SlideShare a Scribd company logo
1 of 59
DNA Barcode Analysis of
 Mosquito Species from
       Pakistan
      Muhammad Ashfaq
  University of Guelph, Canada
Outline
I. DNA barcoding & its use in species identities
II. DNA barcoding mosquito species from
    Pakistan
  1. Species analysis
  2. Distribution analysis
I. DNA barcoding and its use

• Why?

   AND

• How to identify the biological units?
         Biological Species Concept (BSC)

           “In conservation biology it is important to decide on the
           taxonomic unit deserving Attention”
I.       Taxonomic identification
          Morphological characters
     
           Breeding
     
           Biology
          Host plants etc

I.       Molecular identification
     
           Use of DNA nucleotide data
          Protein analysis etc
What is molecular
             identification?


Use of DNA sequence data for individual or species
  identification
by
• Sequence comparisons
• Constructing phylogenetic trees
• Other available tools
Why molecular identification?

• Clear genetic basis
• Deformed/broken samples are OK
• DNA from fossilized specimens can be used
• Identification of immature stages, or concealed stages
  possible
• Quick and unbiased
• Reliable
Target genes of DNA analysis

•   Mitochondrial
•   Ribosomal RNA
•   Nuclear protein-coding genes
•   Satellite DNA/ SSRs
•   Introns
•   Rare genomic changes
Problems/ issues

•   Different target genes from the same species
•   Different regions of the same gene
•   No standardized comparisons
•   No single database to perform sequence comparisons
•   Species consensus/ conclusions – difficult
Why not to standardize the
molecular identification?
The candidate gene?

The Mitochondrial genome




                                    COI




                           658 bp         850 bp
Why mtDNA?

• Ease of isolation
• High copy number
• Lack of recombination
• Conservation of sequence and structure across
  metazoa
• Range of mutational rates in different regions of the
  molecule
Why COI?

•   Relatively well studied at the biochemical level
•   Size and structure conserved across all aerobic
    organisms
•   Mix of variable and conserved regions
•   Largest of the three CO subunits
•   Broad spectrum of substitutional rates
Characteristics of Barcode Regions

•   Flanked by conserved regions
•   Easy to amplify
•   Low intraspecies variability
•   Discontinuous variation between species
•   Long enough to work in all groups
•   Short enough for single reads
DNA barcoding: towards an
       inventory of life

A DNA barcode is a short gene sequence
taken from standardized portions of the
genome, used to identify species
Using DNA Barcodes
   Establish reference library of barcodes from
    identified voucher specimens
   If necessary, revise species limits
   Then:
     
       Identify unknowns by searching against reference
       sequences
     
       Look for matches (mismatches) against ‘library on
       a chip’
      Before long: Analyze relative abundance in multi-

       species samples
Analytical chain

1. Databasing
2. Labeling
3. Imaging
4. Tissue sampling
5. DNA extraction
6. PCR
7. PCR check
8. Sequencing reaction
9. Sequencing cleanup
10. Sequencing
11. Trace editing & submission
Methods
BOLD: Barcode of Life Data System
Barcoding: a global initiative




 GOAL: Assemble the sequence library –
 rapidly and inexpensively to identify the
 organisms
iBOL nodes
Barcoding species from Pakistan




Canadian Centre for DNA       NIBGE
Barcoding
                          Funded by: HEC
                                      :iBOL
Using barcode data for species IDs

•   Nucleotide identities/matches
•   Distance analysis
•   Barcoding gap
•   Cluster analysis
Cluster analysis
                                                     MAIMB592-09|HM424125|Isoptera (W)
                                                69
                                                      MATER039-11|Odontotermes obesus (S)
                                               99    MAIMB595-09|HM424126|Isoptera (W)
                                                     MAIMB608-09|HM891583|Isoptera (W)
                                        99     68 MAIMB586-09|HM424124|Isoptera (W)
                                             MAIMB616-09|HM891589|Isoptera (W)
                                             MAIMB588-09|HM891573|Isoptera (W)
                       100                   99
                                         MATER040-11|Odontotermes gurdaspurensis (S)
                                                        MAIMB648-09|HM424131|Isoptera (W)
                                                       100
                                                       MATER050-11|Odontotermes sp. (S)
     46                      54         MAIMB598-09|HM891578|Isoptera (W)

