probiotic Lactobacillus casei
Immunomodulatory Potential of Probiotic Lactobacillus casei
 
Refinement of assays to measure feline immune function
Refinement of assays to measure feline immune functionRefinement of assays to measure feline immune function
Refinement of assays to measure feline immune function
 
Determination and comparison rate of expression markers of osteoblast derived...
Determination and comparison rate of expression markers of osteoblast derived...Determination and comparison rate of expression markers of osteoblast derived...
Determination and comparison rate of expression markers of osteoblast derived...
 
Bladder cancer,
Bladder cancer,Bladder cancer,
Bladder cancer,
 
Rubisco Lab Report
Rubisco Lab ReportRubisco Lab Report
Rubisco Lab Report
 

Plus de Université Laval

Defense soheila abachi- june2021
Defense soheila abachi- june2021Defense soheila abachi- june2021
Defense soheila abachi- june2021Université Laval
 
S. abachi outline of proposed research citations
S. abachi outline of proposed research citationsS. abachi outline of proposed research citations
S. abachi outline of proposed research citationsUniversité Laval
 
S. abachi contributions and statements
S. abachi contributions and statementsS. abachi contributions and statements
S. abachi contributions and statementsUniversité Laval
 
Sample scholarship research proposal
Sample scholarship research proposalSample scholarship research proposal
Sample scholarship research proposalUniversité Laval
 
Sample scholarship application
Sample scholarship applicationSample scholarship application
Sample scholarship applicationUniversité Laval
 
S. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsS. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsUniversité Laval
 
Phytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campusPhytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campusUniversité Laval
 
Impact of health expenditure on child death in africa
Impact of health expenditure on child death in africaImpact of health expenditure on child death in africa
Impact of health expenditure on child death in africaUniversité Laval
 
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or notDo dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or notUniversité Laval
 

Plus de Université Laval (9)

Defense soheila abachi- june2021
Defense soheila abachi- june2021Defense soheila abachi- june2021
Defense soheila abachi- june2021
 
S. abachi outline of proposed research citations
S. abachi outline of proposed research citationsS. abachi outline of proposed research citations
S. abachi outline of proposed research citations
 
S. abachi contributions and statements
S. abachi contributions and statementsS. abachi contributions and statements
S. abachi contributions and statements
 
Sample scholarship research proposal
Sample scholarship research proposalSample scholarship research proposal
Sample scholarship research proposal
 
Sample scholarship application
Sample scholarship applicationSample scholarship application
Sample scholarship application
 
S. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicalsS. pyogenes, its virulence, antibiotic, phytochemicals
S. pyogenes, its virulence, antibiotic, phytochemicals
 
Phytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campusPhytochemical community open house dalhousie university truro campus
Phytochemical community open house dalhousie university truro campus
 
Impact of health expenditure on child death in africa
Impact of health expenditure on child death in africaImpact of health expenditure on child death in africa
Impact of health expenditure on child death in africa
 
Do dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or notDo dollars decide in africa whether a child should live or not
Do dollars decide in africa whether a child should live or not
 

Dernier

Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfSumit Kumar yadav
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)PraveenaKalaiselvan1
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptMAESTRELLAMesa2
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfSumit Kumar yadav
 

Dernier (20)

9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Botany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdfBotany 4th semester series (krishna).pdf
Botany 4th semester series (krishna).pdf
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)Recombinant DNA technology (Immunological screening)
Recombinant DNA technology (Immunological screening)
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
G9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.pptG9 Science Q4- Week 1-2 Projectile Motion.ppt
G9 Science Q4- Week 1-2 Projectile Motion.ppt
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Botany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdfBotany 4th semester file By Sumit Kumar yadav.pdf
Botany 4th semester file By Sumit Kumar yadav.pdf
 

