SlideShare une entreprise Scribd logo
1  sur  24
Télécharger pour lire hors ligne
Design Kit
PV Lead-Acid Battery System

         All Rights Reserved Copyright (C) Bee Technologies Corporation 2010   1
Contents
                                                                                                                                     Slide #

    1. Lead-Acid Battery
       1.1 Lead-Acid Battery Specification...........................................................................                3
       1.2 Discharge Time Characteristics...........................................................................                 4
       1.3 Charge Time Characteristics................................................................................               5
    2. Solar Cells
       2.1 Solar Cells Specification......................................................................................           6
       2.2 Output Characteristics vs. Incident Solar Radiation.............................................                          7
    3. Solar Cell Battery Charger.........................................................................................           8
       3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit..............................                                  9
       3.2 PV Lead-Acid Battery Charger Circuit..................................................................                    10
       3.3 Charging Time Characteristics vs. Weather Condition.........................................                              11
       3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant
          Current.................................................................................................................   12
       3.5 Constant Current PV Lead-Acid Battery Charger Circuit......................................                               13
       3.6 Charging Time Characteristics vs. Weather Condition + Constant Current..........                                          14
    4. Simulation PV Lead-Acid Battery System in 24hr.
       4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr..............................                                   15
       4.2 Short-Circuit Current vs. Time (24hr.)..................................................................                  16
       4.3 PV-Battery System Simulation Circuit..................................................................                    17
       4.4 PV-Battery System Simulation Result..................................................................                     18-23
    Simulations index............................................................................................................    24



                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                          2
1.1 Lead-Acid battery Specification


  GS YUASA’s Lead-Acid : MSE-100-6

  • Nominal Voltage................ 6.0 [Vdc]

  • Capacity............................ 100[Ah]@C10, 65[Ah]@C1

  • Rated Charge.................... 0.1C10A

  • Input Voltage...................... 6.69 [Vdc]

  • Charging time..................... 24 [hours] @0.1C10A




                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2010   3
1.2 Discharge Time Characteristics

 6.6V
                                                                   PARAMETERS:
                                                                   Idch = {Rate*CxAh}
                                                                   CxAh = 100
                        0.25C (25A)                                Rate = 0.1
                                                                                           Hi


                                                                                                               OUT+   IN+
 6.0V                                                                                                          OUT-   IN-
                                            0.1C (10A)                                      U1
                                                                                                PLUS             G1
                                                                        R3           C1                          GVALUE
                                                                                                MINUS            limit(V(%IN+, %IN-)/1m,0,Idch)
                                                                        1G           10n
                                                                                            MSE-100-6
                                                                                            TSCALE = 3600
                                                                                            NS = 1
                                                                                            SOC1 = 1
 5.4V                                                                                                          TSCALE=3600
           1C (100A)                                                0            0         0                  0
                                                                                                              means  time Scale
                                                                                                              (Simulation time :
                                                                 Battery Model Parameters                    Real time) is 1:3600
           0.6C (60A)
                                                                 NS (number of batteries in unit) = 1 cell
 4.8V                                                            C (capacity) = 100[Ah]@C10
                                                                 SOC1 (initial state of charge) = “1” (100%)
                                                                 TSCALE (time scale) ,           simulation : real time
                                                                                                 1 : 3600s or
                                                                                                 1s : 1h

                                                                 Discharge Rate : 0.1C(10A), 0.25C(25A) , 0.6C(60A), and 1C(100A)
 4.2V
    10ms       100ms         1.0s          10s        100s
             V(HI)
                             Time




                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                        4
1.3 Charge Time Characteristics

SOC [%] Vbatt [V] C10A
        140V       7.8V       210mA                                                                                       PARAMETERS:
1              2          3                                                                                               CxAh = 100
                                                                                                                          Ich = {0.1*CxAh}


        120V       7.5V       180mA                                                                                                     Hi
                                                                                                         IN-    OUT-
                                                                                                         IN+    OUT+                         U1
                                                                                             G1
                                                                                             GVALUE                                          PLUS
        100V       7.2V       150mA                                                                                                                              R3   C1
                                                                                    limit(V(%IN+, %IN-)/0.1m,0,Ich)                          MINUS                    10n
                                                                                                                                                                 1G
                                                                                                                             V2              MSE-100-6
                                                                                                                             6.69            TSCALE = 3600
         80V       6.9V       120mA                                                                                                          NS = 1
                                                                                                                                             SOC1 = 0



         60V       6.6V        90mA                                                                                   0                  0                   0        0
                                                                                    Battery Model Parameters

         40V       6.3V        60mA                                                 NS (number of batteries in series) = 1 cell
                                                                                    C (capacity) = 100[Ah]@C10
                                                                                    SOC1 (initial state of charge) = “1” (100%)
         20V       6.0V        30mA
                                                                                    TSCALE (time scale) ,           simulation : real time
                                                                                                                    1 : 3600s or
                                                                                                                    1s : 1h
                                >>
          0V       5.7V         0A
                                   0s       4s     8s     12s   16s    20s   24s    Charging Time
    1      V(X_U1.1)*100      2     V(HI)   3    I(G1)/100
                                                         Time
                                                                                    Input Voltage = 6.69 Vdc
                                                                                    Input Current = 10 A @0.1C10




                                                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                                      5
2.1 Solar Cells Specification


  BP Solar’s photovoltaic module : BP365TS                                                  456mm

  • Maximum power (Pmax)..............65[W]

  • Voltage at Pmax (Vmp)...............8.7[V]

  • Current at Pmax (Imp)................7.5[A]

  • Short-circuit current (Isc)............8.1[A]




                                                                                                    1513mm
  • Open-circuit voltage(Voc)...........11.0[V]




                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                    6
2.2 Output Characteristics vs. Incident Solar Radiation

                                                     BP365TS Output Characteristics vs. Incident Solar Radiation

                                                                        10A
                                                                                             SOL=1
                                                                          8A




                                                       Current (A)
                                                                          6A
                                                                                             SOL=0.5
                                                                          4A
          +       U2
                                                                          2A                 SOL=0.16
                  BP365TS
                  SOL = 1                                                 0A
                                                                                  I(sense)
        BP365TS                                                        100W


                                                                        80W




                                                           Power (W)
                                                                                                         SOL=1
                                                                        60W
       Parameter, SOL is added as
                                                                        40W
       normalized incident radiation,                                                                    SOL=0.5
         where SOL=1 for AM1.5                                          20W
                conditions                                                                               SOL=0.16
                                                                       SEL>>
                                                                          0W
                                                                             0V   2V     4V     6V      8V         10V   12V   14V
                                                                                  I(sense)* V(sense:+)
                                                                                                   V_V1
                                                                                                     Voltage (V)



                      All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                            7
3. Solar Cell Battery Charger

•   Solar Cell charges the Lead-Acid Battery (MSE-100-6) with direct connect technique.
    Choose the solar cell that is able to provide current at charging rate or more with the
    maximum power voltage (Vmp) nears the battery charging voltage.


