SlideShare une entreprise Scribd logo
1  sur  87
CONGRES  SFHST   NANTES que veut dire aujourd'hui faire de l'histoire des sciences dans l'antiquité?   Mercredi 18 Mai 2011  Vendredi 20 Mai 2011
Bienvenue dans le monde maya
 
 
[object Object],[object Object],[object Object],[object Object],[object Object]
contacts, expéditions, campagnes, projections, interprétations, européocentrismes… comme il est dit : chacun voit les autres à travers ses propres lunettes
[object Object],[object Object],[object Object],[object Object],[object Object],El castillo Chichen Itza (Yuacatan, Mexique )
Waldeck visita à Palenque (Chiapas, Mexique) le Temple des Inscriptions
ainsi nommé parce qu’à l’intérieur…. panneau Est   panneau central   panneau Ouest
Waldeck copie le texte du panneau central de ce temple (ici, dessin de Schele) http://learningobjects.wesleyan.edu/palenque/glyphs/temple_inscriptions/
Waldeck  y vit des éléphants Jean-Frédéric Waldeck Linda Schele
dans une grande civilisation africaine, il fait partie d’une poignée d’explorateurs et de savants qui combattent la thèse majoritaire à l’époque selon laquelle les cultures mésoaméricaines seraient très inférieures aux cultures classiques de l’ancien monde, comme celle de l’Egypte que la campagne de Bonaparte (1799) venait de remettre sous le feu des projecteurs. Malgré les Humboldt, Baradère, Aubin ou Waldeck, les Mayas et autres Aztèques étaient, pour une majorité de savants des 18 ème  et 19 ème  siècles, des « sauvages, demi-civilisés ». Le titre d’un ouvrage de l’anthropologue américain Albert Gallatin (un des pères de l’anthropologie américaine) illustre bien ce courant :  Notes on the  semi-civilized   nations  of Mexico, Yucatan, and Central America , New York : American Ethnological Society, 1845. La démarche de Waldeck est singulière : en plaçant l’origine des pyramides en ruine
Landa voyait l’écriture logo - syllabographique maya  à travers le prisme de l’alphabet latin
le   péché mignon des ethno-x   est,   moins   le fait de projeter ses grilles de lecture et ses propres connaissances sur l’œuvre étrangère que l’on tente de comprendre, que celui de  ne pas soumettre toute lecture à une critique systématique et collective, une critique pour le moins interdisciplinaire et interethnique.   exemple. Je suis un martien et je tombe sur l’écriture «  B, A : BA » et je lis avec mes yeux de martien  B = lunettes, seins, cycles, bicyclette...  A = échelle, toit de maison, triangle ...  et je déchiffre le texte complet en disant « saints Chelles ». Mais déchiffrer n’est pas interpréter. Or, dans cette expérience plus impulsive que contrôlée, le déchiffreur ne laisse pas parler le texte. Il lui fait dire ce qu’il veut/peut entendre. Au mieux, il produit des « gloses épilinguistiques » pour ceux qui partagent sa propre culture de martien. Ce qui arriverait moins sûrement s’il produisait, sous le contrôle des autres et de théories solides, des « familles de paraphrases ».  D’où un point de méthode et de terminologie pour situer le propos d’aujourd’hui :  Les éléphants de Waldeck illustrent le  péché mignon des ethno-x  et autres déchiffreurs de documents étrange(/r)s
[object Object],[object Object],[object Object],[object Object],[object Object],étude des calendriers de l’antiquité mésoaméricaine
défi à relever Comment un JE peut-il apprendre d’un TU un contenu qu’il ne peut pas recevoir directement (parce qu’il est conceptualisé et sémiotisé dans la langue de TU) mais qu’il doit s’approprier (faire sien en le construisant avec les matériaux de sa propre langue, fortement étrangère à celle de TU) ? une sorte de réciproque de ce défi est celui de la dévolution des savoirs qui se pose à tout enseignant, et qui consiste à trouver le moyen de transmettre à quelqu’un quelque chose qu’il ne peut pas recevoir car il doit, dans le même temps, devenir autre pour pouvoir s’approprier les savoir et savoir faire forcément à construire
du schéma de la  communication au schéma  de  la  « traduction » schéma de la communication   schéma de la traduction ou (JE = émetteur, TU = récepteur)   des multiples écarts créatifs
entrons dans le vif du sujet
Partie éclairée de 105 jours    Partie obscure de 260 jours certains mésoaméricains construisaient des héliographes et  disposaient d’une sorte de calendrier solaire donnant en direct et en continu la progression des jours et périodes de l’année tropique observatoires souterrains 30 Avril 13/08  12/08 21/06 01/05 Solstice
Que disent les parties numériques et calendaires enchâssées dans les écrits des scribes mayas ?
A déchiffrer les parties numérico -calendaires insérées dans les écrits laissés par les scribes mayas…  on découvre des équations de la forme  «   X  Y   +    c i P i   =    ’X’  ’Y ’  » [4 Ahau  8 Cumku ] +  9- baktun  13- katun  17- tun  ; 12- uinal  10- kin  =   8 Oc   13 Yax  […]      17-[ kin ]  1- uinal   ;   1- tun  =  [9.13.16.;10.13.]  =  1 Be n   1 Ch’en +  10-[ kin ] 5- uinal  ; 3- tun  2- katun  = [9.16.1.;0.0.]  =  11 Ahau  8 Tzec  +   0- kin  0- uinal   ;   12- tun  =  [9.16.13.;0.0.]  =  2 Ahau  8 Uo  + 0-[ kin ] 0- uinal  ;7- tun  = [9.17.0.;0.0.]  =  13 Ahau  18 Cumku
… et  le lecteur d’aujourd’hui se dit plus ou moins rapidement que  les scribes  cherchaient à résoudre en nombres entiers des équations diophantiennes de la forme a x = c  (modulo b) et à rendre commensurables les nombreux cycles qu’ils manipulaient quotidiennement.   résoudre par exemple l’équation 73 x  = 1 ( mod . 52) permet de montrer, en passant par 365 – 364 = 1, alias 73 x 5 = 52 x 7 + 1, que le couple ( x, y ) = ( 5, 7 )   est une solution de l’équation   73 x –  52 y =  1 .  D’où : (73 x 5) x 52 = (52 x 7 + 1) x 52, c’est-à-dire 73 x 260 = 365 x 52. En d’autres termes, l’almanach de 260 jours et l’année vague solaire de 365 jours sont rendus commensurables dans leur PPCM.
Non, nous ne sommes pas entrain de projeter notre savoir mathématique sur les pratiques des scribes de l’Antiquité mésoaméricaine.  Nous essayons de comprendre à quoi ils jouaient lorsqu’ils écrivaient des milliers d’équations calendaires, qu’ils dressaient des tables de multiples, ou qu’ils remplissaient des tableaux de dates adroitement disposées.
Les auteurs étant disparus, le lecteur moderne ne peut compter que sur la capacité collective de déchiffrer et de traduire les documents restants pour tenter d’entrer dans ce que nous appelons l’   Intelligence Arithmétique Maya, IAM .   Les scribes, en effet, n’ont laissé ni mode d’emploi ni mode de fabrication de leurs outils de calcul, et les Espagnols qui furent en contact avec eux se sont  davantage intéressés aux façons de faire disparaître des pratiques jugées contraire à l’Evangile qu’aux moyens de les comprendre en les dé-sémiotisant de l’écriture maya et en les re-conceptualisant en langue espagnole, bref de les traduire.  Le temps, l’Inquisition et les autodafés firent leur travail de destruction tant chez les Mayas que chez leurs voisins. Si bien qu’ il reste peu de textes   pour répondre à nos interrogations : les scènes figuratives, les inscriptions sur les monuments ou les objets mobiliers, et les codex en particulier les codex mayas de Dresde, Madrid et Paris; peut-être aussi le codex Grolier soupçonné d’être un faux.  Ces documents prouvent qu’il existait  plusieurs types de calendriers  et laissent entrevoir  certains outils de l’IAM  comme par exemple les tables de multiples et les tableaux de dates
malgré la doxa d’un calendrier unique partagé par tous les Mésoaméricains… P arfois  l es savants semblent défendre la thèse opposée et parlent au pluriel des calendriers mésoaméricains ; parfois, ils tentent de nuancer la thèse du singulier, mais, dans les deux cas, c’est en apportant des arguments portant sur des  différences   non pertinentes du point de vue des types de calendriers  seulement liées à la diversité des langues et des écritures ou à des conventions comme celle du point de départ pris pour énumérer les éléments d’un cycle « tous ne faisaient pas commencer l’année par le même mois ».  Par ex., le titre «  LOS CALENDARIOS PREHISPANICOS  » et le sous-titre « NO  UN  CALENDARIO, SINO  VARIOS  » d’un article récent sont contredits par le texte qui concède la même structure à tous les calendriers et se contente de souligner des différences non pertinentes :  « Los calendarios mesoamericanos son parecidos en su estructura pero su contenido es diferente: son distintos los nombres de los días, y los significados de estos últimos difieren; los días que fungen como pordadores (nombres de los años) no son iguales, y los años comienzan en días distintos (…) En vez de usar numerales del 1 al 13, en el calendario de Azoyú se utilizaron numerales del 2 al 14  »  (J. Marcus;2000:12-19)
une différence pertinente : seuls certains utilisaient le Compte Long… le Compte Long consiste à numéroter les jours qui s’écoulent (vers le futur ou le passé) depuis l’origine de la chronologie ; par définition, le numéro/date d’un événement est la durée (comptée en jours dans le système vigésimal des unités de temps)   qui le sépare de l’origine.
… nous proposons de distinguer des types de calendriers  inégalement répartis dans l’espace/temps mésoaméricain En dehors des abréviations et de formes particulières comme les dates « fin de  katun  » des Mayas du Postclassique, on observe en effet différentes façons de dater les jours : 1)  partout, l’usage de deux cycles  –  13 numéros    et  20 signes   X de jour  –  produisant  la « semaine »   de 260 jours datés    X   (les plus anciennes de -650) 2)  l’usage d’une suite de  18 « mois »  Y  de vingt jours  (en principe complétée par une 19 ème  période) structurant l’  « année » selon la formule 18 x  20  +  n   3)  sur une moitié du territoire :  un calendrier absolu dit Compte Long 4)  l’usage d’un cycle de  4 signes   X P  (les éponymes/porteurs  d’année ) produisant avec le cycle des 13 numéros     un « siècle » de   52 ans datés    X P 5 a )  l’usage, à partir du 4 ème  siècle chez les Mayas du Classique, d’un cycle de  vingt numéros    combiné à la suite immuablement ordonnée des  19 périodes   Y   et   générant  le  ha’ab  ou  « année vague solaire » de   365 jours datés   Y   5 b )  un couplage spécifique des  260 dates    X  et des  365 dates   Y  produisant le CR ou « Calendrier Rituel » de  18 980 jours datés   X   Y
principaux types de calendrier   attestés dans l’espace/temps mésoaméricain avec les notations précédentes, nous distinguerons quatre types : (1) + ( 4 ) =  type   X aX P  de 260 x 52 dates ( a priori  ambigu)  exemple : dates aztèques, mixtèques… dites du siècle mésoaméricain (1) + (5a) =  type   X   Y   non contraint   de 260 x 365 dates   quelques exemples sporadiques (1) + (5b) =  type   X   Y   contraint   de 52 x 365 = 260 x 73 dates exemple : dates mayas classiques dites du Calendrier Rituel ( 3 )  =  type   c i P i )   ( théoriquement  infini) exemple : dates/numéros mayas, olmèques… dites du Compte Long
exemples de CL olmèques et mayas 7.16.6. ; 16.18.  8.- baktun  16.- katun   9.9.16. ; 0.0. et stèle C de Tres Zapotes   0.- tun  ; 0.- uinal   9.9.9. ; 16.0. [1 Septembre 32 av. J.-C.]  0.- kin  3 Ahau  8 Kankin   codex de Dresde stèle 18 et 19 de Uaxactun  page 24   (Petén, Guatemala)
