SlideShare une entreprise Scribd logo
1  sur  70
MULTIPLEXING DAN MEDIA TRANSMISI
Anhar, MT
OUTLINE
Pengantar
 FDM
 TDM
 WDM


Anhar : Komunikasi Data

2
TIU


Dpt menjelaskan proses multiplexing analog dan
digital serta pengembangan teknologinya
Anhar : Komunikasi Data

3
PENGANTAR


Mengapa multiplexing???
Keterbatasan bandwidth
 Melahirkan teknik efisiensi kanal


Anhar : Komunikasi Data



Apa multiplexing

4
JENIS MULTIPLEXING

Anhar : Komunikasi Data

5
FDM







Anhar : Komunikasi Data



Useful bandwidth of medium exceeds required bandwidth of
channel
Each signal is modulated to a different carrier frequency
Carrier frequencies separated so signals do not overlap (guard
bands)
e.g. broadcast radio
Channel allocated even if no data

6
DIAGRAM FDM

Anhar : Komunikasi Data

7
FDM PROSES

Anhar : Komunikasi Data

8
FDM OF THREE VOICE BAND SIGNALS

Anhar : Komunikasi Data

9
CONTOH 1
Asumsikan bhw sebuah channel suara menduduki bandwidth 4 KHz.
Kita perlu utk menggabungkan tiga channels suara kedlm sebuah
link dng bandwidth 12 KHz, dr 20 hingga 32 KHz. Tunjukkan
susunannya dng menggunakan FDM tanpa menggunakan guard
bands.



Modulasikan masing2 tiga channels suara utk bandwidth
yg berbeda-beda, spt pd slide berikut.

Anhar : Komunikasi Data



10
PENYELESAIAN :

Anhar : Komunikasi Data

11
SISTEM MULTIPLEXING ANALOG
AT&T (USA)
 Hierarchy of FDM schemes
 Group




Supergroup

Anhar : Komunikasi Data

12 voice channels (4kHz each) = 48kHz
 Range 60kHz to 108kHz


60 channel
 FDM of 5 group signals on carriers between 420kHz
and 612 kHz




Mastergroup


10 supergroups

12
SISTEM MULTIPLEXING ANALOG

Anhar : Komunikasi Data

13
SYNCRONOUS TDM
Data rate of medium exceeds data rate of digital
signal to be transmitted
 Multiple digital signals interleaved in time
 May be at bit level of blocks
 Time slots preassigned to sources and fixed
 Time slots allocated even if no data
 Time slots do not have to be evenly distributed
amongst sources


Anhar : Komunikasi Data

14
Anhar : Komunikasi Data

15
Time Slots dan Frames
Anhar : Komunikasi Data

Masing2 terminal/host memberikan “sebagian” dr time (time
slot)
Dlm TDM, sebuah frame terdiri dr satu siklus lengkap dr time
slots, dimana satu slot didedikasikan ke masing2 pengirim.

16
SISTEM TDM

Anhar : Komunikasi Data

17
TDM FRAMES


Pure TDM: mux-to-mux speed = penjumlahan terminal speeds



No loss of data (similar to voice call multiplexing)

28/11/2013

18
TDM LINK CONTROL
No headers and tailers
 Data link control protocols not needed
 Flow control


Data rate of multiplexed line is fixed
 If one channel receiver can not receive data, the others
must carry on
 The corresponding source must be quenched
 This leaves empty slots




Error control


Errors are detected and handled by individual channel
systems
DATA LINK CONTROL ON TDM
FRAMING
No flag or SYNC characters bracketing TDM
frames
 Must provide synchronizing mechanism
 Added digit framing




One control bit added to each TDM frame


Looks like another channel - “control channel”

Identifiable bit pattern used on control channel
 e.g. alternating 01010101…unlikely on a data channel
 Can compare incoming bit patterns on each channel
with sync pattern

PULSE STUFFING
Problem - Synchronizing data sources
 Clocks in different sources drifting
 Data rates from different sources not related by
simple rational number
 Solution - Pulse Stuffing






Outgoing data rate (excluding framing bits) higher than
sum of incoming rates
Stuff extra dummy bits or pulses into each incoming
signal until it matches local clock
Stuffed pulses inserted at fixed locations in frame and
removed at demultiplexer
TDM OF ANALOG AND DIGITAL SOURCES
DIGITAL CARRIER SYSTEMS
Hierarchy of TDM
 USA/Canada/Japan use one system
 ITU-T use a similar (but different) system
 US system based on DS-1 format
 Multiplexes 24 channels
 Each frame has 8 bits per channel plus one framing
bit
 193 bits per frame

DIGITAL CARRIER SYSTEMS (2)


For voice each channel contains one word of
digitized data (PCM, 8000 samples per sec)
Data rate 8000x193 = 1.544Mbps
 Five out of six frames have 8 bit PCM samples
 Sixth frame is 7 bit PCM word plus signaling bit
 Signaling bits form stream for each channel containing
control and routing info




Same format for digital data


23 channels of data




7 bits per frame plus indicator bit for data or systems control

24th channel is sync
DCS


Hirarki sinyal digital utk layanan telepon yg
menggunakan multiplexing digital..
Anhar : Komunikasi Data

26
T LINES


DS : nama layanannya sementara T : nama saluran
yg dipakai utk layanan tsb
Anhar : Komunikasi Data

27
T-1 FRAME

Anhar : Komunikasi Data

28
E LINES

Anhar : Komunikasi Data

29
contoh 1

Anhar, ST, MT.

Penyelesaian

28/11/2013

Empat koneksi 1-Kbps dimultiplexing bersama-sama.
Satu unitnya 1 bit. Tentukan (1) durasi 1 bit sebelum
dimultiplexing, (2) transmission rate dr link, (3) durasi dr
time slot, and (4) durasi dr frame?

Kita dpt menjawabnya :
1. durasi 1 bit adlh 1/1 Kbps, atau 0.001 s (1 ms).
2. rate link adlh 4 Kbps.
3. duratsi dr tiap time slot 1/4 ms atau 250 ms.
4. durasi dr sebuah frame 1 ms.

