SlideShare une entreprise Scribd logo
1  sur  16
Télécharger pour lire hors ligne
 




                        ETABS MANUAL
                                                                                         	
  

                                                                                         	
  

                 Part-­‐II:	
  Model	
  Analysis	
  &	
  Design	
  of	
  Slabs	
  	
  
                                                  	
  
                               According	
  to	
  Eurocode	
  2




AUTHOR:	
  VALENTINOS	
  NEOPHYTOU	
  BEng	
  (Hons),	
  MSc	
  



REVISION	
  1:	
  April,	
  2013
 



ABOUT	
  THIS	
  DOCUMENT	
  

	
  

This	
  document	
  presents	
  an	
  example	
  of	
  analysis	
  design	
  of	
  slab	
  using	
  ETABS.	
  
This	
   example	
   examines	
   a	
   simple	
   single	
   story	
   building,	
   which	
   is	
   regular	
   in	
   plan	
  
and	
   elevation.	
   It	
   is	
   examining	
   and	
   compares	
   the	
   calculated	
   ultimate	
   moment	
  
from	
   ETABS	
   with	
   hand	
   calculation.	
   	
   Moment	
   coefficients	
   were	
   used	
   to	
  
calculate	
   the	
   ultimate	
   moment.	
   However	
   it	
   is	
   good	
   practice	
   that	
   such	
   hand	
  
analysis	
   methods	
   are	
   used	
   to	
   verify	
   the	
   output	
   of	
   more	
   sophisticated	
  
methods.	
  

Also,	
   this	
   document	
   contains	
   simple	
   procedure	
   (step-­‐by-­‐step)	
   of	
   how	
   to	
  
design	
  solid	
  slab	
  according	
  to	
  Eurocode	
  2.	
  The	
  process	
  of	
  designing	
  elements	
  
will	
  not	
  be	
  revolutionised	
  as	
  a	
  result	
  of	
  using	
  Eurocode	
  2.	
  

Due	
   to	
   time	
   constraints	
   and	
   knowledge,	
   I	
   may	
   not	
   be	
   able	
   to	
   address	
   the	
  
whole	
  issues.	
  

Please	
   send	
   me	
   your	
   suggestions	
   for	
   improvement.	
   Anyone	
   interested	
   to	
  
share	
  his/her	
  knowledge	
  or	
  willing	
  to	
  contribute	
  either	
  totally	
  a	
  new	
  section	
  
about	
  ETABS	
  or	
  within	
  this	
  section	
  is	
  encouraged.	
  




For	
  further	
  details:	
  

	
  

My	
  LinkedIn	
  Profile:	
  
http://www.linkedin.com/profile/view?id=125833097&trk=hb_tab_pro_top	
  

	
  

Email:	
  valentinos_n@hotmail.com	
  



Slideshare	
  Account: http://www.slideshare.net/ValentinosNeophytou	
  




	
                                                                                                                             2	
  
 


                                              Table of Contents


1.0 Slab modeling .......................................................................................................... 4

1.1 Assumptions............................................................................................................. 4

1.2 Initial step before run the analysis ........................................................................... 4

2.0 Calculation of ultimate moments ............................................................................. 5

3.0 Design of slab according to Eurocode 2 .................................................................. 7

4.0 Example 1: Analysis and design of RC slab using ETABS................................... 11

4.1 Ultimate moments results ...................................................................................... 12

4.1.1 Maximum hogging and Sagging moment at Longitudinal direction Ly............. 12

4.1.2 Maximum hogging and Sagging moment at Transverse direction Lx ................ 12

4.1.3 Hand calculation results ...................................................................................... 13

4.1.4 Hand calculation Results..................................................................................... 14




	
                                                                                                                          3	
  
 


1.0 Slab modeling


1.1 Assumptions

In preparing this document a number of assumptions have been made to avoid over
complication; the assumptions and their implications are as follows.


       a) Element type                  :       SHELL

       b) Meshing (Sizing of element) :         Size= min{Lmax/10 or l000mm}

       c) Element shape                 :       Ratio= Lmax/Lmin = 1 ≤ ratio ≤ 2

       d) Acceptable error              :       20%


1.2 Initial step before run the analysis


       a) Sketch out by hand the expected results before carrying out the analysis.

       b) Calculate by hand the total applied loads and compare these with the sum of
          the reactions from the model results.




	
                                                                                      4	
  
 
               2.0 Calculation of ultimate moments
                                                   Maximum moments of two-way slabs



                  	
  
                  	
                                      If ly/lx < 2: Design as a Two-way slab
                                                          If lx/ly > 2: Deisgn as a One-way slab
                  	
  
                  	
                                      Note:	
  lx is the longer span
                  	
                                                ly is the shorter span	
  
                  	
                                      	
  
                  	
  
                  	
  
                  	
  
                  	
  
                  	
  
                  	
  
                  	
                      Maximum moment of Simply supported (pinned) two-way slab
                  	
  
                  	
  
                  	
              	
                                                        Bending moment coefficient for simply supported slab
    Msx= asxnlx2 in                n: is the ultimate load m2
                  	
  
    direction of span lx
               2 	
  
                                                                                            ly/lx 1.0    1.1  1.2    1.3         1.4    1.5 1.75 2.0
    Msy= asynlx in                 n: is the ultimate load m2                               asx 0.062 0.074 0.084 0.093 0.099 0.104 0.113 0.118
                  	
  
    direction of span ly                                                                    asy 0.062 0.061 0.059 0.055 0.051 0.046 0.037 0.029
	
                	
  
                  	
  
                  	
                    Maximum moment of Restrained supported (fixed) two-way slab                         	
  
                  	
  
                  	
  
                  	
                                                            	
  
                  	
                             Msx= asxnlx2 in                 n: is the ultimate load m2
                  	
                             direction of span lx
                  	
                             Msy= asynlx2 in                 n: is the ultimate load m2
                                                 direction of span ly
                  	
  
                                             	
  
                  	
  
                  	
  
                  	