un zeste de vocabulaire yucatèque ,[object Object],[object Object],[object Object],[object Object],Uayeb ,   ,  est la période de cinq jours qui s’ajoute aux 18 mois et complète le  ha’ab  le  tun  ‘année de compte’ et ses multiples  katun ,  baktun , etc. un  tun  comprend 18  uinal  ‘mois’ chacun de 20  kin  ‘jours’  13  tun  = 13  ha’ab  – 13  Uayeb  = 18  tzolkin
est attestée partout, à toutes les époques, et dès 650 av. J.-C. c’est le tronc commun des Méso- américains tonalpohualli tzolkin la semaine de 260 jours  X   X X –  ici sous la forme d’un train de 2 roues d’engrenage  (a, X)   –
des variations culturelles sur la même formule   X = 13 x 20 San Andrés (près La Venta) 650 av. J.-C. Yoozena  Monte Albán Stèle D Copán 10 Ahau Azoyú 2 Olin 14 Ehecatl  13 Ehecatl   13 Muluc 1 Ben
codex Zouche Nuttall (mixtèque précolombien) Le  7 Xa  ( Men ) de  l’an  6 Si  ( Edznab ), le roi  5 Quehui   ( Imix )  a pris pour épouse la reine  9 Xa  ( Men ) ; en l’année  7 Cuau  ( Akbal ) ils eurent un fils appelé  12 Qhi  ( Caban ) d’après la date du jour de sa naissance (dans les parenthèses : le nom X équivalent maya) dates   X  mixtèques
une treizaine de jours qui se suivent comme lundi 1, mardi 2, mercredi 3, etc. dates   X  aztèques
borbonicus p. 19/21 26 années   X P  successives (de  1Tochtli  à  13 Acatl) ; X P  varie dans un quarteron d’éponymes :  Tochtli ,  Acatl ,  Tecpatl  et  Calli
les 26 années   X P  suivantes ( 1   Tecpatl  à  13 Calli) ; le tout forme un siècle aztèque  xiuhtlalpilli  de 52 années vagues borbonicus p. 20/22
les expressions   X des Aztèques servaient à distinguer et nommer  les 260 jours de l’almanach et les 52 années du siècle 13 x 20 dates   X  de jour = un  tonalpohualli 13 x 4 dates   X P   d’année = un  xiuhtlalpilli et de même chez les Mixtèques et d’autres qui écrivaient les dates en format   X    X P  ( jour / année ) comme ci-contre la date  7 Xa   6 Si  (nahuatl : 7 Cuauhtli 6 Tecpatl) du codex Nuttall
10 Tecpatl  12 Acatl 1424  1439 11 Calli  11 Tochtli 1425  1438 12 Tochtli  10 Calli 1426  1437 13 Acatl  9 Tecpatl 1427  1436 1 Tecpatl  8 Acatl 1428  1435 2 Calli 3 Tochtli 4 Acatl 5 Tecpatl 6 Calli 7 Tochtli 1429  1430  1431  1432  1433  1434 dans une suite   X P , les    prennent toutes les valeurs de la treizaine d’entiers (1, 13) et les X P  toutes les  valeurs du quarteron  d’éponymes (Calli, Tochtli, Acatl, Tecpatl) (codex Telleriano Remensis, 31r)
siècle aztèque de 52 ans vu à l’époque coloniale les 52 expressions   X P  du   xiuhtlalpilli  sont placées en spirale et liées à 4 couleurs et 4 directions  codex durán
ambiguïtés Le type   X   X P  de calendrier génère 260 x 52 expressions pour dater les jours du siècle mésoaméricain qui compte 52 années   X P .  Pour définir en jours la durée du siècle, l’Indien pouvait observer les retours d’un événement qui en définirait le cycle (astronomique ou culturel) et en déduire la durée de l’année. Il pouvait aussi partir d’une des définitions de l’année. L’année civile ou durée séparant le retour d’une date dans un calendrier annuel (attestée chez les Mayas du Classique, elle vaut 365 j). L’année julienne (en usage sous la couronne espagnole, elle vaut 365 j ¼). Définies par la durée séparant  deux occurrences successives d’un événement lié à la révolution de la Terre, les années astronomiques sont l’année tropique (365,242190517…), l’année sidérale (365,256363051…), etc. L’année vague solaire est convenue en nombre entier de jours ; elle peut être fixe (365 j) ou variable de (365/366 j, peuples faisant la correction bissextile) Quelle que soit la définition/mesure de l’année, la durée en jours du siècle de 52 ans varie entre 18 980 et 19 032 j.  Pour les distinguer/définir/dater, le type   X   Y   non contraint   fournit  trop  de dates (94 900) et le type  aX aX P   en fournit  trop peu  (13 520).
Contrairement au  ha’ab  maya, l’année vague mésoaméricaine est une réalité aux contours mal définis, différemment convenue, peu propice à distinguer/définir les jours ou à servir de calendrier « Ces vingtaines ou mois de 20 jours portaient chacune plusieurs noms dont l’explication est malaisée. La plupart faisaient référence aux principaux rituels qui les marquaient, comme  Tlacaxipehualiztli , « l’Écorchement des hommes », mais ce n’était pas une règle. Pour s’y retrouver, les chercheurs ont pris l’habitude de numéroter les vingtaines, en faisant précéder leur nom d’un chiffre en caractères romains, comme «  II Tlacaxipehualiztli  », qui indique que ce mois est le deuxième de l’année, selon le franciscain Sahagún. Il ne s’agit guère plus que d’une convention car les avis divergent sur le mois par lequel débutait l’année.  Certains chroniqueurs ont parlé d’ Atlcahualo (I) , tandis que d’autres proposaient  Toxcatl (V) .  En réalité, il semble que les anciens Aztèques aient accordé moins d’importance que nous à la détermination d’un début fixe de l’année,   l’essentiel résidant à leurs yeux dans la rotation des vingtaines  »   (Dehouve :  http://www.gemeso.com/nahuatl/autres-dossiers-thematiques/calendrier-des-vingtaines/   ) … rotation des vingtaines avec les hoquets des 5/6 jours manquants…
La Terre est en effet soumise aux variations de l’éclairement et de la hauteur du Soleil provoquant les changements de jour et de saison. Les Mésoaméricains étaient soumis à ces variations et à leurs points distingués comme : les passages du Soleil au Zénith, les Solstices et autres Equinoxes ; c’est le cycle de l’année discrétisée en jours (parfois aussi discrétisée en lunaisons, mois, etc.).  Les peuples disposant d’un calendrier finissent par établir des relations entre le cycle annuel des jours et le cycle culturel des expressions qui les distinguent/définissent (= les dates). On a vu que tous les Mésoaméricains avaient la même ‘semaine’ divinatoire de 260 jours datés   X   qui servait à distinguer les jours, mais surtout à les déclarer  favorables, néfastes ou indifférents.  La valeur divinatoire d’un jour est déterminée par les entités auxquelles  renvoient les constituants de l’expression   X  de sa date. Le cycle annuel des jours et la ronde culturelle des dates sont mutuellement indépendants, mais leur rencontre produit le chaos de la divination qui permet de décréter quand semer, quand faire la guerre, quand se marier, quand commencer un traitement…  Découvrir si/comment les jours et les dates se correspondent était un véritable enjeu des sociétés mésoaméricaines, et montre pourquoi l’usage d’une semaine de 260 jours peut conduire au siècle de 52 ans…
Par sa composition, le très ancien cycle   X  de l’almanach divinatoire structure l’année en « treizaines » et/ou « vingtaines ». Les savants ont découvert partout des listes ordonnées de 18 vingtaines désignées chacune par un nom propre et unique ou par une expression imagée/descriptive qui la définit ou l'évoque  périphrase). La structure en vingtaines est confirmée par le fait que les fêtes Aztèques s’inscrivaient dans le cycle des mois de vingt jours, ou que les Mayas fêtaient le retour de l’année ( ha’ab ) et qu’ils élevaient des stèles à la fin des périodes de vingt, dix ou cinq ans ( tun ). Quelle que soit sa définition, l’année n’est jamais un nombre entier : ni un nombre entier de jours, ni un nombre entier de vingtaines ni un nombre entier de treizaines. C’est ainsi que l’année mésoaméricaine compte 18 vingtaines et un complément de jours souvent dits néfastes, dormants, blancs :  Uayeb  chez les Mayas,  Nemontemi  chez les Aztèques… Sauf pour le Classique maya, le nombre, la nature et la distribution des jours complémentaires sont encore des questions disputées.  que sait-on de l’organisation mésoaméricaine de l’année des saisons
le flou est d’autant plus grand que   les deux sources coloniales les plus fiables ont affirmé sans preuves ni exemples que certains Mésoaméricains  avaient développé une sorte de correction bissextile.  Selon les peuples ou époques, le résidu aurait eu 5 ou 6 jours blancs, pas forcément groupés, pas nécessairement en fin d’année, et qui n’étaient peut-être ni comptés ni enregistrés.   Bref, pour les calendriers de type   X   X P  une incertitude certaine pèse sur :  a) sur le caractère, le nombre et la place de la période complémentaire,  b) sur la durée en jours de l’année,  c) sur son premier/dernier mois, et  d) sur le choix du jour éponyme de l’année Codex Telleriano-Remensis, f.7r 
incertitudes sur le  xihuitl
l’année vague solaire mésoaméricaine peut être présentée sous la forme d’un tableau de    = 20 lignes et  Y  = 18 + 1 colonnes dont les jours sont distingués et qualifiés par les 260 dates   X  des jours de la semaine/almanach  ↓ Y  ambiguïté puisque les 45 ème  et 305 ème  jours par exemple portent le même nom  année vague solaire organisée en vingtaines (mois) ?  X  X
ou aussi comme un tableau de    = 13 lignes et  Y  = 28 + 1 colonnes dont les jours sont encore distingués et qualifiés par les 260 expressions   X année vague solaire organisée en treizaines les 45 ème  et 305 ème  jours portent le même nom
certitudes sur les calendriers mayas de l’époque classique
[object Object],[object Object],[object Object],[object Object],Plaque de Leyde 15/09/320 (greg.) car  au 4 ème  siècle les scribes mayas développèrent la notation   Y  qui distingue et définit biunivoquement les 365 jours de l’année vague solaire
Les périodes de l’année vague : Pop  Uo  Zip  Zodz  Tzec Xul  Yaxkin  Mol  Ch'en  Yax  Zac  Ceh  Mac  Kankin  Muan  Pax  Kayab  Cumku   Uayeb   I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX
apparemment anodine, cette innovation eut d’importantes conséquences le 5 ème  jour de la 3 ème  période n’est plus daté   X  mais    Y   ou mieux    X  Y chaque jour de l’année a un nom   Y   unique : le  ha’ab  devient calendrier non ambigu et la donnée d’un couple    X ,   Y   suffit à  déterminer l’année à laquelle il appartient.  X  Y
le Calendrier Rituel des Mayas Au Classique, les Mayas utilisaient conjointement les 365 dates   Y  de l’année vague solaire et les 260 dates   X  de la semaine divinatoire .  Les corpus de dates   X   Y  montrent que les 94 900 couples possibles sont loin d’être tous attestés : les 365 jours de l’année  ha’ab  (datés   Y ) ne peuvent pas tomber sur les 260 dates   X  du  tzolkin  et vice-versa. Une contrainte pèse sur le système, c’est une condition de cooccurrence des termes  X  et    . Théorème : pour tout entier g, la date almanach du g ème  jour du  ha’ab  (daté   Y ) est de la forme   X(g), où X(g) est une classe (modulo 5) de quatre noms de jour que la donnée d’une seule date attestée permet de déterminer sans ambiguïté .  Définition  : on appelle  calendrier rituel, CR, le cycle des 18 980 couples   X   Y  qui respectent la Règle d’Orthodoxie de la Chronologie maya.  N’importe quel jour de l’année est uniquement défini par : son rang  g  dans l’année, sa date   Y  dans le  ha’ab , ou sa date    X(g)   Y   dans le CR .  Les dates   X(g)   Y  sont à la fois celles qui respectent la contrainte et celles qui figurent sur les documents mayas du Classique. Leur ensemble est une partie stricte de  tzolkin  x  ha’ab .