                                  64
                                                     MATER019-10|HQ991626|Odontotermes lokanandi (S)
                                                      MAIMB591-09|HM891575|Isoptera (W)
                                                     100
                                                      MAIMB590-09|HM891574|Isoptera (W)
                                                    MATER011-10|HQ991622|Coptotermes travian (S)
                                        MAIMB638-09|HM891596|Isoptera (W)

                                    100 MAIMB626-09|HM891591|Isoptera (W)
                                      53    MAIMB635-09|HM891595|Isoptera (W)
                                            99
                                            MAIMB629-09|HM891593|Isoptera (W)
                                  100               MAIMB653-09|HM891600|Isoptera (W)
                  72                     MAIMB640-09|HM891597|Isoptera (W)
             89
                                        MATER005-10|HQ991620|Microcerotermes sp. (S)
                                         MATER014-10|HQ991624|Angulitermes
57                                       dehraensis (S)
                             MATER032-11|Microtermes obesi (S)
            97                                   MAIMB645-09|HM891598|Isoptera (W)
                                                 MAIMB627-09|HM891592|Isoptera (W)
                                               100
                                                 75
                                                 MATER033-11|Microtermes unicolor           (S)

          0.02
Barcoding gap or no gap!




A




B
Identity analysis
NCBI




       BOLD
Barcode applications

•   Resolving cryptic species complexes
•   Estimating species diversity
•   Constructing barcode reference libraries
•   Resolving commercial disputes
•   Detecting invasive species
•   Analyzing food chain etc etc
II. Barcoding mosquitoes from Pakistan
Mosquito species from the region

•   1971: 100 species from West & East Pakistan
•   1976-77: 43 species from Lahore area
•   1978-79: 30 species from Central Punjab
•   1997: 30 species from Indian Punjab
•   2007: 63 species from India
    – Culex tritaeniorhynchus was reported as the predominent
      species in Punjab, Pakistan

       No definite number of mosquito species
       from Pakistan available
Progress on mosquito barcoding
Genus: Aedes    Genus: Anopheles




 Genus: Culex
Known Disease Link

• Aedes – Dengue
• Anopheles – Malaria
• Culex – West Nile Virus, Filariasis, Encephalitis
Dengue transmission cycle
 Dengue transmission cycle




                             West Nile Virus transmission cycle
                             West Nile Virus transmission cycle
Current studies
Collection Areas

• 300 localities
• 21 districts of Punjab and few localities from
  Peshawar
• 2-7 specimens barcoded from each locality
• A total of 1425 specimens
• 190 larvae
• 1235 adults
Mosquito collection localities


                   Islamabad




                           Lahore




        Multan
Target Locations

•   Urban areas
•   Locations in close proximity of
    human dwellings, such as:
•   Marshes and ponds
•   Water drums
•   Abandoned locations
•   Underconstruction buildings
•   Junkyards
•   Sub-ground water catchment areas
•   Gutters
•   Waste bins near hospitals and
    petrol-pumps
Collection Methods




Arial nets           Motorized aspirators   Human landing




Manual catching     Pipettes and sieves     Traps with CO2 source
Barcode data obtained
Data analysis

• Distance analysis
• Barcode gap analysis
• Cluster analysis
Data analysis
Sequence alignments
Distance analysis
Distance analysis and “barcode gap”



