SlideShare une entreprise Scribd logo
1  sur  4
Télécharger pour lire hors ligne
EXPERIENCES WITH HIGH DEFINITION INTERACTIVE VIDEO CONFERENCING

               Ladan Gharai          Tom Lehman                             Alvaro Saurin        Colin Perkins

              Information Sciences Institute                              Department of Computing Science
             University of Southern California                                 University of Glasgow


                        ABSTRACT                                       2. OVERVIEW OF THE ULTRAGRID SYSTEM
    We review the design and implementation of UltraGrid, a         Our goal in developing UltraGrid was to demonstrate that
new high definition video conferencing system, and present           modern end-systems and well engineered IP networks can
some experimental results. UltraGrid was the first system to         support ultra high quality conferencing environments. To this
support gigabit rate high definition interactive video confer-       end, UltraGrid provides low latency, high definition video;
encing on commodity systems and networks, and we present            high quality audio and large screen displays enhance the sense
measurements to illustrate behavior of production networks          of presence, creating a realistic conferencing environment.
subject to such real time traffic. We illustrate the benefits of          UltraGrid supports both standard and high definition (HD)
hybrid IP/provisioned optical networks over best effort IP net-     interactive video conferencing, using readily available hard-
works for this class of traffic, and motivate the development        ware. Both progressive (“720p”) and interlaced (“1080i”)
of congestion control algorithms for interactive conferencing       HD video is supported. Video may be transmitted using an
on best effort IP networks.                                         uncompressed format if network capacity is available (either
                                                                    at 1.2 Gbps for standard format HD video, or at 980 Mbps
                   1. INTRODUCTION                                  with an alternative HD format). In addition, a range of video
                                                                    codecs are supported to allow adaptation to lower rates at the
We review the design and architecture of UltraGrid [17], a          expense of some increase in latency and reduction in quality.
new high definition video conferencing system. UltraGrid is          UltraGrid is typically used in conjunction with AccessGrid
the first in a new breed of systems capable of supporting high       [10], or some other session initiation framework, to provide
definition video over IP, that has greatly evolved the state of      the complete conferencing experience shown in Figure 1.
the art in video conferencing systems compared to both early            In addition to interactive conferencing, UltraGrid can be
research prototypes (e.g. [12]) and also modern commercial          used for general purpose HD distribution and visualization.
offerings.                                                          The sender converts stored file content or live SMTPE 292M
    We present measurement studies to show how modern,              [13] high-definition video, as produced professional cameras
appropriately provisioned, IP networks and hybrid IP/optical        and production equipment, into an RTP packet stream for dis-
networks can support even the most demanding of real-time           tribution across a variety of IP-based networks, and allows
applications. Our data shows how the timing and scheduling          the receiver to exactly reconstruct the original signal. Unlike
properties of modern networks and operating systems affect          content distribution networks, our design seeks to minimize
application performance, and how existing real time transport       latency, and allows UltraGrid to be used for interactive video
protocols allow applications to compensate. We demonstrate          conferencing, data visualization and on-line video editing.
that both best effort IP and hybrid IP/optical networks provide
a solid basis for high performance real-time applications, and               3. DESIGN AND IMPLEMENTATION
validate the design of the Real-time Transport Protocol [19, 2]
and modern network architectures.                                   A major influence on the design of UltraGrid was to build a
    The outline of this paper is as follows: we present an          system that can be replicated by others, with an objective of
overview of the aims of the UltraGrid project in section 2,         significantly evolving the quality of baseline interactive video
and review the system design in section 3. In section 4 we          conferencing systems. To this end, we built UltraGrid from
present a performance evaluation of UltraGrid on both pure          commercial off the shelf components, make use of standard
IP and hybrid IP/Optical network paths, comparing the two           protocols and codecs (additional RTP Profiles and Payload
architectures to understand their relative performance and to       Formats were developed and published through the standards
motivate future work on congestion control and on network           process as needed [4, 5, 6]), and made our software available
design. Related work is described in section 5, and future          under an open source license. In the following we describe the
work and conclusions are discussed in section 6.                    design of our software, and outline hardware requirements.




