SlideShare une entreprise Scribd logo
1  sur  26
TUGAS MANDIRI
VEKTOR-VEKTOR
DI RUANG BERDIMENSI 2 DAN 3
MATA KULIAH : AL-JABAR LINEAR DAN MATRIKS
PROGRAM STUDI TEKNIK INFORMATIKA
UNIVERSITAS PUTERA BATAM
2013
Nama : Asep Jaenudin
NPM : 120210034
Kode Kelas : 122-TI025-M2
Dosen : Handra Tipa, S.Pdi
i
KATA PENGANTAR
Puji syukur terhadap kehadirat Tuhan Yang Maha Esa yang berkat rahmat
dan hidayah-Nya sehingga penyusun dapat menyelesaikan makalah Tugas
Mandiri yang berjudul “Vektor-vektor di Ruang Berdimensi 2 dan 3”.
Adapun maksud dilaksanakannya penyusunan makalah ini, tidak lain
adalah untuk memenuhi penyusunan makalah tugas mandiri mata kuliahAl-jabar
Linear dan Matriks yang ditugaskan kepada penyusun, sehingga penyusun dan
pembaca lebih memahami tentang Konsep Vektor-vektor Dalam Ruang
Berdimensi 2 Dan ruang Berdimensi 3.
Ucapan terima kasih penyusun sampaikan kepada Bapak Handra Tipa,
S.Pdi, selakuDosen Mata Kuliah Al-Jabar Linear dan Matriks yang telah
memberikan penjelasan teori tentang vektor.Serta kepada orangtua yang telah
memberi dukungan baik secara moril dan materiil, dan kepada teman-teman serta
pihak-pihak lain yang tidak dapat disebutkan oleh penyusun.
Penyusun menyadari bahwa makalah ini masih jauh dari
kesempurnaan.Untuk itu, sudilah kiranya para pembaca memberikan masukan dan
saran sehingga isi makalah ini dapat lebih sempurna. Dan sebelumnya penyusun
memohon ma’af yang sebesar-besarnya jika ada kesalahan penulisan atau bahasa
yang kurang baku dalam penulisan makalah ini.
Akhirnya penyusun berharap semoga isi makalah ini dapat memberikan
manfaat bagi siapa saja yang memerlukannya di masa yang akan datang.
Batam, 6 Juni 2013
Penyusun
ii
DAFTAR ISI
KATA PENGANTAR......................................................................................... ii
DAFTAR ISI........................................................................................................ iii
BAB I. PENDAHULUAN................................................................................... 1
1.1 Latar Belakang.......................................................................................... 1
1.2 Rumusan Masalah..................................................................................... 2
1.3Tujuan Penulisan........................................................................................ 2
1.4 Metode Penulisan.................................................................................... 2
BAB II. PEMBAHASAN.................................................................................... 3
2.1 Konsep Ruang........................................................................................... 3
2.2Titik dan Garis............................................................................................ 6
2.3Vektor......................................................................................................... 7
2.4Aritmetika Vektor ...................................................................................... 11
2.5 Perkalian Titik / Perkalian Dalam (Dot Product/Inner Product)............. 13
2.6 Proyeksi................................................................................................... 15
2.7 Perkalian Silang (Cross Product) ............................................................ 16
BAB III. PENUTUP............................................................................................ 21
3.1 Kesimpulan ............................................................................................... 21
3.2 Saran ......................................................................................................... 21
DAFTAR PUSTAKA.......................................................................................... 22
1
BAB I
PENDAHULUAN
1.1 Latar Belakang
Banyak orang yang beranggapan bahwa Matematika itu rumit, karena alasan
itulah banyak orang yang menghindari Matematika. Padahal Matematika dapat kita
jumpai di dalam kehidupan sehari-hari, dan mau tidak mau kita pasti menggunakan
Matematika. Oleh karena itu kami membuat makalah ini dengan maksud membantu
pemahaman masyarakat agar mereka tidak menilai Matematika adalah sesuatu yang
buruk.
Bagi mahasiswa yang sedang mempelajari matematika, rumus, teori atau
apapun itu yang berhubungan dengan matematika sudah merupakan bahasan kita
sehari-hari yang tak dapat terpisahkan. Mudah ataupun susahdalam memahami suatu
rumus atau teori, tetap harus kita pahami agar kelak dalam mengajar kita memiliki
kemampuan akademik yang lebih baik dari sekarang.
Sehubungan dengan meningkatkan kemampuan akademik, penulisakan
membahas tentang salah satu bab dalam bidang matematika, yaitu vektor, khususnya
vektor dalam ruang dua dan tiga dimensi secara geometri.
Di dalam kehidupan sehari-hari, kita sering mendengar kata-kata seperti suhu,
gaya, panjang, percepatan, pergeseran dan sebagainya. Apabila diperhatikan besaran
yang menyatakan besarnya kuantitas dari kata-kata tersebut ada perbedaanya yaitu
ada yang hanya menunjukkan nilai saja, tetapi ada yang menunjukkan nilai dan
arahnya. Besaran itu sering disebut skalar dan vektor.
Setiap besaran skalar seperti panjang, suhu dan sebagainya selalu dikaitkan
dengan suatu bilangan yang merupakan nilai dari besaran itu. Sedangkan untuk
besaran vektor seperti gaya, percepatan, pergeseran dan sebagainya, disamping
mempunyai nilai juga mempunyai arah. Jadi vektor adalah suatu besaran yang
mempunyai nillai (besar / norma ) dan arah tertentu.
Dalam pembahasan ini akan penulis bahas tentang ruang lingkup vektor baik
itu ruang dua maupun ruang tiga dimensi.
2
1.2 Rumusan masalah
1) Bagaimana konsep tentangruang?
2) Bagaimana definisi Titik dan Garis?
3) Apakah penegrtian darivektor?
4) Bagaimana operasi aritmetika pada vektor?
5) Bagaimana perkalian Titik/Perkalian Dalam (Dot Product/Inner Product)?
6) Bagaimana proyeksi dalam vektor?
7) Bagaimana fungsi Perkalian Silang (Cross Product) dalam vektor?
1.3Tujuan Penulisan
Makalah ini dibuat dengan tujuan utama untuk memenuhi tugas mandiri mata
kuliah Aljabar Linear dan Matriks. Dan tujuan berikutnya adalah sebagai sumber
informasi yang penilis harapkan bermanfaat dan dapat menambah wawasan para
pembaca makalah ini.
1.4 Metode Penulisan
Penulis menggunakan metode observasi dan kepusatakaan.Cara yang
digunakan dalam penulisan adalah Studi pustaka.Dalam metode ini penulis membaca
buku-buku yang berkaitan dengan penulisan makalah ini, selain itu penulis juga
mencari sumber-sumber dari internet.
3
BAB II
PEMBAHASAN
2.1 Konsep Ruang
Setiap objek pembicaraan dalam matematika memiliki ruang himpunan di
mana objek itu berasal.Di dalamnya terdapat aturan-aturan yang berlaku yang
dipenuhi oleh setiap anggotanya.Misalnya, semua bilangan nyata tergabung dalam
sebuah himpunan bilangan yang dinamakan himpunan bilangan real (ℝ). Semua sifat-
sifat dan aturan perhitungan bilangan real berlaku bagi semua himpunan anggotanya,
seperti pada bilangan rasional, irasional, bulat, pecahan, dan lain- lain.
Sebelum membahas lebih jauh mengenai vektor, akan diperkenalkan tentang
konsepruang, mulai dari dimensi terkecil hingga dimensi yang digeneralisasi, sebagai
ruang-n.
Ruang Dimensi-n
Himpunan bilangan nyata (real) biasanya digambarkan ke dalam sebuah
gambarsederhana yang disebut garis bilangan.Garis bilangan dapat dianggap sebagai
grafiksederhana yang menyatakan letak suatu bilangan, di mana bilangan yang lebih
besarberada di sebelah kanan bilangan yang lebih kecil.Karena garis bilangan hanya