Sample research proposal

  • 1. 1         Molecular insight into anti-infective effects of selected fruit phytochemicals against Streptococcus pyogenes     Admission to Candidacy Examination M.Sc. Program Requirement   Research Proposal   Submitted by: Soheila Abachi Department of Environmental Sciences Faculty of Agriculture Dalhousie University June 16 2014                 Supervisor: Supervisory committee members: Dr. Vasantha Rupasinghe Dr. Song Lee (Faculty of Medicine) Dr. Bruce Rathgeber      
  • 2. 2   Abstract Group A streptococci (GAS) not only is important species of gram-positive extracellular bacterial pathogens but also is the most common cause of bacterial pharyngitis in children and adults. This bacterium has developed complex virulence mechanisms to compete with original flora and avoid its elimination. There are several essential steps for initiation of bacterial infectious diseases, adherence being the most important one followed by its stable association with the mucosal surface and formation of biofilm. Surface streptococcal ligands bind to specific receptors on host’s pharyngeal cells and start colonizing. Without strong host-pathogen interactions GAS cannot successfully adhere and would be eliminated by flow mechanisms of the hosts’ environment. Therefore, one of the strategies to control GAS is to inhibit or disrupt its adherence, biofilm formation or its metabolic activity. Various phytochemical components of medicinal plants have shown promising inhibitory effects against pathogenic Streptococcus pyogenes. Specific polyphenols and isoprenoids, among their broad health effects, have shown antibacterial activity against gram positive and specifically streptococci species. The mode of inhibition of phytochemicals against S. pyogenes is yet undefined. The proposed research aims to advance the understanding of the antimicrobial activity of selected fruit phytochemicals against GAS at molecular level by modern methods such as bacterial adherence assay. The results of this research may further be investigated for incorporating the effective extracts or compounds into antibacterial products such as HonibeTM dehydrated honey lozenges. List of abbreviations and symbols ANOVA analysis of variance LC-MS liquid chromatography–mass spectrometry ATCC American type culture collection LTA lipoteichoic acid ATP adenosine triphosphate MBC minimum bactericidal concentration BHI brain heart infusion MgCl2 magnesium chloride C2H3N acetonitrile MgSO4 magnesium sulfate CDC center for disease control &prevention MH Mueller-Hinton CFU colony forming unit MIC minimum inhibitory concentration DMSO dimethyl sulfoxide MS mass spectrometry EDTA ethylenediaminetetraacetic acid NCCLS national committee of clinical laboratory standards EPS exopolysaccharide NH4HCO3 ammonium bicarbonate F-ATPaseF type ATP synthase OD optical density FBP fibronectin-binding proteins PBS phosphate-buffered saline GABHS group A β-hemolytic streptococcus Pi inorganic phosphate GAS group A streptococci RPMI Roswell Park Memorial Institute medium GC-MS gas chromatography–mass spectrometry TE Tris-EDTA HA hyaluronic acid THY Todd-Hewitt broth supplement with yeast extract HCl hydrogen chloride HTEpiC human tonsil epithelial cells HY hyaluronatlyase
  • 3. 3   Contents  1.  Introduction ................................................................................................................................. 4  2.  Literature review......................................................................................................................... 5  2.1.  Importance of Streptococcus pyogenes ...................................................................................... 5  2.2.  Pathogenicity of Streptococcus pyogenes ................................................................................... 5  2.3.  Pathophysiology of pharyngitis .................................................................................................. 6  2.4.  Modern medicine and development of drug-resistant strains ................................................ 7  2.5.  Emerging threat of antibiotics ................................................................................................... 7  2.6.  Folklore medicine ........................................................................................................................ 8  2.7.  Phytochemicals of berries ......................................................................................................... 10  3.  Research hypothesis and objectives ......................................................................................... 11  3.1.  General objective....................................................................................................................... 11  3.2.  Specific objectives ..................................................................................................................... 11  4.  Research methodology .............................................................................................................. 11  4.1.  Extract preparation .................................................................................................................. 13  4.1.1.  Polyphenol-rich extract and subsequent fractions preparation ........................................... 13  4.1.1.1.  Water-based extraction ............................................................................................................ 13  4.1.1.1.1. Purification of bioactive compounds from aqueous extracts ................................................ 13  4.1.1.2.  Ultrasonication-assisted ethanol extraction ............................................................................ 13  4.1.2.  Isoprenoid-rich extract and subsequent fractions preparation ............................................ 14  4.1.2.1.  Hydro-distillation technique .................................................................................................... 14  4.1.2.2.  Solvent based reflux system ..................................................................................................... 14  4.1.2.3.  Purification of bioactives of extracts obtained by hydro-distillation & reflux techniques . 14  4.1.3.  Determination of total isoperenoid and polyphenol content ................................................. 14  4.2.  Initial screening phase .............................................................................................................. 15  4.2.1.  Susceptibility testing- micro-dilution assay ............................................................................ 15  4.2.3.  Disk diffusion antibiotic sensitivity testing ............................................................................. 16  4.2.4.  Preliminary phytochemical analysis ........................................................................................ 16  4.3.  Understanding the mode of action phase ................................................................................ 16  4.3.1.  Adherence reduction or inhibition .......................................................................................... 16  4.3.1.1.  Preliminary bacterial adherence assay ................................................................................... 16  4.3.1.2.  Bacterial adherence Human Tonsil Epithelial Cells and human laryngeal HEp-2 cells .... 17  4.3.1.3.  Fibronectin cell adhesion assays .............................................................................................. 17  4.3.2.  ATPase assay ............................................................................................................................. 18  4.3.3.  Biofilm reduction or inhibition ................................................................................................ 18  4.3.3.1.  Biofilm inhibition assay ............................................................................................................ 18  4.3.3.2.  Total viable counts of biofilm ................................................................................................... 19  5.  Statistical analysis ..................................................................................................................... 19  6.  References .................................................................................................................................. 19   
