SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
5 Common Questions Involving Psychrometrics
Introduction:
Many times the use of a psychrometric chart can help us make an analysis of HVAC systems
performance, or help us predict how well a design will function under different operating conditions.
This FAQs main focus is to provide some tips on how to use a psychrometric chart to calculate typical
heating, cooling/dehumidification, and mixed air problems encountered in the field or at the early stages
of design.
This exercise assumes the use of an ASHRAE sea level 29.92 Hg chart.
Question 1: I'm starting with an outdoor condition of 95 degrees F and 80% Relative Humidity
and I'm mixing that air with return air that is at 80 degrees F and 50% relative humidity. If the
mixed air is 80% return air and 20% outside air, how do I find the correct mixed air temperature
and % Rh and graph this on the psychrometric chart properly?
To find the solutions for this question I would approach the problem like this:
1. Plot OSA point on chart at 95 degrees 80% Rh.
2. Plot RA point on chart at 80 degrees 50% Rh.
3. Connect the OSA point and the RA points to form the mixed air line.
4. Measure length of line 5.625" x 20% = 1.125 (This measurement will depend on the size of your chart
I'm using an 11" x 17" yours may be smaller).
5. Measure along the MA line starting from the RA point 1.125" this is your MA temperature and
humidity. Read 83 degrees 60% Rh.
Or use the following simple formula to find the mixed air DB temperature:
(R.A. degrees F x %) + (OSA degrees F x %) = Mixed Air degrees F, plot this on the MA line to find
the corresponding %Rh.
Question 2: How do I figure out the required supply air temperature for the room? I know that I
need to find the structural heat gains, electrical heat gain, occupant load and infiltration load. I can
add the sensible heat and latent heat gains for the space and figure out what the total heat gain for
the room is. But how do I figure out the necessary supply air temperature and % Rh to maintain
that room at say 80F and 50% Rh?
To find this answer requires the use of the sensible heat ratio. The sensible heat ratio is a ratio of sensible
heat to total heat based on your space load. The protractor on the upper left side of the psychrometric
chart lets you plot the ratio or slope on the chart. Look closely at the protractor, the numbers on the inside
radius are the ratios of sensible heat. Suppose your sensible heat ratio for your problem was 0.65 based on
your rooms' sensible heat loads and latent heat loads:
(Sensible heat + latent heat = total heat) so that;
Sensible heat divided by total heat = The Sensible Heat Ratio (SHR).
1. Draw a line from the center point on the base line of the protractor through the .65 on the radius of the
protractor. This establishes your slope.
2. Now plot your desired DB and %RH for the space on the chart, 80 degrees DB 50%RH.
3. Transfer the sensible heat line or slope (remember the protractor?) so that it starts at your desired room
temperature (the RA point) and travels to the left at the .65 SHR slope and intersects the 95% curve on the
chart, at 95%Rh (read 50 degrees DB).
4. The point of intersection will establish the required supply air temperature (the SA point) to maintain
the desired space temperature.
5. You could select any desired supply air temperature located on this line in theory and adjust your CFM,
but most A/C equipment delivers air at 90% Rh or higher so you are some what limited, so much for
theories.
Question 3: Now that I know what the required supply air temperature is how do figure out what
my CFM requirements are?
Once you have established your supply air temperature, use the supply air temperature and the desired
room air temperature to find the CFM, use the following formula:
1. BTU/Hr = 1.08 x CFM x ΔT with the known sensible heat load for BTU/HR, T1 as the space
temperature and T2 as supply temperature, you can now solve for the CFM.
2. Another method would involve the total heat formula:
BTU/Hr = 4.5 x CFM x ΔH, this requires you to find the enthalpy of the return air and supply air from the
psychrometric chart.
3. Connect a straight line from the RA point to the SA point.
4. Form a right triangle using the SA point and the RA points, making a horizontal line to the right from
the SA point and intersecting it with a vertical line down from the RA point.
5. Locate enthalpy values at the SA point, the RA point, and at the 90 degree intersection of the horizontal
and vertical lines of the triangle. These enthalpy lines run diagonally care must be used in accurately
locating.
6. At SA point read 19.8 BTU/Lbs, at RA point read 31.4 BTU/Lbs, at 90 degree intersection read 27.6
BTU/Lbs
7. The difference between 27.6 and 19.8 is sensible heat BTU/Lbs, the difference between 31.4 and 27.6
is latent heat BTU/Lbs, and the total heat is the difference between 31.4 and 19.8 this is the load in the
room BTU/Lbs.
8. Using the known total heat load BTU/Hr for the room, the return air enthalpy and supply air enthalpy
find theΔH, apply to: BTU/Hr = 4.5 x CFM x ΔH to find the CFM.
Question 4: In my original problem I was bringing in 20% OSA at 95 degrees and 80% Rh, to
achieve a mixed air temperature of 83 degrees 60 %Rh does this affect the load in the room?
Simply stated NO! The mixed air temperature of 83 degrees 60 %Rh is higher than the desired space air
temperature, it does put an additional load on the cooling coil but the room never sees this added load. So
we must size the coil to handle this extra heat. Here a method using the psychrometric charts to find the
load on the coil:
1. Locate the MA point on the mixed air line and find the enthalpy corresponding to this point (read 36
BTU/Lbs)
2. Locate the SA point on the chart and find the corresponding enthalpy read (19.8 BTU/Lbs).
3. Using the difference of these two values and the CFM that we found in question 3 apply them to the
Total Heat formula and solve for total BTU/Hr:
BTU/Hr = 4.5 x CFM x ΔH to find Total BTU/HR
4. Notice in this problem the total heat the coil sees is going to be more than the load of the room; the
CFM will remain the same.
Question 5: Is there a way to find the amount of moisture that the coil is removing from the air?
Yes there is, the psychrometric chart that we have been using lists these values as, Lbs of water/ Lbs of
dry air. This is referred to as the humidity ratio W. Some charts list this as grains of moisture; note there
are 7000 grains/lbs. Here is how to find the answer using our problem as an example:
1. Locate the MA point on the chart and extend a horizontal line to the right side of the chart and find the
MA humidity ratio W (read .0145)
2. Locate the SA point on the chart and extend a horizontal line to the right side of the chart and find the
SA humidity ratio W (read .0072)
3. Take the difference (.0073) and use this modified formula:
Lbs/Hr = 4.5 x CFM x ΔW to find the pounds of water per hour removed.
***
Reference: Engineering Tips Forum (www.eng-tips.com).
***
‫دﻋﺎﺋﻜﻢ‬ ‫ﺻﺎﻟﺢ‬ ‫ﻣﻦ‬ ‫ﺗﻨﺴﻮﻧﻲ‬ ‫ﻻ‬

