SlideShare une entreprise Scribd logo
1  sur  78
Linear Equations and Lines
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points.
Linear Equations and Lines
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate.
Linear Equations and Lines
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation.
Linear Equations and Lines
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
Make a table of
ordered pairs of
points that fit the
description
x = –4.
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
x y
–4
–4
–4
–4
Make a table of
ordered pairs of
points that fit the
description
x = –4.
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
x y
–4 0
–4
–4
–4
Make a table of
ordered pairs of
points that fit the
description
x = –4.
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
x y
–4 0
–4 2
–4
–4
Make a table of
ordered pairs of
points that fit the
description
x = –4.
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
x y
–4 0
–4 2
–4 4
–4 6
Make a table of
ordered pairs of
points that fit the
description
x = –4.
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
Example A. Graph the points (x, y) where x = –4
(y can be anything).
x y
–4 0
–4 2
–4 4
–4 6
Graph of x = –4
Make a table of
ordered pairs of
points that fit the
description
x = –4.
In the rectangular coordinate system, ordered pairs (x, y)’s
correspond to locations of points. Collections of points may be
specified by the mathematics relations between the
x-coordinate and the y coordinate. The plot of points that fit a
given relation is called the graph of that relation. To make a
graph of a given mathematics relation, make a table of points
that fit the description and plot them.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation.
Example B.
Graph the following linear equations.
a. y = 2x – 5
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation. To find one such ordered pair, assign
a value to x, plug it into the equation and solve for the y
(or assign a value to y and solve for the x).
Example B.
Graph the following linear equations.
a. y = 2x – 5
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation. To find one such ordered pair, assign
a value to x, plug it into the equation and solve for the y
(or assign a value to y and solve for the x).
Example B.
Graph the following linear equations.
a. y = 2x – 5
Make a table by selecting a few numbers for x.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation. To find one such ordered pair, assign
a value to x, plug it into the equation and solve for the y
(or assign a value to y and solve for the x).
For graphing lines, find at least two ordered pairs.
Example B.
Graph the following linear equations.
a. y = 2x – 5
Make a table by selecting a few numbers for x.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation. To find one such ordered pair, assign
a value to x, plug it into the equation and solve for the y
(or assign a value to y and solve for the x).
For graphing lines, find at least two ordered pairs.
Example B.
Graph the following linear equations.
a. y = 2x – 5
Make a table by selecting a few numbers for x.
For easy calculation let’s select x = -1, 0, 1, and 2.
Linear Equations and Lines
First degree equation in the variables x and y are equations
that may be put into the form Ax + By = C where A, B, C are
numbers. First degree equations are the same as linear
equations. They are called linear because their graphs are
straight lines. To graph a linear equation, find a few ordered
pairs that fit the equation. To find one such ordered pair, assign
a value to x, plug it into the equation and solve for the y
(or assign a value to y and solve for the x).
For graphing lines, find at least two ordered pairs.
Example B.
Graph the following linear equations.
a. y = 2x – 5
Make a table by selecting a few numbers for x.
For easy calculation let’s select x = -1, 0, 1, and 2.