•   MSE-100-6
     – Charging time is approximately 24 hours with charging rate 0.1C or 10A
     – Voltage during charging with 0.1C is between 5.93 to 6.69 V
                           140V       7.8V       210mA
                   1              2          3
                                                         0.1C or 10A
                           120V       7.5V       180mA

                           100V       7.2V       150mA

                            80V       6.9V       120mA
                                                                                                          6.69 V
                            60V       6.6V        90mA

                            40V       6.3V        60mA

                            20V       6.0V
                                                                                                          5.93 V
                                                   >>
                             0V       5.7V         0A
                                                      0s       4s     8s     12s    16s     20s     24s
                       1      V(X_U1.1)*100      2     V(HI)   3    I(G1)/100
                                                                            Time

                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                  8
3.1 Concept of Simulation PV Lead-Acid Battery
Charger Circuit

                                                       Input voltage + VF(D1)
                                                        6.69V+0.6V=7.29V


                                                                       Over Voltage
                                                                       Protection Circuit
    Short circuit current ISC
  depends on condition: SOL
                                                                      7.29V Clamp Circuit



          Photovoltaic                                                            Lead-Acid
          Module                                                                  Battery



         BP 365TS (BP Solar)*3panels                                            MSE-100-6 (GS YUASA)
         Vmp(system)=Vmp(panel)=8.7V                                            DC6.0V
         Imp=22.5A (7.5A3)                                                     100[Ah]@C10, 65[Ah]@C1
         Pmax=195W (65W  3)


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2010             9
3.2 PV Lead-Acid Battery Charger Circuit


                                                                                                                             D1

                                                                                                                             DMOD
                                                                                                                                             Voch
                                                                                                                                             7.29Vdc

                                                                                          pv                                             0
                                                                                  pv                     Hi
  PARAMETERS:
  sol = 1
                                                                                                   C1                                    0
                    pv                         pv                      pv                          1n                        U1




                                                                                                              PLUS

                                                                                                                     MINUS
                                                                                                                             MSE-100-6
                +        U2                +        U3             +        U4
                         BP365TS                    BP365TS                 BP365TS            0
                         SOL = {sol}                SOL = {sol}             SOL = {sol}                                      TSCALE = 3600
               BP365TS                    BP365TS                 BP365TS                                                    SOC1 = 0



                    0                          0                       0




     •      Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
            radiation, where SOL=1 for AM1.5 conditions.



                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                             10
3.3 Charging Time Characteristics vs. Weather Condition

       100V




        80V




        60V




        40V




        20V                                                                                          sol = 1.00
                                                                                                     sol = 0.50
                                                                                                     sol = 0.16
         0V
              0s             4s               8s                 12s               16s             20s            24s
                   V(X_U1.1)*100
                                                                Time



   •      Simulation result shows the charging time for sol = 1, 0.5, and 0.16.



                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                        11
3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit
+ Constant Current


                                                       Input voltage + VF(D1)
                                                        6.69V+0.6V=7.29V


                                                                         Over Voltage
                                                                         Protection Circuit
   Short circuit current ISC
 depends on condition: SOL
                                                                        7.29V Clamp Circuit


                                Constant
      Photovoltaic              Current                                             Lead-Acid
      Module                    Control                                             Battery
                                Circuit


BP 365TS (BP Solar)*3panels               Icharge=0.1C (10A)                      MSE-100-6 (GS YUASA)
Vmp(system)=Vmp(panel)=8.7V                                                       DC6.0V
Imp=22.5A (7.5A3)                                                                100[Ah]@C10, 65[Ah]@C1
Pmax=195W (65W  3)


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2010               12
3.5 Constant Current PV Lead-Acid Battery Charger Circuit


                                                                                              PARAMETERS:
                                                                                              CxAh = 100              D1
                                                                                              Ich = {0.1*CxAh}        DMOD                     Voch
                                                                                                                                               7.29Vdc
                                                                                         pv                                                0
                                                                                 pv                                   Hi
  PARAMETERS:




                                                                                               OUT+
                                                                                               OUT-
  sol = 1
                                                                                                                 C1                                 0
                    pv                        pv                      pv                                         1n                       U1




                                                                                                                           PLUS

                                                                                                                                  MINUS
                                                                                                                                          MSE-100-6




                                                                                               IN+
                                                                                               IN-
                +        U2               +        U3             +        U4
                         BP365TS                   BP365TS                 BP365TS                           0
                         SOL = {sol}               SOL = {sol}             SOL = {sol}        G1                                          TSCALE = 3600
               BP365TS                   BP365TS                 BP365TS                      GVALUE                                      SOC1 = 0


                    0                         0                       0



        Vmp(system)=Vmp(panel)=8.7V
        Imp=22.5A
        Pmax=195W


    •       Input the battery capacity (Ah) and charging current rate (e.g. 0.1*CxAh) in the
    •       “PARAMETERS: CxAh = 100 and rate = 0.1 ” to set the charging current.



                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                                13
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)

        100V




         80V




         60V




         40V




         20V                                                                                    sol = 1.00
                                                                                                sol = 0.50
                                                                                                sol = 0.16
          0V
               0s    2s     4s      6s       8s      10s     12s      14s     16s      18s      20s   22s    24s
                    V(X_U1.1)*100
                                                             Time

   •   Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can
       generate current more than the constant charge rate (0.1), battery can be fully
       charged in about 9.364 hour.


                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                      14
4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr.


                                                   Input voltage + VF(D1)
                                                    6.69V+0.6V=7.29V                  Over Voltage
    The model contains 24hr.                                                          Protection Circuit
   solar power data (example).
                                                                                    7.29V Clamp Circuit



   Photovoltaic                                                                       Lead-Acid
   Module                                                                             Battery

                                   Low-Voltage                                      MSE-100-6 (GS YUASA)
BP 365TS (BP Solar)*3panels        Shutdown                                         DC6.0V
Vmp(system)=Vmp(panel)=8.7V        Circuit                                          100[Ah]@C10, 65[Ah]@C1
Imp=22.5A (7.5A3)
Pmax=195W (65W  3)         Vopen= (V)
                            Vclose= (V)
                                                        DC/DC
                                                                                       DC Load
                                                        Converter

                                                      VIN=4.5~9.0V                    VLOAD = 3.3V
                                                      VOUT=3.3V                       ILOAD  18A


                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                  15
4.2 Short-Circuit Current vs. Time (24hr.)