1­4244­0367­7/06/$20.00 ©2006 IEEE                            433                                                     ICME 2006
                                        ¡                                                               ¨                           ¦                                   ©                                             ¦




                                                                                                                                                                                                                                    !                                                                                                                




                                                                                                                                                                                                                                                                                                                                                                                                                                                             ¦                   ©                                       




                                                                                                                                                                                                                                                                                                                                                                                                                                                 ¦                                                                                        

                                                                               #                                             $                   %                                                      '                                           !                                                                                                                    




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           9          $                             @   A   A              




                                                                                                                                                                                                                                                                                                                                                                                                                               (                           ¢       )                                              0                                                               2               3           4                                                                                                                                                                                                                   2                   3                   4




                                                                                                                                                                                                                                                                                                                                                                                                                           1                   0                               )                                      ¨                                                             ¦       ©                       ¢   5           6                                                                                                                                                                               8                          5               )                      




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1   0       5       6              £       7       ¢       0   5




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2                   3               1                       4




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1       0       5       7              0       ¥

                                                                                       U                              V                                  '           W                                                              !                                                                                                                




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       B   C   D   E   F   G   H




                                                                                                                                                                                               1                               0                               ¥                       0                                           T                                                                                                                                                                      (                               ¢       )              0                                       2                       3       4                                                                                                                                                                                       2                   3                   4




                                                                                                                                           1                                       0                           5                   I                                                                                                     £                       ¢               0       5                                                                                                           1                               0               )              ¨                                         ¦           ©               ¢   5   6                                                                                                                                                           2                      ¨                          ¢       I                  




                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               P           Q          R       S   @                      @       A   A      




                                                                                                                                                                                           ¡                               ¢                   £           ¤                                                       ¥                           ¦                           §




                                                                           X               '               %               Y                   Q                              R                                       !                                                                                                            




                                                                                                                                                                                                                                                                                                                                                                                                           ¡       ¡                   ¢               £                   ¤                       ¥           ¦                   §




                 Fig. 1. UltraGrid in action.                                                                                                                                                                                                                                                                                                                                              Fig. 2. UltraGrid software architecture.



3.1. Software Architecture                                                4. SYSTEM PERFORMANCE EVALUATION
We present the high-level design of the UltraGrid software in        We conducted numerous local- and wide-area experiments to
Figure 2. The system is modular, allowing experiments with           demonstrate correct operation of UltraGrid and to investigate
different capture and display devices, codecs and transport          the performance of IP and hybrid IP/optical networks.
protocols. It currently supports capture and display of 8- and
10-bit high definition video and DV format standard defini-
                                                                     4.1. Local Area Tests
tion video, codecs for uncompressed, DV and motion JPEG
formats, and a complete implementation of the RTP transport          Initial experiments used two nodes connected back to back via
protocol supporting IPv4, IPv6 and multicast.                        a direct optical 10 gigabit Ethernet link. Uncompressed 720p
    Transmission and reception are implemented as four sep-          HD video flows with 8800 bytes packet sizes were exchanged
arate threads to improve the system performance and respon-          between these nodes for 10 minutes: over 10 million packets
siveness. The sender uses one thread for grabbing and encod-         were transmitted at a data rate of 1.2 Gbps with no packet loss
ing, and a second thread for transmission and control. RTP           or reordering. This demonstrates that UltraGrid can support
packetization is done according the RFC 4175 [6]. In the             full rate HD video when not limited by the network, proving
same way, the receiver de-couples the reception and render-          the end systems are not a performance bottleneck.
ing of frames using two threads. The playout buffer has been             This experiment was repeated using the metropolitan area
designed according to the principles set forth in [16], in order     network from the DRAGON project [11]. As shown in Fig-
to reduce effects of jitter and packet loss. Limited conges-         ure 3, this network has both an optical path and a number of
tion control is present [4], but was not used since we seek to       Ethernet segments. Once again, tests were run for 10 minute
compare network performance, not congestion response.                periods using uncompressed HD video at 1.2 Gbps. Perfor-
                                                                     mance was essentially identical to the back to back tests, as is
3.2. Hardware Requirements                                           expected from a managed over provisioned optical network.