Règle d’Orthodoxie de la Chronologie maya ou contrainte de cooccurrence sur X et   Si     = 0/5/10/15/20 ,  alors   X = Ik/Manik/Eb/Caban Si  X = Akbal/Lamat/Ben/Edznab , alors     = 1/6/11/16 4 Ahau  8 Cumku   est une date bien écrite *4 Ahau  9 Cumku  ou *4 Imix  8 Cumku   ne sont pas  des dates mayas bien écrites
Dans ces conditions, il faut attendre 2.12.;13.0.  kin  (18 980 jours) pour que le jour de numéro g dans l’année revienne (après 52 révolutions du  ha’ab ) à la même date   X(g) (après 73 révolutions du  tzolkin ).  Remarque. Quelle que soit la définition de l’année (tropique, sidérale ou vague), la durée 2.12.;13.0.  kin  est égale ou presque égale à 52 années. L’égalité caractérise le choix d’une année vague de exactement 365 jours (sans jour blanc ni jour supplémentaire).
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
application : dresser le calendrier   de l’année du   4 Ahau   3 Kankin Kankin  est le mois n°  XIV  et donc le  3 Kankin  est dans la 4 ème  ligne  XIV ème   colonne ; cette cellule correspond à un jour  4 Ahau , la ligne est donc celle du XX ème  jour Ahau ; savoir que cette cellule est datée  4 Ahau  est suffisant pour renseigner tout le tableau On place les coordonnées    (de  0  à  19 ) et  Y  (de  I = Pop   à  XIX = Uayeb )
Faute de dates   Y , le type   X   X P  ne permet pas ces reconstructions Parce que l’on ne connaît pas avec toute la certitude désirable comment les anciens déterminaient le jour éponyme des années. Donner la date  7 Acatl 8 Acatl  de type   X   X P  revient à dire que le jour daté  7 Acatl  se trouve dans l’année nommée  8 Acatl  parce qu’un certain jour  g  était convenu être l’éponyme de l’année.  Mais cela (  X(g)  =  8 Acatl ) ne dit pas quel jour  g  était éponyme de l’année. De fait, les spécialistes discutent toujours de la définition de l’éponyme : certains adoptent la convention maya du Nouvel an, d’autres prennent le 20 ème  jour des  IV ème ,  XVII ème  ou  XVIII ème  vingtaines de l’année, dont il reste encore à déterminer le nom et la position par rapport au résidu
l’usage systématique et rigoureux des dates   Y  permit aux scribes mayas du Classique d’utiliser de manière conjointe et redondante deux sortes de dates : les numéros   c i P i  du Compte Long, et les couples (aX,   Y)  du Calendrier Rituel  (partie du produit des 260 dates  tzolkin  et des 365 dates  ha’ab )
dates mayas   Y ici on compte  pour   Cumku   en  katun 13.- baktun   0.-   katun 0.- tun  ;  0.- uinal   0.- kin   4 Ahau  8   Cumku exemple de série initiale : Glyphe introducteur, Compte Long (  c i P i ), et date CR (  X    Y  du produit  tzolkin  x  ha'ab )
dates mayas   Y ici on compte  pour  Yaxkin   en  katun 9.- baktun   1.-   katun 0.- tun  ;  0.- uinal   0.- kin   6 Ahau  13 Yaxkin exemple de série initiale : Glyphe introducteur, Compte Long (  c i P i ), et date CR (  X    Y  du produit  tzolkin  x  ha'ab )  Stèle C de Quirigua (face Ouest)
Stèle C (Ouest) Quiriguá
noyau d’une série initiale maya ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
des dates liées par des égalités (  X  Y ) +   c i P i  = (  ’ X’  ’ Y’ ) « On compte pour  Yaxkin  en  katun  :  9- baktun  1- katun  0- tun  ; 0- uinal  0- kin  (1 303 200 j) passés, [le]  6 Ahau  13 Yaxkin , le roi  Tutuum Yohl , divin maître de  Quiriguá , érigea une pierre (= stèle), cela se fit au ‘lieu du colibri’. Puis,  0- [ kin ]  0- uinal  ; 5- tun  17- katun  [au lieu de  16 ] plus tard, le  6 Ahau  13 Kayab , c’était le 1 er   hotun  [= le 1 er   5- tun  ou quart de  katun  du 18 ème   katun ] alors  K’ak’ Tiliw Chan Yoaat , le  ch’ahom  de  5  katun  [il a entre 4 et 5 vingtaines d’ans de 360 j] a versé le liquide [= il effectué le rite de l’aspersion] » .
… insérées dans des textes illustrés et avec plus d’égalités…
... et encore plus de cycles et de redondances… Ancrés dans un passé lointain ( 1.18.5. ; 4.0.  = 06/11/-2359), les faits se déroulèrent un  1 Ahau  13 Mac ,  10   jours après la Nouvelle Lune de la   5 ème  des six Lunes du Jaguar de l’Inframonde, une Lune appelée Sak Ok de 30 jours. Et 19 jours 14 mois avant, le 1 Cauac  7 Yax , le Kauil avait été érigé à l’Ouest…
… notamment dans les pages éclipses et les pages vénusiennes du dresde
les scribes mayas furent les gardes des  forêts de  cycles qu’ils voulaient rendre  commensurables
Les scribes gardiens des forêts de cycles L’homme maya jonglait avec les nombres : 7 mers, 9 enfers, 13 cieux, 260 jours du  tzolkin , 364 jours du Zodiaque, 4  x  819 jours du Kauil associé aux points cardinaux et à leur 4 couleurs, 18 980 jours du CR, 37 960 j du double CR au bout duquel les trois années les plus importantes (divinatoire, solaire et vénusienne) repassent par le même triplet de dates, etc.
dans cette forêt, la vérité d’une suite de multiples…  Posant  x  =  3.5.  (soixante cinq en décimal), on lit, d’une part, la suite des premiers multiples de  x , jusqu’à 28 x  ; et, d’autre part,   un ensemble de 13 multiples de  y  =  28 x  tous associés à la date  4  Eb  et dont voici un extrait depuis 2 y  écrit  10.;2. 0.  jusqu’à 24 y  noté  6.1.;6. 0 . y  =  5.1. 0.  = 1 820 = 5 x 364 = 7 x 260 = 13 x 140 = 20 x 91 = 28 x 65 :  y   n’a pas été tabulé par hasard
…  laissant invariant tout ou partie des dates…. Les translations de pas multiple de 65 laissent invariant le rang    des dates   X  et font progresser de 5 le nom  X  ; par suite, les multiples de la table font parcourir le cycle dit des Porteurs d’année :  4  Caban ,  4  Ik ,  4  Manik ,  4  Eb .  Les translations de pas multiple de 1 820 laissent invariantes les dates   X   65 = 0 modulo 13 et 65 = 5 mod. 20 ; et 1 820= 0 mod. 13 et 1 820 = 0 mod. 20)
…  que les scribes regroupaient en tableaux de dates Oc 10 Imix 1 Eb 12 Akbal 3 Cimi 6 Caban 17 Lamat 8 Cauac 19 Ik 2 Ben 13 Kan 4 Men 15 Edznab 18 Muluc 9 Ahau 20 Chuen 11 Hix 14 Chicchan 5 Cib 16 Manik 7 13 13 13 13
comment lire les tableaux de dates  et  réinventer le travail des scribes  Les codex ne contiennent ni mode d’emploi ni  mode de fabrication.  Mais on peut réaliser des expériences de pensée pour deviner comment fut construit le tableau, ou comment le lire. Chaque façon de balayer les dates du tableau distingue en effet un ordre de lecture/écriture, lequel détermine la valeur numérique de la durée séparant deux dates qui se suivent pour cet ordre de lecture/écriture D’où une méthode pour inventer l’ordre utilisé par le scribe : faire varier les balayages, comparer les résultats, conclure.
exemples de balayages…
synthèse des observables  ,[object Object],[object Object],[object Object]
on retient cet ordre de lecture pour une tout autre raison : le contexte immédiat du tableau distingue les nombres 91 et 364 en déclinant leurs multiples Tables des Multiples de 91 au-dessus du tableau de dates
Table des multiples de 364 à gauche du tableau de dates
expériences de pensée… On observe que les translations faisant passer d’un jour  X  au suivant sont de  pas égal au multiple inscrit au-dessus de ce jour : Manik  +  364  x   4 =  Akbal  2  Manik  0  +  364  x   5 =  Akbal  3 Akbal  2  +   364 =  Akbal  3   Les colonnes de multiples de 364 (13 x 28) sont séparées par des dates   X  (ou des noms  X  de jour)
13   Akbal  0  +  91  =  13   Hix  1   13   Akbal  0  +  91   x   2  =  13   Chicchan  2   13   Akbal  0  +  91   x  3  =  13   Cib  3 13   Akbal  0  +  91   x   5  =  13   Manik  4   … 13   Akbal 0   +  91   x   4  =  13   Manik 4/0 Les tableaux de dates et leur contexte de tables de multiples sont possiblement des artefacts ou des algorithmes qui permettaient aux scribes de déterminer l’effet sur une date donnée des translations de pas tabulés dans les dites tables  un outil de comput…
tableaux de dates et tables de multiples sont deux outils mayas pour le comput calendaire Codex de Dresde, p. 61a/32a  Oc 10 Imix 1 Eb 12 Akbal 3 Cimi 6 Caban 17 Lamat 8 Cauac 19 Ik 2 Ben 13 Kan 4 Men 15 Edznab 18 Muluc 9 Ahau 20 Chuen 11 Hix 14 Chicchan 5 Cib 16 Manik 7 13 13 13 13
La page 24 du Dresde contient 20 nombres associés à vingt dates     Ahau . Seize sont multiples de N 1  =  8.;2. 0.  et forment deux groupes : celui des douze premiers multiples de N 1  ; et celui des quatre premiers multiple du treizième, N 13  =  5.5.;8. 0.
Posons AV = 584 et faisons parler les 4 derniers multiples en les traduisant dans les mesures les plus utilisées dans un cabinet de scribes : un étalon almanach de 260 jours noté AR (Année Religieuse), un étalon année vague solaire AS de 365 j, un étalon vénusien AV de 584 j, et l’étalon N 13  = 2 CR de 37 960 jours donné par la table. Ainsi mis à la question, les 4 entiers livrent le tableau suivant : La colonne grisée, par ex, montre que les scribes ont en quelque sorte gradué la droite CL du compte long en années vagues vénusiennes (de 65 AV jusqu’à 260 AV = (13  x  20) AV).  Un tel cycle – multiple vigésimal et treiziste de l’année vague vénusienne – n’a pas été calculé par hasard. En effet : a) il englobe et rend commensurables quatre cycles, à savoir : le double CR et trois années ( tzolkin, ha’ab et AV) ; et, b)  il fixe le jour de départ/arrivée de l’année vague vénusienne à la date symbolique   «   1  Ahau »  placée sous les quatre multiples et considérée comme une sorte de Porteur du cycle vénusien.
Conclusion.  Les scribes tabulaient l’effet sur les dates   X de translations (directes ou rétrogrades) de pas multiples de 4, 9, 13, 20, 65,  148 ,  177 , 260, 364, 365, 584, etc., ETC. et dressaient des tableaux de dates séparées par des multiples de ces valeurs.  p. 31c/52c  p. 32c/53c Pourquoi les scribes ont-ils répété les entiers   8. 17. et   7. 8. en dernière ligne des pages 30/51 à 37/58 du codex de Dresde ?
Le texte est jalonné de signes d’éclipses et comprend un ‘compteur’ qui totalise la distance séparant les dates inscrites sur trois lignes :  17.14.8.  11  Cib  +  8. 17.  =  18.5.5.  6  Ben,  etc.
Les signes d’éclipses, les bandes célestes, la figure de la jeune déesse de la Lune et surtout le calcul conduisent à la thèse que ces pages sont des éphémérides égrenant les dates d’éclipses possibles regroupées en demi-année lunaire de chacune 5 ou 6 lunaisons de 29 ou 30 jours :   8. 17.  =  177   = 90 + 87 = [(3 x 30) + (3 x 29)] ;   7. 8.  =  148   = 90 + 58 = [(3 x 30) + (2 x 29)].
Merci de votre attention André Cauty, Université Bordeaux 1
listes des périodes/mois des années  aztèque  et  maya  les plus fréquemment proposées non représentée : la liste commençant par  Toxcatl  ( VI ) XIX Uayeb   ? Nemontemi XVIII Cumku   Tititl Izcalli XVII Kayab  Atemoztli Tititl XVI Pax  Panquetzaliztli Atemoztli XV Muan  Quecholli Panquetzaliztli XIV Kankin  Tepeilhuitl Quecholli XIII Mac  Teotleco Tepeilhuitl XII Ceh  Ochpaniztli Teotleco XI Zac  Xocotlhuetzi Ochpaniztli X Yax  Tlaxochimaco Xocotlhuetzi IX Ch'en  Hueyitecuilhuitl Tlaxochimaco VIII Mol  Tecuilhuitontli Hueyitecuilhuitl VII Yaxkin  Etzalcualiztli Tecuilhuitontli VI Xul  Toxcatl Etzalcualiztli V Tzec Hueyitozoztli Toxcatl IV Zodz  Tozoztontli Hueyitozoztli III Zip  Tlacaxipehualiztli   Tozoztontli II Uo  Atlcahualo Tlacaxipehualiztli   I Pop  Izcalli Atlcahualo