                                                                                                 The model contains
  25A                                                                                           24hr. solar power data
                                                                                                      (example).
  20A
                                                                                                                                    pv


  15A
                                                                                     pv                   pv             pv

                                                                                 +        U2          +        U3    +        U4
  10A
                                                                                BP365TS              BP365TS        BP365TS




   5A
                                                                                     0                    0              0

   0A
                                                                                          BP365TS_24H_TS3600
        0s          4s    8s       12s       16s        20s      24s
             I(sense)
                                  Time




    •          Short-circuit current vs. time characteristics of photovoltaic module BP365TS for
               24hours as the solar power profile (example) is included to the model.



                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                 16
4.3 PV-Battery System Simulation Circuit

                                                                                                                                                                                  D1
                             Solar cell model
                             with 24hr. solar                                                                                                                                     DMOD
                                                                                                                                                                                                       Voch
                              power data.                                                                                                                                                              7.29Vdc

                                         pv                                                                                                                                                        0
                                                    D2
                                                                                                                                                                           batt
                                                    DMOD
 +       U4   +       U3      +       U2                                                                                                                           C1                                         0
                                      BP365TS_24H_TS3600                                                Low-Voltage Shutdown Circuit                               0.1n                           U1




                                                                                                                                                                                   PLUS

                                                                                                                                                                                          MINUS
                                                                                                                                                                                                  MSE-100-6

                                                           VON = 0.7                                                                                           0                                  TSCALE = 3600
                                                                                                 E1                                                                                               SOC1 = 0.7
                                                           RON = 10m                    Ronoff   EVALUE
     0            0               0                        ROFF = 10MEG                                                                      Ronoff1
                                                                                Lctrl                                               batt1
                                                               +   +                             OUT+    IN+
                                                           -       -                             OUT-    IN-
                                                                                  Conoff                          dchth                                                           SOC1 value is initial
                                                           S2                     1n
                                                                       0                                              OUT+    IN+                                                  State Of Charge of
                                                           S                      IC = 5                                                       Conoff1
                                                                                                                      OUT-    IN-
                                                           PARAMETERS:                                                E2                                                          the battery, is set as
                                                           Lopen = 5.55                                               EVALUE
                                                                                                                                                                                   70% of full voltage.
                                                           Lclose = 6.35                                                                      0


                                                                                                                                            DC/DC Converter                  60W Load
                           Lopen value is load                                                                                                                            (3.3Vx18.181A).
                            shutdown voltage.                                                                                       PARAMETERS:
                                                                                                                                    n=1                                                             out_dc
                           Lclose value is load                            IN                                                                            OUT
                            reconnect voltage                                   G1                                      Iomax
                                                                                                                                    E3                                                                        I1
                                                                                IN+       OUT+           IN+    OUT+
                                                                                                                OUT-
                                                                                                                                    IN+  OUT+
                                                                                                                                         OUT-
                                                                                                                                                                                  60W                         18.181A
                                                                                IN-  OUT-                IN-                        IN-
                                                                                GVALUE                   ecal_Iomax                 EVALUE
                                                                                                         EVALUE           0


                                                                                                                                                                                                          0


                                                           0                                                    Simulation at 100W load, change I1 from 18.181A to 30.303A



                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                                                                                            17
4.3.1 Simulation Result (SOC1=100, IL=18.18A or 60W load)

                                  20A
PV generated current
                                  10A

                                   0A
                                            I(pv)                                  PV module charge the battery

         1               2        15A
                 7.0V
Battery voltage                    5A
                 6.0V        SEL>>
Battery current               -15A
                                        1      V(batt)     2    I(U1:PLUS)
                                 100V

Battery SOC                       50V   SOC1=100%

                                   0V
                                            V(X_U1.1)*100
                  5.0V            30A
             1               2
DC output voltage                 20A
                  2.5V
DC/DC input current                >>
                    0V             0A
                                  0.1s                 4.0s                8.0s              12.0s            16.0s       20.0s   24.0s
                                      1        V(out_dc) 2         I(IN)          Charging
                                                                                  time       Time




         •         Run to time: 24s (24hours in real world)
         •         Step size: 0.01s



                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                   18
4.3.2 Simulation Result (SOC1=70, IL=18.18A or 60W load)

                                  20A
PV generated current
                                  10A

                                   0A
                                            I(pv)                                     PV module charge the battery
                                                          V=Lopen
                 7.0V
         1               2        20A               (6.9550,5.5528)
Battery voltage
                 6.0V                                                                    V=Lclose
Battery current              SEL>>                                                 (9.584,6.3500)
                 5.0V         -20A
                                        1      V(batt)     2    I(U1:PLUS)
                                 100V
                                              (100.000m,69.972)
                                                                                                           Fully charged,
Battery SOC                       50V                                                                      stop charging
                                             SOC1=70%
                                   0V
                                            V(X_U1.1)*100
                  5.0V            30A                                         Shutdown
             1               2
DC output voltage                 20A
                  2.5V
DC/DC input current                >>                                                    Reconnect
                    0V             0A
                                  0.1s                4.0s                  8.0s            12.0s            16.0s          20.0s   24.0s
                                      1        V(out_dc) 2          I(IN)
                                                                                   Charging Time
                                                                                   time



         •         Run to time: 24s (24hours in real world)
                                                                                               •     .Options ITL4=30
         •         Step size: 0.01s



                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                     19
4.3.3 Simulation Result (SOC1=30, IL=18.18A or 60W load)

                                  20A
PV generated current
                                  10A

                                   0A
                                            I(pv)                                    PV module charge the battery
                 7.0V
         1               2        20A
Battery voltage                         (2.4428,5.5551)
                 6.0V                                                                   V=Lclose
Battery current              SEL>>                                             (9.1927,6.3500)
                                                           V=Lopen
                 5.0V         -20A
                                        1      V(batt)     2     I(U1:PLUS)
                                 100V