UltraGrid nodes are built from commercially available com-
                                                                     4.2. Wide Area Tests
ponents. Nodes comprised Dual Xeon EM64T processors on
Super Micro PCI-X mother boards, and ran a mixture of Fe-            Wide area tests were conducted during the Super Computing
dora Core 3 or 4 (Linux 2.6.12 kernel) operating systems.            2005 conference. An interactive HD video conference was
    HD capture and/or playout uses HDstation or Centaurus            run between the conference exhibit floor in Seattle, WA and
cards from Digital Video Systems (DVS) [20]. These are used          ISI East in Arlington, VA for the duration of the conference
to capture the HD video, and to regenerate SMPTE-292M                (see Figure 4), running media flows over both the Internet2
output at the receiver (it is also possible to display HD video      Abilene best effort IP network, and the guaranteed capacity
directly in a window on the workstation monitor, Figure 1).          Hybrid Optical Packet Infrastructure (HOPI) circuit switched
For DV capture, an IEEE 1394 interface is required.                  path. Individuals at ISI East were able to talk with participants
    We use either gigabit Ethernet (integrated on the mother-        at the conference via 720p format HD video. High quality
board) or 10 gigabit Ethernet cards (Chelsio N110 [3]). An           low latency video, large displays and strategic positioning of
alternative approach is to use bonded gigabit Ethernet cards         cameras provided an effective sense of presence.
to support data rates up to 2 Gbps (such support is under de-            Connections to the best effort IP network were via giga-
velopment for UltraGrid [8]).                                        bit Ethernet, and this limited us to using colour-subsampled



                                                               434
Experiences with High Definition Interactive Video Conferencing
Experiences with High Definition Interactive Video Conferencing

Contenu connexe

Similaire à Experiences with High Definition Interactive Video Conferencing

Similaire à Experiences with High Definition Interactive Video Conferencing (8)

EXPERIENCES WITH HIGH DEFINITION INTERACTIVE VIDEO ...
EXPERIENCES WITH HIGH DEFINITION INTERACTIVE VIDEO ...EXPERIENCES WITH HIGH DEFINITION INTERACTIVE VIDEO ...
EXPERIENCES WITH HIGH DEFINITION INTERACTIVE VIDEO ...
 
Inter cloud-vm-mobility
Inter cloud-vm-mobilityInter cloud-vm-mobility
Inter cloud-vm-mobility
 
Inter cloud-vm-mobility
Inter cloud-vm-mobilityInter cloud-vm-mobility
Inter cloud-vm-mobility
 
クラウドコンピューティングと OSS
クラウドコンピューティングと OSSクラウドコンピューティングと OSS
クラウドコンピューティングと OSS
 
Demar Brochure Final Jan 2012
Demar Brochure Final Jan 2012Demar Brochure Final Jan 2012
Demar Brochure Final Jan 2012
 
Increasing storage capacity
Increasing storage capacityIncreasing storage capacity
Increasing storage capacity
 
Iptv Third Wave Revenue Telco (Henri Setiawan)
Iptv   Third Wave Revenue Telco (Henri Setiawan)Iptv   Third Wave Revenue Telco (Henri Setiawan)
Iptv Third Wave Revenue Telco (Henri Setiawan)
 
6o kefalaio
6o kefalaio6o kefalaio
6o kefalaio
 

Plus de Videoguy

Energy-Aware Wireless Video Streaming
Energy-Aware Wireless Video StreamingEnergy-Aware Wireless Video Streaming
Energy-Aware Wireless Video StreamingVideoguy
 
Microsoft PowerPoint - WirelessCluster_Pres
Microsoft PowerPoint - WirelessCluster_PresMicrosoft PowerPoint - WirelessCluster_Pres
Microsoft PowerPoint - WirelessCluster_PresVideoguy
 
Proxy Cache Management for Fine-Grained Scalable Video Streaming
Proxy Cache Management for Fine-Grained Scalable Video StreamingProxy Cache Management for Fine-Grained Scalable Video Streaming
Proxy Cache Management for Fine-Grained Scalable Video StreamingVideoguy
 
Free-riding Resilient Video Streaming in Peer-to-Peer Networks
Free-riding Resilient Video Streaming in Peer-to-Peer NetworksFree-riding Resilient Video Streaming in Peer-to-Peer Networks
Free-riding Resilient Video Streaming in Peer-to-Peer NetworksVideoguy
 
Instant video streaming
Instant video streamingInstant video streaming
Instant video streamingVideoguy
 
Video Streaming over Bluetooth: A Survey
Video Streaming over Bluetooth: A SurveyVideo Streaming over Bluetooth: A Survey
Video Streaming over Bluetooth: A SurveyVideoguy
 
Video Streaming
Video StreamingVideo Streaming
Video StreamingVideoguy
 
Reaching a Broader Audience
Reaching a Broader AudienceReaching a Broader Audience
Reaching a Broader AudienceVideoguy
 