Contenu connexe

Similaire à Congrès SFHST Nantes 20/11/2011

147865537 al7fr10tepa0111-sequence-02
147865537 al7fr10tepa0111-sequence-02147865537 al7fr10tepa0111-sequence-02
147865537 al7fr10tepa0111-sequence-02Ettaoufik Elayedi
 
Évolution de l’enseignement de langues
Évolution de l’enseignement de languesÉvolution de l’enseignement de langues
Évolution de l’enseignement de languesMárcio Yamamoto
 
Principes méthodologiques pour les bibliographies comparées.pdf
Principes méthodologiques pour les bibliographies comparées.pdfPrincipes méthodologiques pour les bibliographies comparées.pdf
Principes méthodologiques pour les bibliographies comparées.pdfUniversidad Complutense de Madrid
 
Calendriers mésoaméricains introduction 1
Calendriers mésoaméricains introduction 1Calendriers mésoaméricains introduction 1
Calendriers mésoaméricains introduction 1guestec004d0
 
La mythologie racontée aux enfants: une belle et profitable doctrine
La mythologie racontée aux enfants: une belle et profitable doctrineLa mythologie racontée aux enfants: une belle et profitable doctrine
La mythologie racontée aux enfants: une belle et profitable doctrineUniversidad Complutense de Madrid
 
Quelques acteurs historiques de la documentation
Quelques acteurs historiques de la documentationQuelques acteurs historiques de la documentation
Quelques acteurs historiques de la documentationOlivier Le Deuff
 
EXISTENTIAL DURATION MEASURED BY MAYAN TIME
EXISTENTIAL DURATION MEASURED BY MAYAN TIMEEXISTENTIAL DURATION MEASURED BY MAYAN TIME
EXISTENTIAL DURATION MEASURED BY MAYAN TIMEEditions La Dondaine
 
Les Mysteres d'Eleusis - http://www.projethomere.com
Les Mysteres d'Eleusis - http://www.projethomere.comLes Mysteres d'Eleusis - http://www.projethomere.com
Les Mysteres d'Eleusis - http://www.projethomere.comHélène Kémiktsi
 
Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...
Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...
Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...Michel Leygues
 
Les temps verticaux
Les temps verticaux Les temps verticaux
Les temps verticaux Elsa von Licy
 
Diderot et Voltaire dissert
Diderot et Voltaire dissertDiderot et Voltaire dissert
Diderot et Voltaire dissertCécilia Lacombe
 
Le Monde Grec Erick
Le  Monde Grec ErickLe  Monde Grec Erick
Le Monde Grec Ericktribouleto
 
Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...
Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...
Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...MihaelaStanica1
 
Mélanie Roche Histoire et communication - Lecture d'E. Eisenstein
Mélanie Roche Histoire et communication - Lecture d'E. EisensteinMélanie Roche Histoire et communication - Lecture d'E. Eisenstein
Mélanie Roche Histoire et communication - Lecture d'E. EisensteinMélanie Roche
 

Similaire à Congrès SFHST Nantes 20/11/2011 (20)

147865537 al7fr10tepa0111-sequence-02
147865537 al7fr10tepa0111-sequence-02147865537 al7fr10tepa0111-sequence-02
147865537 al7fr10tepa0111-sequence-02
 
Évolution de l’enseignement de langues
Évolution de l’enseignement de languesÉvolution de l’enseignement de langues
Évolution de l’enseignement de langues
 
Principes méthodologiques pour les bibliographies comparées.pdf
Principes méthodologiques pour les bibliographies comparées.pdfPrincipes méthodologiques pour les bibliographies comparées.pdf
Principes méthodologiques pour les bibliographies comparées.pdf
 
Calendriers mésoaméricains introduction 1
Calendriers mésoaméricains introduction 1Calendriers mésoaméricains introduction 1
Calendriers mésoaméricains introduction 1
 
La mythologie racontée aux enfants: une belle et profitable doctrine
La mythologie racontée aux enfants: une belle et profitable doctrineLa mythologie racontée aux enfants: une belle et profitable doctrine
La mythologie racontée aux enfants: une belle et profitable doctrine
 
Quelques acteurs historiques de la documentation
Quelques acteurs historiques de la documentationQuelques acteurs historiques de la documentation
Quelques acteurs historiques de la documentation
 
1340ans education
1340ans education1340ans education
1340ans education
 
EXISTENTIAL DURATION MEASURED BY MAYAN TIME
EXISTENTIAL DURATION MEASURED BY MAYAN TIMEEXISTENTIAL DURATION MEASURED BY MAYAN TIME
EXISTENTIAL DURATION MEASURED BY MAYAN TIME
 
Mémoire 5e partie
Mémoire 5e partieMémoire 5e partie
Mémoire 5e partie
 
Mémoire 6e partie
Mémoire 6e partieMémoire 6e partie
Mémoire 6e partie
 
Les Mysteres d'Eleusis - http://www.projethomere.com
Les Mysteres d'Eleusis - http://www.projethomere.comLes Mysteres d'Eleusis - http://www.projethomere.com
Les Mysteres d'Eleusis - http://www.projethomere.com
 
Cahier de réussites 6e
Cahier de réussites 6eCahier de réussites 6e
Cahier de réussites 6e
 
Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...
Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...
Le vase de Fuente Magna: recherche de parenté entre sumérien, akkadien, quech...
 
Les temps verticaux
Les temps verticaux Les temps verticaux
Les temps verticaux
 
Diderot et Voltaire dissert
Diderot et Voltaire dissertDiderot et Voltaire dissert
Diderot et Voltaire dissert
 
Le Monde Grec Erick
Le  Monde Grec ErickLe  Monde Grec Erick
Le Monde Grec Erick
 
G1 courscartes
G1 courscartesG1 courscartes
G1 courscartes
 
Littérature et philosophie: le règne de Descartes
Littérature et philosophie: le règne de DescartesLittérature et philosophie: le règne de Descartes
Littérature et philosophie: le règne de Descartes
 
Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...
Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...
Figures III (Discours du récit Essai de méthode) by Gérard Genette (z-lib.org...
 
Mélanie Roche Histoire et communication - Lecture d'E. Eisenstein
Mélanie Roche Histoire et communication - Lecture d'E. EisensteinMélanie Roche Histoire et communication - Lecture d'E. Eisenstein
Mélanie Roche Histoire et communication - Lecture d'E. Eisenstein
 

Dernier

Annie Ernaux Extérieurs. pptx. Exposition basée sur un livre .
Annie   Ernaux  Extérieurs. pptx. Exposition basée sur un livre .Annie   Ernaux  Extérieurs. pptx. Exposition basée sur un livre .
Annie Ernaux Extérieurs. pptx. Exposition basée sur un livre .Txaruka
 
Zotero avancé - support de formation doctorants SHS 2024
Zotero avancé - support de formation doctorants SHS 2024Zotero avancé - support de formation doctorants SHS 2024
Zotero avancé - support de formation doctorants SHS 2024Alain Marois
 
Evaluation du systeme d'Education. Marocpptx
Evaluation du systeme d'Education. MarocpptxEvaluation du systeme d'Education. Marocpptx
Evaluation du systeme d'Education. MarocpptxAsmaa105193
 
SciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdf
SciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdfSciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdf
SciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdfSKennel
 
le present des verbes reguliers -er.pptx
le present des verbes reguliers -er.pptxle present des verbes reguliers -er.pptx
le present des verbes reguliers -er.pptxmmatar2
 
Présentation_ Didactique 1_SVT (S4) complet.pptx
Présentation_ Didactique 1_SVT (S4) complet.pptxPrésentation_ Didactique 1_SVT (S4) complet.pptx
Présentation_ Didactique 1_SVT (S4) complet.pptxrababouerdighi
 
SciencesPo_Aix_InnovationPédagogique_Bilan.pdf
SciencesPo_Aix_InnovationPédagogique_Bilan.pdfSciencesPo_Aix_InnovationPédagogique_Bilan.pdf
SciencesPo_Aix_InnovationPédagogique_Bilan.pdfSKennel
 
Bibdoc 2024 - Ecologie du livre et creation de badge.pdf
Bibdoc 2024 - Ecologie du livre et creation de badge.pdfBibdoc 2024 - Ecologie du livre et creation de badge.pdf
Bibdoc 2024 - Ecologie du livre et creation de badge.pdfBibdoc 37
 
Bibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdf
Bibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdfBibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdf
Bibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdfBibdoc 37
 
SciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdfSKennel
 
LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...
LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...
LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...Faga1939
 
Presentation de la plateforme Moodle - avril 2024
Presentation de la plateforme Moodle - avril 2024Presentation de la plateforme Moodle - avril 2024
Presentation de la plateforme Moodle - avril 2024Gilles Le Page
 
Principe de fonctionnement d'un moteur 4 temps
Principe de fonctionnement d'un moteur 4 tempsPrincipe de fonctionnement d'un moteur 4 temps
Principe de fonctionnement d'un moteur 4 tempsRajiAbdelghani
 
SciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdfSKennel
 
Le Lean sur une ligne de production : Formation et mise en application directe
Le Lean sur une ligne de production : Formation et mise en application directeLe Lean sur une ligne de production : Formation et mise en application directe
Le Lean sur une ligne de production : Formation et mise en application directeXL Groupe
 
Cours SE Gestion des périphériques - IG IPSET
Cours SE Gestion des périphériques - IG IPSETCours SE Gestion des périphériques - IG IPSET
Cours SE Gestion des périphériques - IG IPSETMedBechir
 
Saint Georges, martyr, et la lègend du dragon.pptx
Saint Georges, martyr, et la lègend du dragon.pptxSaint Georges, martyr, et la lègend du dragon.pptx
Saint Georges, martyr, et la lègend du dragon.pptxMartin M Flynn
 
Bernard Réquichot.pptx Peintre français
Bernard Réquichot.pptx   Peintre françaisBernard Réquichot.pptx   Peintre français
Bernard Réquichot.pptx Peintre françaisTxaruka
 
Cours SE Le système Linux : La ligne de commande bash - IG IPSET
Cours SE Le système Linux : La ligne de commande bash - IG IPSETCours SE Le système Linux : La ligne de commande bash - IG IPSET
Cours SE Le système Linux : La ligne de commande bash - IG IPSETMedBechir
 

Dernier (20)

Annie Ernaux Extérieurs. pptx. Exposition basée sur un livre .
Annie   Ernaux  Extérieurs. pptx. Exposition basée sur un livre .Annie   Ernaux  Extérieurs. pptx. Exposition basée sur un livre .
Annie Ernaux Extérieurs. pptx. Exposition basée sur un livre .
 
Zotero avancé - support de formation doctorants SHS 2024
Zotero avancé - support de formation doctorants SHS 2024Zotero avancé - support de formation doctorants SHS 2024
Zotero avancé - support de formation doctorants SHS 2024
 
Evaluation du systeme d'Education. Marocpptx
Evaluation du systeme d'Education. MarocpptxEvaluation du systeme d'Education. Marocpptx
Evaluation du systeme d'Education. Marocpptx
 
SciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdf
SciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdfSciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdf
SciencesPo_Aix_InnovationPédagogique_Conférence_SK.pdf
 
le present des verbes reguliers -er.pptx
le present des verbes reguliers -er.pptxle present des verbes reguliers -er.pptx
le present des verbes reguliers -er.pptx
 
Présentation_ Didactique 1_SVT (S4) complet.pptx
Présentation_ Didactique 1_SVT (S4) complet.pptxPrésentation_ Didactique 1_SVT (S4) complet.pptx
Présentation_ Didactique 1_SVT (S4) complet.pptx
 
SciencesPo_Aix_InnovationPédagogique_Bilan.pdf
SciencesPo_Aix_InnovationPédagogique_Bilan.pdfSciencesPo_Aix_InnovationPédagogique_Bilan.pdf
SciencesPo_Aix_InnovationPédagogique_Bilan.pdf
 
Bibdoc 2024 - Ecologie du livre et creation de badge.pdf
Bibdoc 2024 - Ecologie du livre et creation de badge.pdfBibdoc 2024 - Ecologie du livre et creation de badge.pdf
Bibdoc 2024 - Ecologie du livre et creation de badge.pdf
 
Bibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdf
Bibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdfBibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdf
Bibdoc 2024 - Les maillons de la chaine du livre face aux enjeux écologiques.pdf
 
DO PALÁCIO À ASSEMBLEIA .
DO PALÁCIO À ASSEMBLEIA                 .DO PALÁCIO À ASSEMBLEIA                 .
DO PALÁCIO À ASSEMBLEIA .
 
SciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_EtudiantActeur.pdf
 
LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...
LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...
LA MONTÉE DE L'ÉDUCATION DANS LE MONDE DE LA PRÉHISTOIRE À L'ÈRE CONTEMPORAIN...
 
Presentation de la plateforme Moodle - avril 2024
Presentation de la plateforme Moodle - avril 2024Presentation de la plateforme Moodle - avril 2024
Presentation de la plateforme Moodle - avril 2024
 
Principe de fonctionnement d'un moteur 4 temps
Principe de fonctionnement d'un moteur 4 tempsPrincipe de fonctionnement d'un moteur 4 temps
Principe de fonctionnement d'un moteur 4 temps
 
SciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_IA.pdf
 
Le Lean sur une ligne de production : Formation et mise en application directe
Le Lean sur une ligne de production : Formation et mise en application directeLe Lean sur une ligne de production : Formation et mise en application directe
Le Lean sur une ligne de production : Formation et mise en application directe
 
Cours SE Gestion des périphériques - IG IPSET
Cours SE Gestion des périphériques - IG IPSETCours SE Gestion des périphériques - IG IPSET
Cours SE Gestion des périphériques - IG IPSET
 
Saint Georges, martyr, et la lègend du dragon.pptx
Saint Georges, martyr, et la lègend du dragon.pptxSaint Georges, martyr, et la lègend du dragon.pptx
Saint Georges, martyr, et la lègend du dragon.pptx
 
Bernard Réquichot.pptx Peintre français
Bernard Réquichot.pptx   Peintre françaisBernard Réquichot.pptx   Peintre français
Bernard Réquichot.pptx Peintre français
 
Cours SE Le système Linux : La ligne de commande bash - IG IPSET
Cours SE Le système Linux : La ligne de commande bash - IG IPSETCours SE Le système Linux : La ligne de commande bash - IG IPSET
Cours SE Le système Linux : La ligne de commande bash - IG IPSET
 