                                            (100.000m,30.192)                                            Fully charged,
Battery SOC                       50V                                                                    stop charging
                                                       SOC1=30
                                   0V
                                            V(X_U1.1)*100
                  5.0V            30A
             1               2
DC output voltage                 20A
                                                          Shutdown
                  2.5V                                                               Reconnect
DC/DC input current
                                   >>
                    0V             0A
                                  0.1s                4.0s                   8.0s         12.0s             16.0s         20.0s   24.0s
                                      1        V(out_dc) 2           I(IN)          Charging time
                                                                                           Time




         •         Run to time: 24s (24hours in real world)
         •         Step size: 0.01s



                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                   20
4.3.4 Simulation Result (SOC1=10, IL=18.18A or 60W load)

                                  20A
PV generated current
                                  10A

                                   0A
                                            I(pv)                                     PV module charge the battery
                                                      V=Lopen
                 7.0V
         1               2        20A
Battery voltage                             (1.1208,5.5500)
                 6.0V
Battery current                                                            V=Lclose     (9.4924,6.3500)
                             SEL>>
                 5.0V         -20A
                                        1      V(batt)     2    I(U1:PLUS)
                                 100V
                                             SOC1=10
Battery SOC                       50V                                                                    Fully charged,
                                              (100.000u,10.999)
                                                                                                         stop charging
                                   0V
                                            V(X_U1.1)*100
                  5.0V            30A
             1               2                      Shutdown
DC output voltage                 20A
                  2.5V                                                                    Reconnect
DC/DC input current
                                   >>
                    0V             0A
                                      0s                4s                 8s                12s              16s         20s   24s
                                       1       V(out_dc) 2         I(IN)              Charging time
                                                                                            Time




         •         Run to time: 24s (24hours in real world)
         •         Step size: 0.01s



                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010               21
4.3.5 Simulation Result (SOC1=100, IL=30.30A or 100W load)

                                  20A
PV generated current
                                  10A

                                   0A
                                            I(pv)                                        PV module charge the battery
                                                                 V=Lclose
                 7.0V
         1               2        20A
Battery voltage                             (4.8471,5.5500)
                                                                                                                        (19.118,5.5500)
                 6.0V
Battery current                                                                         (7.7024,6.3500)
                             SEL>>
                                                                  V=Lopen
                 5.0V         -20A
                                        1      V(batt)     2    I(U1:PLUS)                                                     V=Lopen
                                 100V
                                                     (10.000m,100.000)
Battery SOC                       50V
                                        SOC1=100
                                   0V
                                            V(X_U1.1)*100
                  5.0V            30A
             1               2                                                                                                 Shutdown
DC output voltage                 20A                             Shutdown
                  2.5V
DC/DC input current                >>                                              Reconnect
                    0V             0A
                                      0s                4s                   8s                12s               16s         20s          24s
                                       1       V(out_dc) 2         I(IN)
                                                                                  Charging
                                                                                  time         Time




         •         Run to time: 24s (24hours in real world)
                                                                                                 •     .Options ITL4=30
         •         Step size: 0.01s



                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                         22
4.4 Simulation Result (Example of Conclusion)
The simulation start from midnight(time=0). The system supplies DC load 60W.
•   If initial SOC is 100%,
      – this system will never shutdown.
•   If initial SOC is 70%,
      – this system will shutdown after 6.955 hours (about 6:57AM.).
      – system load will reconnect again at 9:35AM (Morning).
      – With the PV Panel generated current profile, battery will fully charged in about 4.36 hours.
•   If initial SOC is 30%,
      – this system will shutdown after 2.443 hours (about 2:27AM.).
      – system load will reconnect again at 9:12AM (Morning).
      – With the PV Panel generated current profile, battery will fully charged in about 4.20 hours.
•   If initial SOC is 10%,
      – this system will shutdown after 1.121 hours (about 1:07AM.).
      – this system will reconnect again at 9:30AM (Morning).
•   With the PV Panel generated current profile, battery will fully charged in about 4.14 hours.
The simulation start from midnight(time=0). The system supplies DC load 100W.
•   If initial SOC is 100%,
      – this system will shutdown after 4.847 hours (about 4:51AM.).
      – system load will reconnect again at 7:42AM (Morning).
      – this system will shutdown again at 7:07PM (Night).

                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2010         23
Simulations index



 Simulations                                                                                 Folder name

 1.   PV Lead-Acid Battery Charger Circuit............................................       charge-sol

 2.   Constant Current PV Lead-Acid Battery Charger Circuit...............                   charge-sol-const

 3.   PV-Battery System Simulation Circuit (SOC1=100, 60W).............                      sol_24h_soc100_60W

 4.   PV-Battery System Simulation Circuit (SOC1=70, 60W)...............                     sol_24h_soc70_60W

 5.   PV-Battery System Simulation Circuit (SOC1=30, 60W)...............                     sol_24h_soc30_60W

 6.   PV-Battery System Simulation Circuit (SOC1=10, 60W)...............                     sol_24h_soc10_60W

 7.   PV-Battery System Simulation Circuit (SOC1=100, 100W)...........                       sol_24h_soc100_100W




                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2010                   24

Contenu connexe

Tendances

鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)spicepark
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABTsuyoshi Horigome
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelTsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) Tsuyoshi Horigome
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルTsuyoshi Horigome
 
ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)Tsuyoshi Horigome
 
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...Tsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)Tsuyoshi Horigome
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)Tsuyoshi Horigome
 
3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)Tsuyoshi Horigome
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Tsuyoshi Horigome
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABTsuyoshi Horigome
 
Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Tsuyoshi Horigome
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)Tsuyoshi Horigome
 

Tendances (16)

鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)鉛蓄電池のシンプルモデル(LTspice)
鉛蓄電池のシンプルモデル(LTspice)
 
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLABLithium Ion Capacitor Simplified Simulink Model using MATLAB
Lithium Ion Capacitor Simplified Simulink Model using MATLAB
 
Device Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink ModelDevice Modeling of Li-Ion battery MATLAB/Simulink Model
Device Modeling of Li-Ion battery MATLAB/Simulink Model
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice) ニッケル水素電池のシンプルモデル(PSpice)
ニッケル水素電池のシンプルモデル(PSpice)
 
リチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデルリチウムイオン電池のスパイスモデル
リチウムイオン電池のスパイスモデル
 
ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)ニッケル水素電池のシンプルモデル(LTspice)
ニッケル水素電池のシンプルモデル(LTspice)
 
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
How to Design of Power Management of Hybrid Circuit(Li-Ion Battery and Li-Ion...
 