Contenu connexe

Tendances

3009 perpendicular lines an theoremsno quiz
3009 perpendicular lines an theoremsno quiz3009 perpendicular lines an theoremsno quiz
3009 perpendicular lines an theoremsno quiz
jbianco9910
 
Power Notes Measurements and Dealing with Data 2
Power Notes   Measurements and Dealing with Data 2Power Notes   Measurements and Dealing with Data 2
Power Notes Measurements and Dealing with Data 2
jmori1
 
6.6 proportions & similar triangles
6.6 proportions & similar triangles6.6 proportions & similar triangles
6.6 proportions & similar triangles
Jessica Garcia
 
Boyles Law
Boyles LawBoyles Law
Boyles Law
jludlow
 

Tendances (20)

3009 perpendicular lines an theoremsno quiz
3009 perpendicular lines an theoremsno quiz3009 perpendicular lines an theoremsno quiz
3009 perpendicular lines an theoremsno quiz
 
The gas laws
The gas lawsThe gas laws
The gas laws
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trignometry
TrignometryTrignometry
Trignometry
 
Thermal cracking ethane 01
Thermal cracking ethane 01Thermal cracking ethane 01
Thermal cracking ethane 01
 
Power Notes Measurements and Dealing with Data 2
Power Notes   Measurements and Dealing with Data 2Power Notes   Measurements and Dealing with Data 2
Power Notes Measurements and Dealing with Data 2
 