  • 4. 4   1. Introduction Group A streptococcal infections range from none life threatening conditions such as mild skin infection or pharyngitis to life-threatening and severe conditions such as necrotizing fasciitis, or rheumatic fever including highly lethal Streptococcal toxic shock syndrome (1). Group A β- hemolytic streptococcus (GAS) or S. pyogenes is the common cause of acute bacterial pharyngitis, and is often called strep throat or sore throat (2). Pharyngitis is the most common form of GABHS infections. Recorded cases of GAS pharyngitis are 15-36 percent in children (2) and 5-15 percent in adults (3). On global scale, over 616 million new cases of GABHS pharyngitis occur every year (4). Economical burden of the disease is estimated to be $224 to $539 million among U.S. school-aged children every year and on average 7.3 million outpatient physician visits take place by children aged 3-17 years each year in U.S. (2). Penicillin, amoxicillin, erythromycin, and first-generation cephalosporins are the recommended antibiotics for treatment of sore throat due to GABHS (5-7). Acute infections can lead to rheumatic fever and post-streptococcal glomerulonephritis (kidney inflammation), which distress children worldwide with disability and death, if antibiotic treatments fail or if the disease is left unattended (8, 9). Rheumatic fever and rheumatic heart disease are known to be the leading causes of cardiovascular death during the first five decades of life in underdeveloped countries mainly concerning children (10). Streptococci have very specific virulence factors, which enable them to cause such diverse infections (11-13). Medicinal plants have long been used for the treatment of GAS infections including pharyngitis in the form of tea, gargle, and drop. For example, gargle of infusions of bark and or leaves of cashew plant (Anacardium occidentale), stickwort (Agrimony), mountain daisy (Arnica), bayberry (Myrica cerifera), baobab (Adansonia digitata) (14-18) or tea of flowers of soft leafed honeysuckle (Lonicera confuse) and leaves of cuajilote (Parmentiera aculeate) (19, 20). Natural
  • 5. 5   products extracted from mainly medicinal plants as well as fruits of wild type, are the subject of many studies as alternative substitutes to currently used antibiotics for the treatment of infectious diseases and antibiotic-resistant human pathogens. With more in depth studies of the potent components of these plant extracts and their mode of action, new drugs and antibiotics can be developed for the soon to be post-antibiotic era. 2. Literature review 2.1. Importance of Streptococcus pyogenes Particular virulence factors enable S. pyogenes to attach to host tissues, elude the immune response, and spread by penetrating the host tissue layers and then colonizing (21). Hyaluronic acid bacterial capsule, surrounds the bacterium and protects it from phagocytosis by neutrophils (22). In addition to the capsule, several factors embedded in the cell wall facilitate attachment of the bacteria to various host cells, including M protein, lipoteichoic acid, and fibronectin-binding protein (23). S. pyogenes pilli promotes pharyngeal cell adhesion, aggregation to human cells and biofilm formation (24). 2.2. Pathogenicity of Streptococcus pyogenes There are several important steps for initiation of GAS infectious diseases. First is the bacteria’s capacity to adhere to host tissues and its competition with the normal flora present on nasopharynx surface. After successful attachment, they establish interaction with salivary glycoproteins, extracellular matrix, serum components, host cells and other microbes and assemble in cell aggregates (25). Then bacteria begin colonizing the host tissue, producing exo- polysaccharide (EPS), differentiating into EPS-encased micro-colonies, and developingcomplex communities called mature biofilm (25, 26). Not only biofilm offers GAS a protected environment but also plays an important role in its pathogenicity which has been proposed and
  • 6. 6   experimentally supported in recent studies (25, 27, 28). Proliferation of GAS in the pharynx leads to the invasion of the host tissues. It has been reported that streptococci adhere in two steps. First weak reversible adhesion probably mediated by hydrophobic interactions for example between lipoteichoic acid (LTA) and the binding domains on the host cell. Second firm irreversible adhesion mediated by composite multivalent interactions for example adherence of protein F1 (a fibronectin binding protein) to fibronectin (a glycoprotein of the extracellular matrix) (29-34). GAS has several surface proteins and produces numerous extracellular products that facilitate permeation and successive evasion of the host’s immune system. Center for disease control and prevention (CDC) report says 65% of human bacterial infections involve biofilms and treatment of these biofilm-associated nosocomial infections cost more than $1 billion annually (35). Antibiotic treatment has been indicated for streptococcal pharyngitis. Even though GABHS is the common cause of bacterial pharyngitis, but other bacteria also could cause acute pharyngitis including Actinomyces spp., Arcanobacterium haemolyticum, Bacteroides spp., Borrelia spp., Bordetella pertussis, Chlamydophila pneumoniae, Chlamydia trachomatis, Corynebacterium diphtheria, Corynebacterium pyogenes and others (36-52). Streptococcal pharyngitis results from the proliferation of GAS in the pharynx (1, 10). 2.3. Pathophysiology of pharyngitis Signs of GAS pharyngitis overlap the symptoms of non-streptococcal pharyngitis meaning that proper diagnosis of the disease on the basis of clinical presentation is often impossible (3). Clinical presentations suggestive of GAS pharyngitis in children aged 5–15 years are: sudden onset of sore throat fever, headache, nausea, vomiting, abdominal pain, tonsillopharyngeal inflammation, patchy tonsillopharyngeal exudates, palatal petechiae, anterior cervical adenitis (tender nodes), winter and early spring presentation, and scarlatiniform rashes (44, 53).
  • 7. 7   2.4. Modern medicine and development of drug-resistant strains Antimicrobials’ mechanism of action can be briefly described based on disruption of several activities and processes including cell wall synthesis, plasma membrane integrity, nucleic acid synthesis, ribosomal function, and folate synthesis (54). For patients with penicillin allergy, U.S. treatment guidelines recommend erythromycin. In instances where gastrointestinal side effects of erythromycin is observed, physicians prescribe the FDA-approved second-generation macrolides azithromycin and clarithromycin (54). Penicillin derivatives (ampicillin or amoxicillin), cephalosporins, and macrolides are all effective against GABHS. According to a survey, from 1995 to 2003 in U.S. physicians prescribed antibiotics to 53% of children with sore throat (2). Amoxicillin was mostly prescribed (26% of visits), penicillin (7%), first-generation cephalosporins (3%), and erythromycin (2%) (2). β-Lactam and macrolide class of antibiotics are recommended and prescribed for GAS pharyngitis. The mechanisms of action of these antibiotics differ from one another. Peptidoglycan polymerization which leads to cell wall synthesis is inhibited by ß-lactams such as penicillins and cephalosporins (1). In other hand, macrolides are capable of inhibiting a number of protein synthesis stages occurring on the ribosome but do not usually interfere with amino acid activation or attachment to a particular tRNA. Most of the macrolides have an affinity for 70S ribosomes (prokaryotic) versus 80S (eukaryotic), resulting in macrolides selective toxicity (1). Erythromycin and clindamycin all interfere with ribosome function (1, 10, 55). According to the researchers of internal medicine at the University of Missouri, current GAS antibiotic treatments “interfere with critical biological processes in the pathogen to kill or stop its growth leading to endurance of stronger strains of harmful bacteria and prosper of resistant bacteria” (56). 2.5. Emerging threat of antibiotics
  • 8. 8   Bacteria employ some basic mechanisms to resist an antimicrobial agent such as altering the drug receptor and making the target insensitive to inhibitor (antibiotic), or decreasing the physiological importance of target molecule to the bacteria’s pathogenicity, producing new enzyme molecule, and replacing the inhibited target. Some penicillin-resistant streptococci, group D streptococci and S. pneumonia, have developed resistance by altering the penicillin- binding proteins. Streptococci species have developed resistance to macrolides such as clindamycin and erythromycin through altering 23S RNA (57) and as emphasized earlier in the introduction, CDC has prioritized erythromycin-resistant GAS as concerning threat in their 2013 report. Macrolides resistance among GABHS isolates in the United States is on rise, possibly because of azithromycin overuse (58). This climb in certain areas of the United States and Canada reaches 8-9 percent (59). GAS is not yet resistant to penicillin but some of the streptococci such as S. pneumonia have developed resistance to penicillin through β-lactam hydrolysis (60). All these mechanisms put forth strong selective pressure that favors emergence of antibiotic-resistant strains. 2.6. Folklore medicine Plants produce diverse secondary metabolites, most of which are phenols or their oxygen- substituted derivatives such as tannins that could be the raw materials for future drugs. Herbs and spices used by humans contain useful medicinal compounds including antibacterial chemicals and researches have recorded many of these compounds shown to inhibit growth of pathogenic bacteria (61). These agents appear to have structures and modes of action that are distinct from those of the antibiotics in current use, suggesting that cross-resistance with drugs already in use may be minimal. Observations have shown that herbal preparations work very well, but extensive research and purification of such antibacterial agents are required to make an