memiliki satu dimensi yaitu panjang, maka himpunanbilangan real dapat dinyatakan
sebagai ruang berdimensi-1.Meskipun kata “ruang‟ menunjukkan suatu tempat
berdimensi-3, namun dalam matematika “ruang‟ mempunyai makna tersendiri.
Berdasarkan definisinya, ruang dalam matematikamerupakan himpunan dari objek-
objek yang memiliki sifat yang sama dan memenuhisemua aturan yang berlaku dalam
ruang tersebut.
Definisi Ruang-1 atau R1
Ruang dimensi-1 atau ruang-1 (R1) adalah himpunan semua bilangan real (ℝ).
Himpunan bilangan real dapat digambarkan oleh garis bilangan real :
4
Jadi, garis bilangan berfungsi untuk menunjukkan letak suatu titik pada suatu
garisberdasarkan besarnya.Gagasan ini memunculkan gagasan berikutnya bahwa
suatutitik dapat berada pada suatu bidang ataupun ruang.
Pada pertengahan abad ke-17lahirlah konsep ruang dimensi-2 dan dimensi-3,
yang kemudian pada akhir abad ke-19para ahli matematika dan fisika memperluas
gagasannya hingga ruang dimensi-n.
Definisi Ruang-2 atau R2
Ruang dimensi-2 atau ruang-2 (R2) adalah himpunan pasangan bilangan
berurutan (x, y), di mana x dan y adalah bilangan-bilangan real.Pasangan bilangan (x,
y) dinamakan titik (point) dalam R2, misal suatu titik P dapat ditulis (x, y).Bilangan x
dan y disebut koordinat dari titik P.
Untuk menggambarkan titik-titik di R2secara geometris, koordinat x dan y
dianggap berada pada dua garis bilangan yang berbeda yang membentuk suatu sistem
koordinat.Garis bilangan tersebut dinamakan sumbu koordinat.Sumbu koordinat
tersebut digambarkan saling tegak lurus dan membentuk suatu sistem yang disebut
sistem koordinat siku-siku. Pada R2sistem ini dinamakan sistem koordinat-xy atau
sistem koordinat kartesius (Cartesian system) yang dibangun oleh :
- Sumbu x (x-axis) yaitu garis tempat semua titik yang mempunyai koordinat (x, 0).
- Sumbu y (y-axis) yaitu garis tempat semua titik yang mempunyai koordinat (0, y).
Suatu titik yang berada tepat di kedua sumbu dinamakan titik asal (origin
point) ditulis O(0, 0). Titik ini adalah titik di mana sumbu x dan y saling berpotongan.
5
Definisi Ruang-3 atau R3
Ruang dimensi-3 atau ruang-3 (R3) adalah himpunan tripel bilangan berurutan
(x, y, z), di mana x, y, dan z adalah bilangan-bilangan real. Tripel bilangan (x, y, z)
dinamakan titik (point) dalam R3, misal suatu titik P dapat ditulis (x, y, z). Bilangan
x, y, dan z, disebut koordinat dari titik P.
Seperti halnya R2, R3memiliki sistem koordinat siku-siku yaitu sistem
koordinat-xyz, dengan titik asal O(0,0, 0), yang dibangun oleh :
- Sumbu x (x-axis) yaitu garis tempat semua titik yang mempunyai koordinat (x,0, 0).
- Sumbu y (y-axis) yaitu garis tempat semua titik yang mempunyai koordinat (0, y, 0).
- Sumbu z (z-axis) yaitu garis tempat semua titik yang mempunyai koordinat (0,0, z).
Menjelang akhir abad 19, para matematikawan dan fisikawan mulai
menemukan gagasan bahwa dimensi tidak hanya terbatas pada dimensi-3 dengan
tripel bilangannya, tetapi juga kuadrupel sebagai titik pada ruang dimensi-4, kuintupel
pada ruang dimensi-5, dan seterusnya.Hal ini menghasilkan generalisasi untuk ruang
dimensi-n.
Definisi tupel-n-berurutan
Jika n adalah sebuah bilangan positif, maka tupel-n-berurutan (ordered-n-
tuple) adalah sebuah urutan n buah bilangan real (a1, a2, . . . ,an).
Definisi Ruang-n atau Rn
Ruang dimensi-n atau ruang-n () adalah himpunan semua tupel-n-berurutan
6
( 1, 2, . . . , ), dengan 1, 2, . . . , dan adalah bilangan-bilangan real. Tupel-n
bilangan 1, 2 , . . . , dinamakan titik (point) dalam , misal suatu titik P
dapatditulis ( 1, 2, . . . , ). Bilangan 1, 2, . . . , dan disebut koordinat dari P.
Jelas bahwa ruang dimensi-n dengan n >3 tidak dapat divisualisasikan
secarageometris, namun penemuan ini sangat berguna dalam pekerjaan analitik dan
numerik,karena tidak sedikit permasalahan nyata tidak dapat divisualisasikan dengan
grafisnamun memerlukan penalaran dan penyelesaian secara matematis.
yang merupakan generalisasi dari 1, 2, dan 3, menyebabkan sifat-sifat
danaturan-aturan di dalamnya adalah sama, perbedaannya hanya terletak pada ukuran
atau banyak komponen yang akan dihitung.
Walaupun bab ini hanya menyajikan definisi, teorema, atau sifat-sifat dalam
2dan 3, tetapi semuanya akan berlaku untuk, setelah dimodifikasi sesuai
dimensinya. Seperti definisi jarak antar dua titik dalam 2 dan 3.
Definisi Jarak Dua Titik
Jarak antara dua titik ( 1, 1) dan ( 2, 2 )di 2 didefinisikan oleh :
= 2 − 1 2+ 2− 1 2
Jarak antara dua titik ( 1, 1, 1) dan ( 2, 2 , 2) di 3didefinisikan oleh :
= 2 − 1 2 + 2− 1 2 + 2− 1 2
2.2 Titik dan Garis
Pada bagian sebelumnya telah dibahas pengertian titik pada 2dan 3serta
secara umum. Definisi titik ini sama untuk semua ruang, yang berbeda hanyalah
kedudukannya di dalam masing-masing ruang tersebut.
Dua titik atau lebih jika dihubungkan akan membentuk garis, kumpulan garis-
garis akan menjadi bidang, dankumpulan bidang-bidang akan menjadi ruang.
Geometri adalah cabang matematika yang khusus mempelajari titik, garis, dan bidang.
Mengenai garis, geometri hanya terbatas pada kuantitas dan kedudukan,
seperti panjang garis atau besar sudut antara dua garis, tetapi tidak pada arahnya serta
kedudukannya dalam suatu bidang atau ruang.Ilmu vektor merupakan cabang dari
matematika yang mempelajari ruas garis berarah yang dinamakan vektor.
7
2.3 Vektor
Banyak kuantitas fisis, seperti luas, panjang, massa, suhu, dan lainnya, dapat
dijelaskan secara lengkap hanya dari besarnya, misalnya 50 kg, 100 m, 30 ℃,
dll.Kuantitas fisis ini dinamakan skalar.Dalam matematika, skalar mengacu pada
semuabilangan yang bersifat konstan.
Namun, ada kuantitas fisis lain yang tidak hanya memiliki besar/nilai tapi juga
arah,seperti kecepatan, gaya, pergeseran, dan lain-lain. Kuantitas fisis ini dalam
fisikamaupun matematika dinamakan vektor.Dalam matematika, ilmu vektor menjadi
salahsatu cabang ilmu yang semakin luas perkembangannya serta penerapannya, dan
tidakterbatas pada mempelajari besaran-besaran yang memiliki nilai dan arah tetapi
sebagaisuatu besaran yang memiliki banyak komponen yang membentuk satu
kesatuan daribesaran itu sendiri.
Notasi Vektor
Vektor biasanya dinyatakan dengan huruf misalnya (A), atau diberi tanda panah di
atasnya ().
Definisi Vektor
Sebuah vektor a dengan komponen-n (berdimensi-n
) di dalam adalah suatu
aturantupel-n dari bilangan-bilangan yang ditulis sebagai baris (a1, a2, … ,an) atau
sebagaikolom:
Dengan a1, a2, … ,anadalah bilangan-bilangan real dan dinamakankomponen dari
vektor a.
Dengan demikian, di R2vektor dapat ditulis : a = (a1, a2) atau a =dan di
R3vektor dapat ditulis :
a = (a1, a2, a3) atau a =
Pada bagian berikutnya, vektor akan sering disajikan dalam bentuk baris
(vektor baris).Berdasarkan definisi titik dan vektor, simbol (a1, a2, … ,an) mempunyai
dua tafsirangeometrik yang berbeda, yaitu sebagai titik dalam hal a1, a2, … , anadalah
koordinat,dan sebagai vektor dalam hal a1, a2, … , anadalah komponen.
8
Arti Geometrik Vektor
Secara geometris, vektor dinyatakan sebagai segmen garis berarah atau
panah.Arahpanah menentukan arah vektor dan panjangnya menyatakan besar
vektor.Ekor panahdinamakan titik awal (initial point) dan ujung panah dinamakan
titik ujung/terminal(terminal point).
Komponen-komponen vektor menentukan besar dan arah vektor. Misalnya
pada R2, vektor v = (2, 3) berarti dari titik awal bergerak 2 satuan ke kanan,
kemudian 3 satuan ke atas. Pada R3, misalkan sebuah vektor v = 3, 4, −2 berarti dari
titik awal bergerak 2 satuan ke depan (x-positif), 4 satuan ke kanan (y-positif), dan 2
satuan kebawah (z-negatif).