30
PENYELESAIAN SECARA RINCI :

Anhar, ST, MT.

1bit
1bit

4000bps 4000bit / sec ond
 0.25ms / bit  250ms / bit
BitDurationlink 

28/11/2013

DataRatelink  4 1kbps  4kbps  4000bps

TimeSlotDurationlink  BitDuration  UnitSize
 250ms / bit 1bit / TimeSlot  250ms / TimeSlot
FrameDuration
 TimeSlotDuration  ChannelNumber
 250ms / TimeSlot * 4TimeSlot / Frame
 1ms / Frame

31
INTERLEAVING



Multiplexer/Demultiplexer memproses terminal/host’s unit saling
berkebalikan
Character (byte) Interleaving




Multiplexing membentuk satu/lebih karakter(s) or byte(s) pd sebuah waktu
(one byte per unit)

Bit Interleaving


Multiplexing membentuk one bit pd satu waktu (one bit per unit)

28/11/2013

32
Contoh 2
28/11/2013
Anhar, ST, MT.

Empat kanal dimultiplex menggunakan TDM. Bila
masing2 kanal mengirimkan100 bytes/s dan kita
memultiplex 1 byte per kanal, tunjukkan perambatan
frame pd link, ukuran dr frame, durasi dr
frame, kecepatan frame, dan bit rate dr link.

Penyelesaian

33
PENYELESAIAN RINCI

 4byte / frame  32bit / frame

 400  bytes / sec ond  3200bps

Anhar, ST, MT.

DataRatelink  4 100bytes / sec ond

28/11/2013

FrameSize  ChannelNumber  UnitSize
 4timeslot / frame1byte / timeslot

FrameRatelink  DataRate/ FrameSize
3200bit / sec ond
 100 frame / sec ond
32bit / frame
1
FrameDuration 
FrameRate
 10ms / frame


34
Contoh 3
28/11/2013

Sebuah multiplexer menggabungkan empat 100-Kbps
kannels menggunakan sebuah time slot dr 2 bits.
Tunjukkan output dng empat input sembarang. Berapakah
frame ratenya? Berapakah durasi frame? Berapa bit rate?
Berapa bit duration?

Anhar, ST, MT.

Solution

35
PENYELE
RINCI

 4timeslot / frame 2bit / timeslot  8bit / frame
DataRatelink  4 100kbps  400kbps
1
1

sec ond / bit
BitRate 400k

FrameRatelink  DataRate/ FrameSize

Anhar, ST, MT.

BitDurationlink 

28/11/2013

SAIAN

FrameSize  ChannelNumber  UnitSize

400kbit / sec ond
 50kframe/ sec ond
8bit / frame
 50,000 frame / sec ond


FrameDuration 


1
FrameRate

1
 20ms / frame
50,000 frame / sec ond

36
SINKRONISASI




Satu /lebih Framing bit (s) ditambahkan ke masing2 frame utk
singkronisasi antara multiplexer dan demultiplxer
Bila framing bit per frame, framing bits berubah-ubah antara 0 dan 1

28/11/2013

37
Contoh 4
28/11/2013

Anhar, ST, MT.

Kita memiliki 4 sumber, masing2 membangkitkan 250
karakter per second. Bila interleaved unit adlh sebuah
karakter dan 1 singkronisasi bit is ditambahkan ke
masing2 frame, tentukan (1) data rate dr masing2 sumber,
(2) durasi dr masing2 karakter dlm masing2 sumber, (3)
frame rate, (4) durasi dr masing2 frame, (5) jumlah bits
pd masing2 frame, dan (6) data rate dr link.

Penyelesaian
Lihat slide berikutnya

38
Penyelesaian
28/11/2013

Kita dpt menjawab pertanyaan tsb sbb berikut :

Anhar, ST, MT.

1. Data rate dr masing2 sumber adlh 2000 bps = 2 Kbps.
2. Durasi dr sebuah karakter adlh 1/250 s, or 4 ms.
3. Link diperlukan utk mengirim 250 frames per second.
4. Durasi dr masing2 frame adlh 1/250 s, or 4 ms.
5. Masing2 frame adlh 4 x 8 + 1 = 33 bits.
6. Data rate dr link adlh 250 x 33, or 8250 bps.

39
 4timeslot / frame1character / timeslot  1bit / frame
 33bits / frame
FrameRate  250 frame / sec ond

Anhar, ST, MT.

SAIAN

FrameSize  ChannelNumber  UnitSize  Fra min gBits
28/11/2013

PENYELE

DataRate  FrameRate FrameSize
 250 frame / sec ond  33bits / frame
 8250bit / sec ond

40
Contoh 5

Anhar, ST, MT.

Penyelesaian

28/11/2013

Dua kannels, satu dng bit rate 100 Kbps dan yg lain dng
bit rate 200 Kbps, dimultiplex. Bagaimana hal ini dpt
dilakukan? Berapakah frame rate? Berapa frame
duration? Berapa bit rate dr link?

Kita dpt mengalokasikan satu slot utk channel pertama
dan dua slot utk channel kedua. Masing2 frame
membawa 3 bits. Frame ratenya adlh 100,000 frames per
second krn ia membawa 1 bit dr channel pertama. Frame
duration nya adlh 1/100,000 s, atau 10 us. Bit rate adlh
41
100,000 frames/s x 3 bits/frame, atau 300 Kbps.
PENYELESAIAN
RINCI

DataRatelink  100kbps  200kbps  300kbps

 3bit / frame

300kbit / sec ond
 100kframe/ sec ond
3bit / frame
 100,000 frame / sec ond


FrameDuration 


Anhar, ST, MT.

FrameRatelink  DataRate / FrameSize

28/11/2013

FrameSize  UnitSize1  UnitSize2

1
FrameRate

1
 10ms / frame
100,000 frame / sec ond
42
WDM
WDM dirancang utk membawa data dng kec
tinggi...
 Secara prinsip sama dng FDM...
 Hanya menggunakan perbedaan panjang gel..