SPICE Model of MEC201-10P
SPICE Model of MEC201-10PSPICE Model of MEC201-10P
SPICE Model of MEC201-10P
 
リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)リチウムイオンキャパシタのシンプルモデル(LTspice)
リチウムイオンキャパシタのシンプルモデル(LTspice)
 
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
LiFePO4 Battery Simplified SPICE Behavioral Model(LTspice Version)
 
3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)3-Phase AC Motor Model(PSpice Model)
3-Phase AC Motor Model(PSpice Model)
 
Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)Concept of modeling of Lithium ion batteries (v1)
Concept of modeling of Lithium ion batteries (v1)
 
Lithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLABLithium Ion Battery Simplified Simulink Model using MATLAB
Lithium Ion Battery Simplified Simulink Model using MATLAB
 
Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)Simple mode of Li-ion battery (LTspice)
Simple mode of Li-ion battery (LTspice)
 
リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)リチウムイオンキャパシタのシンプルモデル(PSpice)
リチウムイオンキャパシタのシンプルモデル(PSpice)
 

En vedette

Market Research Report : Lead acid battery market in india 2013
Market Research Report : Lead acid battery market in india 2013Market Research Report : Lead acid battery market in india 2013
Market Research Report : Lead acid battery market in india 2013Netscribes, Inc.
 
Lead acid -battery_recycling_1-15_ih
Lead acid -battery_recycling_1-15_ihLead acid -battery_recycling_1-15_ih
Lead acid -battery_recycling_1-15_ihivahorvatic
 
Lead acid battery recycling. Environ. control
 Lead acid battery recycling. Environ. control Lead acid battery recycling. Environ. control
Lead acid battery recycling. Environ. controlGamal Abdel Hamid
 
Exide industries
Exide industriesExide industries
Exide industriesDeepak Jha
 
Market Research on Exide Industries Limited by jayshah316
Market Research on Exide Industries Limited by jayshah316Market Research on Exide Industries Limited by jayshah316
Market Research on Exide Industries Limited by jayshah316Jay Shah
 
Project report for exide
Project report for exideProject report for exide
Project report for exideBIPLAB DIKSHIT
 
Auto battery industry
Auto battery industryAuto battery industry
Auto battery industryHari Krishnan
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpicespicepark
 
Presentation on battery
Presentation on batteryPresentation on battery
Presentation on batterySheikh Aves
 
Batteries and Electrochemical Processes
Batteries and Electrochemical ProcessesBatteries and Electrochemical Processes
Batteries and Electrochemical ProcessesEngr Muhammad Imran
 
Batteries & charging system
Batteries & charging systemBatteries & charging system
Batteries & charging systemsyahmizan
 
Characteristics Of Cell And Lead Acid Battery
Characteristics Of Cell And Lead Acid BatteryCharacteristics Of Cell And Lead Acid Battery
Characteristics Of Cell And Lead Acid BatteryDeepakreddy suram
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011photomatt
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkVolker Hirsch
 

En vedette (16)

PV Lead-Acid Battery System Simulation
PV Lead-Acid Battery System SimulationPV Lead-Acid Battery System Simulation
PV Lead-Acid Battery System Simulation
 
Market Research Report : Lead acid battery market in india 2013
Market Research Report : Lead acid battery market in india 2013Market Research Report : Lead acid battery market in india 2013
Market Research Report : Lead acid battery market in india 2013
 
Lead acid -battery_recycling_1-15_ih
Lead acid -battery_recycling_1-15_ihLead acid -battery_recycling_1-15_ih
Lead acid -battery_recycling_1-15_ih
 
E Waste Final
E Waste FinalE Waste Final
E Waste Final
 
Lead acid battery recycling. Environ. control
 Lead acid battery recycling. Environ. control Lead acid battery recycling. Environ. control
Lead acid battery recycling. Environ. control
 
Exide industries
Exide industriesExide industries
Exide industries
 
Market Research on Exide Industries Limited by jayshah316
Market Research on Exide Industries Limited by jayshah316Market Research on Exide Industries Limited by jayshah316
Market Research on Exide Industries Limited by jayshah316
 
Project report for exide
Project report for exideProject report for exide
Project report for exide
 
Auto battery industry
Auto battery industryAuto battery industry
Auto battery industry
 
Simple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpiceSimple Model of Lead-Acid Battery Model using PSpice
Simple Model of Lead-Acid Battery Model using PSpice
 
Presentation on battery
Presentation on batteryPresentation on battery
Presentation on battery
 
Batteries and Electrochemical Processes
Batteries and Electrochemical ProcessesBatteries and Electrochemical Processes
Batteries and Electrochemical Processes
 
Batteries & charging system
Batteries & charging systemBatteries & charging system
Batteries & charging system
 
Characteristics Of Cell And Lead Acid Battery
Characteristics Of Cell And Lead Acid BatteryCharacteristics Of Cell And Lead Acid Battery
Characteristics Of Cell And Lead Acid Battery
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of Work
 

Similaire à PV Lead Acid Battery System Simulation

デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 Tsuyoshi Horigome
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)spicepark
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)spicepark
 
SPICE MODEL of MSE-100-6 in SPICE PARK
SPICE MODEL of MSE-100-6 in SPICE PARKSPICE MODEL of MSE-100-6 in SPICE PARK
SPICE MODEL of MSE-100-6 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKTsuyoshi Horigome
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーspicepark
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARKSPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKTsuyoshi Horigome
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料spicepark
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKTsuyoshi Horigome
 
Simple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspiceSimple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspicespicepark
 
SPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARKSPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARKTsuyoshi Horigome
 
PSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションPSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションTsuyoshi Horigome
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKTsuyoshi Horigome
 
YUASAの鉛蓄電池MSE-50-12のスパイスモデル
YUASAの鉛蓄電池MSE-50-12のスパイスモデルYUASAの鉛蓄電池MSE-50-12のスパイスモデル
YUASAの鉛蓄電池MSE-50-12のスパイスモデルTsuyoshi Horigome
 
ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルTsuyoshi Horigome
 

Similaire à PV Lead Acid Battery System Simulation (20)

Manual dcout web
Manual dcout webManual dcout web
Manual dcout web
 
Manual acout web
Manual acout webManual acout web
Manual acout web
 
デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書 デザインキット・PV Li-Ion Battery Systemの解説書
デザインキット・PV Li-Ion Battery Systemの解説書
 
PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)PV Ni-MH Battery System (Output is AC)
PV Ni-MH Battery System (Output is AC)
 
PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)PV Ni-MH Battery System (Output is DC)
PV Ni-MH Battery System (Output is DC)
 
SPICE MODEL of MSE-100-6 in SPICE PARK
SPICE MODEL of MSE-100-6 in SPICE PARKSPICE MODEL of MSE-100-6 in SPICE PARK
SPICE MODEL of MSE-100-6 in SPICE PARK
 
SPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARKSPICE MODEL of MSE-1000 in SPICE PARK
SPICE MODEL of MSE-1000 in SPICE PARK
 
リチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナーリチウムイオン電池シミュレーションセミナー
リチウムイオン電池シミュレーションセミナー
 
SPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARKSPICE MODEL of MSE-3000 in SPICE PARK
SPICE MODEL of MSE-3000 in SPICE PARK
 
SPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARKSPICE MODEL of MSE-150 in SPICE PARK
SPICE MODEL of MSE-150 in SPICE PARK
 
SPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARKSPICE MODEL of MSE-1500 in SPICE PARK
SPICE MODEL of MSE-1500 in SPICE PARK
 
SPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARKSPICE MODEL of MSE-500 in SPICE PARK
SPICE MODEL of MSE-500 in SPICE PARK
 
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
SPICEを活用した二次電池アプリケーション回路シミュレーションセミナー資料
 
SPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARKSPICE MODEL of MSE-2000 in SPICE PARK
SPICE MODEL of MSE-2000 in SPICE PARK
 
Simple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspiceSimple Model of Lead-Acid Battery Model using LTspice
Simple Model of Lead-Acid Battery Model using LTspice
 
SPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARKSPICE MODEL of MSE-200 in SPICE PARK
SPICE MODEL of MSE-200 in SPICE PARK
 
PSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーションPSpiceを活用した太陽光システムシミュレーション
PSpiceを活用した太陽光システムシミュレーション
 
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARKSPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
SPICE MODEL of CM600HA-24H (Professional+FWDS Model) in SPICE PARK
 
YUASAの鉛蓄電池MSE-50-12のスパイスモデル
YUASAの鉛蓄電池MSE-50-12のスパイスモデルYUASAの鉛蓄電池MSE-50-12のスパイスモデル
YUASAの鉛蓄電池MSE-50-12のスパイスモデル
 
ニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデルニッケル水素電池のスパイスモデル
ニッケル水素電池のスパイスモデル
 

Plus de Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

Plus de Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Dernier

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 

Dernier (20)