Definisi berikut dapat memperjelas tafsiran geometrik vektor.
Definisi Vektor Posisi
Vektor posisi dari (a1, a2, … ,an) adalah suatu vektor yang titik awalnya adalah
titik asal O dan titik ujungnya adalah A, dan ditulis OA = (a1, a2, … , an).
Berdasarkan definisi ini dapat dibuktikan bahwa, dari sebuah titik dapat dibuat
tepat satu buah vektor posisi. Dengan kata lain setiap titik dalam ruang memiliki
vector posisi yang berbeda-beda.Jika vektor v dengan titik awal A dan titik ujung B,
maka v dapat ditulis sebagai :AB. Komponen-komponen dari ABakan dijelaskan
setelah mempelajari aritmetika vektor.
Definisi Vektor-Vektor Ekuivalen
Vektor-vektor ekuivalen adalah vektor-vektor yang memiliki panjang dan arah
yangsama.Vektor-vektor ekuivalen dianggap sebagai vektor yang sama meskipun
kedudukannyaberbeda-beda. Jika v dan w ekuivalen maka dapat dituliskan v = w.
Contoh:
9
Keempat ruas garis berarah di atas berawal di suatu titik tertentu yang
kemudian digerakkan 2 satuan ke kiri dan 5 satuan ke atas.
Keempatnya dinamakan vektor dan dapat dinotasikan oleh v= −2, 5 =
Keempat ruas garis berarah di atas dinamakan representasi dari vektor v.
Definisi Vektor Nol
Vektor nol adalah vektor yang semua komponennya adalah nol, dan ditulis
0=(0, 0, 0). Dengan demikian vektor nol adalah vektor yang tidak mempunyai
panjang dan arah.
Definisi Negatif Vektor
Negatif dari vektor v, atau –v didefinisikan sebagai vektor yang mempunyai
besar yang sama dengan v, namun arahnya berlawanan dengan v.
Definisi Vektor satuan/unit (Unit Vectors)
Vektor satuan adalah vektor yang panjangnya adalah 1.
Definisi Vektor Basis/Satuan Standar (Standard Unit Vectors)
Vektor satuan baku adalah vektor yang mempunyai panjang 1 dan terletak
sepanjang sumbu-sumbu koordinat.
Untuk R2, vektor satuan baku ditulis :i = 1,0 dan j= 0,1 .
Untuk R3, vektor satuan baku ditulis :i = 1,0, 0, j = 0,1,0 , dan k = 0,0,1 .
Dengan demikian setiap vektor v = (v1, v2, v3) di R3 dapat ditulis:
v = v1, v2, v3= v11,0,0 + v20,1, 0 + v30,0, 1 = v1i + v2j+ v3k
Contoh:
Nyatakan v = 2, −3, 4 dalam vektor basis!
Penyelesaian :v = 2, −3, 4 = 2 1,0, 0 + −3 0,1, 0 + 4 0,0, 1 = 2i − 3j + 4k
10
2.4 Aritmetika Vektor
Pada bagian ini, definisi serta teorema yang diberikan hanya untuk vektor-
vektor di R3, sedangkan interpretasi geometris sedapatnya diberikan dalam R3, namun
kebanyakan dalam R2. Hal ini bertujuan hanya untuk mempermudah pemahaman
analitik dan geometrik.Secara konsep, teoretis, dan numeris, semua definisi, teorema,
dan rumus-rumus dapat dengan mudah dimodifikasi sesuai dimensi yang diinginkan.
Definisi Penjumlahan Vektor
Diberikan vektor a = (a1, a2, a3) dan b = (b1, b2, b3) vektor-vektor di R3,
maka penjumlahan a dan b didefinisikan oleh a + b= (a1 + b1 ,a2 + b2 , a3 + b3).
Secara geometris, penjumlahan a + b dilakukan dengan dua cara, yaitu dengan
aturan segitiga (triangle law) dan aturan jajar genjang (parallelogram law). Aturan
segitiga dilakukan dengan menghubungkan titik awal b dengan titik ujung a,
kemudian menghubungkan titik awal a dan titik ujung b sebagai (a + b).Sedangkan
aturan jajar genjang dilakukan dengan menghubungkan kedua titik asal a dan b,
sehingga a dan b membentuk jajaran genjang. Diagonal yang dibuat dari titik awal
kedua vektor akan menjadi (a + b). Seperti ilustrasi berikut :
Contoh:
Misalkan u = 1, 2, 3, v = 2, −3, 1,dan w = (3,2, −1) vektor-vektor di R3, maka
u + v + w = (1 + 2 + 3, 2 + −3 + 2, 3 + 1 + −1 = 6,1, 3
Definisi Pengurangan Vektor
Diberikan vektor a= (a1, a2, a3) dan a = (b1, b2, b3), maka pengurangan a oleh b
didefinisikan oleh : a − a = a + −a = [a1+ (−b1 , a2+ (−b2 ), a3+ (−b3)]
= (a1− b1,a2− b2, a3− b3)
11
Seperti halnya pada penjumlahan vektor, secara geometris pengurangan vektor
dapat dilakukan dengan aturan segitiga ataupun jajar genjang seperti ilustrasi berikut:
Contoh:Misalkan u = 1, 2,3 ,v = 2, −3, 1 ,dan w= (3,2, −1) vektor-vektor di R3,
makau − v − w = (1 − 2 − 3,2 –(−3) − 2, 3 − 1 –(−1) = −4,3, 3
Berdasarkan definisi ini, komponen-komponen dari vektor yang titik awalnya
bukantitik asal, misalnya(a1, a2, a3) dan titik ujung (b1, b2, b3).
Sehingga a= OA =a1, a2, a3 dan b = OB = b1, b2, b3 adalah :
A B = OB – OA= b – a= b1, b2, b3 − a1, a2, a3 = (b1 − a1 ,b2 − a2 , b3 − a3 )
Contoh:
Vektor dengan titik awal dan titik ujung berturut-turut P1 2, −7,0dan P2(1, −3,
−5) adalah P1 P2 = 1 − 2, −3 – (−7), −5 − 0 = −1, 4, −5 .
Dengan memisalkan semua koordinat ada di sumbu-sumbu positif, vektor A
Bdi R3,dengan koordinat Ax1, y1, z1 danB(x2, y2 , z2), dapat digambarkan sebagai
berikut:
Sehingga A B = (x2 − x1, y2 − y1, z2 − z1).
12
Definisi Perkalian Skalar-Vektor
Jika v = (v1, v2, v3 )adalah vektor tak-nol dan kadalah bilangan real tak-nol,
maka hasil kali kvdidefinisikan oleh kv = kv1, v2, v3 = (kv1, kv2, kv3)
Secara geometris, hasil kali kvadalah vektor yang panjangnya k kali panjang v,
yang arahnya sama dengan vjika k>0, dan berlawanan arah dengan vjika k<0.
Contoh:
Misalkan suatu vektor di R2, a = (2,4). Hitunglah 3a, 1/2a, dan − 2a, dan
gambarkankeempat vektor tersebut ke dalam satu sistem koordinat.
Penyelesaian : Berdasarkan definisi perkalian skalar-vektor, maka,
3a = 6,12 ; 1/2a = 1,2 ; −2a = (−4, −8)
Norma/Panjang Vektor
Panjang suatu garis dapat diperoleh dengan menggunakan aturan Phytagoras.
Karena vektor adalah ruas garis berarah, maka panjang vektor, baik di R2maupun
R3dapat diperoleh dengan rumus yang sama.
Definisi Norma Vektor
Norma atau panjang vektor v= (v1, v2, v3) didefinisikan oleh :
Berdasarkan definisi di atas, jika IIvII = 0 maka IIvII = 0. Dan, jika vvektor
satuan,maka IIvII = 1, begitu pula dengan vektor basis IIi II = 1,IIj II = 1, dan IIkII =
1.
Contoh :
Misalkan IIa II = (3, −5,10) maka IIaII=
13
Teorema : Aturan Dasar Aritmetika Vektor
Jika u, v, dan w adalah vektor-vektor di R2atau R3, dan kserta ladalah skalar
(bilangan real), maka hubungan berikut akan berlaku,
1. u+ v= v+ u
2. (u+ v) + w= u+ (v+ w)
3. u+ 0= 0+ u= u
4. u+ (-u) = 0
5. k( lu) = ( kl )u
6. k(u+ v) = ku+ kv
7. (k + l)u= ku+ lu
8. 1u= u
2.5 Perkalian Titik / Perkalian Dalam (Dot Product/Inner Product)
Definisi pertama dari perkalian titik dua vektor adalah menggunakan sifat-sifat
geometrisnya, yaitu norma kedua vektor dan besar sudut di antara keduanya, dengan
asumsi titik-titik awalnya berimpit.
Definisi 1
Jika udan vadalah vektor-vektor di R2dan R3, dan adalah sudut di antara
udan v, maka perkalian titik (dot product) atau perkalian dalam Euclidis (Euclidean
inner product) u ∙ vdidefinisikan oleh:
Pekalian ini juga dinamakan perkalian skalar (scalar product) karena hasil
perkalian titik dua vektor akan menghasilkan skalar (bilangan real). Dari definisi jelas
bahwa norma vektor udan vserta nilai cosinus sebarang sudut di antara keduanya
adalah bilangan real, sehingga hasil kali ketiganya adalah bilangan real. Jika salah
satu atau kedua vektor merupakan vektor nol, maka hasilnya adalah nol.
14
Contoh :
Misalkan u = 0, 0,1 dan v = (0,2, 2) sedangkan sudut di antaranya adalah 45°, maka
u ∙ v =
Definisi ke-dua dari perkalian titik dua vektor adalah menggunakan
komponenkomponen dari masing-masing vektor.
Definisi 2
Jika u = (u1, u2) dan v = (v1, v2) adalah vektor di R2, maka perkalian
titik/perkalian dalam u ∙ vdidefinisikan oleh :u ∙ v = u1v1 + u2v2
Jika u = (u1, u2, u3) dan v= (v1, v2, v3) adalah vektor di R3, maka perkalian
titik u ∙ vdidefinisikan oleh :u ∙ v = u1v1 + u2v2 + u3v3
Contoh :R
Misalkan a = 0, 3, −7 dan b = (2,3, 1) maka a ∙ b = 0.2 + 3.3 + −7 .1 = 2
