SlideShare une entreprise Scribd logo
1  sur  40
Télécharger pour lire hors ligne
Models for computing partial
          charges
           Jiahao Chen
     Martínez Group Meeting
       September 27, 2005
Outline
• An atom-site charge model: QEq
  – Results for amino acids
  – NaCl dissociation
  – Reparameterization study
• A minimal bond-space model
  – Study of NaCl.6H2O dissociation
• Quantum mechanical analogs
  – Derivative discontinuities
Molecular charge distributions
• Molecules as clusters of point charges
• Electrostatics in the classical limit
• Useful for molecular modeling
Point charge models
    • Key atomic parameters:
        – Electronegativity
        – Hardness
    • Mulliken definitions
        – Ionization potential
        – Electron affinity
    • Sanderson electronegativity equilibration


Iczkowsky, R. P.; Margrave, J. L., J. Am. Chem. Soc. 83, 1961, 3547-3553.
QEq: Rappé and Goddard, 1991
   • Parameters: Mulliken electronegativities
     and hardnesses




                     internal energy            Coulomb
                                               interaction
Rappé, A. K.; Goddard, W. A. III, J. Phys. Chem. 95, 1991, 3358-3363.
QEq (continued)
• Screened Coulomb interaction: two-
  electron integrals over ns-ms STOs



• Sanderson electronegativity equalization
  principle



• Linear system of simultaneous equations
QEq: Electrical interpretation
• Molecules as classical   Circuit   QEq
  circuits                 element


                           Atom      Capacitor
                                     + Resistor


                           Bond      (Ideal)
                                     Wire
QEq on equilibrium geometries
• Compare QEq results with ab initio
  calculations for ground state geometries
• Molecules: 20 naturally occurring amino
  acids
• Ab initio method:
  – MP2 geometry optimization
  – DMA0 (distributed multipole analysis)
    charges: 0th order = monopoles
QEq v. DMA0 on MP2/6-31G*
1.0



0.8



0.6
                                           C

0.4

                           CHx
0.2

                     NH2
0.0
          N, NH
-0.2

                     OH          S
-0.4
          O
-0.6



-0.8



-1.0
   -1.0       -0.5         0.0       0.5   1.0   1.5
QEq v. DMA0 on MP2/cc-
 1.0
       QEq
                  pVDZ
 0.8


 0.6



 0.4
                                                                   C
                                           CHx
 0.2



 0.0                               NH2
                     N, NH
-0.2

                                    OH            S
-0.4
                 O
-0.6


-0.8



-1.0                                                                           ab initio
       -1.0   -0.8   -0.6   -0.4    -0.2   0.0   0.2   0.4   0.6   0.8   1.0
QEq v. DMA0 on MP2: Results
• Only singly bonded atoms have good
  agreement (Δq<0.1)
  –   Deviations: 1° > 2° > aromatic > 3°
  –   N termini
  –   Hydrocarbons
  –   Carboxyls, imines…
• Higher correlation between QEq and
  DMA0 on MP2/cc-pVDZ
Does QEq neglect polarizability?
• 6-31G v. 6-31G* on Cys: very similar
               1.0



               0.8



               0.6



               0.4



               0.2



               0.0



               -0.2



               -0.4



               -0.6



               -0.8



               -1.0
                  -1.0   -0.5   0.0   0.5   1.0   1.5
QEq on Diatomics
• Compare QEq results with experimental
  results for diatomics
• Molecule: NaCl (g)
• Dipole moments from experimental
  literature
• Given bond length, can QEq predict the
  dipole moment ?
• QEq parameters derived from fit to
  experimental dipole moments
QEq results: NaCl dissociation
0.9

              qN a _ _ R eq_
                    R
0.8



0.7


                                        Too slow!
0.6


                                   Not zero!
0.5                                                            qN a _ _
                                                                     R


0.4                                      qN a _R !   1 _ _ __ :___ 6 _
                                                                   _


0.3



0.2                                                                 Â_ _
                                                                      R