"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 

PV Lead Acid Battery System Simulation

  • 1. Design Kit PV Lead-Acid Battery System All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
  • 2. Contents Slide # 1. Lead-Acid Battery 1.1 Lead-Acid Battery Specification........................................................................... 3 1.2 Discharge Time Characteristics........................................................................... 4 1.3 Charge Time Characteristics................................................................................ 5 2. Solar Cells 2.1 Solar Cells Specification...................................................................................... 6 2.2 Output Characteristics vs. Incident Solar Radiation............................................. 7 3. Solar Cell Battery Charger......................................................................................... 8 3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit.............................. 9 3.2 PV Lead-Acid Battery Charger Circuit.................................................................. 10 3.3 Charging Time Characteristics vs. Weather Condition......................................... 11 3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant Current................................................................................................................. 12 3.5 Constant Current PV Lead-Acid Battery Charger Circuit...................................... 13 3.6 Charging Time Characteristics vs. Weather Condition + Constant Current.......... 14 4. Simulation PV Lead-Acid Battery System in 24hr. 4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr.............................. 15 4.2 Short-Circuit Current vs. Time (24hr.).................................................................. 16 4.3 PV-Battery System Simulation Circuit.................................................................. 17 4.4 PV-Battery System Simulation Result.................................................................. 18-23 Simulations index............................................................................................................ 24 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
  • 3. 1.1 Lead-Acid battery Specification GS YUASA’s Lead-Acid : MSE-100-6 • Nominal Voltage................ 6.0 [Vdc] • Capacity............................ 100[Ah]@C10, 65[Ah]@C1 • Rated Charge.................... 0.1C10A • Input Voltage...................... 6.69 [Vdc] • Charging time..................... 24 [hours] @0.1C10A All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
  • 4. 1.2 Discharge Time Characteristics 6.6V PARAMETERS: Idch = {Rate*CxAh} CxAh = 100 0.25C (25A) Rate = 0.1 Hi OUT+ IN+ 6.0V OUT- IN- 0.1C (10A) U1 PLUS G1 R3 C1 GVALUE MINUS limit(V(%IN+, %IN-)/1m,0,Idch) 1G 10n MSE-100-6 TSCALE = 3600 NS = 1 SOC1 = 1 5.4V TSCALE=3600 1C (100A) 0 0 0 0 means time Scale (Simulation time : Battery Model Parameters Real time) is 1:3600 0.6C (60A) NS (number of batteries in unit) = 1 cell 4.8V C (capacity) = 100[Ah]@C10 SOC1 (initial state of charge) = “1” (100%) TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Discharge Rate : 0.1C(10A), 0.25C(25A) , 0.6C(60A), and 1C(100A) 4.2V 10ms 100ms 1.0s 10s 100s V(HI) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4
  • 5. 1.3 Charge Time Characteristics SOC [%] Vbatt [V] C10A 140V 7.8V 210mA PARAMETERS: 1 2 3 CxAh = 100 Ich = {0.1*CxAh} 120V 7.5V 180mA Hi IN- OUT- IN+ OUT+ U1 G1 GVALUE PLUS 100V 7.2V 150mA R3 C1 limit(V(%IN+, %IN-)/0.1m,0,Ich) MINUS 10n 1G V2 MSE-100-6 6.69 TSCALE = 3600 80V 6.9V 120mA NS = 1 SOC1 = 0 60V 6.6V 90mA 0 0 0 0 Battery Model Parameters 40V 6.3V 60mA NS (number of batteries in series) = 1 cell C (capacity) = 100[Ah]@C10 SOC1 (initial state of charge) = “1” (100%) 20V 6.0V 30mA TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h >> 0V 5.7V 0A 0s 4s 8s 12s 16s 20s 24s Charging Time 1 V(X_U1.1)*100 2 V(HI) 3 I(G1)/100 Time Input Voltage = 6.69 Vdc Input Current = 10 A @0.1C10 All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5
  • 6. 2.1 Solar Cells Specification BP Solar’s photovoltaic module : BP365TS 456mm • Maximum power (Pmax)..............65[W] • Voltage at Pmax (Vmp)...............8.7[V] • Current at Pmax (Imp)................7.5[A] • Short-circuit current (Isc)............8.1[A] 1513mm • Open-circuit voltage(Voc)...........11.0[V] All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6
  • 7. 2.2 Output Characteristics vs. Incident Solar Radiation BP365TS Output Characteristics vs. Incident Solar Radiation 10A SOL=1 8A Current (A) 6A SOL=0.5 4A + U2 2A SOL=0.16 BP365TS SOL = 1 0A I(sense) BP365TS 100W 80W Power (W) SOL=1 60W Parameter, SOL is added as 40W normalized incident radiation, SOL=0.5 where SOL=1 for AM1.5 20W conditions SOL=0.16 SEL>> 0W 0V 2V 4V 6V 8V 10V 12V 14V I(sense)* V(sense:+) V_V1 Voltage (V) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7
  • 8. 3. Solar Cell Battery Charger • Solar Cell charges the Lead-Acid Battery (MSE-100-6) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage (Vmp) nears the battery charging voltage. • MSE-100-6 – Charging time is approximately 24 hours with charging rate 0.1C or 10A – Voltage during charging with 0.1C is between 5.93 to 6.69 V 140V 7.8V 210mA 1 2 3 0.1C or 10A 120V 7.5V 180mA 100V 7.2V 150mA 80V 6.9V 120mA 6.69 V 60V 6.6V 90mA 40V 6.3V 60mA 20V 6.0V 5.93 V >> 0V 5.7V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(X_U1.1)*100 2 V(HI) 3 I(G1)/100 Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8
  • 9. 3.1 Concept of Simulation PV Lead-Acid Battery Charger Circuit Input voltage + VF(D1) 6.69V+0.6V=7.29V Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 7.29V Clamp Circuit Photovoltaic Lead-Acid Module Battery BP 365TS (BP Solar)*3panels MSE-100-6 (GS YUASA) Vmp(system)=Vmp(panel)=8.7V DC6.0V Imp=22.5A (7.5A3) 100[Ah]@C10, 65[Ah]@C1 Pmax=195W (65W  3) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9
  • 10. 3.2 PV Lead-Acid Battery Charger Circuit D1 DMOD Voch 7.29Vdc pv 0 pv Hi PARAMETERS: sol = 1 C1 0 pv pv pv 1n U1 PLUS MINUS MSE-100-6 + U2 + U3 + U4 BP365TS BP365TS BP365TS 0 SOL = {sol} SOL = {sol} SOL = {sol} TSCALE = 3600 BP365TS BP365TS BP365TS SOC1 = 0 0 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10
  • 11. 3.3 Charging Time Characteristics vs. Weather Condition 100V 80V 60V 40V 20V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 4s 8s 12s 16s 20s 24s V(X_U1.1)*100 Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11
  • 12. 3.4 Concept of Simulation PV Lead-Acid Battery Charger Circuit + Constant Current Input voltage + VF(D1) 6.69V+0.6V=7.29V Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL 7.29V Clamp Circuit Constant Photovoltaic Current Lead-Acid Module Control Battery Circuit BP 365TS (BP Solar)*3panels Icharge=0.1C (10A) MSE-100-6 (GS YUASA) Vmp(system)=Vmp(panel)=8.7V DC6.0V Imp=22.5A (7.5A3) 100[Ah]@C10, 65[Ah]@C1 Pmax=195W (65W  3) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12