Congrès SFHST Nantes 20/11/2011

  • 1. CONGRES SFHST NANTES que veut dire aujourd'hui faire de l'histoire des sciences dans l'antiquité? Mercredi 18 Mai 2011 Vendredi 20 Mai 2011
  • 2. Bienvenue dans le monde maya
  • 3.  
  • 4.  
  • 5.
  • 6. contacts, expéditions, campagnes, projections, interprétations, européocentrismes… comme il est dit : chacun voit les autres à travers ses propres lunettes
  • 7.
  • 8. Waldeck visita à Palenque (Chiapas, Mexique) le Temple des Inscriptions
  • 9. ainsi nommé parce qu’à l’intérieur…. panneau Est panneau central panneau Ouest
  • 10. Waldeck copie le texte du panneau central de ce temple (ici, dessin de Schele) http://learningobjects.wesleyan.edu/palenque/glyphs/temple_inscriptions/
  • 11. Waldeck y vit des éléphants Jean-Frédéric Waldeck Linda Schele
  • 12. dans une grande civilisation africaine, il fait partie d’une poignée d’explorateurs et de savants qui combattent la thèse majoritaire à l’époque selon laquelle les cultures mésoaméricaines seraient très inférieures aux cultures classiques de l’ancien monde, comme celle de l’Egypte que la campagne de Bonaparte (1799) venait de remettre sous le feu des projecteurs. Malgré les Humboldt, Baradère, Aubin ou Waldeck, les Mayas et autres Aztèques étaient, pour une majorité de savants des 18 ème et 19 ème siècles, des « sauvages, demi-civilisés ». Le titre d’un ouvrage de l’anthropologue américain Albert Gallatin (un des pères de l’anthropologie américaine) illustre bien ce courant : Notes on the semi-civilized nations of Mexico, Yucatan, and Central America , New York : American Ethnological Society, 1845. La démarche de Waldeck est singulière : en plaçant l’origine des pyramides en ruine
  • 13. Landa voyait l’écriture logo - syllabographique maya à travers le prisme de l’alphabet latin
  • 14. le péché mignon des ethno-x est, moins le fait de projeter ses grilles de lecture et ses propres connaissances sur l’œuvre étrangère que l’on tente de comprendre, que celui de ne pas soumettre toute lecture à une critique systématique et collective, une critique pour le moins interdisciplinaire et interethnique. exemple. Je suis un martien et je tombe sur l’écriture «  B, A : BA » et je lis avec mes yeux de martien B = lunettes, seins, cycles, bicyclette... A = échelle, toit de maison, triangle ... et je déchiffre le texte complet en disant « saints Chelles ». Mais déchiffrer n’est pas interpréter. Or, dans cette expérience plus impulsive que contrôlée, le déchiffreur ne laisse pas parler le texte. Il lui fait dire ce qu’il veut/peut entendre. Au mieux, il produit des « gloses épilinguistiques » pour ceux qui partagent sa propre culture de martien. Ce qui arriverait moins sûrement s’il produisait, sous le contrôle des autres et de théories solides, des « familles de paraphrases ». D’où un point de méthode et de terminologie pour situer le propos d’aujourd’hui : Les éléphants de Waldeck illustrent le  péché mignon des ethno-x et autres déchiffreurs de documents étrange(/r)s
  • 15.
  • 16. défi à relever Comment un JE peut-il apprendre d’un TU un contenu qu’il ne peut pas recevoir directement (parce qu’il est conceptualisé et sémiotisé dans la langue de TU) mais qu’il doit s’approprier (faire sien en le construisant avec les matériaux de sa propre langue, fortement étrangère à celle de TU) ? une sorte de réciproque de ce défi est celui de la dévolution des savoirs qui se pose à tout enseignant, et qui consiste à trouver le moyen de transmettre à quelqu’un quelque chose qu’il ne peut pas recevoir car il doit, dans le même temps, devenir autre pour pouvoir s’approprier les savoir et savoir faire forcément à construire
  • 17. du schéma de la communication au schéma de la « traduction » schéma de la communication schéma de la traduction ou (JE = émetteur, TU = récepteur) des multiples écarts créatifs
  • 18. entrons dans le vif du sujet
  • 19. Partie éclairée de 105 jours Partie obscure de 260 jours certains mésoaméricains construisaient des héliographes et disposaient d’une sorte de calendrier solaire donnant en direct et en continu la progression des jours et périodes de l’année tropique observatoires souterrains 30 Avril 13/08 12/08 21/06 01/05 Solstice
  • 20. Que disent les parties numériques et calendaires enchâssées dans les écrits des scribes mayas ?
  • 21. A déchiffrer les parties numérico -calendaires insérées dans les écrits laissés par les scribes mayas… on découvre des équations de la forme «   X  Y +  c i P i =  ’X’  ’Y ’  » [4 Ahau 8 Cumku ] + 9- baktun 13- katun 17- tun ; 12- uinal 10- kin =  8 Oc 13 Yax  […]   17-[ kin ] 1- uinal ; 1- tun  =  [9.13.16.;10.13.] = 1 Be n 1 Ch’en + 10-[ kin ] 5- uinal ; 3- tun 2- katun = [9.16.1.;0.0.]  = 11 Ahau 8 Tzec  + 0- kin 0- uinal ; 12- tun  =  [9.16.13.;0.0.]  = 2 Ahau 8 Uo  + 0-[ kin ] 0- uinal ;7- tun = [9.17.0.;0.0.]  =  13 Ahau 18 Cumku
  • 22. … et le lecteur d’aujourd’hui se dit plus ou moins rapidement que les scribes cherchaient à résoudre en nombres entiers des équations diophantiennes de la forme a x = c (modulo b) et à rendre commensurables les nombreux cycles qu’ils manipulaient quotidiennement. résoudre par exemple l’équation 73 x = 1 ( mod . 52) permet de montrer, en passant par 365 – 364 = 1, alias 73 x 5 = 52 x 7 + 1, que le couple ( x, y ) = ( 5, 7 ) est une solution de l’équation 73 x – 52 y = 1 . D’où : (73 x 5) x 52 = (52 x 7 + 1) x 52, c’est-à-dire 73 x 260 = 365 x 52. En d’autres termes, l’almanach de 260 jours et l’année vague solaire de 365 jours sont rendus commensurables dans leur PPCM.
  • 23. Non, nous ne sommes pas entrain de projeter notre savoir mathématique sur les pratiques des scribes de l’Antiquité mésoaméricaine. Nous essayons de comprendre à quoi ils jouaient lorsqu’ils écrivaient des milliers d’équations calendaires, qu’ils dressaient des tables de multiples, ou qu’ils remplissaient des tableaux de dates adroitement disposées.
  • 24. Les auteurs étant disparus, le lecteur moderne ne peut compter que sur la capacité collective de déchiffrer et de traduire les documents restants pour tenter d’entrer dans ce que nous appelons l’ Intelligence Arithmétique Maya, IAM . Les scribes, en effet, n’ont laissé ni mode d’emploi ni mode de fabrication de leurs outils de calcul, et les Espagnols qui furent en contact avec eux se sont davantage intéressés aux façons de faire disparaître des pratiques jugées contraire à l’Evangile qu’aux moyens de les comprendre en les dé-sémiotisant de l’écriture maya et en les re-conceptualisant en langue espagnole, bref de les traduire. Le temps, l’Inquisition et les autodafés firent leur travail de destruction tant chez les Mayas que chez leurs voisins. Si bien qu’ il reste peu de textes   pour répondre à nos interrogations : les scènes figuratives, les inscriptions sur les monuments ou les objets mobiliers, et les codex en particulier les codex mayas de Dresde, Madrid et Paris; peut-être aussi le codex Grolier soupçonné d’être un faux.  Ces documents prouvent qu’il existait plusieurs types de calendriers et laissent entrevoir certains outils de l’IAM comme par exemple les tables de multiples et les tableaux de dates
  • 25. malgré la doxa d’un calendrier unique partagé par tous les Mésoaméricains… P arfois l es savants semblent défendre la thèse opposée et parlent au pluriel des calendriers mésoaméricains ; parfois, ils tentent de nuancer la thèse du singulier, mais, dans les deux cas, c’est en apportant des arguments portant sur des différences non pertinentes du point de vue des types de calendriers seulement liées à la diversité des langues et des écritures ou à des conventions comme celle du point de départ pris pour énumérer les éléments d’un cycle « tous ne faisaient pas commencer l’année par le même mois ». Par ex., le titre «  LOS CALENDARIOS PREHISPANICOS  » et le sous-titre « NO UN CALENDARIO, SINO VARIOS  » d’un article récent sont contredits par le texte qui concède la même structure à tous les calendriers et se contente de souligner des différences non pertinentes : « Los calendarios mesoamericanos son parecidos en su estructura pero su contenido es diferente: son distintos los nombres de los días, y los significados de estos últimos difieren; los días que fungen como pordadores (nombres de los años) no son iguales, y los años comienzan en días distintos (…) En vez de usar numerales del 1 al 13, en el calendario de Azoyú se utilizaron numerales del 2 al 14 » (J. Marcus;2000:12-19)
  • 26. une différence pertinente : seuls certains utilisaient le Compte Long… le Compte Long consiste à numéroter les jours qui s’écoulent (vers le futur ou le passé) depuis l’origine de la chronologie ; par définition, le numéro/date d’un événement est la durée (comptée en jours dans le système vigésimal des unités de temps) qui le sépare de l’origine.
  • 27. … nous proposons de distinguer des types de calendriers  inégalement répartis dans l’espace/temps mésoaméricain En dehors des abréviations et de formes particulières comme les dates « fin de katun  » des Mayas du Postclassique, on observe en effet différentes façons de dater les jours : 1) partout, l’usage de deux cycles – 13 numéros  et  20 signes X de jour – produisant la « semaine » de 260 jours datés  X (les plus anciennes de -650) 2) l’usage d’une suite de 18 « mois » Y de vingt jours (en principe complétée par une 19 ème période) structurant l’ « année » selon la formule 18 x 20 + n 3) sur une moitié du territoire : un calendrier absolu dit Compte Long 4) l’usage d’un cycle de 4 signes X P (les éponymes/porteurs d’année ) produisant avec le cycle des 13 numéros  un « siècle » de 52 ans datés  X P 5 a ) l’usage, à partir du 4 ème siècle chez les Mayas du Classique, d’un cycle de vingt numéros  combiné à la suite immuablement ordonnée des 19 périodes Y et générant le ha’ab ou « année vague solaire » de 365 jours datés  Y 5 b ) un couplage spécifique des 260 dates  X et des 365 dates  Y produisant le CR ou « Calendrier Rituel » de 18 980 jours datés  X   Y
  • 28. principaux types de calendrier   attestés dans l’espace/temps mésoaméricain avec les notations précédentes, nous distinguerons quatre types : (1) + ( 4 ) = type  X aX P de 260 x 52 dates ( a priori ambigu) exemple : dates aztèques, mixtèques… dites du siècle mésoaméricain (1) + (5a) = type  X  Y non contraint de 260 x 365 dates quelques exemples sporadiques (1) + (5b) = type  X  Y contraint de 52 x 365 = 260 x 73 dates exemple : dates mayas classiques dites du Calendrier Rituel ( 3 ) = type  c i P i ) ( théoriquement infini) exemple : dates/numéros mayas, olmèques… dites du Compte Long
  • 29. exemples de CL olmèques et mayas 7.16.6. ; 16.18. 8.- baktun 16.- katun 9.9.16. ; 0.0. et stèle C de Tres Zapotes 0.- tun ; 0.- uinal 9.9.9. ; 16.0. [1 Septembre 32 av. J.-C.] 0.- kin 3 Ahau 8 Kankin codex de Dresde stèle 18 et 19 de Uaxactun page 24 (Petén, Guatemala)
  • 30.
  • 31. est attestée partout, à toutes les époques, et dès 650 av. J.-C. c’est le tronc commun des Méso- américains tonalpohualli tzolkin la semaine de 260 jours  X   X X – ici sous la forme d’un train de 2 roues d’engrenage (a, X) –
  • 32. des variations culturelles sur la même formule  X = 13 x 20 San Andrés (près La Venta) 650 av. J.-C. Yoozena Monte Albán Stèle D Copán 10 Ahau Azoyú 2 Olin 14 Ehecatl 13 Ehecatl 13 Muluc 1 Ben
  • 33. codex Zouche Nuttall (mixtèque précolombien) Le 7 Xa ( Men ) de l’an 6 Si ( Edznab ), le roi 5 Quehui ( Imix ) a pris pour épouse la reine 9 Xa ( Men ) ; en l’année 7 Cuau ( Akbal ) ils eurent un fils appelé 12 Qhi ( Caban ) d’après la date du jour de sa naissance (dans les parenthèses : le nom X équivalent maya) dates  X mixtèques
  • 34. une treizaine de jours qui se suivent comme lundi 1, mardi 2, mercredi 3, etc. dates  X aztèques
  • 35. borbonicus p. 19/21 26 années  X P successives (de 1Tochtli à 13 Acatl) ; X P varie dans un quarteron d’éponymes : Tochtli , Acatl , Tecpatl et Calli
  • 36. les 26 années  X P suivantes ( 1 Tecpatl à 13 Calli) ; le tout forme un siècle aztèque xiuhtlalpilli de 52 années vagues borbonicus p. 20/22
  • 37. les expressions  X des Aztèques servaient à distinguer et nommer les 260 jours de l’almanach et les 52 années du siècle 13 x 20 dates  X de jour = un tonalpohualli 13 x 4 dates  X P d’année = un xiuhtlalpilli et de même chez les Mixtèques et d’autres qui écrivaient les dates en format  X  X P ( jour / année ) comme ci-contre la date 7 Xa 6 Si (nahuatl : 7 Cuauhtli 6 Tecpatl) du codex Nuttall
  • 38. 10 Tecpatl 12 Acatl 1424 1439 11 Calli 11 Tochtli 1425 1438 12 Tochtli 10 Calli 1426 1437 13 Acatl 9 Tecpatl 1427 1436 1 Tecpatl 8 Acatl 1428 1435 2 Calli 3 Tochtli 4 Acatl 5 Tecpatl 6 Calli 7 Tochtli 1429 1430 1431 1432 1433 1434 dans une suite  X P , les  prennent toutes les valeurs de la treizaine d’entiers (1, 13) et les X P toutes les valeurs du quarteron d’éponymes (Calli, Tochtli, Acatl, Tecpatl) (codex Telleriano Remensis, 31r)
  • 39. siècle aztèque de 52 ans vu à l’époque coloniale les 52 expressions  X P du xiuhtlalpilli sont placées en spirale et liées à 4 couleurs et 4 directions codex durán
  • 40. ambiguïtés Le type  X  X P de calendrier génère 260 x 52 expressions pour dater les jours du siècle mésoaméricain qui compte 52 années  X P . Pour définir en jours la durée du siècle, l’Indien pouvait observer les retours d’un événement qui en définirait le cycle (astronomique ou culturel) et en déduire la durée de l’année. Il pouvait aussi partir d’une des définitions de l’année. L’année civile ou durée séparant le retour d’une date dans un calendrier annuel (attestée chez les Mayas du Classique, elle vaut 365 j). L’année julienne (en usage sous la couronne espagnole, elle vaut 365 j ¼). Définies par la durée séparant deux occurrences successives d’un événement lié à la révolution de la Terre, les années astronomiques sont l’année tropique (365,242190517…), l’année sidérale (365,256363051…), etc. L’année vague solaire est convenue en nombre entier de jours ; elle peut être fixe (365 j) ou variable de (365/366 j, peuples faisant la correction bissextile) Quelle que soit la définition/mesure de l’année, la durée en jours du siècle de 52 ans varie entre 18 980 et 19 032 j. Pour les distinguer/définir/dater, le type  X  Y non contraint fournit trop de dates (94 900) et le type aX aX P en fournit trop peu (13 520).
  • 41. Contrairement au ha’ab maya, l’année vague mésoaméricaine est une réalité aux contours mal définis, différemment convenue, peu propice à distinguer/définir les jours ou à servir de calendrier « Ces vingtaines ou mois de 20 jours portaient chacune plusieurs noms dont l’explication est malaisée. La plupart faisaient référence aux principaux rituels qui les marquaient, comme Tlacaxipehualiztli , « l’Écorchement des hommes », mais ce n’était pas une règle. Pour s’y retrouver, les chercheurs ont pris l’habitude de numéroter les vingtaines, en faisant précéder leur nom d’un chiffre en caractères romains, comme « II Tlacaxipehualiztli », qui indique que ce mois est le deuxième de l’année, selon le franciscain Sahagún. Il ne s’agit guère plus que d’une convention car les avis divergent sur le mois par lequel débutait l’année. Certains chroniqueurs ont parlé d’ Atlcahualo (I) , tandis que d’autres proposaient Toxcatl (V) . En réalité, il semble que les anciens Aztèques aient accordé moins d’importance que nous à la détermination d’un début fixe de l’année, l’essentiel résidant à leurs yeux dans la rotation des vingtaines  » (Dehouve : http://www.gemeso.com/nahuatl/autres-dossiers-thematiques/calendrier-des-vingtaines/ ) … rotation des vingtaines avec les hoquets des 5/6 jours manquants…