0.1



0.0
      0   2      4     6       8   10   12      14      16     18        20
QEq: What is Missing?
• No HOMO-LUMO band gap!
  – All bonding is completely metallic
• Wrong asymptotic limit of quantum
  statistical mechanics
  – Have: No Fermi gap => T  ∞ limit
  – Need: Ground state only => Want T  0 limit!
• No notion of bond length and bond order
  – All atoms are pairwise “σ”–bonded together!
• No out-of-plane polarizability
QEq: Parameterization
   • Can reparameterizing QEq improve its
     accuracy?                   +q         -q
   • Molecules: 94 diatomics            r
   • Benchmark: experimental (and high-
     precision computational) dipole moments
   • Partial charges from ideal dipole model

   • χ² goodness-of-fit minimization
Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules, Van
Nostrand Reinhold, 1978, New York, NY.
5.0
            QEq: Original parameters
       QEq                                                                                                     CsI


4.5                                                                                                   CsBr RbI
                                                                                                      KI
                                                                                                  CsCl RbBr
                                                                                                    KBr
                                                                                                   RbCl
4.0                                                                                              KCl
                                                                     LiI
                                                                   LiBr
                                                                  LiCl                   NaI
                                                                                        NaBr
3.5                                                                                    NaCl



3.0                                                                        CsF
                                                                                 RbF
                                                                                 KF

2.5                                                                          NaF
                                                            LiF


2.0


                                         SiO
1.5
             CF
                         HF
                  HCl  OH
1.0     CO     HBr ICl
                     BrF
           HI SH
              IBr
               ClF SO               PN
0.5     NO
           BrCl
                                                                                                          Expt.
                   ClO NS
0.0
      0.0         0.5         1.0              1.5   2.0   2.5       3.0           3.5         4.0       4.5         5.0
5.0
       QEq: Optimized parameters
       QEq                                                                                                   CsI
                                                                                                            RbI
4.5
                                                                                                   KIRbBr
                                                                                                   CsBr
                                                                                                  KBr
                                                                                                 RbCl
                                                                                                CsCl
                                                                                               KCl
4.0

                                                                                       NaI
                                                                                      NaBr
                                                                                     NaCl
3.5                                                                             KF
                                                                               RbF
                                                                            NaF
                                                                          CsF
3.0                                                                 LiI
                                                                  LiBr
                                                                 LiCl


2.5                                                        LiF



2.0



1.5

                                        SiO
                                   PN
1.0

                        NS
                 HClBrF HF
                      SO
                       OH
                  ClO
                  ICl
0.5
             SH
            CF
               ClF
              HBr
             IBr
           BrCl                                                                                             Expt.
        NOHI
        CO
0.0
      0.0       0.5          1.0              1.5   2.0   2.5       3.0         3.5          4.0        4.5        5.0
1.0
       QEq: New parameters on aa’s
0.8



0.6
                                          Worse than before!
0.4



0.2



0.0


                         1.0

-0.2
                         0.8



                         0.6




-0.4                     0.4



                         0.2



                         0.0



-0.6                     -0.2



                         -0.4



                         -0.6


-0.8                     -0.8



                         -1.0
                            -1.0   -0.5     0.0         0.5   1.0   1.5



-1.0
   -1.0     -0.5   0.0   0.5                      1.0                     1.5
QEq Reparamet.: Conclusions
• Optimization procedure is insufficient to
  improve parameter quality beyond the
  standard values.
• Lack of sufficient data, esp. for radicals
  and ions.
• Published parameters likely to be optimal,
  despite physical difficulty in interpretation
  e.g. EA(H) <0
Outline
• An atom-site charge model: QEq
  – Results for amino acids
  – NaCl dissociation
  – Reparameterization study
• A minimal bond-space model
  – Study of NaCl.6H2O dissociation
Electronegativity, revisited
• Many definitions and scales
  – Pauling, Mulliken
  – Different dimensionalities!
• Intrinsic chemical potential for electrons
• Substantial empirical evidence for
  variations depending on context, e.g., C-C
  v. C=C
• Electronegativity a characteristic of bonds,
  rather than atoms?
Charge-transfer model
• “Derivation”
  – Replace electronegativity by distance-
    dependant electronegativity
  – Replace charges by charge-transfer variables



  – Impose detailed balance


• Sum over CTs are deviations from
  reference charge, not actual charge per se
nQEq: Formulation
• Linear system of simultaneous equations
Computation
• Cast system into matrix problem
• Degenerate system of equations
  – Singular value decomposition
  – Generalized Moore-Penrose inverse
    (psuedoinverse)