Kedua definisi ini saling berkaitan karena salah satu definisi diperoleh dari
definisi yang lain. Dalam beberapa buku, salah satu definisi dituliskan sebagai
“definisi”, kemudian definisi yang lainnya dituliskan sebagai “teorema” yang
diturunkan dari definisi sebelumnya. Biasanya kedua definisi digabungkan untuk
mencari besar sudut di antara udan vjika komponen udan vdiketahui.
Contoh :
Misalkan u = (2, −1,1) dan v = (1, 1, 2), Hitunglah u ∙ vdan tentukan sudut diantara
keduanya.
Penyelesaian :
Dan u ∙ v = 2.1 + −1 .1 + 1.2 = 3
sehingga,
Teorema : Sudut Antara Dua Vektor
Jika udan v adalah vektor-vektor tak nol, dan θadalah besar sudut di antara
kedua vektor tersebut, maka
 θlancip (0° < < 90°) jika dan hanya jika u ∙ v> 0
 θtumpul (90° < < 180°) jika dan hanya jika u ∙ v< 0
 θsiku-siku ( = 90°) jika dan hanya jika u ∙ v = 0
Dua vektor yang membentuk sudut siku-siku dinamakan ortogonal (tegak lurus).
15
Teorema : Sifat-sifat Perkalian Titik
Jika u, v, dan wadalah vektor- vektor di R2atau R3dan k adalah skalar, maka
1) u ∙ v = v ∙ u 0
2) u ∙ v + w = u ∙ v + u ∙ w
3) ku ∙ v = ku ∙ v = u ∙ (kv)
4) v ∙ v> 0 jika v ≠ 0 dan v ∙ v = 0 jika v = 0
2.6 Proyeksi
Dua vektor yang titik asalnya berimpit dapat menghasilkan vektor lain
yangdinamakan vektor proyeksi. Perhatikan ilustrasi berikut:
Misalkan adan bberimpit di titik asalnya. Jika dari titik ujung bditarik garis
menuju asedemikian sehingga tegak lurus a(diproyeksikan terhadap a), maka vektor
yang dapat dibuat dengan titik asal yang sama dan berujung di titik di mana b
diproyeksikan pada adinamakan vektor proyeksi bterhadap a. Vektor ini disebut juga
proyeksi ortogonal bpada a. Dengan cara yang sama dapat diperoleh vektor proyeksi
aterhadap b.
Notasi Vektor Proyeksi
Vektor proyeksi bterhadap adinotasikan proya b
Vektor proyeksi aterhadap bdinotasikan dengan proyab
Teorema : Proyeksi Ortogonal
Jika udan vadalah vektor di R2atau R3 dan keduanya bukan vektor nol, maka
16
Sedangkan panjang dari vektor-vektor proyeksi tersebut adalah:
Contoh :
Jika a= (1, 0, −2) dan b = (2,1, −1) , tentukan vektor proyeksi apada b.
Penyelesaian :a ∙ b = 4 dan II bII2= 6 maka proyeksi ortogonal apada badalah:
2.7 Perkalian Silang (Cross Product)
Berikut akan diperkenalkan sebuah operasi antar vektor dalam R3. Jika
perkalian titikakan menghasilkan skalar/bilangan, maka perkalian silang akan
menghasilkan vektor.Dan jika proyeksi ortogonal suatu vektor terhadap vektor la in
akan menghasilkanvektor baru yang berimpit dengan vektor tersebut, maka perkalian
silang dua vektor akan menghasilkan vektor baru yang tegak lurus dengan kedua
vektor tersebut.
Definisi Perkalian Silang
Jika u = (u1, u2, u3) dan v = (v1, v2 ,v3) adalah vektor di R3, maka perkalian
silangu × vdidefinisikan olehu × v = (u2v3 − u3v2 , u3v1 − u1v3 , u1v2 − u2v1)
atau dalam notasi determinan
Rumus di atas dapat dibuat pola yang mudah diingat.
Bentuklah matriks 2 × 3 :
Komponen pertama dari u × vadalah determinan matriks tersebut setelah
kolom pertama dicoret, komponen ke-2 adalah negatif dari determinan matriks setelah
kolom ke-2 dicoret, dan komponen ke-3 adalah determinan matriks setelah kolom ke-
3 dicoret.
17
Contoh :
Misalkan u = (1, 2, −2) dan v = (3, 0, 1), maka
Secara geometris, perkalian silang u × vdapat diinterpretasikan oleh gambar berikut,
Arah u × vdapat ditentukan dengan “aturan tangan kanan” (right hand rule).
Misalkan θadalah sudut di antara udan v, dan anggaplah uterotasi sejauh sudut
θmenuju v(sehingga berimpit dengan v). Jika jari-jari tangan kanan menunjukkan
arahrotasi umaka ibu jari menunjukkan arah u × v.Dengan menggunakan definisi
ataupun dengan mempraktekkan aturan ini, dapat diperoleh hasil-hasil berikut :
i × i = j × j = k × k = 0
i × j = k , j × k = i, k × I = j
j × i = −k , k × j= −i , i × k = −j
Diagram berikut dapat membantu untuk mengingat hasil perkalian di atas.
Perkalian silang u × vdapat dinyatakan secara simbolis dalam bentuk
determinan3 × 3 :
18
Contoh :
Contoh soal sebelumnya dapat dikejakan dengan cara :
Teorema : Hubungan Perkalian Silang dan Perkalian titik
Jika u dan v adalah vektor di R3, maka :
a. u ∙ u × v = 0 ( × vortogonal ke u)
b. v ∙ u × v = 0 ( × vortogonal ke u)
c.(Identitas Lagrange/Lagrange Identity)
Teorema : Sifat-Sifat Perkalian Silang
Jika u, v, dan w dalah sembarang vektor di R3dan k adalah sebarang skalar, maka :
1. u × v = − v × u
2. u × v+ w = u × v + (u × w)
3. u + v × w = u × w + (v × w)
4. ku × v = ku × v = u × (kv)
5. u × 0 = 0 × u = 0
6. u × u = 0
7. u ∙ v × w = u × v ∙ w =
Berdasarkan teorema-teorema sebelumnya, dapat diturunkan teorema berikut.
Teorema : Aplikasi Geometri Perkalian Silang
Jika u, v, dan w vektor-vektor di R3dengan titik asal yang sama, maka,
a) Jika θadalah sudut di antara udan v, maka II u × vII = II uII II vII sin θ
b) Norma dari u × vsama dengan luas jajaran genjang yang dibentuk oleh udan
v,atau Luas jajar genjang = II u × vII
c) Volume bangun yang dibentuk oleh ketiganya adalah [u∙( v × w) ].
Contoh :
a, b, dan cadalah sembarang vektor di R3yang berimpit di titik awalnya. Jika
ketiganya dihubungkan akan membentuk suatu bangun dimensi-3 (parallelpiped).
19
Luas masing-masing sisinya adalah :
Sedangkan volume bangun tersebut adalah :
abs(a ∙ b × c )
Rumus volume di atas biasanya digunakan untuk mengetahui apakah ketiga
vektor berada pada bidang yang sama. Jika volume yang dihitung bernilai nol, maka
ketiganya berada pada bidang yang sama, dan sebaliknya jika volumenya tidak sama
dengan nol. Fungsi abs(absolute)/mutlak berguna untuk mempositifkan hasil akhir
perhitungan volume.
Contoh:
Tentukan apakah ketiga vektor a = (1, 4, −7), b = (2, −1, 4), danc= (0, −9,
18)terletak pada satu bidang di R3atau tidak.
Penyelesaian :
Jadi, ketiga vektor tersebut terletak pada satu bidang di R3
Contoh :
Carilah luas segitiga yang dibentuk oleh P1 2, 2, 0, P2 −1,0, 2 ,danP3(0,4, 3).
20
Penyelesaian :
Luas segitiga tersebut adalah ½ luas jajaran genjang yang dibentuk dan
di mana,
Sehingga Luas segitiga =
21
BAB III
PENUTUP
3.1 Kesimpulan
Vektor adalah suatu besaran yang memiliki arah dan besar tertentu.Contoh :
kecepatan, gaya, percepatan, kuat medan listrik, dan onduksi magnetik.
Vektor terdiri dari vektor di ruang-2 (bidang) dan vektor di ruang-3.Pada
vektor di ruang-2 (bidang) kita dapat menentukan koordinat di bidang yang terdiri
dari koordinat x dan y. Namun koordinat bidang tidak cukup untuk menentukan posisi
suatu objek di permukaan bumi.Dalam hal ini kita membuthkan satu koordinat ruang
(vektor di ruang-3) yang terdiri dari koordinat x, y, dan z.
Sekarang setiap objek dimanapun dapat ditentukan koordinatnya dari suatu
titik O tertentu dengan urutan (x, y, z).
3.2 Saran
Alangkah baiknya kita mengenal Matematika dulu sebelum kita menganggap
Matematika itu sulit, karena bila kita telah mengenal Matematika dengan baik dan
menikmati bagaimana Matematika itu bekerja akan terasa bahwa Matematika itu
tidaklah seburuk apa yang kita pikirkan.
22
DAFTAR PUSTAKA
T.Sutojo, S.Si., M.Kom., Bowo N., S.Si., M.Kom. 2010. ALJABAR LINIER &
MATRIKS. Yogyakarta: Andi Publisher.
Kartono. 2005. Aljabar Linear, Vektor dan Eksplorasinya dengan Maple Edisi 2.
Jakarta: Garaha Ilmu.
http://datapendidik.blogspot.com/2012/03/modul-kuliah-materi-aljabar-linear-
dan.html -- diakses pada tanggal 6 Juni 2013, pukul 23.13. WIB.
http://diar-matematika.blogspot.com/2009/06/ruang-ruang-vektor.html-- diakses pada
tanggal 5 Juni 2013, pukul 20.46.WIB.
http://kartomarmo2050.blogspot.com/2013/01/vektor-pada-ruang-berdimensi-2-
ruang.html-- diakses pada tanggal 5 Juni 2013, pukul 19.25. WIB.