Plug these value into x and solve for y, one at a time,
to obtain four ordered pair as shown below.
Linear Equations and Lines
For y = 2x – 5:
x y
-1
0
1
2
Linear Equations and Lines
For y = 2x – 5:
x y
-1
0
1
2
If x = -1, then
y = 2(-1) – 5
Linear Equations and Lines
For y = 2x – 5:
x y
-1 -7
0
1
2
If x = -1, then
y = 2(-1) – 5 = -7
Linear Equations and Lines
For y = 2x – 5:
x y
-1 -7
0 -5
1
2
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5
Linear Equations and Lines
For y = 2x – 5:
x y
-1 -7
0 -5
1
2
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
Linear Equations and Lines
For y = 2x – 5:
x y
-1 -7
0 -5
1 -3
2 -1
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
If x = 1, then
y = 2(1) – 5 = -3
If x = 2, then
y = 2(2) – 5 = -1
Linear Equations and Lines
For y = 2x – 5:
x y
-1 -7
0 -5
1 -3
2 -1
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
If x = 1, then
y = 2(1) – 5 = -3
If x = 2, then
y = 2(2) – 5 = -1
Linear Equations and Lines
Plot these ordered pairs,
For y = 2x – 5:
x y
-1 -7
0 -5
1 -3
2 -1
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
If x = 1, then
y = 2(1) – 5 = -3
If x = 2, then
y = 2(2) – 5 = -1
Linear Equations and Lines
Plot these ordered pairs,
(1,–7)
For y = 2x – 5:
x y
-1 -7
0 -5
1 -3
2 -1
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
If x = 1, then
y = 2(1) – 5 = -3
If x = 2, then
y = 2(2) – 5 = -1
Linear Equations and Lines
Plot these ordered pairs,
(1,–7)
(0,–5)
For y = 2x – 5:
x y
-1 -7
0 -5
1 -3
2 -1
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
If x = 1, then
y = 2(1) – 5 = -3
If x = 2, then
y = 2(2) – 5 = -1
Linear Equations and Lines
(1,–7)
(0,–5)
(1,–3)
(2,–1)
Plot these ordered pairs,
For y = 2x – 5:
x y
-1 -7
0 -5
1 -3
2 -1
If x = -1, then
y = 2(-1) – 5 = -7
If x = 0, then
y = 2(0) – 5 = -5
If x = 1, then
y = 2(1) – 5 = -3
If x = 2, then
y = 2(2) – 5 = -1
Linear Equations and Lines
(1,–7)
(0,–5)
(1,–3)
(2,–1)
Plot these ordered pairs,
then connect the dots to form the line.
b. -3y = 12
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
Make a table by
selecting a few
numbers for x.
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
Make a table by
selecting a few
numbers for x.
x y
-3
0
3
6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6.
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6
x y
6
6
6
6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6 and y
could be any
number.
x y
6 0
6 2
6 4
6 6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6 and y
could be any
number.
x y
6 0
6 2
6 4
6 6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6 and y
could be any
number.
x y
6 0
6 2
6 4
6 6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6 and y
could be any
number.
x y
6 0
6 2
6 4
6 6
Linear Equations and Lines
b. -3y = 12
Simplify as y = -4
c. 2x = 12
Make a table by
selecting a few
numbers for x.
However, y = -4
is always.
x y
-3 -4
0 -4
3 -4
6 -4
Simplify as x = 6
Make a table.
However the
only selction for
x is x = 6 and y
could be any
number.
x y
6 0
6 2
6 4
6 6
Linear Equations and Lines
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5 b. -3y = 12
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5 b. -3y = 12
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
If the equation has
only y (no x), the
graph is a
horizontal line.
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5 b. -3y = 12
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
If the equation has
only y (no x), the
graph is a
horizontal line.
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5 b. -3y = 12 c. 2x = 12
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
If the equation has
only y (no x), the
graph is a
horizontal line.
Summary of the graphs of linear equations:
Linear Equations and Lines
a. y = 2x – 5 b. -3y = 12 c. 2x = 12
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
If the equation has
only y (no x), the
graph is a
horizontal line.
Summary of the graphs of linear equations:
If the equation has
only x (no y), the
graph is a
vertical line.
Linear Equations and Lines
a. y = 2x – 5 b. -3y = 12 c. 2x = 12
If both variables
x and y are
present in the
equation, the
graph is a
tilted line.
If the equation has
only y (no x), the
graph is a
horizontal line.
Summary of the graphs of linear equations:
If the equation has
only x (no y), the
graph is a
vertical line.
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis;
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis;
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
Since two points determine a line, an easy method to
graph linear equations is the intercept method,
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
Linear Equations and Lines
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
Linear Equations and Lines
x y
0
0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
Linear Equations and Lines
x y
0
0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
Linear Equations and Lines
x y
0 -4
0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
so y = -4
Linear Equations and Lines
x y
0 -4
0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
so y = -4
If y = 0, we get
2x – 3(0) = 12
Linear Equations and Lines
x y
0 -4
6 0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
so y = -4
If y = 0, we get
2x – 3(0) = 12
so x = 6
Linear Equations and Lines
x y
0 -4
6 0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
so y = -4
If y = 0, we get
2x – 3(0) = 12
so x = 6
Linear Equations and Lines
x y
0 -4
6 0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
so y = -4
If y = 0, we get
2x – 3(0) = 12
so x = 6
Linear Equations and Lines
x y
0 -4
6 0
The x-Intercepts is where the line crosses the x-axis. We set
y = 0 in the equation to find the x-intercept.
The y-Intercepts is where the line crosses the y-axis. We set
x = 0 in the equation to find the y-intercept.
y-int
x-int
Example C. Graph 2x – 3y = 12
by the intercept method.
Since two points determine a line, an easy method to
graph linear equations is the intercept method, i.e. plot the
x-intercept and the y intercept and the graph is the line that
passes through them.
If x = 0, we get
2(0) – 3y = 12
so y = -4
If y = 0, we get
2x – 3(0) = 12
so x = 6
Linear Equations and Lines
Exercise. A. Solve the indicated variable for each equation with
the given assigned value.
1. x + y = 3 and x = –1, find y.
2. x – y = 3 and y = –1, find x.
3. 2x = 6 and y = –1, find x.
4. –y = 3 and x = 2, find y.
5. 2y = 3 – x and x = –2 , find y.
6. y = –x + 4 and x = –4, find y.
7. 2x – 3y = 1 and y = 3, find x.
8. 2x = 6 – 2y and y = –2, find x.
9. 3y – 2 = 3x and x = 2, find y.
10. 2x + 3y = 3 and x = 0, find y.
11. 2x + 3y = 3 and y = 0, find x.
12. 3x – 4y = 12 and x = 0, find y.
13. 3x – 4y = 12 and y = 0, find x.
14. 6 = 3x – 4y and y = –3, find x.
Linear Equations and Lines
B. a. Complete the tables for each equation with given values.
b. Plot the points from the table. c. Graph the line.
15. x + y = 3 16. 2y = 6
x y
-3
0
3
x y
1
0
–1
17. x = –6
x y
0
–1
– 2
18. y = x – 3
x y
2
1
0
19. 2x – y = 2 20. 3y = 6 + 2x
x y
2
0
–1
x y
1
0
–1
21. y = –6
x y
0
–1
– 2
22. 3y + 4x =12
x y
0
0
1
Linear Equations and Lines
C. Make a table for each equation with at least 3 ordered pairs.
(remember that you get to select one entry in each row as
shown in the tables above) then graph the line.
23. x – y = 3 24. 2x = 6 25. –y – 7= 0
26. 0 = 8 – 2x 27. y = –x + 4 28. 2x – 3 = 6
29. 2x = 6 – 2y 30. 4y – 12 = 3x 31. 2x + 3y = 3
32. –6 = 3x – 2y 33.
35. For problems 29, 30, 31 and 32, use the
intercept-tables as shown to graph the lines.
x y
0
0
intercept-table
36. Why can’t we use the above intercept method
to graph the lines for problems 25, 26 or 33?
37. By inspection identify which equations give
horizontal lines, which give vertical lines and
which give tilted lines.
3x = 4y 34. 5x + 2y = –10
Linear Equations and Lines