  
                               Bending moment coefficient for two way rectangular slab supported by beams
                  	
                                              (Manual of EC2 ,Table 5.3)
                  	
  
                  	
  
          Type of	
   panel and moment                        Short span coefficient for value of Ly/Lx           Long-span coefficients for all
                       considered                        1.0        1.25        1.5          1.75        2.0              values of Ly/Lx
                  	
  
                                                                           Interior panels
                  	
  
     Negative moment at continuous edge                0.031 0.044            0.053         0.059       0.063                       0.032
                  	
  
     Positive moment at midspan                        0.024 0.034            0.040         0.044       0.048                       0.024
                  	
                                             One short edge discontinuous
                  	
  
     Negative moment at continuous edge                0.039 0.050            0.058         0.063       0.067                       0.037
     Positive moment at midspan
                  	
                                   0.029 0.038            0.043         0.047       0.050                       0.028
                                                                  One long edge discontinuous
                  	
  
     Negative moment at continuous edge                0.039 0.059            0.073         0.083       0.089                       0.037
                  	
  
     Positive moment at midspan                        0.030 0.045            0.055         0.062       0.067                       0.028
                  	
                                           Two adjacent edges discontinuous
 Negative moment at continuous edge            0.047     0.066      0.078       0.087         0.093                       0.045
 Positive moment at midspan                    0.036     0.049      0.059       0.065         0.070                       0.034

               	
                                                                                                                 5	
  
 
                 	
  
                 	
  
                                                   Maximum moments of one-way slabs
                 	
  
                 	
  
                 	
  
                 	
  
                                            If ly/lx < 2: Design as a Two-way slab
                 	
                         If lx/ly > 2: Deisgn as a One-way slab
                 	
  
                 	
                         Note: lx is the longer span
                 	
                               ly is the shorter span
                 	
                         	
  



       Maximum moment of Simply supported (pinned)                           Maximum moment of continuous supported one-
                    one-way slab                                                             way slab
               (Manual of EC2, Table 5.2)                                            (Manual of EC2 ,Table 5.2)
              L: is the effective span
                             	
                                                                        	
  
                             F: is the total ultimate                                       Uniformly distributed loads
     MEd= 0.086FL            load =1.35Gk+1.5Qk                                    End support condition             Moment
                             L: is the effective span                                End support support          MEd =-0.040FL
Note: Allowance has been made in the coefficients in                                       End span                MEd =0.075FL
Table 5.2 for 20% redistribution of moments.                                         Penultimate support          MEd= -0.086FL
                                                                                         Interior spans            MEd =0.063FL
	
                                                                                     Interior supports          MEd =-0.063FL
                                                                           F:	
  total design ultimate load on span
                                                                           L: is the effective span

                                                                           Note: Allowance has been made in the coefficients in
                                                                           Table 5.2 for 20% redistribution of moments.




                 	
                                                                                                6	
  
 
       3.0 Design of slab according to Eurocode 2
                                                                                 FLEXURAL DESIGN
                                                                                  (EN1992-1-1,cl. 6.1)

                                                           Determine design yield strength of reinforcement
                                                                                      𝑓!"
                                                                               𝑓!" =
                                                                                       𝛾!
                                                           	
  
                        Determine K from:
                                𝑀!"                                                                δ=1.0 for no redistribution
                        𝐾= !
                              𝑏𝑑 𝑓!"                                                               δ=0.85 for 15% redistribution
                        𝐾 ′ = 0.6𝛿 − 0.18𝛿 ! − 0.21                                                δ=0.7 for 30% redistribution
                        	
                                                                         	
  



       K<K′ (no compression reinforcement required)                                                               K>K′ (then compression reinforcement required –
                                                                                                                         not recommended for typical slab)

                                              !                                                                                               !
Obtain lever arm z: 𝑧 = !1 + √1 − 3.53𝐾! ≤ 0.95𝑑                                                           Obtain lever arm z: 𝑧 = !1 + √1 − 3.53𝐾 ′ ! ≤ 0.95𝑑
                                              !                                                                                               !
                                                                                                           	
  
	
  
                                                               Area of steel reinforcement required:
                                                           One way solid slab              Two way solid slab
                                	
  

                                               𝑀!"                                                                                                  𝑀!",!"
                               𝐴!.!"# =             	
                                                                                𝐴!".!"# =                   	
  
                                              𝑓!" 𝑧                                                                                                  𝑓!" 𝑧
                                                                                                                                                      𝑀!",!"
                 	
                                                                                                                     𝐴!".!"#   =             	
  
                                                                                                                                                       𝑓!" 𝑧
                                                                                                                              	
  
                                            For slabs, provide group of bars with area A s.prov per meter width
                                                                                                  Spacing of bars (mm)

                                               75                   100        125        150             175          200           225          250             275    300
                                       8      670                   503        402        335             287          251           223          201             183    168
                                       10    1047                   785        628        524             449          393           349          314             286    262
                Bar                    12    1508                   1131       905        754             646          565           503          452             411    377
              Diameter                 16    2681                   2011       1608       1340            1149         1005          894          804             731    670
               (mm)                    20    4189                   3142       2513       2094            1795         1571          1396         1257            1142   1047
                                       25    6545                   4909       3927       3272            2805         2454          2182         1963            1785   1636
                                       32    10723                  8042       6434       5362            4596         4021          3574         3217            2925   2681
                                                                  For beams, provide group of bars with area As. prov
                                                                                                          Number of bars

                                               1                     2          3          4               5            6             7            8               9      10
                                       8       50                   101        151        201             251          302           352          402             452    503
                                       10      79                   157        236        314             393          471           550          628             707    785
                Bar                    12     113                   226        339        452             565          679           792          905             1018   1131
              Diameter                 16     201                   402        603        804             1005         1206          1407         1608            1810   2011
               (mm)                    20     314                   628        942        1257            1571         1885          2199         2513            2827   3142
                                       25     491                   982        1473       1963            2454         2945          3436         3927            4418   4909
                                       32     804                   1608       2413       3217            4021         4825          5630         6434            7238   8042
       	
  

                Check of the amount of reinforcement provided above the “minimum/maximum amount of
                                                 reinforcement “ limit
                                         (CYS NA EN1992-1-1, cl. NA 2.49(1)(3))

                                                                  0.26𝑓!"# 𝑏𝑑
                                            𝐴!,!"# =                          ≥ 0.0013𝑏𝑑   ≤          𝐴!,!"#$                ≤ 𝐴!,!"# = 0.04𝐴! 	
  