      O+2δ                         O
                               η        η

H+δ          H+δ             H          H
Theoretical Results
• Singular values/zero eigenvalues correspond to
  closed loops of circulation
  – Faraday’s Law
  – Linear responses



• N-1 nonzero eigenvalues/singular values
  – N-1 linearly independent flow variables
  – Minimum spanning tree for N nodes has N-1 edges
Results: NaCl
0.40
                                 0.9



                                 0.8




0.35                             0.7



                                 0.6



                                 0.5

0.30
                                 0.4



                                 0.3



0.25                             0.2



                                 0.1



                                 0.0
0.20                                   0   2    4   6   8    10   12   14   16        18   20




0.15




0.10



           Correct asymptotic limit!
0.05




0.00
       0     2    4    6    8    10            12       14        16             18             20
0.2
                   Results: H2O

0.1




0.0




-0.1




-0.2




-0.3




-0.4
       0   2   4   6   8   10   12   14   16   18   20
Solvation of salt in H2O 6-mer
• 6-mer known to be
  smallest cluster
  needed to fully
  solvate NaCl
• Sudden limit of
  dissociation
  dynamics: no solvent
  reorganization
q/e         Results: NaCl.6H2O
0.5
                                      0.70




                                      0.65



0.4                                   0.60




                                      0.55




0.3                                   0.50




                                      0.45




0.2                                   0.40




                                      0.35




0.1                                   0.30
                                             0   2        4   6        8   10    12   14      16   18   20




0.0




-0.1                   nonvanishing residue

-0.2




-0.3                                                                             R(Na-Cl)/Å
       0   2   4   6   8   10   12   14              16           18        20
Representations in Bond-space
• How to describe molecule in bond space?
  – Bonds : Adjacency matrices
  – Atoms and Bond lengths: Metrized graphs
• How to solve for electrostatic equilibrium?
  – Topological/geometric properties
  – Cutoffs for Coulomb interactions (optional)
Numerical Issues
• For large systems, algorithm does not find
  correct dissociation limits
• Large residual found
• Low condition number
• What’s going on?
Future work
• Look at adiabatic limit of NaCl.6H2O
  dissociation
  – Need ab initio equilibrium geometries
• Computation of molecular properties
  – Dipole moments
  – Polarizabilities
  – pKa?
• More efficient algorithm for solving model
  – Graph/network flow algorithms?
Outline
• An atom-site charge model: QEq
  – Results for amino acids
  – NaCl dissociation
  – Reparameterization study
• A minimal bond-space model
  – Study of NaCl.6H2O dissociation
• Quantum mechanical analogs
  – Derivative discontinuities
Quantum Analogues?
• Quantum analogue of partial charges?
  – Spin-statistics theorem
  – Anyons
• QEq analog: Heisenberg spin magnet
Janak’s Theorem
   • Kohn-Sham one-particle orbital energies
     dictate change in total energy



   • Implies discontinuities as a function of
     particle number at integers:



Janak, J. F.; Phys. Rev. B, 18, 1978, 7165-7168.
Origin of discontinuity
• Which term in universal functional
  contributes the most?
  – Coulomb exchange
  – Kinetic: Pauli exclusion principle
  – Unsolved question!
Future work
• Notion of generating density matrices
  compatible with a given Hamiltonian
Derivative discontinuities and
            ionization potentials
   • Implementing
     discontinuities improve
     estimates of ionization
     potentials
   • “Double knee” feature in
     laser-induced ionization
     of helium atoms
   • Model discontinuity in
     correlation potential
     needed to obtain correct
     limit


Lein, M.; Kümmel, S. Phys. Rev. Lett., 94, 2005, 143003.
Acknowledgments

Contenu connexe

Tendances

2 4 the_smith_chart_package
2 4 the_smith_chart_package2 4 the_smith_chart_package
2 4 the_smith_chart_package
Rahul Vyas
 
Quantum numbers
Quantum numbersQuantum numbers
Quantum numbers
zehnerm2
 
3.magnetic materials 1dkr
3.magnetic materials 1dkr3.magnetic materials 1dkr
3.magnetic materials 1dkr
Devyani Gera
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
Anda Tywabi
 

Tendances (20)

2 4 the_smith_chart_package
2 4 the_smith_chart_package2 4 the_smith_chart_package
2 4 the_smith_chart_package
 