  • 9. 9   encouraging statement for the use of phytochemicals. In the period of 1981–2006, 109 new antibacterial drugs were approved of which 69% originated from natural products, and 21% of antifungal drugs were natural derivatives or compounds mimicking natural products (62). Various medicinal plants have recently been tested for antimicrobial activity and all have proven that phytochemicals particularly polyphenols exhibit significant antibacterial activity against different strains of GAS such as HITM 100, ATCC 19615 and clinical isolates. Few examples of these plants are: Wild maracuja (Passiflora foetida), white weed (Ageratum conyzoides), Calabash tree (Crescentia cujete), bush-banana (Uvaria chamae), ginger (Zingiber Officinale), bitter kola (Garcinia Kola), and little gourd (Coccinia grandis) (63-74). Adhesion reduction of S. pyogenes DSM2071 to HEp-2 cells have been tested with (-)-epigallocatechin and (-)- epigallocatechin-3-O-gallate, flavan-3-ols, at concentration of 30 μg/ml and the reported results are 15% and 40% respectively (75). Also Morin, a flavonol, at concentration of 225μM reduced the biofilm biomass of S. pyogenes MGAS6180 by 60 % (76). The anti-adhesive properties of root extract of Pelargonium sidoides have been studied against GAS attachment to human epithelial type 2 (HEp-2) cells. Results show that after pre-treatment of GAS with 30µg/ml of methanol insoluble and methanol soluble fractions, adhesion of GAS to HEp-2 cells was inhibited by 30-35 percent. Further analysis has revealed that the proanthocyanidins content of the fraction is of prodelphinidin nature and inhibition of the adhesion is in a specific rather than non-specific fashion. Successful inhibition of adhesion and hydrophobic interactions could reduce and or prevent the S. pyogenes caused occurrence of sore throat (75).
  • 10.   Figure 1 reductio (A): (-)-E 2.7. P Berries a There is cranberry specific a Apart fro adhesiven triterpene complete Figure 2 (A): Epic proantho (A) : Chemical n activity ag Epigallocatec Phytochemi are a good fair scientif y exert signi approach of om phytoche ness attribut e acid found ely inhibits th (A) 2: Chemical catechin-(4β cyanidins) c   structure of gainst GAS. chin-3-O-ga icals of berr source of p fic evidence ificant anti-s ATPase acti emical’s bac te. Such char d in rosehip he adherenc structure of β→8, 2β→O cranberry,(B phytochemi allate,(B): (-) ries phenolic com e that phytoc streptococca ivity inhibiti ctericidal effe racteristic ha p, juniper be e of Streptoc phytochemi →7)-epicate B): Procyani 10 (B) cals with ad )-Epigallocat mpounds, e chemicals fo al effects at ion by 85% ( fects, their m ave been do erry and bea coccus muta (B) cals of berri echin-(4β→8 idin A2 of cr dhesion inhib techin,(C): M specially an or example A as low conc (30). main bacterio cumented fo arberry (25). ans at 1024 µ es 8)-epicatehin ranberry,(C bition and b Morin. nthocyanins, A-type proa centration as ostatical strat or ursolic aci . Ursolic aci µg/ml (77). ( n (A-type C): Ursolic a (C) biofilm biom , and terpen anthocyanidi s 500 µg/ml tegy is their id, a penta-c id (Figure 2 (C) acid of roseh mass noids. ins of l in a anti- cyclic 2:(C)) hip
  • 11. 11   3. Research hypothesis and objectives Phytochemicals of the Nova Scotia’s cultivated and wild fruits can suppress or inhibit the growth of S. pyogenes in a specific approach of adherence and biofilm formation inhibition under experimental conditions. 3.1. General objective Identifying and understanding the mode of action of phytochemicals of the ten selected cultivated edible berries and wild fruits (Table 1) with inhibition activity against S. pyogenes. 3.2. Specific objectives 1) Polyphenol-rich and isoprenoid-rich extract preparation with different techniques. 2) Assessment of inhibition activity of the selected fruit crops extracts against S. pyogenes. 3) Chemical characterization of extracts with inhibition activity against S. pyogenes. 4) Investigation of mechanism of inhibition and disruption of ATPase activity, adherence and biofilm formation of selected extracts/phytochemicals. 4. Research methodology S. pyogenes ATCC® 19615™ (isolated from pharynx of child following episode of sore throat) and ATCC 49399™ will be purchased from American Type Culture Collection (ATCC) and inoculum will be prepared according to the manufacturer’s instructions in bio-safety laboratory level 2 (culture: ATCC® Medium 44: Brain Heart Infusion (BHI) agar/broth). I will freeze portions of 18 -24 h culture in BHI broth in small culture tubes and will store at -80°C for use as needed. To prepare working inoculums,0.8 ml of the thawed frozen culture will be transferred to 8 ml of BHI broth and incubated at 37°C (78).
  • 12. 12   Table 1: Selected fruit crops Common name Botanical name Family Major phytochemicals Ref. Cultivated berry Blackcurrant Ribesnigrum Grossulari aceae PA; caffeic acid, m-coumaric acid, p- coumaric acid, ferulic acid, sinapic acid AN; cyanidin, delphinidin (79- 81) Blueberry Vacciniumco rymbosum Ericaceae PA; gallic acid, syringic acid, vanillic acid and chlorogenic acid AN; cyanidin, delphinidin, petunidin, Malvidin, peonidin FL; quercetin, myricetin, syringetin (82) Cranberry Vacciniumma crocarpon Ericaceae PA; benzoic acid, protocatechuic acid, vanillic acid, p-coumaric acid FL; quercetin, myricetin FL3; monomer, dimer and trimer of proanthocyanidins (83- 85) Honeysuckle Loniceracaer ulea Caprifolia ceae PA; chlorogenic acid, AN; cyanidin, peonidin, pelargonidin, FL; quercetin, FL3; proanthocyanidins, catechin (86- 88) Partridgeberry Vacciniumviti s-idaea Ericaceae AN; cyaniding, FL;quercetin, kaemferol FL3; proanthocyanidins (89) Wild berry Bearberry Arctostaphyl osalpina Ericaceae AN;cyanidin, peonidin, delphinidin, petunidin, malvidin, pelargonidin FL;quercetin (90) Chokeberry Aroniaarbutif olia Rosaceae PA;neochlorogenic acid, chlorogenic acid AN;cyaniding, FL;quercetin (91) Juniper berry Juniperusco mmunis Cupressac eae TR; myrcene, α-pinene, β-pinene, sabinene, α-cadinol (92) Rosehip Rosa rugosa Rosaceae PA;gallicacid, protocatechuicacid, gentisicacid, p-hydroxybenzoicacid, vanillicacid, caffeicacid, syringicacid, p- coumaricacid, ferulicacid, salicylicacid FL;quercetin, kaemferol, FL3; catechin, procyanidin-B2, HT; ellagitannins, gallotannins, TA; betulinic acid, oleanolic acid, ursolic acid (93- 95) Staghorn Rhushirta Anacardia ceae PA;ellagic acid,caffeic acid AN;peonidin, FL;quercetin (96) Abbreviations:AN; Anthocyanins, FL; Flavonols, FL3; Flavan-3-ols, HT; Hydrolysable tannins, PA; Phenolic acid, TA; Triterpene acids, TR; Terpenes
  • 13. 13   4.1. Extract preparation 4.1.1. Polyphenol-rich extract and subsequent fractions preparation 4.1.1.1. Water-based extraction Aqueous extracts will be prepared as described by Gunathilake et al. (97) with modifications. Whole frozen fruits will be juiced. The pomace will be macerated with deionized water, 25°C for 5 min and filtered through sieves and a 1.5-μm glass microfiber filter paper. The filtrate and juice will be combined and then concentrated. 4.1.1.1.1. Purification of bioactive compounds from aqueous extracts Polyphenols of aqueous extracts will be fractioned as described by Sekhon-Loodu et al. (98). Polyphenols will be eluted with step gradient of ethanol. Fractions will be concentrated by using a rotary evaporator at 40 °C to viscous liquid followed by freeze-drying to obtain extract powder. 4.1.1.2. Ultrasonication-assisted ethanol extraction The fruits will be processed into a dry powder using a freeze drier. Polyphenols will be extracted using ethanol and ultrasonic bath as described by Rupasinghe et al. (99). Briefly, dehydrated fruit will be mixed with ethanol in glass stoppered Erlenmeyer flasks. After vortexing the mixture, it will be exposed to 60 min (10 min interval between each 15 min exposure), 20-28 °C, ultrasonication in ultrasonic bath of 20 kHz/1000 Watts. After filtration of the mixture, the solvent will be evaporated and freeze-dried. To eliminate the interferences of sugar in the analysis, solid phase extraction using column chromatography will be performed. Aliquots of sample will be loaded onto C18 Sep-Pak cartridge, which has been previously conditioned with ethanol and will be subsequently washed with ethanol to remove the sugars. Column will be dried with nitrogen gas. Fractionation of polyphenols will be performed as described above (4.1.1.1.1).