Considerations for Creating Streamed Video Content over 3G ...
Considerations for Creating Streamed Video Content over 3G ...Considerations for Creating Streamed Video Content over 3G ...
Considerations for Creating Streamed Video Content over 3G ...Videoguy
 
ADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMING
ADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMINGADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMING
ADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMINGVideoguy
 
Impact of FEC Overhead on Scalable Video Streaming
Impact of FEC Overhead on Scalable Video StreamingImpact of FEC Overhead on Scalable Video Streaming
Impact of FEC Overhead on Scalable Video StreamingVideoguy
 
Application Brief
Application BriefApplication Brief
Application BriefVideoguy
 
Video Streaming Services – Stage 1
Video Streaming Services – Stage 1Video Streaming Services – Stage 1
Video Streaming Services – Stage 1Videoguy
 
Streaming Video into Second Life
Streaming Video into Second LifeStreaming Video into Second Life
Streaming Video into Second LifeVideoguy
 
Flash Live Video Streaming Software
Flash Live Video Streaming SoftwareFlash Live Video Streaming Software
Flash Live Video Streaming SoftwareVideoguy
 
Videoconference Streaming Solutions Cookbook
Videoconference Streaming Solutions CookbookVideoconference Streaming Solutions Cookbook
Videoconference Streaming Solutions CookbookVideoguy
 
Streaming Video Formaten
Streaming Video FormatenStreaming Video Formaten
Streaming Video FormatenVideoguy
 
iPhone Live Video Streaming Software
iPhone Live Video Streaming SoftwareiPhone Live Video Streaming Software
iPhone Live Video Streaming SoftwareVideoguy
 
Glow: Video streaming training guide - Firefox
Glow: Video streaming training guide - FirefoxGlow: Video streaming training guide - Firefox
Glow: Video streaming training guide - FirefoxVideoguy
 

Plus de Videoguy (20)

Energy-Aware Wireless Video Streaming
Energy-Aware Wireless Video StreamingEnergy-Aware Wireless Video Streaming
Energy-Aware Wireless Video Streaming
 
Microsoft PowerPoint - WirelessCluster_Pres
Microsoft PowerPoint - WirelessCluster_PresMicrosoft PowerPoint - WirelessCluster_Pres
Microsoft PowerPoint - WirelessCluster_Pres
 
Proxy Cache Management for Fine-Grained Scalable Video Streaming
Proxy Cache Management for Fine-Grained Scalable Video StreamingProxy Cache Management for Fine-Grained Scalable Video Streaming
Proxy Cache Management for Fine-Grained Scalable Video Streaming
 
Adobe
AdobeAdobe
Adobe
 
Free-riding Resilient Video Streaming in Peer-to-Peer Networks
Free-riding Resilient Video Streaming in Peer-to-Peer NetworksFree-riding Resilient Video Streaming in Peer-to-Peer Networks
Free-riding Resilient Video Streaming in Peer-to-Peer Networks
 
Instant video streaming
Instant video streamingInstant video streaming
Instant video streaming
 
Video Streaming over Bluetooth: A Survey
Video Streaming over Bluetooth: A SurveyVideo Streaming over Bluetooth: A Survey
Video Streaming over Bluetooth: A Survey
 
Video Streaming
Video StreamingVideo Streaming
Video Streaming
 
Reaching a Broader Audience
Reaching a Broader AudienceReaching a Broader Audience
Reaching a Broader Audience
 
Considerations for Creating Streamed Video Content over 3G ...
Considerations for Creating Streamed Video Content over 3G ...Considerations for Creating Streamed Video Content over 3G ...
Considerations for Creating Streamed Video Content over 3G ...
 
ADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMING
ADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMINGADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMING
ADVANCES IN CHANNEL-ADAPTIVE VIDEO STREAMING
 
Impact of FEC Overhead on Scalable Video Streaming
Impact of FEC Overhead on Scalable Video StreamingImpact of FEC Overhead on Scalable Video Streaming
Impact of FEC Overhead on Scalable Video Streaming
 
Application Brief
Application BriefApplication Brief
Application Brief
 
Video Streaming Services – Stage 1
Video Streaming Services – Stage 1Video Streaming Services – Stage 1
Video Streaming Services – Stage 1
 
Streaming Video into Second Life
Streaming Video into Second LifeStreaming Video into Second Life
Streaming Video into Second Life
 
Flash Live Video Streaming Software
Flash Live Video Streaming SoftwareFlash Live Video Streaming Software
Flash Live Video Streaming Software
 