Contenu connexe

Tendances

Modul aljabar matriks
Modul aljabar matriksModul aljabar matriks
Modul aljabar matriks
Safran Nasoha
 
Sistem persamaan linear
Sistem persamaan linearSistem persamaan linear
Sistem persamaan linear
Khotibul Umam
 
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsistenMenentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
BAIDILAH Baidilah
 

Tendances (20)

Makalah Metode Numerik : Sistem Persamaan Linear
Makalah Metode Numerik : Sistem Persamaan Linear Makalah Metode Numerik : Sistem Persamaan Linear
Makalah Metode Numerik : Sistem Persamaan Linear
 
Matriks Kelas X
Matriks Kelas XMatriks Kelas X
Matriks Kelas X
 
Modul aljabar matriks
Modul aljabar matriksModul aljabar matriks
Modul aljabar matriks
 
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
Sistem Persamaan Linear (SPL) Aljabar Linear ElementerSistem Persamaan Linear (SPL) Aljabar Linear Elementer
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
 
Sistem persamaan linear
Sistem persamaan linearSistem persamaan linear
Sistem persamaan linear
 
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsistenMenentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
Menentukan sistem persamaan linier dalam bentuk sistem konsisten dan inkonsisten
 
Vektor pertemuan 2
Vektor   pertemuan 2Vektor   pertemuan 2
Vektor pertemuan 2
 
3. sistem persamaan linier
3. sistem persamaan linier3. sistem persamaan linier
3. sistem persamaan linier
 
Sistem persamaan linier
Sistem persamaan linierSistem persamaan linier
Sistem persamaan linier
 
Linear Algebra - Determinants and Eigenvalues
Linear Algebra - Determinants and EigenvaluesLinear Algebra - Determinants and Eigenvalues
Linear Algebra - Determinants and Eigenvalues
 
ppt definisi matriks (animated)
ppt definisi matriks (animated)ppt definisi matriks (animated)
ppt definisi matriks (animated)
 
aljabar linier elementer 1
aljabar linier elementer 1aljabar linier elementer 1
aljabar linier elementer 1
 
Ppt media it
Ppt media itPpt media it
Ppt media it
 
Materi matriks 3
Materi matriks 3Materi matriks 3
Materi matriks 3
 
Materi ajar matriks pdf
Materi ajar matriks pdfMateri ajar matriks pdf
Materi ajar matriks pdf
 
21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear
 
Aljabar matriks
Aljabar matriksAljabar matriks
Aljabar matriks
 
Sistem Homogen dan Invers-Matrik - Pertemuan 5.
Sistem Homogen dan Invers-Matrik - Pertemuan 5. Sistem Homogen dan Invers-Matrik - Pertemuan 5.
Sistem Homogen dan Invers-Matrik - Pertemuan 5.
 
Materi 4 penyelesaian spl tiga atau lebih variabel
Materi 4 penyelesaian spl tiga atau lebih variabelMateri 4 penyelesaian spl tiga atau lebih variabel
Materi 4 penyelesaian spl tiga atau lebih variabel
 
Linear Algebra - System of Linear Equation
Linear Algebra - System of Linear EquationLinear Algebra - System of Linear Equation
Linear Algebra - System of Linear Equation
 

Similaire à Tugas mandiri aljabar linear & matriks

Teori dan konsep fungsi dalam ekonomi
Teori dan konsep fungsi dalam ekonomiTeori dan konsep fungsi dalam ekonomi
Teori dan konsep fungsi dalam ekonomi
Trianingrum
 
Makalah untuk agus
Makalah untuk agusMakalah untuk agus
Makalah untuk agus
Agus Durri
 
Sistem persamaan dan pertidaksamaan linear
Sistem persamaan dan pertidaksamaan linearSistem persamaan dan pertidaksamaan linear
Sistem persamaan dan pertidaksamaan linear
Mas Becak
 
Kelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta esKelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta es
fitriana416
 
Kelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta esKelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta es
Fahreniega
 

Similaire à Tugas mandiri aljabar linear & matriks (20)

Teori dan konsep fungsi dalam ekonomi
Teori dan konsep fungsi dalam ekonomiTeori dan konsep fungsi dalam ekonomi
Teori dan konsep fungsi dalam ekonomi
 
Bahan ajar Bidang Kartesius
Bahan ajar Bidang KartesiusBahan ajar Bidang Kartesius
Bahan ajar Bidang Kartesius
 
Matriks X
Matriks XMatriks X
Matriks X
 
Matriks
MatriksMatriks
Matriks
 
1_Modul PGL_Eva Novianawati H..pdf
1_Modul PGL_Eva Novianawati H..pdf1_Modul PGL_Eva Novianawati H..pdf
1_Modul PGL_Eva Novianawati H..pdf
 
Makalah metode numerik regula falsi
Makalah metode numerik regula falsiMakalah metode numerik regula falsi
Makalah metode numerik regula falsi
 
1_Bahan Ajar PGL_Eva Novianawati H._Awal.pdf
1_Bahan Ajar PGL_Eva Novianawati H._Awal.pdf1_Bahan Ajar PGL_Eva Novianawati H._Awal.pdf
1_Bahan Ajar PGL_Eva Novianawati H._Awal.pdf
 
Macam Macam Metode menghitung determinan
Macam Macam Metode menghitung determinanMacam Macam Metode menghitung determinan
Macam Macam Metode menghitung determinan
 
Khazanah matematika sma kelas xii (ips) rosihan ari-2009
Khazanah matematika sma kelas xii (ips) rosihan ari-2009Khazanah matematika sma kelas xii (ips) rosihan ari-2009
Khazanah matematika sma kelas xii (ips) rosihan ari-2009
 
Matematika 3
Matematika 3Matematika 3
Matematika 3
 
RPP - Pemodelan SPLDV
RPP - Pemodelan SPLDVRPP - Pemodelan SPLDV
RPP - Pemodelan SPLDV
 
Pengantar kalkulus
Pengantar kalkulusPengantar kalkulus
Pengantar kalkulus
 
Kalkulus 1
Kalkulus 1Kalkulus 1
Kalkulus 1
 
Makalah untuk agus
Makalah untuk agusMakalah untuk agus
Makalah untuk agus
 
ATP_ Matematika.docx
ATP_ Matematika.docxATP_ Matematika.docx
ATP_ Matematika.docx
 
maklaah Operasi vektor .docx
maklaah Operasi vektor .docxmaklaah Operasi vektor .docx
maklaah Operasi vektor .docx
 
Sistem persamaan dan pertidaksamaan linear
Sistem persamaan dan pertidaksamaan linearSistem persamaan dan pertidaksamaan linear
Sistem persamaan dan pertidaksamaan linear
 
Kelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta esKelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta es
 
Kelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta esKelas xii sma ipa matematika_pesta es
Kelas xii sma ipa matematika_pesta es
 
4. vektor
4. vektor4. vektor
4. vektor
 

Plus de Asep Jaenudin (9)

MANAJEMEN DISK Mata Kuliah Sistem Operasi
MANAJEMEN DISK Mata Kuliah Sistem OperasiMANAJEMEN DISK Mata Kuliah Sistem Operasi
MANAJEMEN DISK Mata Kuliah Sistem Operasi
 
Tugas mandiri agama
Tugas mandiri agamaTugas mandiri agama
Tugas mandiri agama
 
Tugas mandiri bahasa indonesia
Tugas mandiri bahasa indonesiaTugas mandiri bahasa indonesia
Tugas mandiri bahasa indonesia
 
Tugas mandiri konsep sistem informasi
Tugas mandiri  konsep sistem informasiTugas mandiri  konsep sistem informasi
Tugas mandiri konsep sistem informasi
 
Tugas mandiri struktur data
Tugas mandiri struktur dataTugas mandiri struktur data
Tugas mandiri struktur data
 
Analisis Jurnal Ilmiah - Presentasi tugas mandiri arsitektur dan organisasi k...
Analisis Jurnal Ilmiah - Presentasi tugas mandiri arsitektur dan organisasi k...Analisis Jurnal Ilmiah - Presentasi tugas mandiri arsitektur dan organisasi k...
Analisis Jurnal Ilmiah - Presentasi tugas mandiri arsitektur dan organisasi k...
 
Tugas mandiri bahasa inggris
Tugas mandiri bahasa inggrisTugas mandiri bahasa inggris
Tugas mandiri bahasa inggris
 
Tugas Mandiri arsitektur dan organisasi komputer
Tugas Mandiri arsitektur dan organisasi komputerTugas Mandiri arsitektur dan organisasi komputer
Tugas Mandiri arsitektur dan organisasi komputer
 
Analisis Dampak Penerapan Sistem Kerja Lembur (overtime) Terhadap karyawan Ol...
Analisis Dampak Penerapan Sistem Kerja Lembur (overtime) Terhadap karyawan Ol...Analisis Dampak Penerapan Sistem Kerja Lembur (overtime) Terhadap karyawan Ol...
Analisis Dampak Penerapan Sistem Kerja Lembur (overtime) Terhadap karyawan Ol...
 

Dernier

Contoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptxContoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptx
IvvatulAini
 
KISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docx
KISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docxKISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docx
KISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docx
DewiUmbar
 
Kenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).pptKenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).ppt
novibernadina
 
.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx
furqanridha
 

Dernier (20)

power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"power point bahasa indonesia "Karya Ilmiah"
power point bahasa indonesia "Karya Ilmiah"
 
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptxOPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
OPTIMALISASI KOMUNITAS BELAJAR DI SEKOLAH.pptx
 
Contoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptxContoh PPT Seminar Proposal Teknik Informatika.pptx
Contoh PPT Seminar Proposal Teknik Informatika.pptx
 
KISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docx
KISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docxKISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docx
KISI-KISI SOAL DAN KARTU SOAL BAHASA INGGRIS.docx
 
Kenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).pptKenakalan Remaja (Penggunaan Narkoba).ppt
Kenakalan Remaja (Penggunaan Narkoba).ppt
 
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
PELAKSANAAN + Link2 Materi BimTek _PTK 007 Rev-5 Thn 2023 (PENGADAAN) & Perhi...
 
MODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdfMODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INDONESIA KELAS 5 KURIKULUM MERDEKA.pdf
 
.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx.....................Swamedikasi 2-2.pptx
.....................Swamedikasi 2-2.pptx
 
Program Kerja Public Relations - Perencanaan
Program Kerja Public Relations - PerencanaanProgram Kerja Public Relations - Perencanaan
Program Kerja Public Relations - Perencanaan
 
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKAKELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
KELAS 10 PERUBAHAN LINGKUNGAN SMA KURIKULUM MERDEKA
 
MODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdf
MODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdfMODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdf
MODUL AJAR IPAS KELAS 3 KURIKULUM MERDEKA.pdf
 
Pengenalan Figma, Figma Indtroduction, Figma
Pengenalan Figma, Figma Indtroduction, FigmaPengenalan Figma, Figma Indtroduction, Figma
Pengenalan Figma, Figma Indtroduction, Figma
 
Topik 4_Eksplorasi Konsep LK Kelompok_Pendidikan Berkelanjutan
Topik 4_Eksplorasi Konsep LK Kelompok_Pendidikan BerkelanjutanTopik 4_Eksplorasi Konsep LK Kelompok_Pendidikan Berkelanjutan
Topik 4_Eksplorasi Konsep LK Kelompok_Pendidikan Berkelanjutan
 
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
Intellectual Discourse Business in Islamic Perspective - Mej Dr Mohd Adib Abd...
 
AKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTX
AKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTXAKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTX
AKSI NYATA TOPIK 1 MERDEKA BELAJAR. PPTX
 
Konseptual Model Keperawatan Jiwa pada manusia
Konseptual Model Keperawatan Jiwa pada manusiaKonseptual Model Keperawatan Jiwa pada manusia
Konseptual Model Keperawatan Jiwa pada manusia
 
Memperkasakan Dialog Prestasi Sekolah.pptx
Memperkasakan Dialog Prestasi Sekolah.pptxMemperkasakan Dialog Prestasi Sekolah.pptx
Memperkasakan Dialog Prestasi Sekolah.pptx
 
Skenario Lokakarya 2 Pendidikan Guru Penggerak
Skenario Lokakarya 2 Pendidikan Guru PenggerakSkenario Lokakarya 2 Pendidikan Guru Penggerak
Skenario Lokakarya 2 Pendidikan Guru Penggerak
 
MODUL AJAR BAHASA INGGRIS KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INGGRIS KELAS 6 KURIKULUM MERDEKA.pdfMODUL AJAR BAHASA INGGRIS KELAS 6 KURIKULUM MERDEKA.pdf
MODUL AJAR BAHASA INGGRIS KELAS 6 KURIKULUM MERDEKA.pdf
 
Aksi Nyata PMM Topik Refleksi Diri (1).pdf
Aksi Nyata PMM Topik Refleksi Diri (1).pdfAksi Nyata PMM Topik Refleksi Diri (1).pdf
Aksi Nyata PMM Topik Refleksi Diri (1).pdf
 