  • 14. 14   4.1.2. Isoprenoid-rich extract and subsequent fractions preparation 4.1.2.1. Hydro-distillation technique Hydro-distillation technique will be performed as described by Orio et al. (100) with modifications. Briefly, aliquot of fresh or dried fruits will be placed in the steam distillation system (glass balloon filled with 1.5 L deionized water with glass balloon filled with the plant material). Each distillation timing and plant steaming would be about 1.5 h. 4.1.2.2. Solvent based reflux system Fruit powder will be prepared as previously described in this proposal. Isoprenoid-rich extract will be prepared by reflux as described by Thilakarathna et al. (101). Under heated reflux system with ethyl-acetate as solvent, fruit powder will be refluxed for 2 h. The extracting solvent will be removed under pressure followed by n-hexane wash and centrifugation. This will be repeated until off-white solid extract is obtained. Extract will be dried under N2 and the remainder solvent will be removed by vacuum oven, 33°C. 4.1.2.3. Purification of bioactives of extracts obtained by hydro-distillation & reflux techniques Fractionation of isoprenoid-rich fraction with macroporous styrenic based polymeric bead type resin will be performed as described by Puttarak et al. (102). Briefly, beads will be conditioned with methanol, loaded into a column, washed twice with methanol and H2O. I will dissolve crude extract in ethanol and water, filter through cotton wool, load solution into column, elute with 25%, 75%, 100% ethanol and ethyl acetate. Under reduced pressure at 45°C elutes will be dried. 4.1.3. Determination of total isoperenoid and polyphenol content The total phenolic, flavonoid, and anthocyanin contents will be determined by Folin-Ciocalteu assay, aluminum chloride colorimetric method, and pH differential method, respectively as
  • 15. 15   described by Rupasinghe et al. (103) and Ratnasooriya et al. (104). Total triterpenoid content assay will be determined by a colorimetric method as described by Chang et al. (105). 4.2. Initial screening phase 4.2.1. Susceptibility testing- micro-dilution assay Susceptibility testing will be performed as described by Xiao et al. (106) with modifications. The minimum inhibitory concentration (MIC) of fruit extracts and chemical fractions against GAS will be determined by micro-dilution assay according to procedures developed by the National Committee of Clinical Laboratory Standards (NCCLS 2006). A series of test tubes containing different concentrations of extract or chemical fractions will be prepared by serial two-fold dilution of the previously prepared Mueller-Hinton (MH) broth. A 96-well plate will be prepared as follows: 100 µl of microorganism suspension (108 CFU/ml) will be added to 100 µl extract solution and vibrated gently for 1 min and then incubated in an anaerobic incubator (37°C) for 48 h. For the determination of minimum bactericidal concentration (MBC), aliquots of incubated test tubes with concentrations higher than the MIC will be sub-cultured on MH agar and incubated in an anaerobic incubator (37°C under a 5% CO2 atmosphere) for 48 h. All of the assays will be performed in triplicate using two controls (M-H broth with 1.0%, w/v, glucose as negative control, M-H broth with 1.0%, w/v, glucose and 0.05%, w/v, penicillin as positive control (106). 4.2.2. Bacterial growth assay Bacterial growth assay will be performed as described by Sun et al. (107). Briefly, S. pyogenes cultures will be grown and maintained static for 15–20 h, diluted 1:100 into 50 ml aliquots MH medium, and cultured with different concentrations of extracts, or DMSO vehicle alone. OD600
  • 16. 16   will be measured at 2, 3, 4, 6, 8, 10, 11, 12, and 24 h to monitor growth. Bacterial growth will be monitored by measuring OD600 and viable cell count by serial dilution method (106-108). 4.2.3. Disk diffusion antibiotic sensitivity testing  Kirby Bauer paper method will be performed as described by Fabio et al. (65). Each extract (10 μl) will be applied to a sterile filter paper disc (6 mm) placed on the surface of inoculated plates (duplicate plates for each extract will be used). After overnight incubation at 37 °C, the inhibition zones will be measured. Control plates will be prepared by placing sterile water for negative and antibiotics as positive controls (65). 4.2.4. Preliminary phytochemical analysis The analysis by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography– mass spectrometry (LC-MS) will be performed according to the methods of Erkan et al. (109) and Rupasinghe et al. (110, 111). Briefly, after isolating the most effective extracts or fractions based on MIC and MBC, preliminary phytochemical analysis will be carried out for determining the active constituents. Preliminary phytochemical analysis could be as well carried out using chemicals and reagents as described by Jigna and Sumitra et al. (112, 113).  4.3. Understanding the mode of action phase 4.3.1. Adherence reduction or inhibition 4.3.1.1. Preliminary bacterial adherence assay Adherence to glass surface assay will be performed as described by Somanah et al. (114) with modifications. To 3 ml BHI broth, 50 µl standardized microbial suspension (2 108 CFU/ml), 300 µl of the extract or its fractions, and 100 µl tween 80 (0.001%) will be added. Penicillin will be used as positive control. All tubes will be inclined at an angle of 30° and incubated at 37°C for 24 h. After overnight incubation, the supernatant will be decanted into a clean tube and adhered cells will be removed by the addition of 3 ml sodium hydroxide (0.5 M). Both test tubes
  • 17. 17   will be centrifuged (1048 g, 15 min) and the aqueous supernatant discarded. Bacterial cells will be re-suspended in 3 ml sodium hydroxide (0.5 M) and the percentage of adherence will be quantified at Abs.600 nm by applying Islam et al. formula (115): Adherence % Abs. 600nm adhered cells Abs. 600nm nonadhered cells Abs. 600nm of adhered cells 100 4.3.1.2. Bacterial adherence Human Tonsil Epithelial Cells and human laryngeal HEp-2 cells Bacterial adherence to HTEpiC and HEp-2 cells (HEp2 (ATCC® CCL23 ™)) will be performed as described by Edwards et al. (116) with modifications. HTEpiC (isolated from human normal tonsil tissue) and HEp-2 purchased from ScienCell Research Laboratories and ATCC, respectively, will be maintained in accordance to the manufacturer’s instructions. For adherence assays, about 105 cells/ml will be seeded onto 12-mm-diameter glass coverslips in the bottoms of 24-well tissue culture plates. After overnight growth at 37°C in 5% CO2 atmosphere, the cells will be washed with PBS (pH 7.4) and inoculated with 500 μl of the GAS inoculum and the test compounds/extract. After incubation, the coverslips will be washed with PBS, and removed by aspiration. Host cells and adherent bacteria will be fixed with 95% methanol, air-dried, heat fixed, gram stained and viewed under microscope. The attachment will be expressed as the average number of GAS chains per cell (116). 4.3.1.3. Fibronectin cell adhesion assays Fibronectin binding inhibition assay will be done as described by Okada et al. (117) with modifications. Fibronectin (extracellular matrix glycoprotein) purchased from Sigma, will be coated onto 96-well ELISA plates. Plates will be incubated at 37 °C for 24 h. Streptococci from overnight cultures re-suspended in PBS (pH 7.2) with a density of 1 × 108 cells/ml, and a 100 μl aliquot of the bacterial suspension and 100 μl of extract/test compound will be added to each