Ideal Gas Law
Ideal Gas LawIdeal Gas Law
Ideal Gas Law
 
Geometry unit 4.6
Geometry unit 4.6Geometry unit 4.6
Geometry unit 4.6
 
Chapter 4.4(charles' law)
Chapter 4.4(charles' law)Chapter 4.4(charles' law)
Chapter 4.4(charles' law)
 
GAS LAWS
GAS LAWSGAS LAWS
GAS LAWS
 
Gas laws ppt latest
Gas laws  ppt latestGas laws  ppt latest
Gas laws ppt latest
 
1.3 terms
1.3 terms1.3 terms
1.3 terms
 
1.3 terms
1.3 terms1.3 terms
1.3 terms
 
6.6 proportions & similar triangles
6.6 proportions & similar triangles6.6 proportions & similar triangles
6.6 proportions & similar triangles
 
Right triangle trigonometry
Right triangle trigonometryRight triangle trigonometry
Right triangle trigonometry
 
Boyles Law
Boyles LawBoyles Law
Boyles Law
 
The basics of trigonometry
The basics of trigonometryThe basics of trigonometry
The basics of trigonometry
 
Geometry unit 8.3
Geometry unit 8.3Geometry unit 8.3
Geometry unit 8.3
 
The Ideal Gas Law
The Ideal Gas LawThe Ideal Gas Law
The Ideal Gas Law
 
Gas laws
Gas lawsGas laws
Gas laws
 

Similaire à 5 Common Questions Involving Psychrometrics

Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
juliennehar
 
Ch10 sample exercise
Ch10 sample exerciseCh10 sample exercise
Ch10 sample exercise
Jane Hamze
 
untitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docx
untitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docxuntitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docx
untitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docx
dickonsondorris
 
NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docx
NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docxNORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docx
NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docx
curwenmichaela
 
Cost Analysis and optimization
Cost Analysis and optimizationCost Analysis and optimization
Cost Analysis and optimization
Navneet Rohilla
 

Similaire à 5 Common Questions Involving Psychrometrics (20)

Psychrometric chart, How to read
Psychrometric chart, How to readPsychrometric chart, How to read
Psychrometric chart, How to read
 
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docxTitle of the ReportA. Partner, B. Partner, and C. Partner.docx
Title of the ReportA. Partner, B. Partner, and C. Partner.docx
 
TEMPERATURE AND PRESSURE EFFECTS ON CHEMIOCAL RESCTION
TEMPERATURE AND PRESSURE EFFECTS ON CHEMIOCAL RESCTIONTEMPERATURE AND PRESSURE EFFECTS ON CHEMIOCAL RESCTION
TEMPERATURE AND PRESSURE EFFECTS ON CHEMIOCAL RESCTION
 
air conditioning cycles.ppt
air conditioning cycles.pptair conditioning cycles.ppt
air conditioning cycles.ppt
 
air cycles.ppt
air cycles.pptair cycles.ppt
air cycles.ppt
 
Formal Lab Report Guidelines
Formal Lab Report GuidelinesFormal Lab Report Guidelines
Formal Lab Report Guidelines
 
Propulsion Final Project
Propulsion Final ProjectPropulsion Final Project
Propulsion Final Project
 
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class b.sc sec. semester
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class  b.sc sec. semesterCOEFFICATION OF HEAT ENGIN Aniket jaiswal. class  b.sc sec. semester
COEFFICATION OF HEAT ENGIN Aniket jaiswal. class b.sc sec. semester
 
ANSYS Project
ANSYS ProjectANSYS Project
ANSYS Project
 
Sychrometric.pptx
Sychrometric.pptxSychrometric.pptx
Sychrometric.pptx
 
Ch10 sample exercise
Ch10 sample exerciseCh10 sample exercise
Ch10 sample exercise
 