  • 42. La Terre est en effet soumise aux variations de l’éclairement et de la hauteur du Soleil provoquant les changements de jour et de saison. Les Mésoaméricains étaient soumis à ces variations et à leurs points distingués comme : les passages du Soleil au Zénith, les Solstices et autres Equinoxes ; c’est le cycle de l’année discrétisée en jours (parfois aussi discrétisée en lunaisons, mois, etc.). Les peuples disposant d’un calendrier finissent par établir des relations entre le cycle annuel des jours et le cycle culturel des expressions qui les distinguent/définissent (= les dates). On a vu que tous les Mésoaméricains avaient la même ‘semaine’ divinatoire de 260 jours datés  X qui servait à distinguer les jours, mais surtout à les déclarer favorables, néfastes ou indifférents. La valeur divinatoire d’un jour est déterminée par les entités auxquelles renvoient les constituants de l’expression  X de sa date. Le cycle annuel des jours et la ronde culturelle des dates sont mutuellement indépendants, mais leur rencontre produit le chaos de la divination qui permet de décréter quand semer, quand faire la guerre, quand se marier, quand commencer un traitement… Découvrir si/comment les jours et les dates se correspondent était un véritable enjeu des sociétés mésoaméricaines, et montre pourquoi l’usage d’une semaine de 260 jours peut conduire au siècle de 52 ans…
  • 43. Par sa composition, le très ancien cycle  X de l’almanach divinatoire structure l’année en « treizaines » et/ou « vingtaines ». Les savants ont découvert partout des listes ordonnées de 18 vingtaines désignées chacune par un nom propre et unique ou par une expression imagée/descriptive qui la définit ou l'évoque  périphrase). La structure en vingtaines est confirmée par le fait que les fêtes Aztèques s’inscrivaient dans le cycle des mois de vingt jours, ou que les Mayas fêtaient le retour de l’année ( ha’ab ) et qu’ils élevaient des stèles à la fin des périodes de vingt, dix ou cinq ans ( tun ). Quelle que soit sa définition, l’année n’est jamais un nombre entier : ni un nombre entier de jours, ni un nombre entier de vingtaines ni un nombre entier de treizaines. C’est ainsi que l’année mésoaméricaine compte 18 vingtaines et un complément de jours souvent dits néfastes, dormants, blancs : Uayeb chez les Mayas, Nemontemi chez les Aztèques… Sauf pour le Classique maya, le nombre, la nature et la distribution des jours complémentaires sont encore des questions disputées. que sait-on de l’organisation mésoaméricaine de l’année des saisons
  • 44. le flou est d’autant plus grand que les deux sources coloniales les plus fiables ont affirmé sans preuves ni exemples que certains Mésoaméricains avaient développé une sorte de correction bissextile. Selon les peuples ou époques, le résidu aurait eu 5 ou 6 jours blancs, pas forcément groupés, pas nécessairement en fin d’année, et qui n’étaient peut-être ni comptés ni enregistrés. Bref, pour les calendriers de type  X  X P une incertitude certaine pèse sur : a) sur le caractère, le nombre et la place de la période complémentaire, b) sur la durée en jours de l’année, c) sur son premier/dernier mois, et d) sur le choix du jour éponyme de l’année Codex Telleriano-Remensis, f.7r 
  • 46. l’année vague solaire mésoaméricaine peut être présentée sous la forme d’un tableau de  = 20 lignes et Y = 18 + 1 colonnes dont les jours sont distingués et qualifiés par les 260 dates  X des jours de la semaine/almanach  ↓ Y  ambiguïté puisque les 45 ème et 305 ème jours par exemple portent le même nom année vague solaire organisée en vingtaines (mois) ?  X  X
  • 47. ou aussi comme un tableau de  = 13 lignes et Y = 28 + 1 colonnes dont les jours sont encore distingués et qualifiés par les 260 expressions  X année vague solaire organisée en treizaines les 45 ème et 305 ème jours portent le même nom
  • 48. certitudes sur les calendriers mayas de l’époque classique
  • 49.
  • 50. Les périodes de l’année vague : Pop Uo Zip Zodz Tzec Xul Yaxkin Mol Ch'en Yax Zac Ceh Mac Kankin Muan Pax Kayab Cumku Uayeb I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII XIX
  • 51. apparemment anodine, cette innovation eut d’importantes conséquences le 5 ème jour de la 3 ème période n’est plus daté  X mais  Y ou mieux  X  Y chaque jour de l’année a un nom  Y unique : le ha’ab devient calendrier non ambigu et la donnée d’un couple   X ,  Y   suffit à  déterminer l’année à laquelle il appartient.  X  Y
  • 52. le Calendrier Rituel des Mayas Au Classique, les Mayas utilisaient conjointement les 365 dates  Y de l’année vague solaire et les 260 dates  X de la semaine divinatoire . Les corpus de dates  X  Y montrent que les 94 900 couples possibles sont loin d’être tous attestés : les 365 jours de l’année ha’ab (datés  Y ) ne peuvent pas tomber sur les 260 dates  X du tzolkin et vice-versa. Une contrainte pèse sur le système, c’est une condition de cooccurrence des termes X et  . Théorème : pour tout entier g, la date almanach du g ème jour du ha’ab (daté  Y ) est de la forme  X(g), où X(g) est une classe (modulo 5) de quatre noms de jour que la donnée d’une seule date attestée permet de déterminer sans ambiguïté . Définition : on appelle calendrier rituel, CR, le cycle des 18 980 couples  X  Y qui respectent la Règle d’Orthodoxie de la Chronologie maya. N’importe quel jour de l’année est uniquement défini par : son rang g dans l’année, sa date  Y dans le ha’ab , ou sa date  X(g)  Y dans le CR . Les dates  X(g)  Y sont à la fois celles qui respectent la contrainte et celles qui figurent sur les documents mayas du Classique. Leur ensemble est une partie stricte de tzolkin x ha’ab .
  • 53. Règle d’Orthodoxie de la Chronologie maya ou contrainte de cooccurrence sur X et  Si  = 0/5/10/15/20 , alors X = Ik/Manik/Eb/Caban Si X = Akbal/Lamat/Ben/Edznab , alors  = 1/6/11/16 4 Ahau 8 Cumku est une date bien écrite *4 Ahau 9 Cumku ou *4 Imix 8 Cumku ne sont pas des dates mayas bien écrites
  • 54. Dans ces conditions, il faut attendre 2.12.;13.0. kin (18 980 jours) pour que le jour de numéro g dans l’année revienne (après 52 révolutions du ha’ab ) à la même date  X(g) (après 73 révolutions du tzolkin ). Remarque. Quelle que soit la définition de l’année (tropique, sidérale ou vague), la durée 2.12.;13.0. kin  est égale ou presque égale à 52 années. L’égalité caractérise le choix d’une année vague de exactement 365 jours (sans jour blanc ni jour supplémentaire).
  • 55.
  • 56.
  • 57. application : dresser le calendrier de l’année du 4 Ahau 3 Kankin Kankin est le mois n° XIV et donc le 3 Kankin est dans la 4 ème ligne XIV ème colonne ; cette cellule correspond à un jour 4 Ahau , la ligne est donc celle du XX ème jour Ahau ; savoir que cette cellule est datée 4 Ahau est suffisant pour renseigner tout le tableau On place les coordonnées  (de 0 à 19 ) et Y (de I = Pop à XIX = Uayeb )
  • 58. Faute de dates  Y , le type  X  X P ne permet pas ces reconstructions Parce que l’on ne connaît pas avec toute la certitude désirable comment les anciens déterminaient le jour éponyme des années. Donner la date 7 Acatl 8 Acatl de type  X  X P revient à dire que le jour daté 7 Acatl se trouve dans l’année nommée 8 Acatl parce qu’un certain jour g était convenu être l’éponyme de l’année. Mais cela (  X(g) = 8 Acatl ) ne dit pas quel jour g était éponyme de l’année. De fait, les spécialistes discutent toujours de la définition de l’éponyme : certains adoptent la convention maya du Nouvel an, d’autres prennent le 20 ème jour des IV ème , XVII ème ou XVIII ème vingtaines de l’année, dont il reste encore à déterminer le nom et la position par rapport au résidu
  • 59. l’usage systématique et rigoureux des dates  Y permit aux scribes mayas du Classique d’utiliser de manière conjointe et redondante deux sortes de dates : les numéros  c i P i du Compte Long, et les couples (aX,  Y) du Calendrier Rituel (partie du produit des 260 dates tzolkin et des 365 dates ha’ab )
  • 60. dates mayas  Y ici on compte pour Cumku en katun 13.- baktun 0.- katun 0.- tun ; 0.- uinal 0.- kin 4 Ahau 8 Cumku exemple de série initiale : Glyphe introducteur, Compte Long (  c i P i ), et date CR (  X  Y du produit tzolkin x ha'ab )
  • 61. dates mayas  Y ici on compte pour Yaxkin en katun 9.- baktun 1.- katun 0.- tun ; 0.- uinal 0.- kin 6 Ahau 13 Yaxkin exemple de série initiale : Glyphe introducteur, Compte Long (  c i P i ), et date CR (  X  Y du produit tzolkin x ha'ab ) Stèle C de Quirigua (face Ouest)
  • 62. Stèle C (Ouest) Quiriguá
  • 63.
  • 64. des dates liées par des égalités (  X  Y ) +  c i P i = (  ’ X’  ’ Y’ ) « On compte pour Yaxkin en katun : 9- baktun 1- katun 0- tun  ; 0- uinal 0- kin (1 303 200 j) passés, [le] 6 Ahau 13 Yaxkin , le roi Tutuum Yohl , divin maître de Quiriguá , érigea une pierre (= stèle), cela se fit au ‘lieu du colibri’. Puis, 0- [ kin ] 0- uinal  ; 5- tun 17- katun [au lieu de 16 ] plus tard, le 6 Ahau 13 Kayab , c’était le 1 er hotun [= le 1 er 5- tun ou quart de katun du 18 ème katun ] alors K’ak’ Tiliw Chan Yoaat , le ch’ahom de 5 katun [il a entre 4 et 5 vingtaines d’ans de 360 j] a versé le liquide [= il effectué le rite de l’aspersion] » .
  • 65. … insérées dans des textes illustrés et avec plus d’égalités…
  • 66. ... et encore plus de cycles et de redondances… Ancrés dans un passé lointain ( 1.18.5. ; 4.0. = 06/11/-2359), les faits se déroulèrent un 1 Ahau 13 Mac , 10 jours après la Nouvelle Lune de la 5 ème des six Lunes du Jaguar de l’Inframonde, une Lune appelée Sak Ok de 30 jours. Et 19 jours 14 mois avant, le 1 Cauac 7 Yax , le Kauil avait été érigé à l’Ouest…
  • 67. … notamment dans les pages éclipses et les pages vénusiennes du dresde
  • 68. les scribes mayas furent les gardes des forêts de cycles qu’ils voulaient rendre commensurables
  • 69. Les scribes gardiens des forêts de cycles L’homme maya jonglait avec les nombres : 7 mers, 9 enfers, 13 cieux, 260 jours du tzolkin , 364 jours du Zodiaque, 4 x 819 jours du Kauil associé aux points cardinaux et à leur 4 couleurs, 18 980 jours du CR, 37 960 j du double CR au bout duquel les trois années les plus importantes (divinatoire, solaire et vénusienne) repassent par le même triplet de dates, etc.
  • 70. dans cette forêt, la vérité d’une suite de multiples… Posant x = 3.5. (soixante cinq en décimal), on lit, d’une part, la suite des premiers multiples de x , jusqu’à 28 x ; et, d’autre part, un ensemble de 13 multiples de y = 28 x tous associés à la date 4 Eb et dont voici un extrait depuis 2 y écrit 10.;2. 0. jusqu’à 24 y noté 6.1.;6. 0 . y = 5.1. 0. = 1 820 = 5 x 364 = 7 x 260 = 13 x 140 = 20 x 91 = 28 x 65 : y n’a pas été tabulé par hasard
  • 71. … laissant invariant tout ou partie des dates…. Les translations de pas multiple de 65 laissent invariant le rang  des dates  X et font progresser de 5 le nom X ; par suite, les multiples de la table font parcourir le cycle dit des Porteurs d’année : 4 Caban , 4 Ik , 4 Manik , 4 Eb . Les translations de pas multiple de 1 820 laissent invariantes les dates  X 65 = 0 modulo 13 et 65 = 5 mod. 20 ; et 1 820= 0 mod. 13 et 1 820 = 0 mod. 20)
  • 72. … que les scribes regroupaient en tableaux de dates Oc 10 Imix 1 Eb 12 Akbal 3 Cimi 6 Caban 17 Lamat 8 Cauac 19 Ik 2 Ben 13 Kan 4 Men 15 Edznab 18 Muluc 9 Ahau 20 Chuen 11 Hix 14 Chicchan 5 Cib 16 Manik 7 13 13 13 13
  • 73. comment lire les tableaux de dates et réinventer le travail des scribes Les codex ne contiennent ni mode d’emploi ni mode de fabrication. Mais on peut réaliser des expériences de pensée pour deviner comment fut construit le tableau, ou comment le lire. Chaque façon de balayer les dates du tableau distingue en effet un ordre de lecture/écriture, lequel détermine la valeur numérique de la durée séparant deux dates qui se suivent pour cet ordre de lecture/écriture D’où une méthode pour inventer l’ordre utilisé par le scribe : faire varier les balayages, comparer les résultats, conclure.
  • 75.
  • 76. on retient cet ordre de lecture pour une tout autre raison : le contexte immédiat du tableau distingue les nombres 91 et 364 en déclinant leurs multiples Tables des Multiples de 91 au-dessus du tableau de dates
  • 77. Table des multiples de 364 à gauche du tableau de dates
  • 78. expériences de pensée… On observe que les translations faisant passer d’un jour X au suivant sont de pas égal au multiple inscrit au-dessus de ce jour : Manik + 364 x 4 = Akbal 2 Manik 0 + 364 x 5 = Akbal 3 Akbal 2  + 364 = Akbal 3 Les colonnes de multiples de 364 (13 x 28) sont séparées par des dates  X (ou des noms X de jour)
  • 79. 13 Akbal 0 + 91 = 13 Hix 1   13 Akbal 0 + 91 x 2 = 13 Chicchan 2   13 Akbal 0 + 91 x 3 = 13 Cib 3 13 Akbal 0 + 91 x 5 = 13 Manik 4   … 13 Akbal 0 + 91 x 4 = 13 Manik 4/0 Les tableaux de dates et leur contexte de tables de multiples sont possiblement des artefacts ou des algorithmes qui permettaient aux scribes de déterminer l’effet sur une date donnée des translations de pas tabulés dans les dites tables  un outil de comput…
  • 80. tableaux de dates et tables de multiples sont deux outils mayas pour le comput calendaire Codex de Dresde, p. 61a/32a Oc 10 Imix 1 Eb 12 Akbal 3 Cimi 6 Caban 17 Lamat 8 Cauac 19 Ik 2 Ben 13 Kan 4 Men 15 Edznab 18 Muluc 9 Ahau 20 Chuen 11 Hix 14 Chicchan 5 Cib 16 Manik 7 13 13 13 13
  • 81. La page 24 du Dresde contient 20 nombres associés à vingt dates  Ahau . Seize sont multiples de N 1 = 8.;2. 0. et forment deux groupes : celui des douze premiers multiples de N 1  ; et celui des quatre premiers multiple du treizième, N 13 = 5.5.;8. 0.
  • 82. Posons AV = 584 et faisons parler les 4 derniers multiples en les traduisant dans les mesures les plus utilisées dans un cabinet de scribes : un étalon almanach de 260 jours noté AR (Année Religieuse), un étalon année vague solaire AS de 365 j, un étalon vénusien AV de 584 j, et l’étalon N 13 = 2 CR de 37 960 jours donné par la table. Ainsi mis à la question, les 4 entiers livrent le tableau suivant : La colonne grisée, par ex, montre que les scribes ont en quelque sorte gradué la droite CL du compte long en années vagues vénusiennes (de 65 AV jusqu’à 260 AV = (13 x 20) AV). Un tel cycle – multiple vigésimal et treiziste de l’année vague vénusienne – n’a pas été calculé par hasard. En effet : a) il englobe et rend commensurables quatre cycles, à savoir : le double CR et trois années ( tzolkin, ha’ab et AV) ; et, b) il fixe le jour de départ/arrivée de l’année vague vénusienne à la date symbolique «   1 Ahau » placée sous les quatre multiples et considérée comme une sorte de Porteur du cycle vénusien.
  • 83. Conclusion. Les scribes tabulaient l’effet sur les dates  X de translations (directes ou rétrogrades) de pas multiples de 4, 9, 13, 20, 65, 148 , 177 , 260, 364, 365, 584, etc., ETC. et dressaient des tableaux de dates séparées par des multiples de ces valeurs. p. 31c/52c p. 32c/53c Pourquoi les scribes ont-ils répété les entiers 8. 17. et 7. 8. en dernière ligne des pages 30/51 à 37/58 du codex de Dresde ?
  • 84. Le texte est jalonné de signes d’éclipses et comprend un ‘compteur’ qui totalise la distance séparant les dates inscrites sur trois lignes : 17.14.8. 11 Cib + 8. 17. = 18.5.5. 6 Ben, etc.
  • 85. Les signes d’éclipses, les bandes célestes, la figure de la jeune déesse de la Lune et surtout le calcul conduisent à la thèse que ces pages sont des éphémérides égrenant les dates d’éclipses possibles regroupées en demi-année lunaire de chacune 5 ou 6 lunaisons de 29 ou 30 jours : 8. 17. =  177 = 90 + 87 = [(3 x 30) + (3 x 29)] ; 7. 8. =  148 = 90 + 58 = [(3 x 30) + (2 x 29)].
  • 86. Merci de votre attention André Cauty, Université Bordeaux 1
  • 87. listes des périodes/mois des années aztèque et maya les plus fréquemment proposées non représentée : la liste commençant par Toxcatl ( VI ) XIX Uayeb ? Nemontemi XVIII Cumku Tititl Izcalli XVII Kayab Atemoztli Tititl XVI Pax Panquetzaliztli Atemoztli XV Muan Quecholli Panquetzaliztli XIV Kankin Tepeilhuitl Quecholli XIII Mac Teotleco Tepeilhuitl XII Ceh Ochpaniztli Teotleco XI Zac Xocotlhuetzi Ochpaniztli X Yax Tlaxochimaco Xocotlhuetzi IX Ch'en Hueyitecuilhuitl Tlaxochimaco VIII Mol Tecuilhuitontli Hueyitecuilhuitl VII Yaxkin Etzalcualiztli Tecuilhuitontli VI Xul Toxcatl Etzalcualiztli V Tzec Hueyitozoztli Toxcatl IV Zodz Tozoztontli Hueyitozoztli III Zip Tlacaxipehualiztli   Tozoztontli II Uo Atlcahualo Tlacaxipehualiztli   I Pop Izcalli Atlcahualo