Tugas mandiri aljabar linear & matriks

  • 1. TUGAS MANDIRI VEKTOR-VEKTOR DI RUANG BERDIMENSI 2 DAN 3 MATA KULIAH : AL-JABAR LINEAR DAN MATRIKS PROGRAM STUDI TEKNIK INFORMATIKA UNIVERSITAS PUTERA BATAM 2013 Nama : Asep Jaenudin NPM : 120210034 Kode Kelas : 122-TI025-M2 Dosen : Handra Tipa, S.Pdi
  • 2.
  • 3. i KATA PENGANTAR Puji syukur terhadap kehadirat Tuhan Yang Maha Esa yang berkat rahmat dan hidayah-Nya sehingga penyusun dapat menyelesaikan makalah Tugas Mandiri yang berjudul “Vektor-vektor di Ruang Berdimensi 2 dan 3”. Adapun maksud dilaksanakannya penyusunan makalah ini, tidak lain adalah untuk memenuhi penyusunan makalah tugas mandiri mata kuliahAl-jabar Linear dan Matriks yang ditugaskan kepada penyusun, sehingga penyusun dan pembaca lebih memahami tentang Konsep Vektor-vektor Dalam Ruang Berdimensi 2 Dan ruang Berdimensi 3. Ucapan terima kasih penyusun sampaikan kepada Bapak Handra Tipa, S.Pdi, selakuDosen Mata Kuliah Al-Jabar Linear dan Matriks yang telah memberikan penjelasan teori tentang vektor.Serta kepada orangtua yang telah memberi dukungan baik secara moril dan materiil, dan kepada teman-teman serta pihak-pihak lain yang tidak dapat disebutkan oleh penyusun. Penyusun menyadari bahwa makalah ini masih jauh dari kesempurnaan.Untuk itu, sudilah kiranya para pembaca memberikan masukan dan saran sehingga isi makalah ini dapat lebih sempurna. Dan sebelumnya penyusun memohon ma’af yang sebesar-besarnya jika ada kesalahan penulisan atau bahasa yang kurang baku dalam penulisan makalah ini. Akhirnya penyusun berharap semoga isi makalah ini dapat memberikan manfaat bagi siapa saja yang memerlukannya di masa yang akan datang. Batam, 6 Juni 2013 Penyusun
  • 4. ii DAFTAR ISI KATA PENGANTAR......................................................................................... ii DAFTAR ISI........................................................................................................ iii BAB I. PENDAHULUAN................................................................................... 1 1.1 Latar Belakang.......................................................................................... 1 1.2 Rumusan Masalah..................................................................................... 2 1.3Tujuan Penulisan........................................................................................ 2 1.4 Metode Penulisan.................................................................................... 2 BAB II. PEMBAHASAN.................................................................................... 3 2.1 Konsep Ruang........................................................................................... 3 2.2Titik dan Garis............................................................................................ 6 2.3Vektor......................................................................................................... 7 2.4Aritmetika Vektor ...................................................................................... 11 2.5 Perkalian Titik / Perkalian Dalam (Dot Product/Inner Product)............. 13 2.6 Proyeksi................................................................................................... 15 2.7 Perkalian Silang (Cross Product) ............................................................ 16 BAB III. PENUTUP............................................................................................ 21 3.1 Kesimpulan ............................................................................................... 21 3.2 Saran ......................................................................................................... 21 DAFTAR PUSTAKA.......................................................................................... 22
  • 5. 1 BAB I PENDAHULUAN 1.1 Latar Belakang Banyak orang yang beranggapan bahwa Matematika itu rumit, karena alasan itulah banyak orang yang menghindari Matematika. Padahal Matematika dapat kita jumpai di dalam kehidupan sehari-hari, dan mau tidak mau kita pasti menggunakan Matematika. Oleh karena itu kami membuat makalah ini dengan maksud membantu pemahaman masyarakat agar mereka tidak menilai Matematika adalah sesuatu yang buruk. Bagi mahasiswa yang sedang mempelajari matematika, rumus, teori atau apapun itu yang berhubungan dengan matematika sudah merupakan bahasan kita sehari-hari yang tak dapat terpisahkan. Mudah ataupun susahdalam memahami suatu rumus atau teori, tetap harus kita pahami agar kelak dalam mengajar kita memiliki kemampuan akademik yang lebih baik dari sekarang. Sehubungan dengan meningkatkan kemampuan akademik, penulisakan membahas tentang salah satu bab dalam bidang matematika, yaitu vektor, khususnya vektor dalam ruang dua dan tiga dimensi secara geometri. Di dalam kehidupan sehari-hari, kita sering mendengar kata-kata seperti suhu, gaya, panjang, percepatan, pergeseran dan sebagainya. Apabila diperhatikan besaran yang menyatakan besarnya kuantitas dari kata-kata tersebut ada perbedaanya yaitu ada yang hanya menunjukkan nilai saja, tetapi ada yang menunjukkan nilai dan arahnya. Besaran itu sering disebut skalar dan vektor. Setiap besaran skalar seperti panjang, suhu dan sebagainya selalu dikaitkan dengan suatu bilangan yang merupakan nilai dari besaran itu. Sedangkan untuk besaran vektor seperti gaya, percepatan, pergeseran dan sebagainya, disamping mempunyai nilai juga mempunyai arah. Jadi vektor adalah suatu besaran yang mempunyai nillai (besar / norma ) dan arah tertentu. Dalam pembahasan ini akan penulis bahas tentang ruang lingkup vektor baik itu ruang dua maupun ruang tiga dimensi.
  • 6. 2 1.2 Rumusan masalah 1) Bagaimana konsep tentangruang? 2) Bagaimana definisi Titik dan Garis? 3) Apakah penegrtian darivektor? 4) Bagaimana operasi aritmetika pada vektor? 5) Bagaimana perkalian Titik/Perkalian Dalam (Dot Product/Inner Product)? 6) Bagaimana proyeksi dalam vektor? 7) Bagaimana fungsi Perkalian Silang (Cross Product) dalam vektor? 1.3Tujuan Penulisan Makalah ini dibuat dengan tujuan utama untuk memenuhi tugas mandiri mata kuliah Aljabar Linear dan Matriks. Dan tujuan berikutnya adalah sebagai sumber informasi yang penilis harapkan bermanfaat dan dapat menambah wawasan para pembaca makalah ini. 1.4 Metode Penulisan Penulis menggunakan metode observasi dan kepusatakaan.Cara yang digunakan dalam penulisan adalah Studi pustaka.Dalam metode ini penulis membaca buku-buku yang berkaitan dengan penulisan makalah ini, selain itu penulis juga mencari sumber-sumber dari internet.
  • 7. 3 BAB II PEMBAHASAN 2.1 Konsep Ruang Setiap objek pembicaraan dalam matematika memiliki ruang himpunan di mana objek itu berasal.Di dalamnya terdapat aturan-aturan yang berlaku yang dipenuhi oleh setiap anggotanya.Misalnya, semua bilangan nyata tergabung dalam sebuah himpunan bilangan yang dinamakan himpunan bilangan real (ℝ). Semua sifat- sifat dan aturan perhitungan bilangan real berlaku bagi semua himpunan anggotanya, seperti pada bilangan rasional, irasional, bulat, pecahan, dan lain- lain. Sebelum membahas lebih jauh mengenai vektor, akan diperkenalkan tentang konsepruang, mulai dari dimensi terkecil hingga dimensi yang digeneralisasi, sebagai ruang-n. Ruang Dimensi-n Himpunan bilangan nyata (real) biasanya digambarkan ke dalam sebuah gambarsederhana yang disebut garis bilangan.Garis bilangan dapat dianggap sebagai grafiksederhana yang menyatakan letak suatu bilangan, di mana bilangan yang lebih besarberada di sebelah kanan bilangan yang lebih kecil.Karena garis bilangan hanya memiliki satu dimensi yaitu panjang, maka himpunanbilangan real dapat dinyatakan sebagai ruang berdimensi-1.Meskipun kata “ruang‟ menunjukkan suatu tempat berdimensi-3, namun dalam matematika “ruang‟ mempunyai makna tersendiri. Berdasarkan definisinya, ruang dalam matematikamerupakan himpunan dari objek- objek yang memiliki sifat yang sama dan memenuhisemua aturan yang berlaku dalam ruang tersebut. Definisi Ruang-1 atau R1 Ruang dimensi-1 atau ruang-1 (R1) adalah himpunan semua bilangan real (ℝ). Himpunan bilangan real dapat digambarkan oleh garis bilangan real :
  • 8. 4 Jadi, garis bilangan berfungsi untuk menunjukkan letak suatu titik pada suatu garisberdasarkan besarnya.Gagasan ini memunculkan gagasan berikutnya bahwa suatutitik dapat berada pada suatu bidang ataupun ruang. Pada pertengahan abad ke-17lahirlah konsep ruang dimensi-2 dan dimensi-3, yang kemudian pada akhir abad ke-19para ahli matematika dan fisika memperluas gagasannya hingga ruang dimensi-n. Definisi Ruang-2 atau R2 Ruang dimensi-2 atau ruang-2 (R2) adalah himpunan pasangan bilangan berurutan (x, y), di mana x dan y adalah bilangan-bilangan real.Pasangan bilangan (x, y) dinamakan titik (point) dalam R2, misal suatu titik P dapat ditulis (x, y).Bilangan x dan y disebut koordinat dari titik P. Untuk menggambarkan titik-titik di R2secara geometris, koordinat x dan y dianggap berada pada dua garis bilangan yang berbeda yang membentuk suatu sistem koordinat.Garis bilangan tersebut dinamakan sumbu koordinat.Sumbu koordinat tersebut digambarkan saling tegak lurus dan membentuk suatu sistem yang disebut sistem koordinat siku-siku. Pada R2sistem ini dinamakan sistem koordinat-xy atau sistem koordinat kartesius (Cartesian system) yang dibangun oleh : - Sumbu x (x-axis) yaitu garis tempat semua titik yang mempunyai koordinat (x, 0). - Sumbu y (y-axis) yaitu garis tempat semua titik yang mempunyai koordinat (0, y). Suatu titik yang berada tepat di kedua sumbu dinamakan titik asal (origin point) ditulis O(0, 0). Titik ini adalah titik di mana sumbu x dan y saling berpotongan.
  • 9. 5 Definisi Ruang-3 atau R3 Ruang dimensi-3 atau ruang-3 (R3) adalah himpunan tripel bilangan berurutan (x, y, z), di mana x, y, dan z adalah bilangan-bilangan real. Tripel bilangan (x, y, z) dinamakan titik (point) dalam R3, misal suatu titik P dapat ditulis (x, y, z). Bilangan x, y, dan z, disebut koordinat dari titik P. Seperti halnya R2, R3memiliki sistem koordinat siku-siku yaitu sistem koordinat-xyz, dengan titik asal O(0,0, 0), yang dibangun oleh : - Sumbu x (x-axis) yaitu garis tempat semua titik yang mempunyai koordinat (x,0, 0). - Sumbu y (y-axis) yaitu garis tempat semua titik yang mempunyai koordinat (0, y, 0). - Sumbu z (z-axis) yaitu garis tempat semua titik yang mempunyai koordinat (0,0, z). Menjelang akhir abad 19, para matematikawan dan fisikawan mulai menemukan gagasan bahwa dimensi tidak hanya terbatas pada dimensi-3 dengan tripel bilangannya, tetapi juga kuadrupel sebagai titik pada ruang dimensi-4, kuintupel pada ruang dimensi-5, dan seterusnya.Hal ini menghasilkan generalisasi untuk ruang dimensi-n. Definisi tupel-n-berurutan Jika n adalah sebuah bilangan positif, maka tupel-n-berurutan (ordered-n- tuple) adalah sebuah urutan n buah bilangan real (a1, a2, . . . ,an). Definisi Ruang-n atau Rn Ruang dimensi-n atau ruang-n () adalah himpunan semua tupel-n-berurutan