       	
                                                             𝑓!"                                                                                                 7	
  
 
                                                                    SHEAR FORCE DESIGN
                                                                      (EN1992-1-1,cl 6.2)




       Maximum moment of Simply supported (pinned)                                                         Maximum shear force of continuous supported
                    one-way slab                                                                                         one-way slab
               (Manual of EC2, Table 5.2)                                                                         (Manual of EC2 ,Table 5.2)
                            	
                                                                                                            	
  
                            F: is the total ultimate                                                                     Uniformly distributed loads
            MEd= 0.4F       load =1.35Gk+1.5Qk                                                                  End support condition             Moment
                                                                                                                  End support support            MEd =0.046F
	
                                                                                                                Penultimate support             MEd= 0.6F
                                                                                                                    Interior supports             MEd =0.5F
                                                                                                        F:	
  total design ultimate load on span


                 §                  Determine design shear stress, vEd
                                                                     vEd=VEd/b·d
                                                                          	
  



                                    Reinforcement	
  ratio,	
  ρ1	
  	
  (EN1992-­‐1-­‐1,	
  cl	
  6.2.2(1))	
  
                                                                               ρ1=As/b·d	
  
                                                                                       	
  
                                                                                       	
  


                                                                         Design shear resistance
                                                 200
                              𝑘 =1+!                 ≤ 2,0  with  𝑑  in  mm
                                                  𝑑

                                              0.18              !
                               𝑉!".! = !           𝑘(100𝜌! 𝑓!" )! + 𝑘!   𝜎!" ! 𝑏𝑑
                                                𝛾!

                               𝑉!".!.!"# = !0.0035!𝑓!" 𝑘 !.! + 𝑘!   𝜎!" !𝑏𝑑



                                     Alternative value of design shear resistance, VRd.c (Concrete centre) (ΜΡa)
                                    ρI =                                              Effective depth, d (mm)
                                   As/(bd)
                                        ≤200      225      250        275    300      350                    400     450     500   600            750
                            0.25%       0.54     0.52      0.50      0.48   0.47      0.45                  0.43    0.41    0.40 0.38            0.36
                            0.50%       0.59     0.57      0.56      0.55   0.54      0.52                  0.51    0.49    0.48 0.47            0.45
                            0.75%       0.68     0.66      0.64      0.63   0.62      0.59                  0.58    0.56    0.55 0.53            0.51
                            1.00%       0.75     0.72      0.71      0.69   0.68      0.65                  0.64    0.62    0.61 0.59            0.57
                            1.25%       0.80     0.78      0.76      0.74   0.73      0.71                  0.69    0.67    0.66 0.63            0.61
                            1.50%       0.85     0.83      0.81      0.79   0.78      0.75                  0.73    0.71    0.70 0.67            0.65
                            1.75%       0.90     0.87      0.85      0.83   0.82      0.79                  0.77    0.75    0.73 0.71            0.68
                            ≥2.00%      0.94     0.91      0.89      0.87   0.85      0.82                  0.80    0.78    0.77 0.74            0.71
                               k       2.000     1.943    1.894 1.853 1.816 1.756                           1.707   1.667   1.632 1.577          1.516
                                                                      1/3     1.5 0.5
                           Table derived from: vRd.c=0.12k(100 ρI fck) ≥0.035k fck
                           where k=1+(200/d)0.5≤0.02
                                                                                	
  


                                       If	
  VRdc≥VEd≥VRdc.min,	
  Concrete	
  strut	
  is	
  adequate	
  in	
  resisting	
  shear	
  
                                                                               stress	
  

                                                       Shear	
  reinforcement	
  is	
  not	
  required	
  in	
  slabs	
  	
  
                 	
                                                               	
                                                                     8	
  
                                                       DESIGN FOR CRACKING
                                                                    (EN1992-1-1,cl.7.3)




       Minimum area of reinforcement steel                                    kc=0.4 for bending
              within tensile zone                                             k=1 for web width < 300mm or
             (EN1992-1-1,Eq. 7.1)                                             k=0.65for web > 800mm
                                                                              fct,eff= fctm = tensile strength after 28 days
                                   𝑘  𝑘! 𝑓!",!"" 𝐴!"                          Act=Area of concrete in tension=b (h-(2.5(d-z)))
                    𝐴!.!!" =                                                  σs=max stress in steel immediately after crack
                                           𝜎!
	
                                                                            initiation
                                                                                                  !!.!"# !                                    !!.!"#
                                                                                     𝜎! = 𝜎!" !               !   or         𝜎! = 0.62 !              𝑓 !
                                                                                                  !!.!"#$ !                                   !!.!"#$ !"
                                                                              	
  

                                                  Chart to calculate unmodified steel stress σsu
                                                   (Concrete Centre - www.concretecentre.com)




                                                                                                                                                         	
  


                                                                              Asmin<As.prov
                                                                       	
  


              Crack widths have an influence on the durability of the RC member. Maximum crack width
              sizes can be determined from the table below (knowing σs, bar diameter, and spacing).
                         Maximum bar diameter and maximum spacing to limit crack widths
                                             (EN1992-1-1,table7.2N&7.3N)

                                            σs      Maximum bar diameter and spacing for
                                         (N/mm2)              maximum crack width of:
                                                    0.2mm                   0.3mm                    0.4mm
                                     160         25         200           32        300            40        300
                                     200         16         150           25        250            32        300
                                     240         12         100           16        200            20        250
                                     280          8         50            12        150            16        200
                                     300          6           -           10        100            12        150
              Note. The table demonstrates that cracks widths can be reduced if;
                  • σs	
  is	
  reduced	
  
                  • Bar	
  diameter	
  is	
  reduced.	
  This	
  mean	
  that	
  spacing	
  is	
  reduced	
  if	
  As.prov	
  	
  is	
  to	
  be	
  the	
  
                      same.	
  