  • 13. 3.5 Constant Current PV Lead-Acid Battery Charger Circuit PARAMETERS: CxAh = 100 D1 Ich = {0.1*CxAh} DMOD Voch 7.29Vdc pv 0 pv Hi PARAMETERS: OUT+ OUT- sol = 1 C1 0 pv pv pv 1n U1 PLUS MINUS MSE-100-6 IN+ IN- + U2 + U3 + U4 BP365TS BP365TS BP365TS 0 SOL = {sol} SOL = {sol} SOL = {sol} G1 TSCALE = 3600 BP365TS BP365TS BP365TS GVALUE SOC1 = 0 0 0 0 Vmp(system)=Vmp(panel)=8.7V Imp=22.5A Pmax=195W • Input the battery capacity (Ah) and charging current rate (e.g. 0.1*CxAh) in the • “PARAMETERS: CxAh = 100 and rate = 0.1 ” to set the charging current. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13
  • 14. 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) 100V 80V 60V 40V 20V sol = 1.00 sol = 0.50 sol = 0.16 0V 0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s 22s 24s V(X_U1.1)*100 Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.1), battery can be fully charged in about 9.364 hour. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14
  • 15. 4.1 Concept of Simulation PV Lead-Acid Battery System in 24hr. Input voltage + VF(D1) 6.69V+0.6V=7.29V Over Voltage The model contains 24hr. Protection Circuit solar power data (example). 7.29V Clamp Circuit Photovoltaic Lead-Acid Module Battery Low-Voltage MSE-100-6 (GS YUASA) BP 365TS (BP Solar)*3panels Shutdown DC6.0V Vmp(system)=Vmp(panel)=8.7V Circuit 100[Ah]@C10, 65[Ah]@C1 Imp=22.5A (7.5A3) Pmax=195W (65W  3) Vopen= (V) Vclose= (V) DC/DC DC Load Converter VIN=4.5~9.0V VLOAD = 3.3V VOUT=3.3V ILOAD  18A All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15
  • 16. 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 25A 24hr. solar power data (example). 20A pv 15A pv pv pv + U2 + U3 + U4 10A BP365TS BP365TS BP365TS 5A 0 0 0 0A BP365TS_24H_TS3600 0s 4s 8s 12s 16s 20s 24s I(sense) Time • Short-circuit current vs. time characteristics of photovoltaic module BP365TS for 24hours as the solar power profile (example) is included to the model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16
  • 17. 4.3 PV-Battery System Simulation Circuit D1 Solar cell model with 24hr. solar DMOD Voch power data. 7.29Vdc pv 0 D2 batt DMOD + U4 + U3 + U2 C1 0 BP365TS_24H_TS3600 Low-Voltage Shutdown Circuit 0.1n U1 PLUS MINUS MSE-100-6 VON = 0.7 0 TSCALE = 3600 E1 SOC1 = 0.7 RON = 10m Ronoff EVALUE 0 0 0 ROFF = 10MEG Ronoff1 Lctrl batt1 + + OUT+ IN+ - - OUT- IN- Conoff dchth SOC1 value is initial S2 1n 0 OUT+ IN+ State Of Charge of S IC = 5 Conoff1 OUT- IN- PARAMETERS: E2 the battery, is set as Lopen = 5.55 EVALUE 70% of full voltage. Lclose = 6.35 0 DC/DC Converter 60W Load Lopen value is load (3.3Vx18.181A). shutdown voltage. PARAMETERS: n=1 out_dc Lclose value is load IN OUT reconnect voltage G1 Iomax E3 I1 IN+ OUT+ IN+ OUT+ OUT- IN+ OUT+ OUT- 60W 18.181A IN- OUT- IN- IN- GVALUE ecal_Iomax EVALUE EVALUE 0 0 0  Simulation at 100W load, change I1 from 18.181A to 30.303A All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17
  • 18. 4.3.1 Simulation Result (SOC1=100, IL=18.18A or 60W load) 20A PV generated current 10A 0A I(pv) PV module charge the battery 1 2 15A 7.0V Battery voltage 5A 6.0V SEL>> Battery current -15A 1 V(batt) 2 I(U1:PLUS) 100V Battery SOC 50V SOC1=100% 0V V(X_U1.1)*100 5.0V 30A 1 2 DC output voltage 20A 2.5V DC/DC input current >> 0V 0A 0.1s 4.0s 8.0s 12.0s 16.0s 20.0s 24.0s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18
  • 19. 4.3.2 Simulation Result (SOC1=70, IL=18.18A or 60W load) 20A PV generated current 10A 0A I(pv) PV module charge the battery V=Lopen 7.0V 1 2 20A (6.9550,5.5528) Battery voltage 6.0V V=Lclose Battery current SEL>> (9.584,6.3500) 5.0V -20A 1 V(batt) 2 I(U1:PLUS) 100V (100.000m,69.972) Fully charged, Battery SOC 50V stop charging SOC1=70% 0V V(X_U1.1)*100 5.0V 30A Shutdown 1 2 DC output voltage 20A 2.5V DC/DC input current >> Reconnect 0V 0A 0.1s 4.0s 8.0s 12.0s 16.0s 20.0s 24.0s 1 V(out_dc) 2 I(IN) Charging Time time • Run to time: 24s (24hours in real world) • .Options ITL4=30 • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19
  • 20. 4.3.3 Simulation Result (SOC1=30, IL=18.18A or 60W load) 20A PV generated current 10A 0A I(pv) PV module charge the battery 7.0V 1 2 20A Battery voltage (2.4428,5.5551) 6.0V V=Lclose Battery current SEL>> (9.1927,6.3500) V=Lopen 5.0V -20A 1 V(batt) 2 I(U1:PLUS) 100V (100.000m,30.192) Fully charged, Battery SOC 50V stop charging SOC1=30 0V V(X_U1.1)*100 5.0V 30A 1 2 DC output voltage 20A Shutdown 2.5V Reconnect DC/DC input current >> 0V 0A 0.1s 4.0s 8.0s 12.0s 16.0s 20.0s 24.0s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 20
  • 21. 4.3.4 Simulation Result (SOC1=10, IL=18.18A or 60W load) 20A PV generated current 10A 0A I(pv) PV module charge the battery V=Lopen 7.0V 1 2 20A Battery voltage (1.1208,5.5500) 6.0V Battery current V=Lclose (9.4924,6.3500) SEL>> 5.0V -20A 1 V(batt) 2 I(U1:PLUS) 100V SOC1=10 Battery SOC 50V Fully charged, (100.000u,10.999) stop charging 0V V(X_U1.1)*100 5.0V 30A 1 2 Shutdown DC output voltage 20A 2.5V Reconnect DC/DC input current >> 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 21
  • 22. 4.3.5 Simulation Result (SOC1=100, IL=30.30A or 100W load) 20A PV generated current 10A 0A I(pv) PV module charge the battery V=Lclose 7.0V 1 2 20A Battery voltage (4.8471,5.5500) (19.118,5.5500) 6.0V Battery current (7.7024,6.3500) SEL>> V=Lopen 5.0V -20A 1 V(batt) 2 I(U1:PLUS) V=Lopen 100V (10.000m,100.000) Battery SOC 50V SOC1=100 0V V(X_U1.1)*100 5.0V 30A 1 2 Shutdown DC output voltage 20A Shutdown 2.5V DC/DC input current >> Reconnect 0V 0A 0s 4s 8s 12s 16s 20s 24s 1 V(out_dc) 2 I(IN) Charging time Time • Run to time: 24s (24hours in real world) • .Options ITL4=30 • Step size: 0.01s All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 22
  • 23. 4.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 60W. • If initial SOC is 100%, – this system will never shutdown. • If initial SOC is 70%, – this system will shutdown after 6.955 hours (about 6:57AM.). – system load will reconnect again at 9:35AM (Morning). – With the PV Panel generated current profile, battery will fully charged in about 4.36 hours. • If initial SOC is 30%, – this system will shutdown after 2.443 hours (about 2:27AM.). – system load will reconnect again at 9:12AM (Morning). – With the PV Panel generated current profile, battery will fully charged in about 4.20 hours. • If initial SOC is 10%, – this system will shutdown after 1.121 hours (about 1:07AM.). – this system will reconnect again at 9:30AM (Morning). • With the PV Panel generated current profile, battery will fully charged in about 4.14 hours. The simulation start from midnight(time=0). The system supplies DC load 100W. • If initial SOC is 100%, – this system will shutdown after 4.847 hours (about 4:51AM.). – system load will reconnect again at 7:42AM (Morning). – this system will shutdown again at 7:07PM (Night). All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 23
  • 24. Simulations index Simulations Folder name 1. PV Lead-Acid Battery Charger Circuit............................................ charge-sol 2. Constant Current PV Lead-Acid Battery Charger Circuit............... charge-sol-const 3. PV-Battery System Simulation Circuit (SOC1=100, 60W)............. sol_24h_soc100_60W 4. PV-Battery System Simulation Circuit (SOC1=70, 60W)............... sol_24h_soc70_60W 5. PV-Battery System Simulation Circuit (SOC1=30, 60W)............... sol_24h_soc30_60W 6. PV-Battery System Simulation Circuit (SOC1=10, 60W)............... sol_24h_soc10_60W 7. PV-Battery System Simulation Circuit (SOC1=100, 100W)........... sol_24h_soc100_100W All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 24