Anhar : Komunikasi Data

43
STATISTICAL TDM

Anhar : Komunikasi Data

44
MEDIA TRANSMISI - OVERVIEW
Guided - wire
 Unguided - wireless
 Characteristics and quality determined by medium
and signal
 For guided, the medium is more important
 For unguided, the bandwidth produced by the
antenna is more important
 Key concerns are data rate and distance

DESIGN FACTORS


Bandwidth




Higher bandwidth gives higher data rate

Transmission impairments


Attenuation

Interference
 Number of receivers


In guided media
 More receivers (multi-point) introduce more attenuation

ELECTROMAGNETIC SPECTRUM
GUIDED TRANSMISSION MEDIA
Twisted Pair
 Coaxial cable
 Optical fiber

TWISTED PAIR
TWISTED PAIR - APPLICATIONS
Most common medium
 Telephone network





Within buildings




Between house and local exchange (subscriber loop)
To private branch exchange (PBX)

For local area networks (LAN)


10Mbps or 100Mbps
TWISTED PAIR - PROS AND CONS
Cheap
 Easy to work with
 Low data rate
 Short range

TWISTED PAIR - TRANSMISSION
CHARACTERISTICS


Analog




Amplifiers every 5km to 6km

Digital
Use either analog or digital signals
 repeater every 2km or 3km


Limited distance
 Limited bandwidth (1MHz)
 Limited data rate (100MHz)
 Susceptible to interference and noise

UNSHIELDED AND SHIELDED TP


Unshielded Twisted Pair (UTP)
Ordinary telephone wire
 Cheapest
 Easiest to install
 Suffers from external EM interference




Shielded Twisted Pair (STP)
Metal braid or sheathing that reduces interference
 More expensive
 Harder to handle (thick, heavy)

UTP CATEGORIES


Cat 3
up to 16MHz
 Voice grade found in most offices
 Twist length of 7.5 cm to 10 cm




Cat 4




up to 20 MHz

Cat 5
up to 100MHz
 Commonly pre-installed in new office buildings
 Twist length 0.6 cm to 0.85 cm

NEAR END CROSSTALK
Coupling of signal from one pair to another
 Coupling takes place when transmit signal entering
the link couples back to receiving pair
 i.e. near transmitted signal is picked up by near
receiving pair

COAXIAL CABLE
COAXIAL CABLE APPLICATIONS
Most versatile medium
 Television distribution


Ariel to TV
 Cable TV




Long distance telephone transmission



Can carry 10,000 voice calls simultaneously
Being replaced by fiber optic

Short distance computer systems links
 Local area networks

COAXIAL CABLE - TRANSMISSION
CHARACTERISTICS


Analog
Amplifiers every few km
 Closer if higher frequency
 Up to 500MHz




Digital
Repeater every 1km
 Closer for higher data rates

OPTICAL FIBER
OPTICAL FIBER - BENEFITS


Greater capacity


Data rates of hundreds of Gbps

Smaller size & weight
 Lower attenuation
 Electromagnetic isolation
 Greater repeater spacing




10s of km at least
OPTICAL FIBER - APPLICATIONS
Long-haul trunks
 Metropolitan trunks
 Rural exchange trunks
 Subscriber loops
 LANs

OPTICAL FIBER - TRANSMISSION
CHARACTERISTICS


Act as wave guide for 1014 to 1015 Hz




Portions of infrared and visible spectrum

Light Emitting Diode (LED)
Cheaper
 Wider operating temp range
 Last longer




Injection Laser Diode (ILD)
More efficient
 Greater data rate




Wavelength Division Multiplexing
OPTICAL FIBER TRANSMISSION MODES
WIRELESS TRANSMISSION
Unguided media
 Transmission and reception via antenna
 Directional


Focused beam
 Careful alignment required




Omnidirectional
Signal spreads in all directions
 Can be received by many antennae

FREQUENCIES


2GHz to 40GHz
Microwave
 Highly directional
 Point to point
 Satellite




30MHz to 1GHz
Omnidirectional
 Broadcast radio




3 x 1011 to 2 x 1014



Infrared
Local
TERRESTRIAL MICROWAVE
Parabolic dish
 Focused beam
 Line of sight
 Long haul telecommunications
 Higher frequencies give higher data rates

SATELLITE MICROWAVE
Satellite is relay station
 Satellite receives on one frequency, amplifies or
repeats signal and transmits on another frequency
 Requires geo-stationary orbit




Height of 35,784km

Television
 Long distance telephone
 Private business networks

BROADCAST RADIO
Omnidirectional
 FM radio
 UHF and VHF television
 Line of sight
 Suffers from multipath interference




Reflections
INFRARED
Modulate noncoherent infrared light
 Line of sight (or reflection)
 Blocked by walls
 e.g. TV remote control, IRD port

REQUIRED READING
Stallings Chapter 4
 Komunikasi data by Dony


Contenu connexe

Tendances

Kuliah 3-modulasi-amplitudo
Kuliah 3-modulasi-amplitudoKuliah 3-modulasi-amplitudo
Kuliah 3-modulasi-amplitudoarinnana
 
Modulasi frekuensi dan modulasi phase (Fm dan Pm)
Modulasi frekuensi dan modulasi phase (Fm dan Pm)Modulasi frekuensi dan modulasi phase (Fm dan Pm)
Modulasi frekuensi dan modulasi phase (Fm dan Pm)Ishardi Nassogi
 
Jenis - Jenis Gangguan dalam Sistem Transmisi
Jenis - Jenis Gangguan dalam Sistem TransmisiJenis - Jenis Gangguan dalam Sistem Transmisi
Jenis - Jenis Gangguan dalam Sistem TransmisiAndrean Yogatama
 
7. instrumen volt meter dan ammeter
7. instrumen volt meter dan ammeter7. instrumen volt meter dan ammeter
7. instrumen volt meter dan ammeterSimon Patabang
 