                  • Spacing	
  is	
  reduced	
  

       	
   	
                                                                                                                                                  9	
  
 
                                           DESIGN FOR DEFLECTION
                                               (EN1992-1-1,cl.7.4)


                                          Simplified Calculation approach



                                              Span/effective depth ratio
                                           (EN1992-1-1, Eq. 7.16a and 7.16b)

       The effect of cracking complicacies the deflection calculations of the RC member under
       service load. To avoid such complicate calculations, a limit placed upon the span/effective
       depth ration.
                        𝑙                     𝜌!              𝜌!      !.!
                          = 𝐾 !11 + 1.5!𝑓!" + 3.2!𝑓!" ! − 1! !   𝑖𝑓  𝜌 ≤ 𝜌!
                        𝑑                      𝜌               𝜌
                               𝑙                     𝜌!     1       𝜌,
                                 = 𝐾 !11 + 1.5!𝑓!"        +   !𝑓!" ! !   𝑖𝑓  𝜌 > 𝜌!
                               𝑑                   𝜌 − 𝜌 12
                                                        ′           𝜌!
       Note: The span-to-depth ratios should ensure that deflection is limited to span/250
       	
  
                                                    	
  
                                                    	
  
                                                    	
  



                                        Structural system modification factor
                                         (CY NA EN1992-1-1,NA. table 7.4N)

       The values of K may be reduced to account for long span as follow:
                     • In	
  beams	
  and	
  slabs	
  w here	
  the	
  span>7.0m,	
  multiply	
  by	
   leff/7	
  

                                                        Type of member          K
                                                           Cantilever          0.4
                                                            Flat slab          1.2
                                                        Simply supported       1.0
                                                         Continuous end        1.3
                                                              span
                                                       Continuous interior     1.5
                                                              span
                                                                      
       	
  

                                                      Reference reinforcement
                                                               ratio
                                                      (EN1992-1-1,cl. 7.4.2(2))

                                                           𝜌! = 0.001!𝑓!"
                                              	
  

                                                     Tension reinforcement ratio
                                                      (EN1992-1-1,cl. 7.4.2(2))

                                                                   𝐴!.!"#
                                                              𝜌=
                                                                     𝑏𝑑
                                              	
  



	
                                                                                                                   10	
  
 

4.0 Example 1: Analysis and design of RC slab using ETABS


1.     Dimensions:

Depth of slab, h:                                           h=150mm
Length in longitudinal direction, Ly:                       Ly=6m
Length in transverse direction, Lx:                         Lx=5m
Number of slab panels:                                      N=3

2.     Loads:

Dead load:
Self weight, gk.s:                                          gk.s=3.75kN/m2
Extra dead load, gk.e:                                      gk.e=1.00kN/m2
Total dead load, Gk:                                        Gk=4.75kN/m2
Live load:
Live load, qk:                                              gk=2.00kN/m2
Total live load, Qk:                                        Qk=2.00kN/m2

3.     Load combination:

Total load on slab: 1.35Gk+1.5Qk=

COMB1:                                      1.35*4.75+1.5*2.00=9.1kN/m2

4.     Layout of model:




	
                                                                           11	
  
 

4.1 Ultimate moments results

4.1.1 Maximum hogging and Sagging moment at Longitudinal direction Ly




4.1.2 Maximum hogging and Sagging moment at Transverse direction Lx




	
                                                                      12	
  
 

4.1.3 Hand calculation results


                              Ultimate moment at longitudinal direction Ly

  Program results        Mid-span         GL2        Mid-span      GL3      Mid-span
                         GL1-GL2         (kNm)       GL2-GL3                GL3-GL4
                          (kNm)                       (kNm)                  (kNm)

ETABS Results             10.43           11.54         7.68      11.54       10.40
Hand calculation
                          10.20           13.60         8.00      10.70       10.20
results 1
Error percentage          2,20%          15.14%        4.00%      7.30%      1.92%
1
  Hand calculation are based on moment coefficient of “Manual to Eurocode 2 –
Institutional of Structural Engineers, 2006 (Table 5.2)”.



                                  Ultimate moment at longitudinal direction Lx

       Program results       Mid-span              Mid-span              Mid-span
                             GL1-GL2               GL2-GL3               GL3-GL4
                              (kNm)                 (kNm)                 (kNm)

ETABS Results                     13.5                13.5                 13.5
Hand calculation
                                  13.2                13.2                 13.2
results 1
Error percentage              2.20%                  2.20%                2.20%
1
  Hand calculation are based on moment coefficient of “Manual to Eurocode 2 –
Institutional of Structural Engineers, 2006 (Table 5.2)”.




	
                                                                                  13	
  
 
4.1.4 Hand calculation Results

Analysis and design of Interior slab panel (GL1-GL2)




	
                                                     14	
  
 
       Analysis and design of Interior slab panel (GL2-GL3)




	
                                                            15	
  
 

Analysis and design of Interior slab panel (GL3-GL4)




	
                                                     16	
  

Contenu connexe

Tendances

Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
Yousuf Dinar
 
Footing design
Footing designFooting design
Footing design
Yasin J
 
Overview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design forOverview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design for
Ryan Brotherson
 
Etabs example-rc building seismic load response-
Etabs example-rc building seismic load  response-Etabs example-rc building seismic load  response-
Etabs example-rc building seismic load response-
Bhaskar Alapati
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
ijtsrd
 

Tendances (20)

Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
 
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8 ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
ETABS manual - Seismic design of steel buildings according to Eurocode 3 & 8
 
How To Design Concrete Structures Using Eurocode 2
How To Design Concrete Structures Using Eurocode 2How To Design Concrete Structures Using Eurocode 2
How To Design Concrete Structures Using Eurocode 2
 
Book for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABSBook for Beginners, RCC Design by ETABS
Book for Beginners, RCC Design by ETABS
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak
 