  • 18. 18   well. The amount of streptococci bound to each protein will be determined by ELISA using a rabbit antiserum specific for the S. pyogenes cell wall carbohydrate and an alkaline phosphate- conjugated anti-rabbit IgG antiserum. 4.3.2. ATPase assay Preparation of permeabilized cells will be performed as described by Belli et al.(118). ATPase assay will be performed as described by Belli et al.(118)and Gregoireet al. (119) with modifications. Using permeabilized cells of S. pyogenes F-ATPase activity will be assayed in terms of the release of inorganic phosphate. The amount of Pi liberated is directly proportional to the activity of the transporter. ATPase activities will be expressed as micromoles of phosphate released from ATP per milligram of cell protein per minute extrapolated from the linear portion of the phosphate release curve. 4.3.3. Biofilm reduction or inhibition 4.3.3.1. Biofilm inhibition assay Biofilm biomass assay will be performed as described by O'Toole et al.(120) and Pitts et al. (121). Briefly, S. pyogenes will be cultured overnight in MH broth and its concentration will be standardized at 109 CFU/ml. Diluted bacterial culture (1 × 106 CFU/ml) will be used to inoculate the MTP containing a range of concentrations of extracts or fractions. On each well 100 μl of the bacterial culture will be added to 100 μl of the tested antibacterial compounds resulting in total volume of 200 μl/well. Biofilms will be grown for 24 h at 37°C. Wells will be washed twice with saline water, and then will be air dried for 30-60 min. Plates will then be stained with 125 μl crystal violet (1% w/v) and incubated at room temperature for 15-20 min. Following 3 times of rinsing with saline water, plates will be re-solubilized using 95% (v/v) ethanol and incubated for another 5-10 min. Absorbance readings will be taken using microtitre plate reader at A595 nm (80). The effect of fractions on the biomass of S. pyogenes biofilms will be determined by comparing
  • 19. 19   the biomass of treated biofilms with untreated biofilms (122). I will follow the same procedure for 3 and 4 days old biofilms. I will add the extracts on 3-4 days old biofilms. 4.3.3.2. Total viable counts of biofilm Biofilm viability measurement will be performed as described by Pettit et al. (123). The effect of fractions on biofilms will be determined by comparing CFU/ml of the treated biofilms with untreated biofilms. 5. Statistical analysis The data will be analyzed using ANOVA (analysis of variance) with the level of significance at 1% and 5%, and difference among the groups will be tested by the F-test. If significant difference is observed pair-wise comparisons will be used between all the groups using Tukey’s method. 6. References 1.  Todar, K., Todar's online textbook of bacteriology. University of Wisconsin‐Madison Department  of Bacteriology: 2006.  2.  Linder, J. A.; Bates, D. W.; Lee, G. M.; Finkelstein, J. A., Antibiotic treatment of children with sore  throat. JAMA : the journal of the American Medical Association 2005, 294, 2315‐22.  3.  Shulman, S. T.; Bisno, A. L.; Clegg, H. W.; Gerber, M. A.; Kaplan, E. L.; Lee, G.; Martin, J. M.; Van  Beneden, C., Clinical practice guideline for the diagnosis and management of group A streptococcal  pharyngitis: 2012 update by the Infectious Diseases Society of America. Clinical Infectious Diseases 2012,  55, e86‐e102.  4.  Carapetis, J. R.; Steer, A. C.; Mulholland, E. K.; Weber, M., The global burden of group A  streptococcal diseases. The Lancet Infectious Diseases 2005, 5, 685‐694.  5.  Bisno, A. L.; Gerber, M. A.; Gwaltney, J. M., Jr.; Kaplan, E. L.; Schwartz, R. H., Practice guidelines  for the diagnosis and management of group A streptococcal pharyngitis. Infectious Diseases Society of  America. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America  2002, 35, 113‐25.  6.  Schwartz, B.; Marcy, S. M.; Phillips, W. R.; Gerber, M. A.; Dowell, S. F., Pharyngitis—principles of  judicious use of antimicrobial agents. Pediatrics 1998, 101, 171‐174.  7.  Staff, A.; Pediatrics, A. A. o., Red Book For PDA: 2003 Report Of The Committee On Infectious  Diseases (cd‐rom For Palm Os 4.0+, Pocket Pc/windows 98/nt/me/2000/xp, 4mb Free Space Required).  American Academy of Pediatrics: 2003.  8.  Rodriguez‐Iturbe, B.; Musser, J. M., The current state of poststreptococcal glomerulonephritis.  Journal of the American Society of Nephrology 2008, 19, 1855‐1864.  9.  Cunningham, M. W., Pathogenesis of group A streptococcal infections. Clinical microbiology  reviews 2000, 13, 470‐511. 
  • 20. 20   10.  Chahine, E. B.; Sucher, A. J., Update on the Management of Streptococcal Pharyngitis. US Pharm  2013, 38, 51‐56.  11.  Prevention, C. f. D. C. a., Antibiotic resistance threats. 31 Mar. 2014.  12.  Mitchell, T. J., The pathogenesis of streptococcal infections: from tooth decay to meningitis.  Nature Reviews Microbiology 2003, 1, 219‐230.  13.  Dajani, A.; Taubert, K.; Ferrieri, P.; Peter, G.; Shulman, S., Treatment of acute streptococcal  pharyngitis and prevention of rheumatic fever: a statement for health professionals. Pediatrics 1995, 96,  758‐764.  14.  Konan, N. A.; Bacchi, E. M.; Lincopan, N.; Varela, S. D.; Varanda, E. A., Acute, subacute toxicity  and genotoxic effect of a hydroethanolic extract of the cashew (< i> Anacardium occidentale</i> L.). J  Ethnopharmacol 2007, 110, 30‐38.  15.  Menu, J. B., Agrimony (Agrimonia eupatoria, Agrimonia procera).  16.  Clair, S., Arnica: A proven first aid remedy for injuries and accidents.  17.  Yarnell, E.; Abascal, K.; Hooper, C. G., Chronic sinusitis. Alternative & Complementary Therapies  2003, 9, 39‐41.  18.  Mathieu, G.; Meissa, D., Traditional leafy vegetables in Senegal: diversity and medicinal uses.  African Journal of Traditional, Complementary and Alternative Medicines 2008, 4, 469‐475.  19.  Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H., < i> Lonicera japonica</i> Thunb.:  Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J  Ethnopharmacol 2011, 138, 1‐21.  20.  Leonti, M.; Sticher, O.; Heinrich, M., Medicinal plants of the Popoluca, México: organoleptic  properties as indigenous selection criteria. J Ethnopharmacol 2002, 81, 307‐315.  21.  Kreikemeyer, B.; McIver, K. S.; Podbielski, A., Virulence factor regulation and regulatory  networks in< i> Streptococcus pyogenes</i> and their impact on pathogen–host interactions. Trends  Microbiol 2003, 11, 224‐232.  22.  Sherris, J. C., Medical microbiology: an introduction to infectious diseases. Elsevier Biomedical  Press BV: 1984.  23.  Starr, C. R.; Engleberg, N. C., Role of hyaluronidase in subcutaneous spread and growth of group  A streptococcus. Infection and Immunity 2006, 74, 40‐48.  24.  Manetti, A. G.; Zingaretti, C.; Falugi, F.; Capo, S.; Bombaci, M.; Bagnoli, F.; Gambellini, G.; Bensi,  G.; Mora, M.; Edwards, A. M., Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm  formation. Molecular Microbiology 2007, 64, 968‐983.  25.  Manetti, A. G. O.; Zingaretti, C.; Falugi, F.; Capo, S.; Bombaci, M.; Bagnoli, F.; Gambellini, G.;  Bensi, G.; Mora, M.; Edwards, A. M.; Musser, J. M.; Graviss, E. A.; Telford, J. L.; Grandi, G.; Margarit, I.,  Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Molecular  Microbiology 2007, 64, 968‐983.  26.  Costerton, J. W.; Stewart, P. S.; Greenberg, E. P., Bacterial Biofilms: A Common Cause of  Persistent Infections. Science 1999, 284, 1318‐1322.  27.  Neely, M. N.; Pfeifer, J. D.; Caparon, M., Streptococcus‐zebrafish model of bacterial  pathogenesis. Infect Immun 2002, 70, 3904‐14.  28.  Akiyama, H.; Morizane, S.; Yamasaki, O.; Oono, T.; Iwatsuki, K., Assessment of Streptococcus  pyogenes microcolony formation in infected skin by confocal laser scanning microscopy. Journal of  dermatological science 2003, 32, 193‐199.  29.  Nobbs, A. H.; Lamont, R. J.; Jenkinson, H. F., Streptococcus adherence and colonization.  Microbiology and Molecular Biology Reviews 2009, 73, 407‐450.  30.  Duarte, S.; Gregoire, S.; Singh, A. P.; Vorsa, N.; Schaich, K.; Bowen, W. H.; Koo, H., Inhibitory  effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms.  FEMS microbiology letters 2006, 257, 50‐6. 
  • 21. 21   31.  Gregoire, S.; Singh, A.; Vorsa, N.; Koo, H., Influence of cranberry phenolics on glucan synthesis by  glucosyltransferases and Streptococcus mutans acidogenicity. J Appl Microbiol 2007, 103, 1960‐1968.  32.  He, J.; Chen, L.; Heber, D.; Shi, W.; Lu, Q.‐Y., Antibacterial Compounds from Glycyrrhiza u  ralensis. Journal of natural products 2006, 69, 121‐124.  33.  Furiga, A.; Lonvaud‐Funel, A.; Dorignac, G.; Badet, C., In vitro anti‐bacterial and anti‐adherence  effects of natural polyphenolic compounds on oral bacteria. J Appl Microbiol 2008, 105, 1470‐1476.  34.  Almeida, L. S. B. d.; Murata, R. M.; Yatsuda, R.; Dos Santos, M.; Nagem, T. J.; Alencar, S. M. d.;  Koo, H.; Rosalen, P. L., Antimicrobial activity of< i> Rheedia brasiliensis</i> and 7‐epiclusianone against<  i> Streptococcus mutans</i>. Phytomedicine 2008, 15, 886‐891.  35.  Mah, T.‐F. C.; O'Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends  Microbiol 2001, 9, 34‐39.  36.  Simon, H. B., XIX BACTERIAL INFECTIONS OF THE UPPER RESPIRATORY TRACT. 2009.  37.  Constantiniu, S.; Scripcaru, M.; Romaniuc, A.; Dumbrava, M.; Nistor, A.; Onu, P., Isolation of  Arcanobacterium haemolyticum from patients with pharyngitis. J. J. Medicina Preventiva 2001, 9, 49‐53.  38.  Shannon, G.; Ellis, C.; Stepp, W., Oropharyngeal bacteroides melaninogenicus infection with  septicemia: Lemierre's syndrome. The Journal of family practice 1983, 16, 159.  39.  