Mn alcu2 heusler compound
Mn alcu2 heusler compoundMn alcu2 heusler compound
Mn alcu2 heusler compound
 
Lattice dynamics
Lattice dynamicsLattice dynamics
Lattice dynamics
 
Basics of DFT+U
Basics of DFT+U Basics of DFT+U
Basics of DFT+U
 
Quantum numbers
Quantum numbersQuantum numbers
Quantum numbers
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
Topic 1 shm
Topic 1 shmTopic 1 shm
Topic 1 shm
 
3.magnetic materials 1dkr
3.magnetic materials 1dkr3.magnetic materials 1dkr
3.magnetic materials 1dkr
 
Ch4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for ICCh4 lecture slides Chenming Hu Device for IC
Ch4 lecture slides Chenming Hu Device for IC
 
Introduction to Electron Correlation
Introduction to Electron CorrelationIntroduction to Electron Correlation
Introduction to Electron Correlation
 
Hall effect
Hall effectHall effect
Hall effect
 
Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...Magnetic semiconductors: classes of materials, basic properties, central ques...
Magnetic semiconductors: classes of materials, basic properties, central ques...
 
Ising model
Ising modelIsing model
Ising model
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanics
 
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
Density functional theory (DFT) and the concepts of the augmented-plane-wave ...
 
NANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFTNANO266 - Lecture 4 - Introduction to DFT
NANO266 - Lecture 4 - Introduction to DFT
 
Difference between plane waves and laser
Difference between plane waves and laserDifference between plane waves and laser
Difference between plane waves and laser
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...Electrical transport and magnetic interactions in 3d and 5d transition metal ...
Electrical transport and magnetic interactions in 3d and 5d transition metal ...
 
Mobility
MobilityMobility
Mobility
 

Similaire à Methods for computing partial charges (6)

Thermo-Calc Workshop Madrid 2010
Thermo-Calc Workshop Madrid 2010Thermo-Calc Workshop Madrid 2010
Thermo-Calc Workshop Madrid 2010
 
جوامد محاضرة 2
جوامد محاضرة 2جوامد محاضرة 2
جوامد محاضرة 2
 
Constructing a rigorous fluctuating-charge model for molecular mechanics
Constructing a rigorous fluctuating-charge model for molecular mechanicsConstructing a rigorous fluctuating-charge model for molecular mechanics
Constructing a rigorous fluctuating-charge model for molecular mechanics
 
Model-aided catalyst prediction through descriptor-based hybrid semi-empirica...
Model-aided catalyst prediction through descriptor-based hybrid semi-empirica...Model-aided catalyst prediction through descriptor-based hybrid semi-empirica...
Model-aided catalyst prediction through descriptor-based hybrid semi-empirica...
 
Solid state chemistry
Solid state chemistrySolid state chemistry
Solid state chemistry
 
Solid state chemistry
Solid state chemistrySolid state chemistry
Solid state chemistry
 

Dernier

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 

Dernier (20)

GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 

Methods for computing partial charges

  • 1. Models for computing partial charges Jiahao Chen Martínez Group Meeting September 27, 2005
  • 2. Outline • An atom-site charge model: QEq – Results for amino acids – NaCl dissociation – Reparameterization study • A minimal bond-space model – Study of NaCl.6H2O dissociation • Quantum mechanical analogs – Derivative discontinuities
  • 3. Molecular charge distributions • Molecules as clusters of point charges • Electrostatics in the classical limit • Useful for molecular modeling
  • 4. Point charge models • Key atomic parameters: – Electronegativity – Hardness • Mulliken definitions – Ionization potential – Electron affinity • Sanderson electronegativity equilibration Iczkowsky, R. P.; Margrave, J. L., J. Am. Chem. Soc. 83, 1961, 3547-3553.
  • 5. QEq: Rappé and Goddard, 1991 • Parameters: Mulliken electronegativities and hardnesses internal energy Coulomb interaction Rappé, A. K.; Goddard, W. A. III, J. Phys. Chem. 95, 1991, 3358-3363.
  • 6. QEq (continued) • Screened Coulomb interaction: two- electron integrals over ns-ms STOs • Sanderson electronegativity equalization principle • Linear system of simultaneous equations
  • 7. QEq: Electrical interpretation • Molecules as classical Circuit QEq circuits element Atom Capacitor + Resistor Bond (Ideal) Wire
  • 8. QEq on equilibrium geometries • Compare QEq results with ab initio calculations for ground state geometries • Molecules: 20 naturally occurring amino acids • Ab initio method: – MP2 geometry optimization – DMA0 (distributed multipole analysis) charges: 0th order = monopoles
  • 9. QEq v. DMA0 on MP2/6-31G* 1.0 0.8 0.6 C 0.4 CHx 0.2 NH2 0.0 N, NH -0.2 OH S -0.4 O -0.6 -0.8 -1.0 -1.0 -0.5 0.0 0.5 1.0 1.5
  • 10. QEq v. DMA0 on MP2/cc- 1.0 QEq pVDZ 0.8 0.6 0.4 C CHx 0.2 0.0 NH2 N, NH -0.2 OH S -0.4 O -0.6 -0.8 -1.0 ab initio -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
  • 11. QEq v. DMA0 on MP2: Results • Only singly bonded atoms have good agreement (Δq<0.1) – Deviations: 1° > 2° > aromatic > 3° – N termini – Hydrocarbons – Carboxyls, imines… • Higher correlation between QEq and DMA0 on MP2/cc-pVDZ
  • 12. Does QEq neglect polarizability? • 6-31G v. 6-31G* on Cys: very similar 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -0.5 0.0 0.5 1.0 1.5
  • 13. QEq on Diatomics • Compare QEq results with experimental results for diatomics • Molecule: NaCl (g) • Dipole moments from experimental literature • Given bond length, can QEq predict the dipole moment ? • QEq parameters derived from fit to experimental dipole moments
  • 14. QEq results: NaCl dissociation 0.9 qN a _ _ R eq_ R 0.8 0.7 Too slow! 0.6 Not zero! 0.5 qN a _ _ R 0.4 qN a _R ! 1 _ _ __ :___ 6 _ _ 0.3 0.2 Â_ _ R 0.1 0.0 0 2 4 6 8 10 12 14 16 18 20
  • 15. QEq: What is Missing? • No HOMO-LUMO band gap! – All bonding is completely metallic • Wrong asymptotic limit of quantum statistical mechanics – Have: No Fermi gap => T  ∞ limit – Need: Ground state only => Want T  0 limit! • No notion of bond length and bond order – All atoms are pairwise “σ”–bonded together! • No out-of-plane polarizability
  • 16. QEq: Parameterization • Can reparameterizing QEq improve its accuracy? +q -q • Molecules: 94 diatomics r • Benchmark: experimental (and high- precision computational) dipole moments • Partial charges from ideal dipole model • χ² goodness-of-fit minimization Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules, Van Nostrand Reinhold, 1978, New York, NY.
  • 17. 5.0 QEq: Original parameters QEq CsI 4.5 CsBr RbI KI CsCl RbBr KBr RbCl 4.0 KCl LiI LiBr LiCl NaI NaBr 3.5 NaCl 3.0 CsF RbF KF 2.5 NaF LiF 2.0 SiO 1.5 CF HF HCl OH 1.0 CO HBr ICl BrF HI SH IBr ClF SO PN 0.5 NO BrCl Expt. ClO NS 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
  • 18. 5.0 QEq: Optimized parameters QEq CsI RbI 4.5 KIRbBr CsBr KBr RbCl CsCl KCl 4.0 NaI NaBr NaCl 3.5 KF RbF NaF CsF 3.0 LiI LiBr LiCl 2.5 LiF 2.0 1.5 SiO PN 1.0 NS HClBrF HF SO OH ClO ICl 0.5 SH CF ClF HBr IBr BrCl Expt. NOHI CO 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
  • 19. 1.0 QEq: New parameters on aa’s 0.8 0.6 Worse than before! 0.4 0.2 0.0 1.0 -0.2 0.8 0.6 -0.4 0.4 0.2 0.0 -0.6 -0.2 -0.4 -0.6 -0.8 -0.8 -1.0 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.0 -1.0 -0.5 0.0 0.5 1.0 1.5