Footing design
Footing designFooting design
Footing design
 
89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon89505650 concrete-beam-and-slab-design-using-prokon
89505650 concrete-beam-and-slab-design-using-prokon
 
Overview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design forOverview of Direct Analysis Method of Design for
Overview of Direct Analysis Method of Design for
 
Etabs example-rc building seismic load response-
Etabs example-rc building seismic load  response-Etabs example-rc building seismic load  response-
Etabs example-rc building seismic load response-
 
Design and analysis of slabs
Design and analysis of slabsDesign and analysis of slabs
Design and analysis of slabs
 
Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)Rcc structure design by etabs (acecoms)
Rcc structure design by etabs (acecoms)
 
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode IIComparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
Comparision of Design Codes ACI 318-11, IS 456 2000 and Eurocode II
 
Project
ProjectProject
Project
 
Bs8110 design notes
Bs8110 design notesBs8110 design notes
Bs8110 design notes
 
AASHTO LRFD Bridge Design Specifications (9th Edition).pdf
AASHTO LRFD Bridge Design Specifications (9th Edition).pdfAASHTO LRFD Bridge Design Specifications (9th Edition).pdf
AASHTO LRFD Bridge Design Specifications (9th Edition).pdf
 
Design of pile cap
Design of  pile capDesign of  pile cap
Design of pile cap
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 
Earthquake load as per UBC97
Earthquake load as per UBC97Earthquake load as per UBC97
Earthquake load as per UBC97
 
Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)Etabs tutorial-tall-building-design (1)
Etabs tutorial-tall-building-design (1)
 

En vedette

Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
neikrof
 
Etabs concrete-design
Etabs concrete-designEtabs concrete-design
Etabs concrete-design
mamilli
 
Building model-sap2000-tutorial-guide
Building model-sap2000-tutorial-guideBuilding model-sap2000-tutorial-guide
Building model-sap2000-tutorial-guide
Vanz Einstein
 
Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
sarani_reza
 

En vedette (20)

Membrane - Plate - Shell
Membrane - Plate - ShellMembrane - Plate - Shell
Membrane - Plate - Shell
 
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
Modelling Building Frame with STAAD.Pro & ETABS - Rahul LeslieModelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
 
Rc bldg. modeling & analysis
Rc bldg. modeling & analysisRc bldg. modeling & analysis
Rc bldg. modeling & analysis
 
DETAILED CV - Aug 16 v3
DETAILED CV - Aug 16 v3DETAILED CV - Aug 16 v3
DETAILED CV - Aug 16 v3
 
Analysis and design of a multi storey reinforced concrete
Analysis and design of a multi storey reinforced concreteAnalysis and design of a multi storey reinforced concrete
Analysis and design of a multi storey reinforced concrete
 
Etabs modelling parameters
Etabs modelling parametersEtabs modelling parameters
Etabs modelling parameters
 
Simplified notes of calculate Wind & Snow loads based on CYS EC1
Simplified notes of calculate Wind & Snow loads based on CYS EC1Simplified notes of calculate Wind & Snow loads based on CYS EC1
Simplified notes of calculate Wind & Snow loads based on CYS EC1
 
PORTFOLIO-Model
PORTFOLIO-ModelPORTFOLIO-Model
PORTFOLIO-Model
 
Etabs concrete-design
Etabs concrete-designEtabs concrete-design
Etabs concrete-design
 
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRODESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
DESIGN AND ANALAYSIS OF MULTI STOREY BUILDING USING STAAD PRO
 
Seismic assessment of buildings accordance to Eurocode 8 Part 3
Seismic assessment of buildings accordance to Eurocode 8 Part 3Seismic assessment of buildings accordance to Eurocode 8 Part 3
Seismic assessment of buildings accordance to Eurocode 8 Part 3
 
Building model-sap2000-tutorial-guide
Building model-sap2000-tutorial-guideBuilding model-sap2000-tutorial-guide
Building model-sap2000-tutorial-guide
 
Manual Sap
Manual SapManual Sap
Manual Sap
 
Foundation
FoundationFoundation
Foundation
 
Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
 
Safe tutorial
Safe tutorialSafe tutorial
Safe tutorial
 
Civil structural engineering - Flat slab design
Civil structural engineering -  Flat slab designCivil structural engineering -  Flat slab design
Civil structural engineering - Flat slab design
 
Ec8 seismic design_of_buildings-worked_examples
Ec8 seismic design_of_buildings-worked_examplesEc8 seismic design_of_buildings-worked_examples
Ec8 seismic design_of_buildings-worked_examples
 
Wind load on pv system
Wind load on pv systemWind load on pv system
Wind load on pv system
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 

Similaire à Etabs modeling - Design of slab according to EC2

Aect480 lecture 7
Aect480 lecture 7Aect480 lecture 7
Aect480 lecture 7
cloudc123
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
tcoyle72
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
tcoyle72
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
gauravkakran
 
140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf
ephrem53
 

Similaire à Etabs modeling - Design of slab according to EC2 (20)

Aect480 lecture 7
Aect480 lecture 7Aect480 lecture 7
Aect480 lecture 7
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
 
Pcb carolina scg_2010
Pcb carolina scg_2010Pcb carolina scg_2010
Pcb carolina scg_2010
 
Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5
 
Engineering science lesson 5
Engineering science lesson 5Engineering science lesson 5
Engineering science lesson 5
 
Packed Bed Reactor Lumped
Packed Bed Reactor LumpedPacked Bed Reactor Lumped
Packed Bed Reactor Lumped
 
Ffst
FfstFfst
Ffst
 
Module 7.pdf
Module 7.pdfModule 7.pdf
Module 7.pdf
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
 
Beamand slab design
Beamand slab design Beamand slab design
Beamand slab design
 
Plank on a log
Plank on a logPlank on a log
Plank on a log
 
Plank on a log
Plank on a logPlank on a log
Plank on a log
 
mos unit -3.pptx
mos unit -3.pptxmos unit -3.pptx
mos unit -3.pptx
 
10.01.03.029
10.01.03.02910.01.03.029
10.01.03.029
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Introduction to Torsion
Introduction to TorsionIntroduction to Torsion
Introduction to Torsion
 