Contenu connexe

Tendances

3.4 looking for real roots of real polynomials
3.4 looking for real roots of real polynomials3.4 looking for real roots of real polynomials
3.4 looking for real roots of real polynomialsmath260
 
5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sumsmath260
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
2.0 rectangular coordinate system
2.0 rectangular coordinate system2.0 rectangular coordinate system
2.0 rectangular coordinate systemmath260
 
5.2 arithmetic sequences
5.2 arithmetic sequences5.2 arithmetic sequences
5.2 arithmetic sequencesmath123c
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system xmath260
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities imath260
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i xmath260
 
3 1 rectangular coordinate system
3 1 rectangular coordinate system3 1 rectangular coordinate system
3 1 rectangular coordinate systemmath123a
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoringmath123a
 
5.3 geometric sequences
5.3 geometric sequences5.3 geometric sequences
5.3 geometric sequencesmath123c
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalitiesmath265
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressionsalg1testreview
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalitiesmath123c
 
2.8 translations of graphs
2.8 translations of graphs2.8 translations of graphs
2.8 translations of graphsmath260
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statementsalg1testreview
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equationsmath123b
 

Tendances (20)

3.4 looking for real roots of real polynomials
3.4 looking for real roots of real polynomials3.4 looking for real roots of real polynomials
3.4 looking for real roots of real polynomials
 
5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums5.2 arithmetic sequences and sums
5.2 arithmetic sequences and sums
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
2.0 rectangular coordinate system
2.0 rectangular coordinate system2.0 rectangular coordinate system
2.0 rectangular coordinate system
 
5.2 arithmetic sequences
5.2 arithmetic sequences5.2 arithmetic sequences
5.2 arithmetic sequences
 
10 rectangular coordinate system x
10 rectangular coordinate system x10 rectangular coordinate system x
10 rectangular coordinate system x
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities i
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
7 sign charts and inequalities i x
7 sign charts and inequalities i x7 sign charts and inequalities i x
7 sign charts and inequalities i x
 
3 1 rectangular coordinate system
3 1 rectangular coordinate system3 1 rectangular coordinate system
3 1 rectangular coordinate system
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoring
 
5.3 geometric sequences
5.3 geometric sequences5.3 geometric sequences
5.3 geometric sequences
 
1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities1.2 review on algebra 2-sign charts and inequalities
1.2 review on algebra 2-sign charts and inequalities
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
 
2.8 translations of graphs
2.8 translations of graphs2.8 translations of graphs
2.8 translations of graphs
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations
 

Similaire à 57 graphing lines from linear equations

2 linear equations in x&y lines x
2 linear equations in x&y lines x2 linear equations in x&y lines x
2 linear equations in x&y lines xTzenma
 
22 the graphs of quadratic equations
22 the graphs of quadratic equations22 the graphs of quadratic equations
22 the graphs of quadratic equationsmath126
 
4.2,4.3 graphing
4.2,4.3 graphing4.2,4.3 graphing
4.2,4.3 graphingvhiggins1
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variablesavb public school
 
linear equations in two variables
linear equations in two variableslinear equations in two variables
linear equations in two variablesMpumi Mokoena
 
linear equation in 2 variables
linear equation in 2 variableslinear equation in 2 variables
linear equation in 2 variablesmukundapriya
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions xmath260
 
Function and their graphs ppt
Function and their graphs pptFunction and their graphs ppt
Function and their graphs pptFarhana Shaheen
 
A2 1 linear fxns
A2 1 linear fxns A2 1 linear fxns
A2 1 linear fxns vhiggins1
 
Hoag Ordered Pairs Lesson
Hoag Ordered Pairs LessonHoag Ordered Pairs Lesson
Hoag Ordered Pairs LessonAdrianaHoag
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisitedmath123c
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions xmath260
 
Solving Quadratics
Solving QuadraticsSolving Quadratics
Solving Quadraticsallie125
 
Lesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptx
Lesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptxLesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptx
Lesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptxErlenaMirador1
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptxKeizylleCajeme
 

Similaire à 57 graphing lines from linear equations (20)

2 linear equations in x&y lines x
2 linear equations in x&y lines x2 linear equations in x&y lines x
2 linear equations in x&y lines x
 
22 the graphs of quadratic equations
22 the graphs of quadratic equations22 the graphs of quadratic equations
22 the graphs of quadratic equations
 
Math project
Math projectMath project
Math project
 
4.2,4.3 graphing
4.2,4.3 graphing4.2,4.3 graphing
4.2,4.3 graphing
 
Linear equation in 2 variables
Linear equation in 2 variablesLinear equation in 2 variables
Linear equation in 2 variables
 
linear equations in two variables
linear equations in two variableslinear equations in two variables
linear equations in two variables
 
linear equation in 2 variables
linear equation in 2 variableslinear equation in 2 variables
linear equation in 2 variables
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
Function and their graphs ppt
Function and their graphs pptFunction and their graphs ppt
Function and their graphs ppt
 