   barcode gap




       Histogram of distances       Ranked distances


Using ABGD (Automatic Barcode Gap Discovery)
Barcode Gap Analysis (using BOLD)
NN distances
Cluster analysis of mosquito species
                                                     100                 MAMOS171-12| Anopheles culicifacies_A
                                 55                                      MAMOS167-12| Anopheles culicifacies
                         18                                              MAMOS173-12| Anopheles annularis
                                                                         MAMOS147-12| Anopheles splendidus
                           19
                    49      38                                           MAMOS1613-13| Anopheles sp nr dravidicus
                                                                                                                     Anopheles
                                                                         MAMOS1227-12| Anopheles stephensi
                98
                                                                         MAMOS159-12| Anopheles pulcherimus
                         33                                              MAMOS637-12| Anopheles subpictus
                                                                         MAMOS185-12 | Anopheles peditaeniatus
                                                                         MADIP347-10| Ochlerotatus pseudotaeniatus
                                                                         MAMOS086-12| Culicidae
                                                                         MAMOS1309-12| Aedes albopictus
   15
                                                                         MAMOS017-12| Aedes aegypti
           18
                                                                         MAMOS087-12| Aedes sp1pk
               16
               30
                                                                         MAMOS1230-12| Aedes sp2pk                   Aedes
                                 50                                      MADIP300-10| Aedes sp3pk
                                                                         MAMOS1582-13| Aedes sp4pk
                                                                         MAMOS1366-12| Mansonia bonneae
                                                                         MAMOS905-12| Armigeres subalbatus

                                            50                           MAMOS1217-12| Culex tritaeniorhynchus
           31                              31                            MAMOS012-12| Culex quinquefasciatus
                                                                         MADIP334-10| Culex theileri
                                      88
                                             72                          MAMOS1364-12| Culex perexiguus

                                      23                                 MAMOS394-12| Culex fuscocephala              Culex
                                                                         MAMOS207-12| Culex bitaeniorhynchus
                                           15
                                            55                           MADIP472-11| Culex mimeticus
                                                                         MAMOS1581-13| Lutzia fuscana


        0.07        0.06      0.05    0.04        0.03   0.02   0.01   0.00
Cluster analysis of Aedes COMPLEX

                                      100            MADIP347-10| Ochlerotatus pseudotaeniatus

                                                         Ochlerotatus pseudotaeniatus (DQ154153)

                                                     Aedes iyengari (DQ431717)
  1
                                            100      MAMOS1309-12| Aedes albopictus

                                                     Aedes albopictus (JQ412504)

            10                                       Aedes caspius (FJ210904)

                                                     Aedes vittatus (AY834246)

                        78                           MAMOS087-12| Aedes sp1pk

                                                     MAMOS138-12| Aedes walbus
           17
                                                     MAMOS1582-13| Aedes sp4pk

                   51                                MADIP300-10| Aedes sp3pk

                                                     MAMOS1230-12| Aedes sp2pk

                                                     Aedes lineatopennis (HQ398909)

                                            100      MAMOS017-12| Aedes aegypti

                                                     Aedes aegypti (HQ688295)

      14                                             Aedes vexans (AY917213)

                                                         MAMOS1366-12| Mansonia bonneae

                                                     Aedes fumidus (AY729978)




0.08             0.06        0.04   0.02          0.00
Aedes COMPLEX




Aedes aegypti
                        Aedes sp1pk


                                                  Aedes sp3pk




Aedes albopictus




                                Aedes sp2pk



                                                  Aedes sp4pk



Aedes W-albus
                   Ochlerotatus pseudotaeniatus
Species ratio

                                     16%


                      8%

26 species



                           76%
                 Culex quinquefasciatus
5%
Genus-wise distribution




Aedes COMPLEX                   Anopheles COMPLEX




                Culex COMPLEX
Conclusions

• DNA barcodes effectively discriminated the 26
  mosquito species
• Culex quinquefasciatus was the predominant species
  in our collections comprising 76% of the total
• There were seven species in Aedes complex which
  made only a fraction of the collected specimens
• The distribution patterns did not reveal localization of
  a species in one specific area
• Similarity of members of Aedes complex warrants use
  of molecular methods for vector population forecasts
Acknowledgements

 Dr. Sohail Hameed, Director NIBGE
 Dr. Paul Hebert, Director BIO, ON, Canada
 Dr. Sajjad Mirza, NIBGE
 Several faculty members around Pakistani universities for
  providing specimens and help in identifications
 My lab staff and students
 Higher Education Commission for funding

More Related Content

Similar to Mosquito barcoding new

Similar to Mosquito barcoding new (11)

Bioinformatics tools for the diagnostic laboratory - T.Seemann - Antimicrobi...
Bioinformatics tools for the diagnostic laboratory -  T.Seemann - Antimicrobi...Bioinformatics tools for the diagnostic laboratory -  T.Seemann - Antimicrobi...
Bioinformatics tools for the diagnostic laboratory - T.Seemann - Antimicrobi...
 