Accelerometers 2015
Accelerometers 2015Accelerometers 2015
Accelerometers 2015
 
Appendix b final
Appendix b finalAppendix b final
Appendix b final
 
140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf140204-5-PTI EDC-130-Continuous Members-41.pdf
140204-5-PTI EDC-130-Continuous Members-41.pdf
 
Integrated presentation pdf
Integrated presentation pdfIntegrated presentation pdf
Integrated presentation pdf
 

Dernier

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Krashi Coaching
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Dernier (20)

Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

Etabs modeling - Design of slab according to EC2

  • 1.   ETABS MANUAL     Part-­‐II:  Model  Analysis  &  Design  of  Slabs       According  to  Eurocode  2 AUTHOR:  VALENTINOS  NEOPHYTOU  BEng  (Hons),  MSc   REVISION  1:  April,  2013
  • 2.   ABOUT  THIS  DOCUMENT     This  document  presents  an  example  of  analysis  design  of  slab  using  ETABS.   This   example   examines   a   simple   single   story   building,   which   is   regular   in   plan   and   elevation.   It   is   examining   and   compares   the   calculated   ultimate   moment   from   ETABS   with   hand   calculation.     Moment   coefficients   were   used   to   calculate   the   ultimate   moment.   However   it   is   good   practice   that   such   hand   analysis   methods   are   used   to   verify   the   output   of   more   sophisticated   methods.   Also,   this   document   contains   simple   procedure   (step-­‐by-­‐step)   of   how   to   design  solid  slab  according  to  Eurocode  2.  The  process  of  designing  elements   will  not  be  revolutionised  as  a  result  of  using  Eurocode  2.   Due   to   time   constraints   and   knowledge,   I   may   not   be   able   to   address   the   whole  issues.   Please   send   me   your   suggestions   for   improvement.   Anyone   interested   to   share  his/her  knowledge  or  willing  to  contribute  either  totally  a  new  section   about  ETABS  or  within  this  section  is  encouraged.   For  further  details:     My  LinkedIn  Profile:   http://www.linkedin.com/profile/view?id=125833097&trk=hb_tab_pro_top     Email:  valentinos_n@hotmail.com   Slideshare  Account: http://www.slideshare.net/ValentinosNeophytou     2  
  • 3.   Table of Contents 1.0 Slab modeling .......................................................................................................... 4 1.1 Assumptions............................................................................................................. 4 1.2 Initial step before run the analysis ........................................................................... 4 2.0 Calculation of ultimate moments ............................................................................. 5 3.0 Design of slab according to Eurocode 2 .................................................................. 7 4.0 Example 1: Analysis and design of RC slab using ETABS................................... 11 4.1 Ultimate moments results ...................................................................................... 12 4.1.1 Maximum hogging and Sagging moment at Longitudinal direction Ly............. 12 4.1.2 Maximum hogging and Sagging moment at Transverse direction Lx ................ 12 4.1.3 Hand calculation results ...................................................................................... 13 4.1.4 Hand calculation Results..................................................................................... 14   3  
  • 4.   1.0 Slab modeling 1.1 Assumptions In preparing this document a number of assumptions have been made to avoid over complication; the assumptions and their implications are as follows. a) Element type : SHELL b) Meshing (Sizing of element) : Size= min{Lmax/10 or l000mm} c) Element shape : Ratio= Lmax/Lmin = 1 ≤ ratio ≤ 2 d) Acceptable error : 20% 1.2 Initial step before run the analysis a) Sketch out by hand the expected results before carrying out the analysis. b) Calculate by hand the total applied loads and compare these with the sum of the reactions from the model results.   4  