A2 1 linear fxns
A2 1 linear fxns A2 1 linear fxns
A2 1 linear fxns
 
Relation and functions
Relation and functionsRelation and functions
Relation and functions
 
Hoag Ordered Pairs Lesson
Hoag Ordered Pairs LessonHoag Ordered Pairs Lesson
Hoag Ordered Pairs Lesson
 
คาบ 2
คาบ 2คาบ 2
คาบ 2
 
Graph Period 2
Graph  Period 2Graph  Period 2
Graph Period 2
 
4.2 stem parabolas revisited
4.2 stem parabolas revisited4.2 stem parabolas revisited
4.2 stem parabolas revisited
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
Solving Quadratics
Solving QuadraticsSolving Quadratics
Solving Quadratics
 
1 6 Notes
1 6 Notes1 6 Notes
1 6 Notes
 
Lesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptx
Lesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptxLesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptx
Lesson 2-1 - Math 8 - W4Q1_The Cartesian Coordinate System.pptx
 
Coordinate System.pptx
Coordinate System.pptxCoordinate System.pptx
Coordinate System.pptx
 

Plus de alg1testreview

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equationsalg1testreview
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions alg1testreview
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiplealg1testreview
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressionsalg1testreview
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressionsalg1testreview
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulasalg1testreview
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of linesalg1testreview
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate systemalg1testreview
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square rootsalg1testreview
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoringalg1testreview
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making listsalg1testreview
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping methodalg1testreview
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulasalg1testreview
 

Plus de alg1testreview (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiple
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulas
 
41 expressions
41 expressions41 expressions
41 expressions
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
 
54 the number line
54 the number line54 the number line
54 the number line
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square roots
 
52 about triangles
52 about triangles52 about triangles
52 about triangles
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
51 ratio-proportion
51 ratio-proportion51 ratio-proportion
51 ratio-proportion
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
 
45scientific notation
45scientific notation45scientific notation
45scientific notation
 
44 exponents
44 exponents44 exponents
44 exponents
 

Dernier

Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxannathomasp01
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxUmeshTimilsina1
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 

Dernier (20)

Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 

57 graphing lines from linear equations

  • 2. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Linear Equations and Lines
  • 3. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. Linear Equations and Lines
  • 4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. Linear Equations and Lines
  • 5. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 6. Example A. Graph the points (x, y) where x = –4 In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 7. Example A. Graph the points (x, y) where x = –4 (y can be anything). In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 8. Example A. Graph the points (x, y) where x = –4 (y can be anything). Make a table of ordered pairs of points that fit the description x = –4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 9. Linear Equations and Lines Example A. Graph the points (x, y) where x = –4 (y can be anything). x y –4 –4 –4 –4 Make a table of ordered pairs of points that fit the description x = –4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 10. Example A. Graph the points (x, y) where x = –4 (y can be anything). x y –4 0 –4 –4 –4 Make a table of ordered pairs of points that fit the description x = –4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 11. Example A. Graph the points (x, y) where x = –4 (y can be anything). x y –4 0 –4 2 –4 –4 Make a table of ordered pairs of points that fit the description x = –4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 12. Example A. Graph the points (x, y) where x = –4 (y can be anything). x y –4 0 –4 2 –4 4 –4 6 Make a table of ordered pairs of points that fit the description x = –4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 13. Example A. Graph the points (x, y) where x = –4 (y can be anything). x y –4 0 –4 2 –4 4 –4 6 Graph of x = –4 Make a table of ordered pairs of points that fit the description x = –4. In the rectangular coordinate system, ordered pairs (x, y)’s correspond to locations of points. Collections of points may be specified by the mathematics relations between the x-coordinate and the y coordinate. The plot of points that fit a given relation is called the graph of that relation. To make a graph of a given mathematics relation, make a table of points that fit the description and plot them. Linear Equations and Lines
  • 14. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. Linear Equations and Lines
  • 15. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. Linear Equations and Lines
  • 16. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. Linear Equations and Lines
  • 17. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. Linear Equations and Lines
  • 18. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. Example B. Graph the following linear equations. a. y = 2x – 5 Linear Equations and Lines
  • 19. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. To find one such ordered pair, assign a value to x, plug it into the equation and solve for the y (or assign a value to y and solve for the x). Example B. Graph the following linear equations. a. y = 2x – 5 Linear Equations and Lines
  • 20. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. To find one such ordered pair, assign a value to x, plug it into the equation and solve for the y (or assign a value to y and solve for the x). Example B. Graph the following linear equations. a. y = 2x – 5 Make a table by selecting a few numbers for x. Linear Equations and Lines
  • 21. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. To find one such ordered pair, assign a value to x, plug it into the equation and solve for the y (or assign a value to y and solve for the x). For graphing lines, find at least two ordered pairs. Example B. Graph the following linear equations. a. y = 2x – 5 Make a table by selecting a few numbers for x. Linear Equations and Lines
  • 22. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. To find one such ordered pair, assign a value to x, plug it into the equation and solve for the y (or assign a value to y and solve for the x). For graphing lines, find at least two ordered pairs. Example B. Graph the following linear equations. a. y = 2x – 5 Make a table by selecting a few numbers for x. For easy calculation let’s select x = -1, 0, 1, and 2. Linear Equations and Lines
  • 23. First degree equation in the variables x and y are equations that may be put into the form Ax + By = C where A, B, C are numbers. First degree equations are the same as linear equations. They are called linear because their graphs are straight lines. To graph a linear equation, find a few ordered pairs that fit the equation. To find one such ordered pair, assign a value to x, plug it into the equation and solve for the y (or assign a value to y and solve for the x). For graphing lines, find at least two ordered pairs. Example B. Graph the following linear equations. a. y = 2x – 5 Make a table by selecting a few numbers for x. For easy calculation let’s select x = -1, 0, 1, and 2. Plug these value into x and solve for y, one at a time, to obtain four ordered pair as shown below. Linear Equations and Lines