Nematode identification techniques.pptx
Nematode identification techniques.pptxNematode identification techniques.pptx
Nematode identification techniques.pptx
 
Microarray
Microarray Microarray
Microarray
 
Pierre Taberlet - Saturday Closing Plenary
Pierre Taberlet - Saturday Closing PlenaryPierre Taberlet - Saturday Closing Plenary
Pierre Taberlet - Saturday Closing Plenary
 
Sally Adamowicz - Invertebrates Plenary
Sally Adamowicz - Invertebrates PlenarySally Adamowicz - Invertebrates Plenary
Sally Adamowicz - Invertebrates Plenary
 
Axel Hausmann - Invertebrates Plenary
Axel Hausmann - Invertebrates PlenaryAxel Hausmann - Invertebrates Plenary
Axel Hausmann - Invertebrates Plenary
 
doctral seminar 2.pptx
doctral seminar 2.pptxdoctral seminar 2.pptx
doctral seminar 2.pptx
 
Linked-In Defense
Linked-In DefenseLinked-In Defense
Linked-In Defense
 
AUTOMATION IN MICROBIOLOGY
AUTOMATION IN MICROBIOLOGY AUTOMATION IN MICROBIOLOGY
AUTOMATION IN MICROBIOLOGY
 
Bhojeshwari sahu
Bhojeshwari sahuBhojeshwari sahu
Bhojeshwari sahu
 
Bacterial Pathogen Genomics at NCBI
Bacterial Pathogen Genomics at NCBIBacterial Pathogen Genomics at NCBI
Bacterial Pathogen Genomics at NCBI
 