Videoconference Streaming Solutions Cookbook
Videoconference Streaming Solutions CookbookVideoconference Streaming Solutions Cookbook
Videoconference Streaming Solutions Cookbook
 
Streaming Video Formaten
Streaming Video FormatenStreaming Video Formaten
Streaming Video Formaten
 
iPhone Live Video Streaming Software
iPhone Live Video Streaming SoftwareiPhone Live Video Streaming Software
iPhone Live Video Streaming Software
 
Glow: Video streaming training guide - Firefox
Glow: Video streaming training guide - FirefoxGlow: Video streaming training guide - Firefox
Glow: Video streaming training guide - Firefox
 

Experiences with High Definition Interactive Video Conferencing

  • 1. EXPERIENCES WITH HIGH DEFINITION INTERACTIVE VIDEO CONFERENCING Ladan Gharai Tom Lehman Alvaro Saurin Colin Perkins Information Sciences Institute Department of Computing Science University of Southern California University of Glasgow ABSTRACT 2. OVERVIEW OF THE ULTRAGRID SYSTEM We review the design and implementation of UltraGrid, a Our goal in developing UltraGrid was to demonstrate that new high definition video conferencing system, and present modern end-systems and well engineered IP networks can some experimental results. UltraGrid was the first system to support ultra high quality conferencing environments. To this support gigabit rate high definition interactive video confer- end, UltraGrid provides low latency, high definition video; encing on commodity systems and networks, and we present high quality audio and large screen displays enhance the sense measurements to illustrate behavior of production networks of presence, creating a realistic conferencing environment. subject to such real time traffic. We illustrate the benefits of UltraGrid supports both standard and high definition (HD) hybrid IP/provisioned optical networks over best effort IP net- interactive video conferencing, using readily available hard- works for this class of traffic, and motivate the development ware. Both progressive (“720p”) and interlaced (“1080i”) of congestion control algorithms for interactive conferencing HD video is supported. Video may be transmitted using an on best effort IP networks. uncompressed format if network capacity is available (either at 1.2 Gbps for standard format HD video, or at 980 Mbps 1. INTRODUCTION with an alternative HD format). In addition, a range of video codecs are supported to allow adaptation to lower rates at the We review the design and architecture of UltraGrid [17], a expense of some increase in latency and reduction in quality. new high definition video conferencing system. UltraGrid is UltraGrid is typically used in conjunction with AccessGrid the first in a new breed of systems capable of supporting high [10], or some other session initiation framework, to provide definition video over IP, that has greatly evolved the state of the complete conferencing experience shown in Figure 1. the art in video conferencing systems compared to both early In addition to interactive conferencing, UltraGrid can be research prototypes (e.g. [12]) and also modern commercial used for general purpose HD distribution and visualization. offerings. The sender converts stored file content or live SMTPE 292M We present measurement studies to show how modern, [13] high-definition video, as produced professional cameras appropriately provisioned, IP networks and hybrid IP/optical and production equipment, into an RTP packet stream for dis- networks can support even the most demanding of real-time tribution across a variety of IP-based networks, and allows applications. Our data shows how the timing and scheduling the receiver to exactly reconstruct the original signal. Unlike properties of modern networks and operating systems affect content distribution networks, our design seeks to minimize application performance, and how existing real time transport latency, and allows UltraGrid to be used for interactive video protocols allow applications to compensate. We demonstrate conferencing, data visualization and on-line video editing. that both best effort IP and hybrid IP/optical networks provide a solid basis for high performance real-time applications, and 3. DESIGN AND IMPLEMENTATION validate the design of the Real-time Transport Protocol [19, 2] and modern network architectures. A major influence on the design of UltraGrid was to build a The outline of this paper is as follows: we present an system that can be replicated by others, with an objective of overview of the aims of the UltraGrid project in section 2, significantly evolving the quality of baseline interactive video and review the system design in section 3. In section 4 we conferencing systems. To this end, we built UltraGrid from present a performance evaluation of UltraGrid on both pure commercial off the shelf components, make use of standard IP and hybrid IP/Optical network paths, comparing the two protocols and codecs (additional RTP Profiles and Payload architectures to understand their relative performance and to Formats were developed and published through the standards motivate future work on congestion control and on network process as needed [4, 5, 6]), and made our software available design. Related work is described in section 5, and future under an open source license. In the following we describe the work and conclusions are discussed in section 6. design of our software, and outline hardware requirements. 1­4244­0367­7/06/$20.00 ©2006 IEEE 433 ICME 2006