  • 24. For y = 2x – 5: x y -1 0 1 2 Linear Equations and Lines
  • 25. For y = 2x – 5: x y -1 0 1 2 If x = -1, then y = 2(-1) – 5 Linear Equations and Lines
  • 26. For y = 2x – 5: x y -1 -7 0 1 2 If x = -1, then y = 2(-1) – 5 = -7 Linear Equations and Lines
  • 27. For y = 2x – 5: x y -1 -7 0 -5 1 2 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 Linear Equations and Lines
  • 28. For y = 2x – 5: x y -1 -7 0 -5 1 2 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 Linear Equations and Lines
  • 29. For y = 2x – 5: x y -1 -7 0 -5 1 -3 2 -1 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 If x = 1, then y = 2(1) – 5 = -3 If x = 2, then y = 2(2) – 5 = -1 Linear Equations and Lines
  • 30. For y = 2x – 5: x y -1 -7 0 -5 1 -3 2 -1 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 If x = 1, then y = 2(1) – 5 = -3 If x = 2, then y = 2(2) – 5 = -1 Linear Equations and Lines Plot these ordered pairs,
  • 31. For y = 2x – 5: x y -1 -7 0 -5 1 -3 2 -1 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 If x = 1, then y = 2(1) – 5 = -3 If x = 2, then y = 2(2) – 5 = -1 Linear Equations and Lines Plot these ordered pairs, (1,–7)
  • 32. For y = 2x – 5: x y -1 -7 0 -5 1 -3 2 -1 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 If x = 1, then y = 2(1) – 5 = -3 If x = 2, then y = 2(2) – 5 = -1 Linear Equations and Lines Plot these ordered pairs, (1,–7) (0,–5)
  • 33. For y = 2x – 5: x y -1 -7 0 -5 1 -3 2 -1 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 If x = 1, then y = 2(1) – 5 = -3 If x = 2, then y = 2(2) – 5 = -1 Linear Equations and Lines (1,–7) (0,–5) (1,–3) (2,–1) Plot these ordered pairs,
  • 34. For y = 2x – 5: x y -1 -7 0 -5 1 -3 2 -1 If x = -1, then y = 2(-1) – 5 = -7 If x = 0, then y = 2(0) – 5 = -5 If x = 1, then y = 2(1) – 5 = -3 If x = 2, then y = 2(2) – 5 = -1 Linear Equations and Lines (1,–7) (0,–5) (1,–3) (2,–1) Plot these ordered pairs, then connect the dots to form the line.
  • 35. b. -3y = 12 Linear Equations and Lines
  • 36. b. -3y = 12 Simplify as y = -4 Make a table by selecting a few numbers for x. Linear Equations and Lines
  • 37. b. -3y = 12 Simplify as y = -4 Make a table by selecting a few numbers for x. x y -3 0 3 6 Linear Equations and Lines
  • 38. b. -3y = 12 Simplify as y = -4 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Linear Equations and Lines
  • 39. b. -3y = 12 Simplify as y = -4 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Linear Equations and Lines
  • 40. b. -3y = 12 Simplify as y = -4 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Linear Equations and Lines
  • 41. b. -3y = 12 Simplify as y = -4 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Linear Equations and Lines
  • 42. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Linear Equations and Lines
  • 43. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6. Linear Equations and Lines
  • 44. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 Linear Equations and Lines
  • 45. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 x y 6 6 6 6 Linear Equations and Lines
  • 46. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 and y could be any number. x y 6 0 6 2 6 4 6 6 Linear Equations and Lines
  • 47. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 and y could be any number. x y 6 0 6 2 6 4 6 6 Linear Equations and Lines
  • 48. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 and y could be any number. x y 6 0 6 2 6 4 6 6 Linear Equations and Lines
  • 49. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 and y could be any number. x y 6 0 6 2 6 4 6 6 Linear Equations and Lines
  • 50. b. -3y = 12 Simplify as y = -4 c. 2x = 12 Make a table by selecting a few numbers for x. However, y = -4 is always. x y -3 -4 0 -4 3 -4 6 -4 Simplify as x = 6 Make a table. However the only selction for x is x = 6 and y could be any number. x y 6 0 6 2 6 4 6 6 Linear Equations and Lines
  • 51. Summary of the graphs of linear equations: Linear Equations and Lines
  • 52. a. y = 2x – 5 Summary of the graphs of linear equations: Linear Equations and Lines
  • 53. a. y = 2x – 5 If both variables x and y are present in the equation, the graph is a tilted line. Summary of the graphs of linear equations: Linear Equations and Lines
  • 54. a. y = 2x – 5 If both variables x and y are present in the equation, the graph is a tilted line. Summary of the graphs of linear equations: Linear Equations and Lines
  • 55. a. y = 2x – 5 b. -3y = 12 If both variables x and y are present in the equation, the graph is a tilted line. Summary of the graphs of linear equations: Linear Equations and Lines
  • 56. a. y = 2x – 5 b. -3y = 12 If both variables x and y are present in the equation, the graph is a tilted line. If the equation has only y (no x), the graph is a horizontal line. Summary of the graphs of linear equations: Linear Equations and Lines