Mosquito barcoding new

  • 1. DNA Barcode Analysis of Mosquito Species from Pakistan Muhammad Ashfaq University of Guelph, Canada
  • 2. Outline I. DNA barcoding & its use in species identities II. DNA barcoding mosquito species from Pakistan 1. Species analysis 2. Distribution analysis
  • 3. I. DNA barcoding and its use • Why? AND • How to identify the biological units? Biological Species Concept (BSC) “In conservation biology it is important to decide on the taxonomic unit deserving Attention”
  • 4. I. Taxonomic identification  Morphological characters  Breeding  Biology  Host plants etc I. Molecular identification  Use of DNA nucleotide data  Protein analysis etc
  • 5. What is molecular identification? Use of DNA sequence data for individual or species identification by • Sequence comparisons • Constructing phylogenetic trees • Other available tools
  • 6. Why molecular identification? • Clear genetic basis • Deformed/broken samples are OK • DNA from fossilized specimens can be used • Identification of immature stages, or concealed stages possible • Quick and unbiased • Reliable
  • 7. Target genes of DNA analysis • Mitochondrial • Ribosomal RNA • Nuclear protein-coding genes • Satellite DNA/ SSRs • Introns • Rare genomic changes
  • 8. Problems/ issues • Different target genes from the same species • Different regions of the same gene • No standardized comparisons • No single database to perform sequence comparisons • Species consensus/ conclusions – difficult
  • 9. Why not to standardize the molecular identification?
  • 10. The candidate gene? The Mitochondrial genome COI 658 bp 850 bp
  • 11. Why mtDNA? • Ease of isolation • High copy number • Lack of recombination • Conservation of sequence and structure across metazoa • Range of mutational rates in different regions of the molecule
  • 12. Why COI? • Relatively well studied at the biochemical level • Size and structure conserved across all aerobic organisms • Mix of variable and conserved regions • Largest of the three CO subunits • Broad spectrum of substitutional rates
  • 13. Characteristics of Barcode Regions • Flanked by conserved regions • Easy to amplify • Low intraspecies variability • Discontinuous variation between species • Long enough to work in all groups • Short enough for single reads
  • 14. DNA barcoding: towards an inventory of life A DNA barcode is a short gene sequence taken from standardized portions of the genome, used to identify species
  • 15. Using DNA Barcodes  Establish reference library of barcodes from identified voucher specimens  If necessary, revise species limits  Then:  Identify unknowns by searching against reference sequences  Look for matches (mismatches) against ‘library on a chip’  Before long: Analyze relative abundance in multi- species samples
  • 16. Analytical chain 1. Databasing 2. Labeling 3. Imaging 4. Tissue sampling 5. DNA extraction 6. PCR 7. PCR check 8. Sequencing reaction 9. Sequencing cleanup 10. Sequencing 11. Trace editing & submission
  • 18.
  • 19. BOLD: Barcode of Life Data System
  • 20. Barcoding: a global initiative GOAL: Assemble the sequence library – rapidly and inexpensively to identify the organisms
  • 21.
  • 23. Barcoding species from Pakistan Canadian Centre for DNA NIBGE Barcoding Funded by: HEC :iBOL
  • 24. Using barcode data for species IDs • Nucleotide identities/matches • Distance analysis • Barcoding gap • Cluster analysis
  • 25.
  • 26. Cluster analysis MAIMB592-09|HM424125|Isoptera (W) 69 MATER039-11|Odontotermes obesus (S) 99 MAIMB595-09|HM424126|Isoptera (W) MAIMB608-09|HM891583|Isoptera (W) 99 68 MAIMB586-09|HM424124|Isoptera (W) MAIMB616-09|HM891589|Isoptera (W) MAIMB588-09|HM891573|Isoptera (W) 100 99 MATER040-11|Odontotermes gurdaspurensis (S) MAIMB648-09|HM424131|Isoptera (W) 100 MATER050-11|Odontotermes sp. (S) 46 54 MAIMB598-09|HM891578|Isoptera (W) 64 MATER019-10|HQ991626|Odontotermes lokanandi (S) MAIMB591-09|HM891575|Isoptera (W) 100 MAIMB590-09|HM891574|Isoptera (W) MATER011-10|HQ991622|Coptotermes travian (S) MAIMB638-09|HM891596|Isoptera (W) 100 MAIMB626-09|HM891591|Isoptera (W) 53 MAIMB635-09|HM891595|Isoptera (W) 99 MAIMB629-09|HM891593|Isoptera (W) 100 MAIMB653-09|HM891600|Isoptera (W) 72 MAIMB640-09|HM891597|Isoptera (W) 89 MATER005-10|HQ991620|Microcerotermes sp. (S) MATER014-10|HQ991624|Angulitermes 57 dehraensis (S) MATER032-11|Microtermes obesi (S) 97 MAIMB645-09|HM891598|Isoptera (W) MAIMB627-09|HM891592|Isoptera (W) 100 75 MATER033-11|Microtermes unicolor (S) 0.02
  • 27. Barcoding gap or no gap! A B