Bisno, A. L.; Gerber, M. A.; Gwaltney, J. M.; Kaplan, E. L.; Schwartz, R. H., Practice guidelines for  the diagnosis and management of group A streptococcal pharyngitis. Clinical Infectious Diseases 2002,  35, 113‐125.  40.  Mattoo, S.; Cherry, J. D., Molecular pathogenesis, epidemiology, and clinical manifestations of  respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical microbiology  reviews 2005, 18, 326‐382.  41.  Grayston, J. T.; Campbell, L. A.; Kuo, C.‐C.; Mordhorst, C. H.; Saikku, P.; Thorn, D. H.; Wang, S.‐P.,  A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. Journal of Infectious Diseases  1990, 161, 618‐625.  42.  Gerber, M. A.; Ryan, R.; Tilton, R.; Watson, J., Role of Chlamydia trachomatis in acute pharyngitis  in young adults. Journal of Clinical Microbiology 1984, 20, 993‐994.  43.  Von Hunolstein, C.; Scopetti, F.; Efstratiou, A.; Engler, K., Penicillin tolerance amongst non‐ toxigenic Corynebacterium diphtheriae isolated from cases of pharyngitis. Journal of Antimicrobial  Chemotherapy 2002, 50, 125‐128.  44.  Bisno, A. L., Acute pharyngitis: etiology and diagnosis. Pediatrics 1996, 97, 949‐954.  45.  MILLER, R. A.; BRANCATO, F.; HOLMES, K. K., Corynebacterium hemolyticum as a cause of  pharyngitis and scarlatiniform rash in young adults. Ann Intern Med 1986, 105, 867‐872.  46.  NASSAR, W., Nasopharyngeal Corynebacterium ulcerans: a different diptheria. The Journal of  Laryngology and Otology 1992, 106, 824‐826.  47.  Aliyu, S.; Marriott, R.; Curran, M.; Parmar, S.; Bentley, N.; Brown, N.; Brazier, J.; Ludlam, H., Real‐ time PCR investigation into the importance of Fusobacterium necrophorum as a cause of acute  pharyngitis in general practice. Journal of Medical Microbiology 2004, 53, 1029‐1035.  48.  Radosz‐Komoniewska, H.; Rogala‐Zawada, D.; Zientara, M.; Rudy, M.; Nowakowska, M.,  [Bacterial flora in pharyngitis and tonsillitis]. Medycyna doswiadczalna i mikrobiologia 1997, 50, 63‐68.  49.  Evans, P.; Miser, W. F., Sinusitis and pharyngitis. In Fundamentals of Family Medicine, Springer:  2003; pp 191‐207.  50.  Rosen, E. J.; Quinn, F. B., Microbiology, Infections, and Antibiotic Therapy. Grand Rounds  Presentation, UTMB, Dept. of Otolaryngology. March 2000, 22, 1‐13.  51.  Klug, T. E.; Henriksen, J.‐J.; Fuursted, K.; Ovesen, T., Similar recovery rates of Fusobacterium  necrophorum from recurrently infected and non‐infected tonsils. Dan Med Bull 2011, 58, A4295. 
  • 22. 22   52.  Peterson, L. R.; Thomson, R. B., Use of the clinical microbiology laboratory for the diagnosis and  management of infectious diseases related to the oral cavity. Infectious Disease Clinics of North America  1999, 13, 775‐795.  53.  Wannamaker, L. W., Perplexity and precision in the diagnosis of streptococcal pharyngitis.  Archives of Pediatrics & Adolescent Medicine 1972, 124, 352.  54.  Choby, B. A., Diagnosis and treatment of streptococcal pharyngitis. Am Fam Physician 2009, 79,  383‐90.  55.  Neu, H.; Gootz, T., Antimicrobial chemotherapy. 1996.  56.  Sun, H.; Xu, Y.; Sitkiewicz, I.; Ma, Y.; Wang, X.; Yestrepsky, B. D.; Huang, Y.; Lapadatescu, M. C.;  Larsen, M. J.; Larsen, S. D.; Musser, J. M.; Ginsburg, D., Inhibitor of streptokinase gene expression  improves survival after group A streptococcus infection in mice. Proceedings of the National Academy of  Sciences 2012, 109, 3469‐3474.  57.  Baron, S., Bacteriology. 1996.  58.  Martin, J. M.; Green, M.; Barbadora, K. A.; Wald, E. R., Erythromycin‐resistant group A  streptococci in schoolchildren in Pittsburgh. New England Journal of Medicine 2002, 346, 1200‐1206.  59.  Marcy, S. M., Treatment options for streptococcal pharyngitis. Clinical Pediatrics 2007, 46, 36S‐ 45S.  60.  JACOBS, M. R., Worldwide trends in antimicrobial resistance among common respiratory tract  pathogens in children. The Pediatric Infectious Disease Journal 2003, 22, S109‐S119.  61.  Benzie, I. F.; Wachtel‐Galor, S., Herbal Medicine. 2011.  62.  Savoia, D., Plant‐derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol  2012, 7, 979‐990.  63.  Mohanasundari, C.; Natarajan, D.; Srinivasan, K.; Umamaheswari, S.; Ramachandran, A.,  Antibacterial properties of Passiflora foetida L.–a common exotic medicinal plant. African Journal of  biotechnology 2007, 6.  64.  Geyid, A.; Abebe, D.; Debella, A.; Makonnen, Z.; Aberra, F.; Teka, F.; Kebede, T.; Urga, K.; Yersaw,  K.; Biza, T., Screening of some medicinal plants of Ethiopia for their anti‐microbial properties and  chemical profiles. J Ethnopharmacol 2005, 97, 421‐427.  65.  Fabio, A. C. C. F. G. N. P. Q. P., Screening of the antibacterial effects of a variety of essential oils  on microorganisms responsible for respiratory infections. PTR Phytotherapy Research 2007, 21, 374‐377.  66.  Ogbulie, J.; Ogueke, C.; Nwanebu, F., Antibacterial properties of Uvaria chamae, Congronema  latifolium, Garcinia kola, Vemonia amygdalina and Aframomium melegueta. African Journal of  biotechnology 2007, 6.  67.  Akoachere, J. T.; Ndip, R.; Chenwi, E.; Ndip, L.; Njock, T.; Anong, D., Antibacterial effects of  Zingiber Officinale and Garcinia Kola on respiratory tract pathogens. East African medical journal 2002,  79, 588‐592.  68.  Farrukh, U.; Shareef, H.; Mahmud, S.; Ali, S. A.; Rizwani, G. H., Antibacterial activities of Coccinia  grandis L. Pak. J. Bot 2008, 40, 1259‐1262.  69.  Salari, M.; Amine, G.; Shirazi, M.; Hafezi, R.; Mohammadypour, M., Antibacterial effects of  Eucalyptus globulus leaf extract on pathogenic bacteria isolated from specimens of patients with  respiratory tract disorders. Clinical Microbiology and Infection 2006, 12, 194‐196.  70.  Berahou, A.; Auhmani, A.; Fdil, N.; Benharref, A.; Jana, M.; Gadhi, C., Antibacterial activity of< i>  Quercus ilex</i> bark's extracts. J Ethnopharmacol 2007, 112, 426‐429.  71.  Rashid, F.; Ahmed, R.; Mahmood, A.; Ahmad, Z.; Bibi, N.; Kazmi, S. U., Flavonoid glycosides  fromPrunus armeniaca and the antibacterial activity of a crude extract. Archives of pharmacal research  2007, 30, 932‐937.  72.  Cichewicz, R. H.; Thorpe, P. A., The antimicrobial properties of chile peppers (< i> Capsicum</i>  species) and their uses in Mayan medicine. J Ethnopharmacol 1996, 52, 61‐70. 
  • 23. 23   73.  Prachayasittikul, S.; Suphapong, S.; Worachartcheewan, A.; Lawung, R.; Ruchirawat, S.;  Prachayasittikul, V., Bioactive metabolites from Spilanthes acmella Murr. Molecules 2009, 14, 850‐867.  74.  Ordoñez, A.; Gomez, J.; Cudmani, N.; Vattuone, M.; Isla, M., Antimicrobial activity of nine  extracts of Sechium edule (Jacq.) Swartz. Microbial ecology in health and disease 2003, 15, 33‐39.  75.  Janecki, A.; Kolodziej, H., Anti‐adhesive activities of flavan‐3‐ols and proanthocyanidins in the  interaction of group A‐streptococci and human epithelial cells. Molecules 2010, 15, 7139‐7152.  76.  Green, A. E.; Rowlands, R. S.; Cooper, R. A.; Maddocks, S. E., The effect of the flavonol morin on  adhesion and aggregation of Streptococcus pyogenes. FEMS microbiology letters 2012, 333, 54‐58.  77.  Zhou, L. D. Y. C. W. Z. P. C. Y. L. X., The <i>in vitro</i> study of ursolic acid and oleanolic acid  inhibiting cariogenic microorganisms as well as biofilm. ODI Oral Diseases 2013, 19, 494‐500.  78.  Mickelson, M., Chemically defined medium for growth of Streptococcus pyogenes. J Bacteriol  1964, 88, 158‐164.  79.  Boath, A. S.; Stewart, D.; McDougall, G. J., Berry components inhibit α‐glucosidase< i> in  vitro</i>: Synergies between acarbose and polyphenols from black currant and rowanberry. Food  chemistry 2012, 135, 929‐936.  80.  Anttonen, M. J.; Karjalainen, R. O., High‐performance liquid chromatography analysis of black  currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J Agric Food Chem  2006, 54, 7530‐7538.  81.  Rubinskiene, M.; Jasutiene, I.; Venskutonis, P. R.; Viskelis, P., HPLC determination of the  composition and stability of blackcurrant anthocyanins. Journal of chromatographic science 2005, 43,  478‐482.  82.  Vrhovsek, U.; Masuero, D.; Palmieri, L.; Mattivi, F., Identification and quantification of flavonol  glycosides in cultivated blueberry cultivars. Journal of Food Composition and Analysis 2012, 25, 9‐16.  83.  Singh, A. P.; Wilson, T.; Kalk, A. J.; Cheong, J.; Vorsa, N., Isolation of specific cranberry flavonoids  for biological activity assessment. Food chemistry 2009, 116, 963‐968.  84.  Kylli, P.; Nohynek, L.; Puupponen‐Pimiä, R.; Westerlund‐Wikström, B.; Leppänen, T.; Welling, J.;  Moilanen, E.; Heinonen, M., Lingonberry (Vaccinium vitis‐idaea) and European cranberry (Vaccinium  microcarpon) proanthocyanidins: isolation, identification, and bioactivities. J Agric Food Chem 2011, 59,  3373‐3384.  85.  Zuo, Y.; Wang, C.; Zhan, J., Separation, characterization, and quantitation of benzoic and  phenolic antioxidants in American cranberry fruit by GC‐MS. J Agric Food Chem 2002, 50, 3789‐3794.  86.  Kusznierewicz, B.; Piekarska, A.; Mrugalska, B.; Konieczka, P.; Namieśnik, J.; Bartoszek, A.,  Phenolic composition and antioxidant properties of Polish blue‐berried honeysuckle genotypes by HPLC‐ DAD‐MS, HPLC postcolumn derivatization with ABTS or FC, and TLC with DPPH visualization. J Agric Food  Chem 2012, 60, 1755‐1763.  87.  Chaovanalikit, A.; Thompson, M. M.; Wrolstad, R. E., Characterization and quantification of  anthocyanins and polyphenolics in blue honeysuckle (Lonicera caerulea L.). J Agric Food Chem 2004, 52,  848‐852.  88.  Jurikova, T.; Rop, O.; Mlcek, J.; Sochor, J.; Balla, S.; Szekeres, L.; Hegedusova, A.; Hubalek, J.;  Adam, V.; Kizek, R., Phenolic profile of edible honeysuckle berries (genus Lonicera) and their biological  effects. Molecules 2011, 17, 61‐79.  89.  Ek, S.; Kartimo, H.; Mattila, S.; Tolonen, A., Characterization of phenolic compounds from  lingonberry (Vaccinium vitis‐idaea). J Agric Food Chem 2006, 54, 9834‐9842.  90.  Linderborg, K.; Laaksonen, O.; Kallio, H.; Yang, B., Flavonoids, sugars and fruit acids of alpine  bearberry (< i> Arctostaphylos alpina</i>) from Finnish Lapland. Food Research International 2011, 44,  2027‐2033. 