HEAT TRANSFER PROJECT
HEAT TRANSFER PROJECTHEAT TRANSFER PROJECT
HEAT TRANSFER PROJECT
 
Hugps138
Hugps138Hugps138
Hugps138
 
Design & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat ExchangerDesign & CFD Analysis of Heat Exchanger
Design & CFD Analysis of Heat Exchanger
 
Gases Worked Examples
Gases Worked ExamplesGases Worked Examples
Gases Worked Examples
 
untitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docx
untitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docxuntitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docx
untitled folder 4.DS_Store__MACOSXuntitled folder 4._.DS_.docx
 
NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docx
NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docxNORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docx
NORTHEASTERN UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERI.docx
 
Summarizes findings and executes the report through narrative and visual/gra...
Summarizes findings and executes the report through narrative and  visual/gra...Summarizes findings and executes the report through narrative and  visual/gra...
Summarizes findings and executes the report through narrative and visual/gra...
 
Graduation project presentation
Graduation project presentationGraduation project presentation
Graduation project presentation
 
Cost Analysis and optimization
Cost Analysis and optimizationCost Analysis and optimization
Cost Analysis and optimization
 

Dernier

scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
HenryBriggs2
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Dernier (20)

A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 
Learn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic MarksLearn the concepts of Thermodynamics on Magic Marks
Learn the concepts of Thermodynamics on Magic Marks
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
NO1 Top No1 Amil Baba In Azad Kashmir, Kashmir Black Magic Specialist Expert ...
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 