Propagasi gelombang
Propagasi gelombangPropagasi gelombang
Propagasi gelombangDedi Supardi
 
Transmisi Daya Listrik
Transmisi Daya ListrikTransmisi Daya Listrik
Transmisi Daya ListrikMulia Damanik
 
Nonreturn to zero level (nrz-l)
Nonreturn to zero level (nrz-l)Nonreturn to zero level (nrz-l)
Nonreturn to zero level (nrz-l)Nugroho Setiawan
 
Makalah phase shift keying
Makalah phase shift keyingMakalah phase shift keying
Makalah phase shift keyingampas03
 
Dasar Telekomunikasi - Slide week 2a jaringan dasar telekomunikasi
Dasar Telekomunikasi - Slide week 2a   jaringan dasar telekomunikasiDasar Telekomunikasi - Slide week 2a   jaringan dasar telekomunikasi
Dasar Telekomunikasi - Slide week 2a jaringan dasar telekomunikasiBeny Nugraha
 
Dasar Telekomunikasi - Slide week 3 informasi
Dasar Telekomunikasi - Slide week 3   informasiDasar Telekomunikasi - Slide week 3   informasi
Dasar Telekomunikasi - Slide week 3 informasiBeny Nugraha
 
Rpp 1 2 simbol ,prinsip kerja ukur
Rpp 1   2 simbol ,prinsip kerja ukurRpp 1   2 simbol ,prinsip kerja ukur
Rpp 1 2 simbol ,prinsip kerja ukurAchmad Anang Aswanto
 
QAM (Quadratur Amplitude Modulation)
QAM (Quadratur Amplitude Modulation)QAM (Quadratur Amplitude Modulation)
QAM (Quadratur Amplitude Modulation)Risdawati Hutabarat
 
Pengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskrit
Pengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskritPengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskrit
Pengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskritBeny Nugraha
 

Tendances (20)

Kuliah 3-modulasi-amplitudo
Kuliah 3-modulasi-amplitudoKuliah 3-modulasi-amplitudo
Kuliah 3-modulasi-amplitudo
 
Modulasi frekuensi dan modulasi phase (Fm dan Pm)
Modulasi frekuensi dan modulasi phase (Fm dan Pm)Modulasi frekuensi dan modulasi phase (Fm dan Pm)
Modulasi frekuensi dan modulasi phase (Fm dan Pm)
 
Slide minggu 6 jul
Slide minggu 6 julSlide minggu 6 jul
Slide minggu 6 jul
 
Jenis - Jenis Gangguan dalam Sistem Transmisi
Jenis - Jenis Gangguan dalam Sistem TransmisiJenis - Jenis Gangguan dalam Sistem Transmisi
Jenis - Jenis Gangguan dalam Sistem Transmisi
 
7. instrumen volt meter dan ammeter
7. instrumen volt meter dan ammeter7. instrumen volt meter dan ammeter
7. instrumen volt meter dan ammeter
 
Modulasi digital ASK kelompok 2
Modulasi digital ASK kelompok 2Modulasi digital ASK kelompok 2
Modulasi digital ASK kelompok 2
 
Media transmisi
Media transmisiMedia transmisi
Media transmisi
 
Propagasi gelombang
Propagasi gelombangPropagasi gelombang
Propagasi gelombang
 
Siskom pcm
Siskom pcmSiskom pcm
Siskom pcm
 
Transmisi Daya Listrik
Transmisi Daya ListrikTransmisi Daya Listrik
Transmisi Daya Listrik
 
Media Transmisi Guided Dan Unguided
Media Transmisi Guided Dan UnguidedMedia Transmisi Guided Dan Unguided
Media Transmisi Guided Dan Unguided
 
Nonreturn to zero level (nrz-l)
Nonreturn to zero level (nrz-l)Nonreturn to zero level (nrz-l)
Nonreturn to zero level (nrz-l)
 
Makalah phase shift keying
Makalah phase shift keyingMakalah phase shift keying
Makalah phase shift keying
 
Chapter 11 Multiplexing dan Multiple Access
Chapter 11 Multiplexing dan Multiple AccessChapter 11 Multiplexing dan Multiple Access
Chapter 11 Multiplexing dan Multiple Access
 
Dasar Telekomunikasi - Slide week 2a jaringan dasar telekomunikasi
Dasar Telekomunikasi - Slide week 2a   jaringan dasar telekomunikasiDasar Telekomunikasi - Slide week 2a   jaringan dasar telekomunikasi
Dasar Telekomunikasi - Slide week 2a jaringan dasar telekomunikasi
 
Dasar Telekomunikasi - Slide week 3 informasi
Dasar Telekomunikasi - Slide week 3   informasiDasar Telekomunikasi - Slide week 3   informasi
Dasar Telekomunikasi - Slide week 3 informasi
 
Rpp 1 2 simbol ,prinsip kerja ukur
Rpp 1   2 simbol ,prinsip kerja ukurRpp 1   2 simbol ,prinsip kerja ukur
Rpp 1 2 simbol ,prinsip kerja ukur
 
QAM (Quadratur Amplitude Modulation)
QAM (Quadratur Amplitude Modulation)QAM (Quadratur Amplitude Modulation)
QAM (Quadratur Amplitude Modulation)
 
Pengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskrit
Pengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskritPengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskrit
Pengolahan Sinyal Digital - Slide week 2 - sistem & sinyal waktu diskrit
 
Qpsk
QpskQpsk
Qpsk
 

Similaire à Multiplexing and Media Transmission Techniques

Similaire à Multiplexing and Media Transmission Techniques (20)

Multiplexing : Wave Division Multiplexing
Multiplexing : Wave Division MultiplexingMultiplexing : Wave Division Multiplexing
Multiplexing : Wave Division Multiplexing
 
Mux ppt unit 2 data comm
Mux ppt unit 2 data commMux ppt unit 2 data comm
Mux ppt unit 2 data comm
 