  • 29. Barcode applications • Resolving cryptic species complexes • Estimating species diversity • Constructing barcode reference libraries • Resolving commercial disputes • Detecting invasive species • Analyzing food chain etc etc
  • 30.
  • 31. II. Barcoding mosquitoes from Pakistan
  • 32. Mosquito species from the region • 1971: 100 species from West & East Pakistan • 1976-77: 43 species from Lahore area • 1978-79: 30 species from Central Punjab • 1997: 30 species from Indian Punjab • 2007: 63 species from India – Culex tritaeniorhynchus was reported as the predominent species in Punjab, Pakistan No definite number of mosquito species from Pakistan available
  • 33. Progress on mosquito barcoding
  • 34. Genus: Aedes Genus: Anopheles Genus: Culex
  • 35. Known Disease Link • Aedes – Dengue • Anopheles – Malaria • Culex – West Nile Virus, Filariasis, Encephalitis
  • 36. Dengue transmission cycle Dengue transmission cycle West Nile Virus transmission cycle West Nile Virus transmission cycle
  • 38. Collection Areas • 300 localities • 21 districts of Punjab and few localities from Peshawar • 2-7 specimens barcoded from each locality • A total of 1425 specimens • 190 larvae • 1235 adults
  • 39. Mosquito collection localities Islamabad Lahore Multan
  • 40.
  • 41. Target Locations • Urban areas • Locations in close proximity of human dwellings, such as: • Marshes and ponds • Water drums • Abandoned locations • Underconstruction buildings • Junkyards • Sub-ground water catchment areas • Gutters • Waste bins near hospitals and petrol-pumps
  • 42. Collection Methods Arial nets Motorized aspirators Human landing Manual catching Pipettes and sieves Traps with CO2 source
  • 44. Data analysis • Distance analysis • Barcode gap analysis • Cluster analysis
  • 46.
  • 48.
  • 49. Distance analysis and “barcode gap” barcode gap Histogram of distances Ranked distances Using ABGD (Automatic Barcode Gap Discovery)
  • 50. Barcode Gap Analysis (using BOLD)
  • 52. Cluster analysis of mosquito species 100 MAMOS171-12| Anopheles culicifacies_A 55 MAMOS167-12| Anopheles culicifacies 18 MAMOS173-12| Anopheles annularis MAMOS147-12| Anopheles splendidus 19 49 38 MAMOS1613-13| Anopheles sp nr dravidicus Anopheles MAMOS1227-12| Anopheles stephensi 98 MAMOS159-12| Anopheles pulcherimus 33 MAMOS637-12| Anopheles subpictus MAMOS185-12 | Anopheles peditaeniatus MADIP347-10| Ochlerotatus pseudotaeniatus MAMOS086-12| Culicidae MAMOS1309-12| Aedes albopictus 15 MAMOS017-12| Aedes aegypti 18 MAMOS087-12| Aedes sp1pk 16 30 MAMOS1230-12| Aedes sp2pk Aedes 50 MADIP300-10| Aedes sp3pk MAMOS1582-13| Aedes sp4pk MAMOS1366-12| Mansonia bonneae MAMOS905-12| Armigeres subalbatus 50 MAMOS1217-12| Culex tritaeniorhynchus 31 31 MAMOS012-12| Culex quinquefasciatus MADIP334-10| Culex theileri 88 72 MAMOS1364-12| Culex perexiguus 23 MAMOS394-12| Culex fuscocephala Culex MAMOS207-12| Culex bitaeniorhynchus 15 55 MADIP472-11| Culex mimeticus MAMOS1581-13| Lutzia fuscana 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00
  • 53. Cluster analysis of Aedes COMPLEX 100 MADIP347-10| Ochlerotatus pseudotaeniatus Ochlerotatus pseudotaeniatus (DQ154153) Aedes iyengari (DQ431717) 1 100 MAMOS1309-12| Aedes albopictus Aedes albopictus (JQ412504) 10 Aedes caspius (FJ210904) Aedes vittatus (AY834246) 78 MAMOS087-12| Aedes sp1pk MAMOS138-12| Aedes walbus 17 MAMOS1582-13| Aedes sp4pk 51 MADIP300-10| Aedes sp3pk MAMOS1230-12| Aedes sp2pk Aedes lineatopennis (HQ398909) 100 MAMOS017-12| Aedes aegypti Aedes aegypti (HQ688295) 14 Aedes vexans (AY917213) MAMOS1366-12| Mansonia bonneae Aedes fumidus (AY729978) 0.08 0.06 0.04 0.02 0.00
  • 54. Aedes COMPLEX Aedes aegypti Aedes sp1pk Aedes sp3pk Aedes albopictus Aedes sp2pk Aedes sp4pk Aedes W-albus Ochlerotatus pseudotaeniatus
  • 55. Species ratio 16% 8% 26 species 76% Culex quinquefasciatus
  • 56. 5%
  • 57. Genus-wise distribution Aedes COMPLEX Anopheles COMPLEX Culex COMPLEX
  • 58. Conclusions • DNA barcodes effectively discriminated the 26 mosquito species • Culex quinquefasciatus was the predominant species in our collections comprising 76% of the total • There were seven species in Aedes complex which made only a fraction of the collected specimens • The distribution patterns did not reveal localization of a species in one specific area • Similarity of members of Aedes complex warrants use of molecular methods for vector population forecasts
  • 59. Acknowledgements  Dr. Sohail Hameed, Director NIBGE  Dr. Paul Hebert, Director BIO, ON, Canada  Dr. Sajjad Mirza, NIBGE  Several faculty members around Pakistani universities for providing specimens and help in identifications  My lab staff and students  Higher Education Commission for funding