Notes de l'éditeur

  1. http://research.famsi.org/date_mayaLC.php
  2. Uxmal. Tulum : el castillo peint par F. Catherwood (1844). Tikal.
  3. K1565 scribes au travail
  4. Codex Kingsborough. Tableau de Jean-Léon Gérôme (1824–1904). Evangélisation, pacification, diffusion des Lumières, progrès…
  5. Waldeck est né le 16/03/1766 et mort le 30/04/1875. Pyramide d’El Castillo de Chichen Itza (Yucatan, Mexique) célèbre pour ses 4 escaliers de 91 marches et ses 9 paliers.
  6. Terminé par Pakal II, ce temple à neuf paliers fut prévu comme monument funéraire de Pakal I. En 1952, l'archéologue mexicain Alberto Ruz Lhuillier finit par découvrir une crypte contenant le sarcophage du roi Pakal I. http://www.youtube.com/watch?v=HoXQ3reXgRc&feature=sdig&et=1255097521.25 et http://www.youtube.com/watch?v=dl6YKVop0mg&feature=relmfu et la salle maya http://www.youtube.com/watch?v=uZGxQAO8FLQ&feature=relmfu ; pelota : http://www.youtube.com/watch?v=JUV5muQ2E1g&feature=related
  7. 12 x 20 + 10 x 14 + 12 x 20
  8. Panneau central du Temple des Inscriptions de Palenque (Chiapas, Mexique)
  9. Par exemple l’historien écossais William Robertson; son Histoire d’Amérique publiée à Londres en 1770 a connu de nombreuses éditions et traductions en particulier françaises. Le texte (plus de 800 glyphes en trois panneaux) du Temple des Inscriptions traite de l'histoire de Palenque au cours des katun 4 à 13, et déploie un temps mythologique qui se projette dans le futur éloigné (célébration d’une fin de katun en 4772).
  10. Relación de las cosas de Yucatán. En 1952, un linguiste soviétique, Youri Knorozov (Юрий Валентинович Кнóрозов; 1922-1999) avait publié un article séminal intitulé Drevniaia Pis'mennost' Tsentral'noi Ameriki (L'écriture ancienne de l'Amérique centrale) [8] . Conscient que le nombre de glyphes mayas était trop faible pour constituer une écriture purement logographique et trop élevé pour constituer une écriture purement alphabétique, il reprit l' « abécédaire » de Landa en le considérant d'un œil nouveau. La rédaction de l' « abécédaire » reposait sur un quiproquo culturel : Landa avait demandé à ses informateurs indigènes ce qu'ils ne pouvaient lui donner : des lettres. Embarrassés, ceux-ci lui fournirent ce qui, dans leur système d'écriture s'en rapprochait le plus : des syllabes. Knorosov avait compris que le document de Landa était un syllabaire partiel et jeta ainsi les bases de l'épigraphie maya moderne.
  11. Contre exemple. Lecture du signe « poisson » médiatisé ou non par une langue naturelle (en l’occurrence prendre le grec ancien de l’époque des premiers chrétiens)
  12. Et même de la traduction KU, Kwibi Urraga.
  13. Ce défi ressemble au problème de la dévolution : comment transmettre à quelqu’un quelque chose qu’il ne peut/doit pas recevoir mais qu’il doit s’approprier et donc (re)construire tout en se construisant lui-même dans cet acte d’appropriation ?
  14. Remarque : si les écarts sont trop grands, le dialogue est pratiquement impossible ; s’ils sont nuls ou trop petits, le dialogue n’apporte aucune information. Le dispositif de la traduction KU est une sorte d’accélérateur capable de casser les noyaux sémantiques.
  15. Outre le bon développement d’une écriture et d’une arithmétique modulaire, l’astronome maya disposait de postes d’observation nombreux et variés dont des observatoires souterrains. K1185/1196 et Dresde p. 24
  16. A priori : rien à redire car 18 x 20 + 5 = 365 ; ppcm (260, 365) = 18 980 et 52 x 365 = 18 980. La thèse s’applique en toute rigueur aux Mayas de l’époque classique, mais elle est vraisemblablement fausse dans le cas des Aztèques qui n’ont laissé aucune date antérieure à la Conquête espagnole et qui aurait renvoyé de manière précise aux positions des jours dans un calendrier solaire de 365 dates.
  17. Utiliser le CL implique disposer d’une numération écrite permettant, en logique vigésimale, d’écrire des nombres plus grand que le million et donc des nombres à cinq chiffres significatifs; ce qui n’était pas le cas des Aztèques
  18. Par exemple : 1 CR = 52 ha’ab = 73 tzolkin ; 2 CR = 65 AV (année vénusienne)
  19. Par exemple : 1 CR = 52 ha’ab = 73 tzolkin ; 2 CR = 65 AV (année vénusienne)
  20. Une stèle Olmèque, une stèle maya attestant du plus ancien zéro cardinal maya (01/02/357), et un extrait d’une page de codex. Le plus ancien CL maya (06/07/292) se trouve sur la stèle 29 de Tikal 8- baktun 12- katun 14- tun ; 8- uinal 15- kin [13 Men 3 Zip ].
  21. La plus ancienne attestation des périodes katun et baktun est la pendeloque de Dumbarton Oaks (13/07/120 ap. J.-C.) ; le système des mesures de temps est vigésimal : 1 katun = 20 tun ; 1 baktun = 20 katun , etc.
  22. http://www.pauahtun.org/Calendar/tzolkin.html
  23. Première ligne : des anthroponymes. Seconde ligne : des dates ‘almanach’ mayas, aztèque et tlapanèque (ce dernier se caractérise par le fait qu’il n’y a pas de date 1 car les rangs varient de 2 à 14 et non pas de 1 à 13.
  24. Les expressions aX avaient donc trois fonctions principales : a) distinguer les jours de la semaine (almanach de 260 jours) b) servir de nom de personne (anthroponyme) et c) distinguer les années (équivalent, de ce point de vue) des millésimes en calendrier grégorien.
  25. Codex Borbonicus p. 12/14 : 1 Itzcuintli, 2 Ozomatli, 3 Malinalli, 4 Acatl, 5 Ocelotl, 6 Cuauhtli, 7 Cozcacuauhtli, etc.
  26. Le quarteron X P des Porteurs de l’année varie selon les peuples et les époques. Chez les Mayas du Classique c’est le quarteron P 0 = Ik, Manik, Eb et Caban.
  27. Les textes historiques mayas ont une tout autre allure : ce ne sont pas des suites d’éponymes d’années renvoyant à des listes d’années successives, mais des chaînes d’égalités de la forme « dates d1 + durée t1 = date d2 + durée t2 = dates d3… etc. Ces chaînes d’égalités sont attestées sur les monuments du classique comme dans les codex du postclassique
  28. Dans l’ordre on trouve : 1 Acatl, 2 Tecpatl, 3 Calli, 4 Tochtli, 5 Acatl, 6 Tecpatl, 7 Calli, 8 Tochtli, etc., 12 Calli, 13 Tochtli. Date 2 Acatl d’une célébration du Feu nouveau dans le codex Mendoza (1351)
  29. Voir par exemple les définitions proposées sur le site http://www.techno-science.net/?onglet=glossaire&definition=1505
  30. les mois mayas ont chacun un nom propre (comme ‘Juin’ en français) et les mois aztèques une expression imagée (comme ‘Le temps des cerises’ en français).
  31. C’est un peu comme la question de convenir du 1 er jour de la semaine (dimanche? lundi ? un autre jour ?)
  32. Le plus souvent : tableau de 20 lignes x 19 colonnes (la dernière incomplète n’a que cinq cellules) ou de 13 lignes x 29 colonnes (la dernière n’a qu’une seule cellule). Dans le premier cas, les 19 colonnes correspondent à 18 ‘vingtaines’ de jours (18 ‘mois’) plus 1 période complémentaire de 5 (parfois 6) jours. Dans le second, les 29 colonnes correspondent à 28 ‘treizaines’ de jours (zodiaque mésoaméricain de 13 périodes) plus 1 jour.
  33. Le zodiaque maya comprend 13 constellations, dont on ne sait pas si elles étaient d’égale durée (théoriquement 28 jours, voire 4 x 7 jours)
  34. (et de 0 à 4 les jours du résidu). Le CL de la plaque de Leyde, 8.- baktun 14.- katun 3.- tun ; 1.- uinal 12.- kin conduit à la date CR 1 Eb 0 Yaxkin ; c’est la plus ancienne attestation du zéro ordinal (ses dernières apparitions se trouvent dans les pages vénusiennes du codex de Dresde).
  35. Unicité, détection et correction des erreurs.
  36. Par suite, un jour g prend 52 dates qui se suivent selon la règle aX(g) + 365 = (a + 1)[X(g) + 5] . C’est le cas du Nouvel an (1er jour du 1er mois, défini par g = 0) dont les quatre noms X de jour formaient le jeu des Porteurs d’année P0 = ( Ik , Manik , Eb , Caban ).
  37. Par ex. P0 = Ik, Manik, Eb, Caban, P1 = Calli, Tochtli, Acatl, Tecpatl
  38. Observation. Pour un maya du classique, l’équation 20 Y = 0 (Y+1) fait que les mêmes Porteurs peuvent être définis comme 1 er jour du 1 er mois Pop, ou comme 5 ème (surnuméraire!) jour de la période Uayeb ou, si on ne tient pas compte du numéro alpha pour définir le Porteur, comme le 20 ème jour (surnuméraire) du dernier mois (le XVIII ème Cumku)
  39. Cette abondante redondance fait que l’écriture des dates fonctionne comme un code détecteur/correcteur d’erreurs
  40. Dans cette graduation, le contact des 3 dates (CL 9.1.0. ; 0.0. , tzolkin 6 Ahau , et ha’ab 13 Yaxkin ) se trouve entre les graduations 68 CR (1 290 640) et 69 CR (1 309 620).
  41. Ces Temples représentent un parcours cosmique à trois "stations" définies chacune par une orientation et un environnement spécifique dans la cité de Palenque. Le Temple de la Croix, première station, symbolise le lieu d'origine du surnaturel. Le Temple du Soleil représente le monde souterrain, lieu de passage du soleil nocturne. la dernière station, le Temple de la Croix Feuillue est une renaissance dans la fertilité des couches supérieures de la terre. aujourd’hui dépourvu de façade, le Temple de la Croix feuillue est consacré à GII. Les acteurs du panneau central, dit de la Croix feuillue, se tiennent de part et d'autre d'un plant de maïs ressemblant grossièrement à un croix, ce qui explique son nom.. Il émerge d'un masque représentant la terre sous son aspect nourricier. Les branches de cette «croix» sont des feuilles, où des têtes du Dieu du maïs ont pris la place des épis. À son sommet se trouve perché un oiseau. L'imagerie de l'édifice est associée à l'eau et à l'agriculture
  42. Combinaison « X1 + X2 + 2(X3 + X4) » des 4 ‘correctifs’ inclus dans la table de 2 920 du codex de Dresde (Cauty, A., 2003, « Elzbieta Siarkiewicz ‘The Solar Year and the Dresden Codex. Literatures Journal of Review of American Texts and Studies’, Vol. 17-2, Denn State McDeesport, p.136-159 » , Amerindia , n° 28, Paris, AEA, p. 275-286.
  43. 49/70 à 52/73 du codex de Dresde.
  44. [1] A priori, les nombres 7. 8. et 8. 17. ne sont pas très ‘parlants’. Ils sont retenus ici parce que les scribes du codex de Dresde les ont inlassablement répétés en dernière ligne des pages 51 à 58. Ces pages sont des éphémérides d’éclipses ; elles en égrènent les dates possibles par ‘demi-année lunaire’ regroupant 5 ou 6 lunaisons de 29 ou 30 jours : 177 = 90 + 87 = [(3 x 30) + (3 x 29)] ; 148 = 90 + 58 = [(3 x 30) + (2 x 29)].