  • 5.   2.0 Calculation of ultimate moments Maximum moments of two-way slabs     If ly/lx < 2: Design as a Two-way slab If lx/ly > 2: Deisgn as a One-way slab     Note:  lx is the longer span   ly is the shorter span                     Maximum moment of Simply supported (pinned) two-way slab         Bending moment coefficient for simply supported slab Msx= asxnlx2 in n: is the ultimate load m2   direction of span lx 2   ly/lx 1.0 1.1 1.2 1.3 1.4 1.5 1.75 2.0 Msy= asynlx in n: is the ultimate load m2 asx 0.062 0.074 0.084 0.093 0.099 0.104 0.113 0.118   direction of span ly asy 0.062 0.061 0.059 0.055 0.051 0.046 0.037 0.029         Maximum moment of Restrained supported (fixed) two-way slab             Msx= asxnlx2 in n: is the ultimate load m2   direction of span lx   Msy= asynlx2 in n: is the ultimate load m2 direction of span ly           Bending moment coefficient for two way rectangular slab supported by beams   (Manual of EC2 ,Table 5.3)     Type of   panel and moment Short span coefficient for value of Ly/Lx Long-span coefficients for all considered 1.0 1.25 1.5 1.75 2.0 values of Ly/Lx   Interior panels   Negative moment at continuous edge 0.031 0.044 0.053 0.059 0.063 0.032   Positive moment at midspan 0.024 0.034 0.040 0.044 0.048 0.024   One short edge discontinuous   Negative moment at continuous edge 0.039 0.050 0.058 0.063 0.067 0.037 Positive moment at midspan   0.029 0.038 0.043 0.047 0.050 0.028 One long edge discontinuous   Negative moment at continuous edge 0.039 0.059 0.073 0.083 0.089 0.037   Positive moment at midspan 0.030 0.045 0.055 0.062 0.067 0.028   Two adjacent edges discontinuous Negative moment at continuous edge 0.047 0.066 0.078 0.087 0.093 0.045 Positive moment at midspan 0.036 0.049 0.059 0.065 0.070 0.034   5  
  • 6.       Maximum moments of one-way slabs         If ly/lx < 2: Design as a Two-way slab   If lx/ly > 2: Deisgn as a One-way slab     Note: lx is the longer span   ly is the shorter span     Maximum moment of Simply supported (pinned) Maximum moment of continuous supported one- one-way slab way slab (Manual of EC2, Table 5.2) (Manual of EC2 ,Table 5.2) L: is the effective span     F: is the total ultimate Uniformly distributed loads MEd= 0.086FL load =1.35Gk+1.5Qk End support condition Moment L: is the effective span End support support MEd =-0.040FL Note: Allowance has been made in the coefficients in End span MEd =0.075FL Table 5.2 for 20% redistribution of moments. Penultimate support MEd= -0.086FL Interior spans MEd =0.063FL   Interior supports MEd =-0.063FL F:  total design ultimate load on span L: is the effective span Note: Allowance has been made in the coefficients in Table 5.2 for 20% redistribution of moments.   6  
  • 7.   3.0 Design of slab according to Eurocode 2 FLEXURAL DESIGN (EN1992-1-1,cl. 6.1) Determine design yield strength of reinforcement 𝑓!" 𝑓!" = 𝛾!   Determine K from: 𝑀!" δ=1.0 for no redistribution 𝐾= ! 𝑏𝑑 𝑓!" δ=0.85 for 15% redistribution 𝐾 ′ = 0.6𝛿 − 0.18𝛿 ! − 0.21 δ=0.7 for 30% redistribution     K<K′ (no compression reinforcement required) K>K′ (then compression reinforcement required – not recommended for typical slab) ! ! Obtain lever arm z: 𝑧 = !1 + √1 − 3.53𝐾! ≤ 0.95𝑑 Obtain lever arm z: 𝑧 = !1 + √1 − 3.53𝐾 ′ ! ≤ 0.95𝑑 ! !     Area of steel reinforcement required: One way solid slab Two way solid slab   𝑀!" 𝑀!",!" 𝐴!.!"# =   𝐴!".!"# =         𝑓!" 𝑧 𝑓!" 𝑧 𝑀!",!"    𝐴!".!"# =   𝑓!" 𝑧   For slabs, provide group of bars with area A s.prov per meter width Spacing of bars (mm) 75 100 125 150 175 200 225 250 275 300 8 670 503 402 335 287 251 223 201 183 168 10 1047 785 628 524 449 393 349 314 286 262 Bar 12 1508 1131 905 754 646 565 503 452 411 377 Diameter 16 2681 2011 1608 1340 1149 1005 894 804 731 670 (mm) 20 4189 3142 2513 2094 1795 1571 1396 1257 1142 1047 25 6545 4909 3927 3272 2805 2454 2182 1963 1785 1636 32 10723 8042 6434 5362 4596 4021 3574 3217 2925 2681 For beams, provide group of bars with area As. prov Number of bars 1 2 3 4 5 6 7 8 9 10 8 50 101 151 201 251 302 352 402 452 503 10 79 157 236 314 393 471 550 628 707 785 Bar 12 113 226 339 452 565 679 792 905 1018 1131 Diameter 16 201 402 603 804 1005 1206 1407 1608 1810 2011 (mm) 20 314 628 942 1257 1571 1885 2199 2513 2827 3142 25 491 982 1473 1963 2454 2945 3436 3927 4418 4909 32 804 1608 2413 3217 4021 4825 5630 6434 7238 8042   Check of the amount of reinforcement provided above the “minimum/maximum amount of reinforcement “ limit (CYS NA EN1992-1-1, cl. NA 2.49(1)(3)) 0.26𝑓!"# 𝑏𝑑 𝐴!,!"# = ≥ 0.0013𝑏𝑑   ≤         𝐴!,!"#$               ≤ 𝐴!,!"# = 0.04𝐴!     𝑓!" 7  
  • 8.   SHEAR FORCE DESIGN (EN1992-1-1,cl 6.2) Maximum moment of Simply supported (pinned) Maximum shear force of continuous supported one-way slab one-way slab (Manual of EC2, Table 5.2) (Manual of EC2 ,Table 5.2)     F: is the total ultimate Uniformly distributed loads MEd= 0.4F load =1.35Gk+1.5Qk End support condition Moment End support support MEd =0.046F   Penultimate support MEd= 0.6F Interior supports MEd =0.5F F:  total design ultimate load on span § Determine design shear stress, vEd vEd=VEd/b·d   Reinforcement  ratio,  ρ1    (EN1992-­‐1-­‐1,  cl  6.2.2(1))   ρ1=As/b·d       Design shear resistance 200 𝑘 =1+! ≤ 2,0  with  𝑑  in  mm 𝑑 0.18 ! 𝑉!".! = ! 𝑘(100𝜌! 𝑓!" )! + 𝑘!  𝜎!" ! 𝑏𝑑 𝛾! 𝑉!".!.!"# = !0.0035!𝑓!" 𝑘 !.! + 𝑘!  𝜎!" !