  • 20. QEq Reparamet.: Conclusions • Optimization procedure is insufficient to improve parameter quality beyond the standard values. • Lack of sufficient data, esp. for radicals and ions. • Published parameters likely to be optimal, despite physical difficulty in interpretation e.g. EA(H) <0
  • 21. Outline • An atom-site charge model: QEq – Results for amino acids – NaCl dissociation – Reparameterization study • A minimal bond-space model – Study of NaCl.6H2O dissociation
  • 22. Electronegativity, revisited • Many definitions and scales – Pauling, Mulliken – Different dimensionalities! • Intrinsic chemical potential for electrons • Substantial empirical evidence for variations depending on context, e.g., C-C v. C=C • Electronegativity a characteristic of bonds, rather than atoms?
  • 23. Charge-transfer model • “Derivation” – Replace electronegativity by distance- dependant electronegativity – Replace charges by charge-transfer variables – Impose detailed balance • Sum over CTs are deviations from reference charge, not actual charge per se
  • 24. nQEq: Formulation • Linear system of simultaneous equations
  • 25. Computation • Cast system into matrix problem • Degenerate system of equations – Singular value decomposition – Generalized Moore-Penrose inverse (psuedoinverse) O+2δ O η η H+δ H+δ H H
  • 26. Theoretical Results • Singular values/zero eigenvalues correspond to closed loops of circulation – Faraday’s Law – Linear responses • N-1 nonzero eigenvalues/singular values – N-1 linearly independent flow variables – Minimum spanning tree for N nodes has N-1 edges
  • 27. Results: NaCl 0.40 0.9 0.8 0.35 0.7 0.6 0.5 0.30 0.4 0.3 0.25 0.2 0.1 0.0 0.20 0 2 4 6 8 10 12 14 16 18 20 0.15 0.10 Correct asymptotic limit! 0.05 0.00 0 2 4 6 8 10 12 14 16 18 20
  • 28. 0.2 Results: H2O 0.1 0.0 -0.1 -0.2 -0.3 -0.4 0 2 4 6 8 10 12 14 16 18 20
  • 29. Solvation of salt in H2O 6-mer • 6-mer known to be smallest cluster needed to fully solvate NaCl • Sudden limit of dissociation dynamics: no solvent reorganization
  • 30. q/e Results: NaCl.6H2O 0.5 0.70 0.65 0.4 0.60 0.55 0.3 0.50 0.45 0.2 0.40 0.35 0.1 0.30 0 2 4 6 8 10 12 14 16 18 20 0.0 -0.1 nonvanishing residue -0.2 -0.3 R(Na-Cl)/Å 0 2 4 6 8 10 12 14 16 18 20
  • 31. Representations in Bond-space • How to describe molecule in bond space? – Bonds : Adjacency matrices – Atoms and Bond lengths: Metrized graphs • How to solve for electrostatic equilibrium? – Topological/geometric properties – Cutoffs for Coulomb interactions (optional)
  • 32. Numerical Issues • For large systems, algorithm does not find correct dissociation limits • Large residual found • Low condition number • What’s going on?
  • 33. Future work • Look at adiabatic limit of NaCl.6H2O dissociation – Need ab initio equilibrium geometries • Computation of molecular properties – Dipole moments – Polarizabilities – pKa? • More efficient algorithm for solving model – Graph/network flow algorithms?
  • 34. Outline • An atom-site charge model: QEq – Results for amino acids – NaCl dissociation – Reparameterization study • A minimal bond-space model – Study of NaCl.6H2O dissociation • Quantum mechanical analogs – Derivative discontinuities
  • 35. Quantum Analogues? • Quantum analogue of partial charges? – Spin-statistics theorem – Anyons • QEq analog: Heisenberg spin magnet
  • 36. Janak’s Theorem • Kohn-Sham one-particle orbital energies dictate change in total energy • Implies discontinuities as a function of particle number at integers: Janak, J. F.; Phys. Rev. B, 18, 1978, 7165-7168.
  • 37. Origin of discontinuity • Which term in universal functional contributes the most? – Coulomb exchange – Kinetic: Pauli exclusion principle – Unsolved question!
  • 38. Future work • Notion of generating density matrices compatible with a given Hamiltonian
  • 39. Derivative discontinuities and ionization potentials • Implementing discontinuities improve estimates of ionization potentials • “Double knee” feature in laser-induced ionization of helium atoms • Model discontinuity in correlation potential needed to obtain correct limit Lein, M.; Kümmel, S. Phys. Rev. Lett., 94, 2005, 143003.