Ch 06
Ch 06Ch 06
Ch 06
 
Multiplexing
MultiplexingMultiplexing
Multiplexing
 
Lecture 15
Lecture 15Lecture 15
Lecture 15
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Ch06
Ch06Ch06
Ch06
 
Networks-part10-Multiplexing-RcthfxgP-1.pptx
Networks-part10-Multiplexing-RcthfxgP-1.pptxNetworks-part10-Multiplexing-RcthfxgP-1.pptx
Networks-part10-Multiplexing-RcthfxgP-1.pptx
 
COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3COMPUTER NETWORK - Chapter - 3
COMPUTER NETWORK - Chapter - 3
 
Multiplexing and spreading
Multiplexing and spreadingMultiplexing and spreading
Multiplexing and spreading
 
Multiplexing and spreading
Multiplexing and spreadingMultiplexing and spreading
Multiplexing and spreading
 
3510Chapter6Part2 (1).pdf
3510Chapter6Part2 (1).pdf3510Chapter6Part2 (1).pdf
3510Chapter6Part2 (1).pdf
 
Ch6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kuraleCh6 1 Data communication and networking by neha g. kurale
Ch6 1 Data communication and networking by neha g. kurale
 
Ch6 1 v1
Ch6 1 v1Ch6 1 v1
Ch6 1 v1
 
BANDWIDTH UTILIZATION
BANDWIDTH UTILIZATIONBANDWIDTH UTILIZATION
BANDWIDTH UTILIZATION
 
Multiplexing and Multiple Access
Multiplexing and Multiple AccessMultiplexing and Multiple Access
Multiplexing and Multiple Access
 
Telecom lect 4
Telecom lect 4Telecom lect 4
Telecom lect 4
 
Telecom lect 3
Telecom lect 3Telecom lect 3
Telecom lect 3
 
Multiplexing l7
Multiplexing l7Multiplexing l7
Multiplexing l7
 
Lecture 14
Lecture 14Lecture 14
Lecture 14
 

Plus de ampas03

Digital 131341 t 27623-analisis kualitas-tinjauan literatur
Digital 131341 t 27623-analisis kualitas-tinjauan literaturDigital 131341 t 27623-analisis kualitas-tinjauan literatur
Digital 131341 t 27623-analisis kualitas-tinjauan literaturampas03
 
Dasar telekomunikasi
Dasar telekomunikasiDasar telekomunikasi
Dasar telekomunikasiampas03
 
komunikasi serat optik
komunikasi serat optikkomunikasi serat optik
komunikasi serat optikampas03
 
Serat Optik
Serat OptikSerat Optik
Serat Optikampas03
 
Network layer m6
Network layer m6Network layer m6
Network layer m6ampas03
 
Materi s-parameter
Materi s-parameterMateri s-parameter
Materi s-parameterampas03
 
Matching impedance
Matching impedanceMatching impedance
Matching impedanceampas03
 
Jaringan dan teknologi fiber opti kkkkkkk
Jaringan dan teknologi fiber opti kkkkkkkJaringan dan teknologi fiber opti kkkkkkk
Jaringan dan teknologi fiber opti kkkkkkkampas03
 
Datalink layer m5
Datalink layer m5Datalink layer m5
Datalink layer m5ampas03
 
Bounce diagram technique
Bounce diagram techniqueBounce diagram technique
Bounce diagram techniqueampas03
 
Bahan presentasi
Bahan presentasiBahan presentasi
Bahan presentasiampas03
 
Bab 4 perkembangan dan kemajuan sistem komunikasi bergerak
Bab 4 perkembangan dan kemajuan sistem komunikasi bergerakBab 4 perkembangan dan kemajuan sistem komunikasi bergerak
Bab 4 perkembangan dan kemajuan sistem komunikasi bergerakampas03
 
Bab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerakBab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerakampas03
 
Bab 2 arsitektur sistem komunikasi bergerak
Bab 2 arsitektur sistem komunikasi bergerakBab 2 arsitektur sistem komunikasi bergerak
Bab 2 arsitektur sistem komunikasi bergerakampas03
 
Bab 1 pendahuluan
Bab 1 pendahuluanBab 1 pendahuluan
Bab 1 pendahuluanampas03
 
10 wired lan
10 wired lan10 wired lan
10 wired lanampas03
 
10 hub bridgeswitch
10 hub bridgeswitch10 hub bridgeswitch
10 hub bridgeswitchampas03
 
9 multiple access
9 multiple access9 multiple access
9 multiple accessampas03
 
5 multiplexing dan media transmisi(1)
5 multiplexing dan media transmisi(1)5 multiplexing dan media transmisi(1)
5 multiplexing dan media transmisi(1)ampas03
 

Plus de ampas03 (20)

Digital 131341 t 27623-analisis kualitas-tinjauan literatur
Digital 131341 t 27623-analisis kualitas-tinjauan literaturDigital 131341 t 27623-analisis kualitas-tinjauan literatur
Digital 131341 t 27623-analisis kualitas-tinjauan literatur
 
Dasar telekomunikasi
Dasar telekomunikasiDasar telekomunikasi
Dasar telekomunikasi
 
komunikasi serat optik
komunikasi serat optikkomunikasi serat optik
komunikasi serat optik
 
Serat Optik
Serat OptikSerat Optik
Serat Optik
 
Network layer m6
Network layer m6Network layer m6
Network layer m6
 
Materi s-parameter
Materi s-parameterMateri s-parameter
Materi s-parameter
 
Matching impedance
Matching impedanceMatching impedance
Matching impedance
 
Komdat
KomdatKomdat
Komdat
 
Jaringan dan teknologi fiber opti kkkkkkk
Jaringan dan teknologi fiber opti kkkkkkkJaringan dan teknologi fiber opti kkkkkkk
Jaringan dan teknologi fiber opti kkkkkkk
 
Datalink layer m5
Datalink layer m5Datalink layer m5
Datalink layer m5
 
Bounce diagram technique
Bounce diagram techniqueBounce diagram technique
Bounce diagram technique
 