  • 2.   ¡ ¨ ¦ © ¦ ! ¦ © ¦ # $ % ' ! 9 $ @ A A ( ¢ ) 0 2 3 4 2 3 4 1 0 ) ¨ ¦ © ¢ 5 6 8 5 ) 1 0 5 6 £ 7 ¢ 0 5 2 3 1 4 1 0 5 7 0 ¥ U V ' W ! B C D E F G H 1 0 ¥ 0 T ( ¢ ) 0 2 3 4 2 3 4 1 0 5 I £ ¢ 0 5 1 0 ) ¨ ¦ © ¢ 5 6 2 ¨ ¢ I P Q R S @ @ A A ¡ ¢ £ ¤ ¥ ¦ § X ' % Y Q R !   ¡ ¡ ¢ £ ¤ ¥ ¦ § Fig. 1. UltraGrid in action. Fig. 2. UltraGrid software architecture. 3.1. Software Architecture 4. SYSTEM PERFORMANCE EVALUATION We present the high-level design of the UltraGrid software in We conducted numerous local- and wide-area experiments to Figure 2. The system is modular, allowing experiments with demonstrate correct operation of UltraGrid and to investigate different capture and display devices, codecs and transport the performance of IP and hybrid IP/optical networks. protocols. It currently supports capture and display of 8- and 10-bit high definition video and DV format standard defini- 4.1. Local Area Tests tion video, codecs for uncompressed, DV and motion JPEG formats, and a complete implementation of the RTP transport Initial experiments used two nodes connected back to back via protocol supporting IPv4, IPv6 and multicast. a direct optical 10 gigabit Ethernet link. Uncompressed 720p Transmission and reception are implemented as four sep- HD video flows with 8800 bytes packet sizes were exchanged arate threads to improve the system performance and respon- between these nodes for 10 minutes: over 10 million packets siveness. The sender uses one thread for grabbing and encod- were transmitted at a data rate of 1.2 Gbps with no packet loss ing, and a second thread for transmission and control. RTP or reordering. This demonstrates that UltraGrid can support packetization is done according the RFC 4175 [6]. In the full rate HD video when not limited by the network, proving same way, the receiver de-couples the reception and render- the end systems are not a performance bottleneck. ing of frames using two threads. The playout buffer has been This experiment was repeated using the metropolitan area designed according to the principles set forth in [16], in order network from the DRAGON project [11]. As shown in Fig- to reduce effects of jitter and packet loss. Limited conges- ure 3, this network has both an optical path and a number of tion control is present [4], but was not used since we seek to Ethernet segments. Once again, tests were run for 10 minute compare network performance, not congestion response. periods using uncompressed HD video at 1.2 Gbps. Perfor- mance was essentially identical to the back to back tests, as is 3.2. Hardware Requirements expected from a managed over provisioned optical network. UltraGrid nodes are built from commercially available com- 4.2. Wide Area Tests ponents. Nodes comprised Dual Xeon EM64T processors on Super Micro PCI-X mother boards, and ran a mixture of Fe- Wide area tests were conducted during the Super Computing dora Core 3 or 4 (Linux 2.6.12 kernel) operating systems. 2005 conference. An interactive HD video conference was HD capture and/or playout uses HDstation or Centaurus run between the conference exhibit floor in Seattle, WA and cards from Digital Video Systems (DVS) [20]. These are used ISI East in Arlington, VA for the duration of the conference to capture the HD video, and to regenerate SMPTE-292M (see Figure 4), running media flows over both the Internet2 output at the receiver (it is also possible to display HD video Abilene best effort IP network, and the guaranteed capacity directly in a window on the workstation monitor, Figure 1). Hybrid Optical Packet Infrastructure (HOPI) circuit switched For DV capture, an IEEE 1394 interface is required. path. Individuals at ISI East were able to talk with participants We use either gigabit Ethernet (integrated on the mother- at the conference via 720p format HD video. High quality board) or 10 gigabit Ethernet cards (Chelsio N110 [3]). An low latency video, large displays and strategic positioning of alternative approach is to use bonded gigabit Ethernet cards cameras provided an effective sense of presence. to support data rates up to 2 Gbps (such support is under de- Connections to the best effort IP network were via giga- velopment for UltraGrid [8]). bit Ethernet, and this limited us to using colour-subsampled 434