  • 24. 24   91.  Jakobek, L.; Drenjančević, M.; Jukić, V.; Šeruga, M., Phenolic acids, flavonols, anthocyanins and  antiradical activity of “Nero”,“Viking”,“Galicianka” and wild chokeberries. Scientia Horticulturae 2012,  147, 56‐63.  92.  Butkienë, R.; Nivinskienë, O.; Mockutë, D., Chemical composition of unripe and ripe berry  essential oils of Juniperus communis L. growing wild in Vilnius district. Chemija 2004, 15, 57‐63.  93.  Xiao, Z.; Wu, H.; Wu, T.; Shi, H.; Hang, B.; Aisa, H., Kaempferol and quercetin flavonoids from  Rosa rugosa. Chemistry of Natural Compounds 2006, 42, 736‐737.  94.  Wenzig, E.; Widowitz, U.; Kunert, O.; Chrubasik, S.; Bucar, F.; Knauder, E.; Bauer, R.,  Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.)  preparations. Phytomedicine 2008, 15, 826‐835.  95.  Demir, N.; Yıldız, O.; Alpaslan, M.; Hayaloglu, A., Evaluation of volatiles, phenolic compounds  and antioxidant activities of rose hip (< i> Rosa</i> L.) fruits in Turkey. LWT‐Food Science and Technology  2014.  96.  Wu, T.; McCallum, J. L.; Wang, S.; Liu, R.; Zhu, H.; Tsao, R., Evaluation of antioxidant activities  and chemical characterisation of staghorn sumac fruit (< i> Rhus hirta</i> L.). Food chemistry 2013, 138,  1333‐1340.  97.  Gunathilake, K.; Rupasinghe, H. V., Inhibition of Human Low‐Density Lipoprotein Oxidation In  Vitro by Ginger Extracts. Journal of medicinal food 2014.  98.  Sekhon‐Loodu, S.; Warnakulasuriya, S. N.; Rupasinghe, H.; Shahidi, F., Antioxidant ability of  fractionated apple peel phenolics to inhibit fish oil oxidation. Food chemistry 2013, 140, 189‐196.  99.  Vasantha Rupasinghe, H.; Kathirvel, P.; Huber, G. M., Ultrasonication‐assisted solvent extraction  of quercetin glycosides from ‘Idared’Apple Peels. Molecules 2011, 16, 9783‐9791.  100.  Orio, L.; Cravotto, G.; Binello, A.; Pignata, G.; Nicola, S.; Chemat, F., Hydrodistillation and in situ  microwave‐generated hydrodistillation of fresh and dried mint leaves: a comparison study. Journal of  the Science of Food and Agriculture 2012, 92, 3085‐3090.  101.  Thilakarathna, S. H.; Wang, Y.; Rupasinghe, H. P. V.; Ghanam, K., Apple peel flavonoid‐ and  triterpene‐enriched extracts differentially affect cholesterol homeostasis in hamsters. Journal of  Functional Foods 2012, 4, 963‐971.  102.  Puttarak, P.; Panichayupakaranant, P., A new method for preparing pentacyclic triterpene rich  Centella asiatica extracts. Natural product research 2013, 27, 684‐6.  103.  Rupasinghe, H. V.; Yu, L. J.; Bhullar, K. S.; Bors, B., Short Communication: Haskap (Lonicera  caerulea): A new berry crop with high antioxidant capacity. Canadian Journal of Plant Science 2012, 92,  1311‐1317.  104.  Ratnasooriya, C. C.; Rupasinghe, H. P. V.; Jamieson, A. R., Juice quality and polyphenol  concentration of fresh fruits and pomace of selected Nova Scotia‐grown grape cultivars. Canadian  Journal of Plant Science 2010, 90, 193‐205.  105.  Chang, C. L.; Lin, C. S.; Lai, G. H., Phytochemical characteristics, free radical scavenging activities,  and neuroprotection of five medicinal plant extracts. Evidence‐Based Complementary and Alternative  Medicine 2011, 2012.  106.  Xiao, J.; Liu, Y.; Zuo, Y. L.; Li, J. Y.; Ye, L.; Zhou, X. D., Effects of Nidus Vespae extract and chemical  fractions on the growth and acidogenicity of oral microorganisms. Archives of oral biology 2006, 51, 804‐ 13.  107.  Sun, H.; Xu, Y.; Sitkiewicz, I.; Ma, Y.; Wang, X.; Yestrepsky, B. D.; Huang, Y.; Lapadatescu, M. C.;  Larsen, M. J.; Larsen, S. D., Inhibitor of streptokinase gene expression improves survival after group A  streptococcus infection in mice. Proceedings of the National Academy of Sciences 2012, 109, 3469‐3474.  108.  Wood, D. N.; Chaussee, M. A.; Chaussee, M. S.; Buttaro, B. A., Persistence of Streptococcus  pyogenes in Stationary‐Phase Cultures. J Bacteriol 2005, 187, 3319‐3328. 
  • 25. 25   109.  Erkan, N.; Tao, Z.; Rupasinghe, H.; Uysal, B.; Oksal, B. S., Antibacterial activities of essential oils  extracted from leaves of Murraya koenigii by solvent‐free microwave extraction and hydro‐distillation.  Nat Prod Commun 2012, 7, 121‐124.  110.  Rupasinghe, H. P. V.; Erkan, N.; Yasmin, A., Antioxidant Protection of Eicosapentaenoic Acid and  Fish Oil Oxidation by Polyphenolic‐Enriched Apple Skin Extract. J Agric Food Chem 2009, 58, 1233‐1239.  111.  Rupasinghe, H. V.; Erkan, N.; Yasmin, A., Antioxidant protection of eicosapentaenoic acid and  fish oil oxidation by polyphenolic‐enriched apple skin extract. J Agric Food Chem 2009, 58, 1233‐1239.  112.  Osman, M.; Ahmed, E.; Eltohami, S., Preliminary phytochemical evaluation and seed proximate  analysis of Surib (Sesbanialeptocarpa DC.). Sudan Journal of Medical Sciences 2014, 8, 29‐34.  113.  Parekh, J.; Chanda, S. V., In vitro antimicrobial activity and phytochemical analysis of some  Indian medicinal plants. Turk J Biol 2007, 31, 53‐58.  114.  Somanah, J.; Bourdon, E.; Bahorun, T.; Aruoma, O. I., The inhibitory effect of a fermented  papaya preparation on growth, hydrophobicity, and acid production of Streptococcus mutans,  Streptococcus mitis, and Lactobacillus acidophilus: its implications in oral health improvement of  diabetics. Food Science & Nutrition 2013, 1, 416‐421.  115.  Islam, B.; Khan, S. N.; Haque, I.; Alam, M.; Mushfiq, M.; Khan, A. U., Novel anti‐adherence  activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1‐deoxynojirimycin isolated  from Morus alba. The Journal of antimicrobial chemotherapy 2008, 62, 751‐7.  116.  Edwards, M. L.; Fagan, P. K.; Smith‐Vaughan, H.; Currie, B. J.; Sriprakash, K. S., Strains of  Streptococcus pyogenes from Severe Invasive Infections Bind HEp2 and HaCaT Cells More Avidly than  Strains from Uncomplicated Infections. Journal of Clinical Microbiology 2003, 41, 3936‐3938.  117.  Okada, N.; Watarai, M.; Ozeri, V.; Hanski, E.; Caparon, M.; Sasakawa, C., A Matrix Form of  Fibronectin Mediates Enhanced Binding ofStreptococcus pyogenes to Host Tissue. Journal of Biological  Chemistry 1997, 272, 26978‐26984.  118.  Belli, W.; Fryklund, J., Partial characterization and effect of omeprazole on ATPase activity in  Helicobacter pylori by using permeabilized cells. Antimicrob Agents Chemother 1995, 39, 1717‐1720.  119.  Gregoire, S. S. A. P. V. N. K. H., Influence of cranberry phenolics on glucan synthesis by  glucosyltransferases and <i>Streptococcus mutans</i> acidogenicity. JAM Journal of Applied  Microbiology 2007, 103, 1960‐1968.  120.  O'Toole, G. A., Microtiter dish biofilm formation assay. Journal of visualized experiments: JoVE  2010.  121.  Pitts, B.; Hamilton, M. A.; Zelver, N.; Stewart, P. S., A microtiter‐plate screening method for  biofilm disinfection and removal. Journal of microbiological methods 2003, 54, 269‐276.  122.  Hasty, D.; Ofek, I.; Courtney, H.; Doyle, R., Multiple adhesins of streptococci. Infection and  Immunity 1992, 60, 2147.  123.  Pettit, R. K.; Weber, C. A.; Kean, M. J.; Hoffmann, H.; Pettit, G. R.; Tan, R.; Franks, K. S.; Horton,  M. L., Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing.  Antimicrob Agents Chemother 2005, 49, 2612‐2617.         
  • 26. 26   Timeline Year Semester Course work Research 1 Winter2014 AGRI5730 – directed studies in food & bio-product sciences AGRI5700 – communication skills SATI3000 – statistics ATC preparation Summer2014 - ATC completion Crude extraction & fractionation Fall2014 AGRI5630 – intermediate statistical methods Crude extraction & fractionation continued Initial screening phase 2 Winter2015 To be determined Mode of action (MOA) study Summer2015 Teaching assistantship MOA study continued Data analysis, article writing Fall2015 - Data analysis, Thesis writing and defense