Bahan presentasi
Bahan presentasiBahan presentasi
Bahan presentasi
 
Bab 4 perkembangan dan kemajuan sistem komunikasi bergerak
Bab 4 perkembangan dan kemajuan sistem komunikasi bergerakBab 4 perkembangan dan kemajuan sistem komunikasi bergerak
Bab 4 perkembangan dan kemajuan sistem komunikasi bergerak
 
Bab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerakBab 3 konsep sistem komunikasi bergerak
Bab 3 konsep sistem komunikasi bergerak
 
Bab 2 arsitektur sistem komunikasi bergerak
Bab 2 arsitektur sistem komunikasi bergerakBab 2 arsitektur sistem komunikasi bergerak
Bab 2 arsitektur sistem komunikasi bergerak
 
Bab 1 pendahuluan
Bab 1 pendahuluanBab 1 pendahuluan
Bab 1 pendahuluan
 
10 wired lan
10 wired lan10 wired lan
10 wired lan
 
10 hub bridgeswitch
10 hub bridgeswitch10 hub bridgeswitch
10 hub bridgeswitch
 
9 multiple access
9 multiple access9 multiple access
9 multiple access
 
5 multiplexing dan media transmisi(1)
5 multiplexing dan media transmisi(1)5 multiplexing dan media transmisi(1)
5 multiplexing dan media transmisi(1)
 