  • 57. a. y = 2x – 5 b. -3y = 12 If both variables x and y are present in the equation, the graph is a tilted line. If the equation has only y (no x), the graph is a horizontal line. Summary of the graphs of linear equations: Linear Equations and Lines
  • 58. a. y = 2x – 5 b. -3y = 12 c. 2x = 12 If both variables x and y are present in the equation, the graph is a tilted line. If the equation has only y (no x), the graph is a horizontal line. Summary of the graphs of linear equations: Linear Equations and Lines
  • 59. a. y = 2x – 5 b. -3y = 12 c. 2x = 12 If both variables x and y are present in the equation, the graph is a tilted line. If the equation has only y (no x), the graph is a horizontal line. Summary of the graphs of linear equations: If the equation has only x (no y), the graph is a vertical line. Linear Equations and Lines
  • 60. a. y = 2x – 5 b. -3y = 12 c. 2x = 12 If both variables x and y are present in the equation, the graph is a tilted line. If the equation has only y (no x), the graph is a horizontal line. Summary of the graphs of linear equations: If the equation has only x (no y), the graph is a vertical line. Linear Equations and Lines
  • 61. The x-Intercepts is where the line crosses the x-axis; Linear Equations and Lines
  • 62. The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. Linear Equations and Lines
  • 63. The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis; Linear Equations and Lines
  • 64. The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. Linear Equations and Lines
  • 65. The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. Since two points determine a line, an easy method to graph linear equations is the intercept method, Linear Equations and Lines
  • 66. The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. Linear Equations and Lines
  • 67. The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. Linear Equations and Lines
  • 68. x y 0 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. Linear Equations and Lines
  • 69. x y 0 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 Linear Equations and Lines
  • 70. x y 0 -4 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 so y = -4 Linear Equations and Lines
  • 71. x y 0 -4 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 so y = -4 If y = 0, we get 2x – 3(0) = 12 Linear Equations and Lines
  • 72. x y 0 -4 6 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 so y = -4 If y = 0, we get 2x – 3(0) = 12 so x = 6 Linear Equations and Lines
  • 73. x y 0 -4 6 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 so y = -4 If y = 0, we get 2x – 3(0) = 12 so x = 6 Linear Equations and Lines
  • 74. x y 0 -4 6 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 so y = -4 If y = 0, we get 2x – 3(0) = 12 so x = 6 Linear Equations and Lines
  • 75. x y 0 -4 6 0 The x-Intercepts is where the line crosses the x-axis. We set y = 0 in the equation to find the x-intercept. The y-Intercepts is where the line crosses the y-axis. We set x = 0 in the equation to find the y-intercept. y-int x-int Example C. Graph 2x – 3y = 12 by the intercept method. Since two points determine a line, an easy method to graph linear equations is the intercept method, i.e. plot the x-intercept and the y intercept and the graph is the line that passes through them. If x = 0, we get 2(0) – 3y = 12 so y = -4 If y = 0, we get 2x – 3(0) = 12 so x = 6 Linear Equations and Lines
  • 76. Exercise. A. Solve the indicated variable for each equation with the given assigned value. 1. x + y = 3 and x = –1, find y. 2. x – y = 3 and y = –1, find x. 3. 2x = 6 and y = –1, find x. 4. –y = 3 and x = 2, find y. 5. 2y = 3 – x and x = –2 , find y. 6. y = –x + 4 and x = –4, find y. 7. 2x – 3y = 1 and y = 3, find x. 8. 2x = 6 – 2y and y = –2, find x. 9. 3y – 2 = 3x and x = 2, find y. 10. 2x + 3y = 3 and x = 0, find y. 11. 2x + 3y = 3 and y = 0, find x. 12. 3x – 4y = 12 and x = 0, find y. 13. 3x – 4y = 12 and y = 0, find x. 14. 6 = 3x – 4y and y = –3, find x. Linear Equations and Lines
  • 77. B. a. Complete the tables for each equation with given values. b. Plot the points from the table. c. Graph the line. 15. x + y = 3 16. 2y = 6 x y -3 0 3 x y 1 0 –1 17. x = –6 x y 0 –1 – 2 18. y = x – 3 x y 2 1 0 19. 2x – y = 2 20. 3y = 6 + 2x x y 2 0 –1 x y 1 0 –1 21. y = –6 x y 0 –1 – 2 22. 3y + 4x =12 x y 0 0 1 Linear Equations and Lines
  • 78. C. Make a table for each equation with at least 3 ordered pairs. (remember that you get to select one entry in each row as shown in the tables above) then graph the line. 23. x – y = 3 24. 2x = 6 25. –y – 7= 0 26. 0 = 8 – 2x 27. y = –x + 4 28. 2x – 3 = 6 29. 2x = 6 – 2y 30. 4y – 12 = 3x 31. 2x + 3y = 3 32. –6 = 3x – 2y 33. 35. For problems 29, 30, 31 and 32, use the intercept-tables as shown to graph the lines. x y 0 0 intercept-table 36. Why can’t we use the above intercept method to graph the lines for problems 25, 26 or 33? 37. By inspection identify which equations give horizontal lines, which give vertical lines and which give tilted lines. 3x = 4y 34. 5x + 2y = –10 Linear Equations and Lines