𝑏𝑑 Alternative value of design shear resistance, VRd.c (Concrete centre) (ΜΡa) ρI = Effective depth, d (mm) As/(bd) ≤200 225 250 275 300 350 400 450 500 600 750 0.25% 0.54 0.52 0.50 0.48 0.47 0.45 0.43 0.41 0.40 0.38 0.36 0.50% 0.59 0.57 0.56 0.55 0.54 0.52 0.51 0.49 0.48 0.47 0.45 0.75% 0.68 0.66 0.64 0.63 0.62 0.59 0.58 0.56 0.55 0.53 0.51 1.00% 0.75 0.72 0.71 0.69 0.68 0.65 0.64 0.62 0.61 0.59 0.57 1.25% 0.80 0.78 0.76 0.74 0.73 0.71 0.69 0.67 0.66 0.63 0.61 1.50% 0.85 0.83 0.81 0.79 0.78 0.75 0.73 0.71 0.70 0.67 0.65 1.75% 0.90 0.87 0.85 0.83 0.82 0.79 0.77 0.75 0.73 0.71 0.68 ≥2.00% 0.94 0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.77 0.74 0.71 k 2.000 1.943 1.894 1.853 1.816 1.756 1.707 1.667 1.632 1.577 1.516 1/3 1.5 0.5 Table derived from: vRd.c=0.12k(100 ρI fck) ≥0.035k fck where k=1+(200/d)0.5≤0.02   If  VRdc≥VEd≥VRdc.min,  Concrete  strut  is  adequate  in  resisting  shear   stress   Shear  reinforcement  is  not  required  in  slabs         8  
  • 9.   DESIGN FOR CRACKING (EN1992-1-1,cl.7.3) Minimum area of reinforcement steel kc=0.4 for bending within tensile zone k=1 for web width < 300mm or (EN1992-1-1,Eq. 7.1) k=0.65for web > 800mm fct,eff= fctm = tensile strength after 28 days 𝑘  𝑘! 𝑓!",!"" 𝐴!" Act=Area of concrete in tension=b (h-(2.5(d-z))) 𝐴!.!!" = σs=max stress in steel immediately after crack 𝜎!   initiation !!.!"# ! !!.!"# 𝜎! = 𝜎!" ! ! or 𝜎! = 0.62 ! 𝑓 ! !!.!"#$ ! !!.!"#$ !"   Chart to calculate unmodified steel stress σsu (Concrete Centre - www.concretecentre.com)   Asmin<As.prov   Crack widths have an influence on the durability of the RC member. Maximum crack width sizes can be determined from the table below (knowing σs, bar diameter, and spacing). Maximum bar diameter and maximum spacing to limit crack widths (EN1992-1-1,table7.2N&7.3N) σs Maximum bar diameter and spacing for (N/mm2) maximum crack width of: 0.2mm 0.3mm 0.4mm 160 25 200 32 300 40 300 200 16 150 25 250 32 300 240 12 100 16 200 20 250 280 8 50 12 150 16 200 300 6 - 10 100 12 150 Note. The table demonstrates that cracks widths can be reduced if; • σs  is  reduced   • Bar  diameter  is  reduced.  This  mean  that  spacing  is  reduced  if  As.prov    is  to  be  the   same.   • Spacing  is  reduced       9  
  • 10.   DESIGN FOR DEFLECTION (EN1992-1-1,cl.7.4) Simplified Calculation approach Span/effective depth ratio (EN1992-1-1, Eq. 7.16a and 7.16b) The effect of cracking complicacies the deflection calculations of the RC member under service load. To avoid such complicate calculations, a limit placed upon the span/effective depth ration. 𝑙 𝜌! 𝜌! !.! = 𝐾 !11 + 1.5!𝑓!" + 3.2!𝑓!" ! − 1! !  𝑖𝑓  𝜌 ≤ 𝜌! 𝑑 𝜌 𝜌 𝑙 𝜌! 1 𝜌, = 𝐾 !11 + 1.5!𝑓!" + !𝑓!" ! !  𝑖𝑓  𝜌 > 𝜌! 𝑑 𝜌 − 𝜌 12 ′ 𝜌! Note: The span-to-depth ratios should ensure that deflection is limited to span/250         Structural system modification factor (CY NA EN1992-1-1,NA. table 7.4N) The values of K may be reduced to account for long span as follow: • In  beams  and  slabs  w here  the  span>7.0m,  multiply  by   leff/7   Type of member K Cantilever 0.4 Flat slab 1.2 Simply supported 1.0 Continuous end 1.3 span Continuous interior 1.5 span     Reference reinforcement ratio (EN1992-1-1,cl. 7.4.2(2)) 𝜌! = 0.001!𝑓!"   Tension reinforcement ratio (EN1992-1-1,cl. 7.4.2(2)) 𝐴!.!"# 𝜌= 𝑏𝑑     10  
  • 11.   4.0 Example 1: Analysis and design of RC slab using ETABS 1. Dimensions: Depth of slab, h: h=150mm Length in longitudinal direction, Ly: Ly=6m Length in transverse direction, Lx: Lx=5m Number of slab panels: N=3 2. Loads: Dead load: Self weight, gk.s: gk.s=3.75kN/m2 Extra dead load, gk.e: gk.e=1.00kN/m2 Total dead load, Gk: Gk=4.75kN/m2 Live load: Live load, qk: gk=2.00kN/m2 Total live load, Qk: Qk=2.00kN/m2 3. Load combination: Total load on slab: 1.35Gk+1.5Qk= COMB1: 1.35*4.75+1.5*2.00=9.1kN/m2 4. Layout of model:   11  
  • 12.   4.1 Ultimate moments results 4.1.1 Maximum hogging and Sagging moment at Longitudinal direction Ly 4.1.2 Maximum hogging and Sagging moment at Transverse direction Lx   12  
  • 13.   4.1.3 Hand calculation results Ultimate moment at longitudinal direction Ly Program results Mid-span GL2 Mid-span GL3 Mid-span GL1-GL2 (kNm) GL2-GL3 GL3-GL4 (kNm) (kNm) (kNm) ETABS Results 10.43 11.54 7.68 11.54 10.40 Hand calculation 10.20 13.60 8.00 10.70 10.20 results 1 Error percentage 2,20% 15.14% 4.00% 7.30% 1.92% 1 Hand calculation are based on moment coefficient of “Manual to Eurocode 2 – Institutional of Structural Engineers, 2006 (Table 5.2)”. Ultimate moment at longitudinal direction Lx Program results Mid-span Mid-span Mid-span GL1-GL2 GL2-GL3 GL3-GL4 (kNm) (kNm) (kNm) ETABS Results 13.5 13.5 13.5 Hand calculation 13.2 13.2 13.2 results 1 Error percentage 2.20% 2.20% 2.20% 1 Hand calculation are based on moment coefficient of “Manual to Eurocode 2 – Institutional of Structural Engineers, 2006 (Table 5.2)”.   13  
  • 14.   4.1.4 Hand calculation Results Analysis and design of Interior slab panel (GL1-GL2)   14  
  • 15.   Analysis and design of Interior slab panel (GL2-GL3)   15  
  • 16.   Analysis and design of Interior slab panel (GL3-GL4)   16