Multiplexing and Media Transmission Techniques

  • 1. MULTIPLEXING DAN MEDIA TRANSMISI Anhar, MT
  • 2. OUTLINE Pengantar  FDM  TDM  WDM  Anhar : Komunikasi Data 2
  • 3. TIU  Dpt menjelaskan proses multiplexing analog dan digital serta pengembangan teknologinya Anhar : Komunikasi Data 3
  • 4. PENGANTAR  Mengapa multiplexing??? Keterbatasan bandwidth  Melahirkan teknik efisiensi kanal  Anhar : Komunikasi Data  Apa multiplexing 4
  • 5. JENIS MULTIPLEXING Anhar : Komunikasi Data 5
  • 6. FDM     Anhar : Komunikasi Data  Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency Carrier frequencies separated so signals do not overlap (guard bands) e.g. broadcast radio Channel allocated even if no data 6
  • 7. DIAGRAM FDM Anhar : Komunikasi Data 7
  • 8. FDM PROSES Anhar : Komunikasi Data 8
  • 9. FDM OF THREE VOICE BAND SIGNALS Anhar : Komunikasi Data 9
  • 10. CONTOH 1 Asumsikan bhw sebuah channel suara menduduki bandwidth 4 KHz. Kita perlu utk menggabungkan tiga channels suara kedlm sebuah link dng bandwidth 12 KHz, dr 20 hingga 32 KHz. Tunjukkan susunannya dng menggunakan FDM tanpa menggunakan guard bands.  Modulasikan masing2 tiga channels suara utk bandwidth yg berbeda-beda, spt pd slide berikut. Anhar : Komunikasi Data  10
  • 11. PENYELESAIAN : Anhar : Komunikasi Data 11
  • 12. SISTEM MULTIPLEXING ANALOG AT&T (USA)  Hierarchy of FDM schemes  Group   Supergroup Anhar : Komunikasi Data 12 voice channels (4kHz each) = 48kHz  Range 60kHz to 108kHz  60 channel  FDM of 5 group signals on carriers between 420kHz and 612 kHz   Mastergroup  10 supergroups 12
  • 13. SISTEM MULTIPLEXING ANALOG Anhar : Komunikasi Data 13
  • 14. SYNCRONOUS TDM Data rate of medium exceeds data rate of digital signal to be transmitted  Multiple digital signals interleaved in time  May be at bit level of blocks  Time slots preassigned to sources and fixed  Time slots allocated even if no data  Time slots do not have to be evenly distributed amongst sources  Anhar : Komunikasi Data 14
  • 16. Time Slots dan Frames Anhar : Komunikasi Data Masing2 terminal/host memberikan “sebagian” dr time (time slot) Dlm TDM, sebuah frame terdiri dr satu siklus lengkap dr time slots, dimana satu slot didedikasikan ke masing2 pengirim. 16
  • 17. SISTEM TDM Anhar : Komunikasi Data 17
  • 18. TDM FRAMES  Pure TDM: mux-to-mux speed = penjumlahan terminal speeds  No loss of data (similar to voice call multiplexing) 28/11/2013 18
  • 19. TDM LINK CONTROL No headers and tailers  Data link control protocols not needed  Flow control  Data rate of multiplexed line is fixed  If one channel receiver can not receive data, the others must carry on  The corresponding source must be quenched  This leaves empty slots   Error control  Errors are detected and handled by individual channel systems
  • 21. FRAMING No flag or SYNC characters bracketing TDM frames  Must provide synchronizing mechanism  Added digit framing   One control bit added to each TDM frame  Looks like another channel - “control channel” Identifiable bit pattern used on control channel  e.g. alternating 01010101…unlikely on a data channel  Can compare incoming bit patterns on each channel with sync pattern 
  • 22. PULSE STUFFING Problem - Synchronizing data sources  Clocks in different sources drifting  Data rates from different sources not related by simple rational number  Solution - Pulse Stuffing     Outgoing data rate (excluding framing bits) higher than sum of incoming rates Stuff extra dummy bits or pulses into each incoming signal until it matches local clock Stuffed pulses inserted at fixed locations in frame and removed at demultiplexer
  • 23. TDM OF ANALOG AND DIGITAL SOURCES
  • 24. DIGITAL CARRIER SYSTEMS Hierarchy of TDM  USA/Canada/Japan use one system  ITU-T use a similar (but different) system  US system based on DS-1 format  Multiplexes 24 channels  Each frame has 8 bits per channel plus one framing bit  193 bits per frame 
  • 25. DIGITAL CARRIER SYSTEMS (2)  For voice each channel contains one word of digitized data (PCM, 8000 samples per sec) Data rate 8000x193 = 1.544Mbps  Five out of six frames have 8 bit PCM samples  Sixth frame is 7 bit PCM word plus signaling bit  Signaling bits form stream for each channel containing control and routing info   Same format for digital data  23 channels of data   7 bits per frame plus indicator bit for data or systems control 24th channel is sync
  • 26. DCS  Hirarki sinyal digital utk layanan telepon yg menggunakan multiplexing digital.. Anhar : Komunikasi Data 26
  • 27. T LINES  DS : nama layanannya sementara T : nama saluran yg dipakai utk layanan tsb Anhar : Komunikasi Data 27
  • 28. T-1 FRAME Anhar : Komunikasi Data 28
  • 29. E LINES Anhar : Komunikasi Data 29
  • 30. contoh 1 Anhar, ST, MT. Penyelesaian 28/11/2013 Empat koneksi 1-Kbps dimultiplexing bersama-sama. Satu unitnya 1 bit. Tentukan (1) durasi 1 bit sebelum dimultiplexing, (2) transmission rate dr link, (3) durasi dr time slot, and (4) durasi dr frame? Kita dpt menjawabnya : 1. durasi 1 bit adlh 1/1 Kbps, atau 0.001 s (1 ms). 2. rate link adlh 4 Kbps. 3. duratsi dr tiap time slot 1/4 ms atau 250 ms. 4. durasi dr sebuah frame 1 ms. 30
  • 31. PENYELESAIAN SECARA RINCI : Anhar, ST, MT. 1bit 1bit  4000bps 4000bit / sec ond  0.25ms / bit  250ms / bit BitDurationlink  28/11/2013 DataRatelink  4 1kbps  4kbps  4000bps TimeSlotDurationlink  BitDuration  UnitSize  250ms / bit 1bit / TimeSlot  250ms / TimeSlot FrameDuration  TimeSlotDuration  ChannelNumber  250ms / TimeSlot * 4TimeSlot / Frame  1ms / Frame 31
  • 32. INTERLEAVING   Multiplexer/Demultiplexer memproses terminal/host’s unit saling berkebalikan Character (byte) Interleaving   Multiplexing membentuk satu/lebih karakter(s) or byte(s) pd sebuah waktu (one byte per unit) Bit Interleaving  Multiplexing membentuk one bit pd satu waktu (one bit per unit) 28/11/2013 32
  • 33. Contoh 2 28/11/2013 Anhar, ST, MT. Empat kanal dimultiplex menggunakan TDM. Bila masing2 kanal mengirimkan100 bytes/s dan kita memultiplex 1 byte per kanal, tunjukkan perambatan frame pd link, ukuran dr frame, durasi dr frame, kecepatan frame, dan bit rate dr link. Penyelesaian 33
  • 34. PENYELESAIAN RINCI  4byte / frame  32bit / frame  400  bytes / sec ond  3200bps Anhar, ST, MT. DataRatelink  4 100bytes / sec ond 28/11/2013 FrameSize  ChannelNumber  UnitSize  4timeslot / frame1byte / timeslot FrameRatelink  DataRate/ FrameSize 3200bit / sec ond  100 frame / sec ond 32bit / frame 1 FrameDuration  FrameRate  10ms / frame  34
  • 35. Contoh 3 28/11/2013 Sebuah multiplexer menggabungkan empat 100-Kbps kannels menggunakan sebuah time slot dr 2 bits. Tunjukkan output dng empat input sembarang. Berapakah frame ratenya? Berapakah durasi frame? Berapa bit rate? Berapa bit duration? Anhar, ST, MT. Solution 35