5 Common Questions Involving Psychrometrics

  • 1. 5 Common Questions Involving Psychrometrics Introduction: Many times the use of a psychrometric chart can help us make an analysis of HVAC systems performance, or help us predict how well a design will function under different operating conditions. This FAQs main focus is to provide some tips on how to use a psychrometric chart to calculate typical heating, cooling/dehumidification, and mixed air problems encountered in the field or at the early stages of design. This exercise assumes the use of an ASHRAE sea level 29.92 Hg chart.
  • 2. Question 1: I'm starting with an outdoor condition of 95 degrees F and 80% Relative Humidity and I'm mixing that air with return air that is at 80 degrees F and 50% relative humidity. If the mixed air is 80% return air and 20% outside air, how do I find the correct mixed air temperature and % Rh and graph this on the psychrometric chart properly? To find the solutions for this question I would approach the problem like this: 1. Plot OSA point on chart at 95 degrees 80% Rh. 2. Plot RA point on chart at 80 degrees 50% Rh. 3. Connect the OSA point and the RA points to form the mixed air line. 4. Measure length of line 5.625" x 20% = 1.125 (This measurement will depend on the size of your chart I'm using an 11" x 17" yours may be smaller). 5. Measure along the MA line starting from the RA point 1.125" this is your MA temperature and humidity. Read 83 degrees 60% Rh. Or use the following simple formula to find the mixed air DB temperature: (R.A. degrees F x %) + (OSA degrees F x %) = Mixed Air degrees F, plot this on the MA line to find the corresponding %Rh.
  • 3. Question 2: How do I figure out the required supply air temperature for the room? I know that I need to find the structural heat gains, electrical heat gain, occupant load and infiltration load. I can add the sensible heat and latent heat gains for the space and figure out what the total heat gain for the room is. But how do I figure out the necessary supply air temperature and % Rh to maintain that room at say 80F and 50% Rh? To find this answer requires the use of the sensible heat ratio. The sensible heat ratio is a ratio of sensible heat to total heat based on your space load. The protractor on the upper left side of the psychrometric chart lets you plot the ratio or slope on the chart. Look closely at the protractor, the numbers on the inside radius are the ratios of sensible heat. Suppose your sensible heat ratio for your problem was 0.65 based on your rooms' sensible heat loads and latent heat loads: (Sensible heat + latent heat = total heat) so that; Sensible heat divided by total heat = The Sensible Heat Ratio (SHR). 1. Draw a line from the center point on the base line of the protractor through the .65 on the radius of the protractor. This establishes your slope. 2. Now plot your desired DB and %RH for the space on the chart, 80 degrees DB 50%RH. 3. Transfer the sensible heat line or slope (remember the protractor?) so that it starts at your desired room temperature (the RA point) and travels to the left at the .65 SHR slope and intersects the 95% curve on the chart, at 95%Rh (read 50 degrees DB). 4. The point of intersection will establish the required supply air temperature (the SA point) to maintain the desired space temperature. 5. You could select any desired supply air temperature located on this line in theory and adjust your CFM, but most A/C equipment delivers air at 90% Rh or higher so you are some what limited, so much for theories.
  • 4. Question 3: Now that I know what the required supply air temperature is how do figure out what my CFM requirements are? Once you have established your supply air temperature, use the supply air temperature and the desired room air temperature to find the CFM, use the following formula: 1. BTU/Hr = 1.08 x CFM x ΔT with the known sensible heat load for BTU/HR, T1 as the space temperature and T2 as supply temperature, you can now solve for the CFM. 2. Another method would involve the total heat formula: BTU/Hr = 4.5 x CFM x ΔH, this requires you to find the enthalpy of the return air and supply air from the psychrometric chart. 3. Connect a straight line from the RA point to the SA point. 4. Form a right triangle using the SA point and the RA points, making a horizontal line to the right from the SA point and intersecting it with a vertical line down from the RA point. 5. Locate enthalpy values at the SA point, the RA point, and at the 90 degree intersection of the horizontal and vertical lines of the triangle. These enthalpy lines run diagonally care must be used in accurately locating. 6. At SA point read 19.8 BTU/Lbs, at RA point read 31.4 BTU/Lbs, at 90 degree intersection read 27.6 BTU/Lbs 7. The difference between 27.6 and 19.8 is sensible heat BTU/Lbs, the difference between 31.4 and 27.6 is latent heat BTU/Lbs, and the total heat is the difference between 31.4 and 19.8 this is the load in the room BTU/Lbs. 8. Using the known total heat load BTU/Hr for the room, the return air enthalpy and supply air enthalpy find theΔH, apply to: BTU/Hr = 4.5 x CFM x ΔH to find the CFM.
  • 5. Question 4: In my original problem I was bringing in 20% OSA at 95 degrees and 80% Rh, to achieve a mixed air temperature of 83 degrees 60 %Rh does this affect the load in the room? Simply stated NO! The mixed air temperature of 83 degrees 60 %Rh is higher than the desired space air temperature, it does put an additional load on the cooling coil but the room never sees this added load. So we must size the coil to handle this extra heat. Here a method using the psychrometric charts to find the load on the coil: 1. Locate the MA point on the mixed air line and find the enthalpy corresponding to this point (read 36 BTU/Lbs) 2. Locate the SA point on the chart and find the corresponding enthalpy read (19.8 BTU/Lbs). 3. Using the difference of these two values and the CFM that we found in question 3 apply them to the Total Heat formula and solve for total BTU/Hr: BTU/Hr = 4.5 x CFM x ΔH to find Total BTU/HR 4. Notice in this problem the total heat the coil sees is going to be more than the load of the room; the CFM will remain the same.
  • 6. Question 5: Is there a way to find the amount of moisture that the coil is removing from the air? Yes there is, the psychrometric chart that we have been using lists these values as, Lbs of water/ Lbs of dry air. This is referred to as the humidity ratio W. Some charts list this as grains of moisture; note there are 7000 grains/lbs. Here is how to find the answer using our problem as an example: 1. Locate the MA point on the chart and extend a horizontal line to the right side of the chart and find the MA humidity ratio W (read .0145) 2. Locate the SA point on the chart and extend a horizontal line to the right side of the chart and find the SA humidity ratio W (read .0072) 3. Take the difference (.0073) and use this modified formula: Lbs/Hr = 4.5 x CFM x ΔW to find the pounds of water per hour removed. *** Reference: Engineering Tips Forum (www.eng-tips.com). *** ‫دﻋﺎﺋﻜﻢ‬ ‫ﺻﺎﻟﺢ‬ ‫ﻣﻦ‬ ‫ﺗﻨﺴﻮﻧﻲ‬ ‫ﻻ‬