  • 36. PENYELE RINCI  4timeslot / frame 2bit / timeslot  8bit / frame DataRatelink  4 100kbps  400kbps 1 1  sec ond / bit BitRate 400k FrameRatelink  DataRate/ FrameSize Anhar, ST, MT. BitDurationlink  28/11/2013 SAIAN FrameSize  ChannelNumber  UnitSize 400kbit / sec ond  50kframe/ sec ond 8bit / frame  50,000 frame / sec ond  FrameDuration   1 FrameRate 1  20ms / frame 50,000 frame / sec ond 36
  • 37. SINKRONISASI   Satu /lebih Framing bit (s) ditambahkan ke masing2 frame utk singkronisasi antara multiplexer dan demultiplxer Bila framing bit per frame, framing bits berubah-ubah antara 0 dan 1 28/11/2013 37
  • 38. Contoh 4 28/11/2013 Anhar, ST, MT. Kita memiliki 4 sumber, masing2 membangkitkan 250 karakter per second. Bila interleaved unit adlh sebuah karakter dan 1 singkronisasi bit is ditambahkan ke masing2 frame, tentukan (1) data rate dr masing2 sumber, (2) durasi dr masing2 karakter dlm masing2 sumber, (3) frame rate, (4) durasi dr masing2 frame, (5) jumlah bits pd masing2 frame, dan (6) data rate dr link. Penyelesaian Lihat slide berikutnya 38
  • 39. Penyelesaian 28/11/2013 Kita dpt menjawab pertanyaan tsb sbb berikut : Anhar, ST, MT. 1. Data rate dr masing2 sumber adlh 2000 bps = 2 Kbps. 2. Durasi dr sebuah karakter adlh 1/250 s, or 4 ms. 3. Link diperlukan utk mengirim 250 frames per second. 4. Durasi dr masing2 frame adlh 1/250 s, or 4 ms. 5. Masing2 frame adlh 4 x 8 + 1 = 33 bits. 6. Data rate dr link adlh 250 x 33, or 8250 bps. 39
  • 40.  4timeslot / frame1character / timeslot  1bit / frame  33bits / frame FrameRate  250 frame / sec ond Anhar, ST, MT. SAIAN FrameSize  ChannelNumber  UnitSize  Fra min gBits 28/11/2013 PENYELE DataRate  FrameRate FrameSize  250 frame / sec ond  33bits / frame  8250bit / sec ond 40
  • 41. Contoh 5 Anhar, ST, MT. Penyelesaian 28/11/2013 Dua kannels, satu dng bit rate 100 Kbps dan yg lain dng bit rate 200 Kbps, dimultiplex. Bagaimana hal ini dpt dilakukan? Berapakah frame rate? Berapa frame duration? Berapa bit rate dr link? Kita dpt mengalokasikan satu slot utk channel pertama dan dua slot utk channel kedua. Masing2 frame membawa 3 bits. Frame ratenya adlh 100,000 frames per second krn ia membawa 1 bit dr channel pertama. Frame duration nya adlh 1/100,000 s, atau 10 us. Bit rate adlh 41 100,000 frames/s x 3 bits/frame, atau 300 Kbps.
  • 42. PENYELESAIAN RINCI DataRatelink  100kbps  200kbps  300kbps  3bit / frame 300kbit / sec ond  100kframe/ sec ond 3bit / frame  100,000 frame / sec ond  FrameDuration   Anhar, ST, MT. FrameRatelink  DataRate / FrameSize 28/11/2013 FrameSize  UnitSize1  UnitSize2 1 FrameRate 1  10ms / frame 100,000 frame / sec ond 42
  • 43. WDM WDM dirancang utk membawa data dng kec tinggi...  Secara prinsip sama dng FDM...  Hanya menggunakan perbedaan panjang gel..  Anhar : Komunikasi Data 43
  • 44. STATISTICAL TDM Anhar : Komunikasi Data 44
  • 45. MEDIA TRANSMISI - OVERVIEW Guided - wire  Unguided - wireless  Characteristics and quality determined by medium and signal  For guided, the medium is more important  For unguided, the bandwidth produced by the antenna is more important  Key concerns are data rate and distance 
  • 46. DESIGN FACTORS  Bandwidth   Higher bandwidth gives higher data rate Transmission impairments  Attenuation Interference  Number of receivers  In guided media  More receivers (multi-point) introduce more attenuation 
  • 48. GUIDED TRANSMISSION MEDIA Twisted Pair  Coaxial cable  Optical fiber 
  • 50. TWISTED PAIR - APPLICATIONS Most common medium  Telephone network    Within buildings   Between house and local exchange (subscriber loop) To private branch exchange (PBX) For local area networks (LAN)  10Mbps or 100Mbps
  • 51. TWISTED PAIR - PROS AND CONS Cheap  Easy to work with  Low data rate  Short range 
  • 52. TWISTED PAIR - TRANSMISSION CHARACTERISTICS  Analog   Amplifiers every 5km to 6km Digital Use either analog or digital signals  repeater every 2km or 3km  Limited distance  Limited bandwidth (1MHz)  Limited data rate (100MHz)  Susceptible to interference and noise 
  • 53. UNSHIELDED AND SHIELDED TP  Unshielded Twisted Pair (UTP) Ordinary telephone wire  Cheapest  Easiest to install  Suffers from external EM interference   Shielded Twisted Pair (STP) Metal braid or sheathing that reduces interference  More expensive  Harder to handle (thick, heavy) 
  • 54. UTP CATEGORIES  Cat 3 up to 16MHz  Voice grade found in most offices  Twist length of 7.5 cm to 10 cm   Cat 4   up to 20 MHz Cat 5 up to 100MHz  Commonly pre-installed in new office buildings  Twist length 0.6 cm to 0.85 cm 
  • 55. NEAR END CROSSTALK Coupling of signal from one pair to another  Coupling takes place when transmit signal entering the link couples back to receiving pair  i.e. near transmitted signal is picked up by near receiving pair 
  • 57. COAXIAL CABLE APPLICATIONS Most versatile medium  Television distribution  Ariel to TV  Cable TV   Long distance telephone transmission   Can carry 10,000 voice calls simultaneously Being replaced by fiber optic Short distance computer systems links  Local area networks 
  • 58. COAXIAL CABLE - TRANSMISSION CHARACTERISTICS  Analog Amplifiers every few km  Closer if higher frequency  Up to 500MHz   Digital Repeater every 1km  Closer for higher data rates 
  • 60. OPTICAL FIBER - BENEFITS  Greater capacity  Data rates of hundreds of Gbps Smaller size & weight  Lower attenuation  Electromagnetic isolation  Greater repeater spacing   10s of km at least
  • 61. OPTICAL FIBER - APPLICATIONS Long-haul trunks  Metropolitan trunks  Rural exchange trunks  Subscriber loops  LANs 
  • 62. OPTICAL FIBER - TRANSMISSION CHARACTERISTICS  Act as wave guide for 1014 to 1015 Hz   Portions of infrared and visible spectrum Light Emitting Diode (LED) Cheaper  Wider operating temp range  Last longer   Injection Laser Diode (ILD) More efficient  Greater data rate   Wavelength Division Multiplexing
  • 64. WIRELESS TRANSMISSION Unguided media  Transmission and reception via antenna  Directional  Focused beam  Careful alignment required   Omnidirectional Signal spreads in all directions  Can be received by many antennae 
  • 65. FREQUENCIES  2GHz to 40GHz Microwave  Highly directional  Point to point  Satellite   30MHz to 1GHz Omnidirectional  Broadcast radio   3 x 1011 to 2 x 1014   Infrared Local
  • 66. TERRESTRIAL MICROWAVE Parabolic dish  Focused beam  Line of sight  Long haul telecommunications  Higher frequencies give higher data rates 
  • 67. SATELLITE MICROWAVE Satellite is relay station  Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency  Requires geo-stationary orbit   Height of 35,784km Television  Long distance telephone  Private business networks 
  • 68. BROADCAST RADIO Omnidirectional  FM radio  UHF and VHF television  Line of sight  Suffers from multipath interference   Reflections
  • 69. INFRARED Modulate noncoherent infrared light  Line of sight (or reflection)  Blocked by walls  e.g. TV remote control, IRD port 
  • 70. REQUIRED READING Stallings Chapter 4  Komunikasi data by Dony 