  • 10. 6 ( 1, 2, . . . , ), dengan 1, 2, . . . , dan adalah bilangan-bilangan real. Tupel-n bilangan 1, 2 , . . . , dinamakan titik (point) dalam , misal suatu titik P dapatditulis ( 1, 2, . . . , ). Bilangan 1, 2, . . . , dan disebut koordinat dari P. Jelas bahwa ruang dimensi-n dengan n >3 tidak dapat divisualisasikan secarageometris, namun penemuan ini sangat berguna dalam pekerjaan analitik dan numerik,karena tidak sedikit permasalahan nyata tidak dapat divisualisasikan dengan grafisnamun memerlukan penalaran dan penyelesaian secara matematis. yang merupakan generalisasi dari 1, 2, dan 3, menyebabkan sifat-sifat danaturan-aturan di dalamnya adalah sama, perbedaannya hanya terletak pada ukuran atau banyak komponen yang akan dihitung. Walaupun bab ini hanya menyajikan definisi, teorema, atau sifat-sifat dalam 2dan 3, tetapi semuanya akan berlaku untuk, setelah dimodifikasi sesuai dimensinya. Seperti definisi jarak antar dua titik dalam 2 dan 3. Definisi Jarak Dua Titik Jarak antara dua titik ( 1, 1) dan ( 2, 2 )di 2 didefinisikan oleh : = 2 − 1 2+ 2− 1 2 Jarak antara dua titik ( 1, 1, 1) dan ( 2, 2 , 2) di 3didefinisikan oleh : = 2 − 1 2 + 2− 1 2 + 2− 1 2 2.2 Titik dan Garis Pada bagian sebelumnya telah dibahas pengertian titik pada 2dan 3serta secara umum. Definisi titik ini sama untuk semua ruang, yang berbeda hanyalah kedudukannya di dalam masing-masing ruang tersebut. Dua titik atau lebih jika dihubungkan akan membentuk garis, kumpulan garis- garis akan menjadi bidang, dankumpulan bidang-bidang akan menjadi ruang. Geometri adalah cabang matematika yang khusus mempelajari titik, garis, dan bidang. Mengenai garis, geometri hanya terbatas pada kuantitas dan kedudukan, seperti panjang garis atau besar sudut antara dua garis, tetapi tidak pada arahnya serta kedudukannya dalam suatu bidang atau ruang.Ilmu vektor merupakan cabang dari matematika yang mempelajari ruas garis berarah yang dinamakan vektor.
  • 11. 7 2.3 Vektor Banyak kuantitas fisis, seperti luas, panjang, massa, suhu, dan lainnya, dapat dijelaskan secara lengkap hanya dari besarnya, misalnya 50 kg, 100 m, 30 ℃, dll.Kuantitas fisis ini dinamakan skalar.Dalam matematika, skalar mengacu pada semuabilangan yang bersifat konstan. Namun, ada kuantitas fisis lain yang tidak hanya memiliki besar/nilai tapi juga arah,seperti kecepatan, gaya, pergeseran, dan lain-lain. Kuantitas fisis ini dalam fisikamaupun matematika dinamakan vektor.Dalam matematika, ilmu vektor menjadi salahsatu cabang ilmu yang semakin luas perkembangannya serta penerapannya, dan tidakterbatas pada mempelajari besaran-besaran yang memiliki nilai dan arah tetapi sebagaisuatu besaran yang memiliki banyak komponen yang membentuk satu kesatuan daribesaran itu sendiri. Notasi Vektor Vektor biasanya dinyatakan dengan huruf misalnya (A), atau diberi tanda panah di atasnya (). Definisi Vektor Sebuah vektor a dengan komponen-n (berdimensi-n ) di dalam adalah suatu aturantupel-n dari bilangan-bilangan yang ditulis sebagai baris (a1, a2, … ,an) atau sebagaikolom: Dengan a1, a2, … ,anadalah bilangan-bilangan real dan dinamakankomponen dari vektor a. Dengan demikian, di R2vektor dapat ditulis : a = (a1, a2) atau a =dan di R3vektor dapat ditulis : a = (a1, a2, a3) atau a = Pada bagian berikutnya, vektor akan sering disajikan dalam bentuk baris (vektor baris).Berdasarkan definisi titik dan vektor, simbol (a1, a2, … ,an) mempunyai dua tafsirangeometrik yang berbeda, yaitu sebagai titik dalam hal a1, a2, … , anadalah koordinat,dan sebagai vektor dalam hal a1, a2, … , anadalah komponen.
  • 12. 8 Arti Geometrik Vektor Secara geometris, vektor dinyatakan sebagai segmen garis berarah atau panah.Arahpanah menentukan arah vektor dan panjangnya menyatakan besar vektor.Ekor panahdinamakan titik awal (initial point) dan ujung panah dinamakan titik ujung/terminal(terminal point). Komponen-komponen vektor menentukan besar dan arah vektor. Misalnya pada R2, vektor v = (2, 3) berarti dari titik awal bergerak 2 satuan ke kanan, kemudian 3 satuan ke atas. Pada R3, misalkan sebuah vektor v = 3, 4, −2 berarti dari titik awal bergerak 2 satuan ke depan (x-positif), 4 satuan ke kanan (y-positif), dan 2 satuan kebawah (z-negatif). Definisi berikut dapat memperjelas tafsiran geometrik vektor. Definisi Vektor Posisi Vektor posisi dari (a1, a2, … ,an) adalah suatu vektor yang titik awalnya adalah titik asal O dan titik ujungnya adalah A, dan ditulis OA = (a1, a2, … , an). Berdasarkan definisi ini dapat dibuktikan bahwa, dari sebuah titik dapat dibuat tepat satu buah vektor posisi. Dengan kata lain setiap titik dalam ruang memiliki vector posisi yang berbeda-beda.Jika vektor v dengan titik awal A dan titik ujung B, maka v dapat ditulis sebagai :AB. Komponen-komponen dari ABakan dijelaskan setelah mempelajari aritmetika vektor. Definisi Vektor-Vektor Ekuivalen Vektor-vektor ekuivalen adalah vektor-vektor yang memiliki panjang dan arah yangsama.Vektor-vektor ekuivalen dianggap sebagai vektor yang sama meskipun kedudukannyaberbeda-beda. Jika v dan w ekuivalen maka dapat dituliskan v = w. Contoh:
  • 13. 9 Keempat ruas garis berarah di atas berawal di suatu titik tertentu yang kemudian digerakkan 2 satuan ke kiri dan 5 satuan ke atas. Keempatnya dinamakan vektor dan dapat dinotasikan oleh v= −2, 5 = Keempat ruas garis berarah di atas dinamakan representasi dari vektor v. Definisi Vektor Nol Vektor nol adalah vektor yang semua komponennya adalah nol, dan ditulis 0=(0, 0, 0). Dengan demikian vektor nol adalah vektor yang tidak mempunyai panjang dan arah. Definisi Negatif Vektor Negatif dari vektor v, atau –v didefinisikan sebagai vektor yang mempunyai besar yang sama dengan v, namun arahnya berlawanan dengan v. Definisi Vektor satuan/unit (Unit Vectors) Vektor satuan adalah vektor yang panjangnya adalah 1. Definisi Vektor Basis/Satuan Standar (Standard Unit Vectors) Vektor satuan baku adalah vektor yang mempunyai panjang 1 dan terletak sepanjang sumbu-sumbu koordinat. Untuk R2, vektor satuan baku ditulis :i = 1,0 dan j= 0,1 . Untuk R3, vektor satuan baku ditulis :i = 1,0, 0, j = 0,1,0 , dan k = 0,0,1 . Dengan demikian setiap vektor v = (v1, v2, v3) di R3 dapat ditulis: v = v1, v2, v3= v11,0,0 + v20,1, 0 + v30,0, 1 = v1i + v2j+ v3k Contoh: Nyatakan v = 2, −3, 4 dalam vektor basis! Penyelesaian :v = 2, −3, 4 = 2 1,0, 0 + −3 0,1, 0 + 4 0,0, 1 = 2i − 3j + 4k
  • 14. 10 2.4 Aritmetika Vektor Pada bagian ini, definisi serta teorema yang diberikan hanya untuk vektor- vektor di R3, sedangkan interpretasi geometris sedapatnya diberikan dalam R3, namun kebanyakan dalam R2. Hal ini bertujuan hanya untuk mempermudah pemahaman analitik dan geometrik.Secara konsep, teoretis, dan numeris, semua definisi, teorema, dan rumus-rumus dapat dengan mudah dimodifikasi sesuai dimensi yang diinginkan. Definisi Penjumlahan Vektor Diberikan vektor a = (a1, a2, a3) dan b = (b1, b2, b3) vektor-vektor di R3, maka penjumlahan a dan b didefinisikan oleh a + b= (a1 + b1 ,a2 + b2 , a3 + b3). Secara geometris, penjumlahan a + b dilakukan dengan dua cara, yaitu dengan aturan segitiga (triangle law) dan aturan jajar genjang (parallelogram law). Aturan segitiga dilakukan dengan menghubungkan titik awal b dengan titik ujung a, kemudian menghubungkan titik awal a dan titik ujung b sebagai (a + b).Sedangkan aturan jajar genjang dilakukan dengan menghubungkan kedua titik asal a dan b, sehingga a dan b membentuk jajaran genjang. Diagonal yang dibuat dari titik awal kedua vektor akan menjadi (a + b). Seperti ilustrasi berikut : Contoh: Misalkan u = 1, 2, 3, v = 2, −3, 1,dan w = (3,2, −1) vektor-vektor di R3, maka u + v + w = (1 + 2 + 3, 2 + −3 + 2, 3 + 1 + −1 = 6,1, 3 Definisi Pengurangan Vektor Diberikan vektor a= (a1, a2, a3) dan a = (b1, b2, b3), maka pengurangan a oleh b didefinisikan oleh : a − a = a + −a = [a1+ (−b1 , a2+ (−b2 ), a3+ (−b3)] = (a1− b1,a2− b2, a3− b3)
  • 15. 11 Seperti halnya pada penjumlahan vektor, secara geometris pengurangan vektor dapat dilakukan dengan aturan segitiga ataupun jajar genjang seperti ilustrasi berikut: Contoh:Misalkan u = 1, 2,3 ,v = 2, −3, 1 ,dan w= (3,2, −1) vektor-vektor di R3, makau − v − w = (1 − 2 − 3,2 –(−3) − 2, 3 − 1 –(−1) = −4,3, 3 Berdasarkan definisi ini, komponen-komponen dari vektor yang titik awalnya bukantitik asal, misalnya(a1, a2, a3) dan titik ujung (b1, b2, b3). Sehingga a= OA =a1, a2, a3 dan b = OB = b1, b2, b3 adalah : A B = OB – OA= b – a= b1, b2, b3 − a1, a2, a3 = (b1 − a1 ,b2 − a2 , b3 − a3 ) Contoh: Vektor dengan titik awal dan titik ujung berturut-turut P1 2, −7,0dan P2(1, −3, −5) adalah P1 P2 = 1 − 2, −3 – (−7), −5 − 0 = −1, 4, −5 . Dengan memisalkan semua koordinat ada di sumbu-sumbu positif, vektor A Bdi R3,dengan koordinat Ax1, y1, z1 danB(x2, y2 , z2), dapat digambarkan sebagai berikut: Sehingga A B = (x2 − x1, y2 − y1, z2 − z1).
  • 16. 12 Definisi Perkalian Skalar-Vektor Jika v = (v1, v2, v3 )adalah vektor tak-nol dan kadalah bilangan real tak-nol, maka hasil kali kvdidefinisikan oleh kv = kv1, v2, v3 = (kv1, kv2, kv3) Secara geometris, hasil kali kvadalah vektor yang panjangnya k kali panjang v, yang arahnya sama dengan vjika k>0, dan berlawanan arah dengan vjika k<0. Contoh: Misalkan suatu vektor di R2, a = (2,4). Hitunglah 3a, 1/2a, dan − 2a, dan gambarkankeempat vektor tersebut ke dalam satu sistem koordinat. Penyelesaian : Berdasarkan definisi perkalian skalar-vektor, maka, 3a = 6,12 ; 1/2a = 1,2 ; −2a = (−4, −8) Norma/Panjang Vektor Panjang suatu garis dapat diperoleh dengan menggunakan aturan Phytagoras. Karena vektor adalah ruas garis berarah, maka panjang vektor, baik di R2maupun R3dapat diperoleh dengan rumus yang sama. Definisi Norma Vektor Norma atau panjang vektor v= (v1, v2, v3) didefinisikan oleh : Berdasarkan definisi di atas, jika IIvII = 0 maka IIvII = 0. Dan, jika vvektor satuan,maka IIvII = 1, begitu pula dengan vektor basis IIi II = 1,IIj II = 1, dan IIkII = 1. Contoh : Misalkan IIa II = (3, −5,10) maka IIaII=
  • 17. 13 Teorema : Aturan Dasar Aritmetika Vektor Jika u, v, dan w adalah vektor-vektor di R2atau R3, dan kserta ladalah skalar (bilangan real), maka hubungan berikut akan berlaku, 1. u+ v= v+ u 2. (u+ v) + w= u+ (v+ w) 3. u+ 0= 0+ u= u 4. u+ (-u) = 0 5. k( lu) = ( kl )u 6. k(u+ v) = ku+ kv 7. (k + l)u= ku+ lu 8. 1u= u 2.5 Perkalian Titik / Perkalian Dalam (Dot Product/Inner Product) Definisi pertama dari perkalian titik dua vektor adalah menggunakan sifat-sifat geometrisnya, yaitu norma kedua vektor dan besar sudut di antara keduanya, dengan asumsi titik-titik awalnya berimpit. Definisi 1 Jika udan vadalah vektor-vektor di R2dan R3, dan adalah sudut di antara udan v, maka perkalian titik (dot product) atau perkalian dalam Euclidis (Euclidean inner product) u ∙ vdidefinisikan oleh: Pekalian ini juga dinamakan perkalian skalar (scalar product) karena hasil perkalian titik dua vektor akan menghasilkan skalar (bilangan real). Dari definisi jelas bahwa norma vektor udan vserta nilai cosinus sebarang sudut di antara keduanya adalah bilangan real, sehingga hasil kali ketiganya adalah bilangan real. Jika salah satu atau kedua vektor merupakan vektor nol, maka hasilnya adalah nol.
  • 18. 14 Contoh : Misalkan u = 0, 0,1 dan v = (0,2, 2) sedangkan sudut di antaranya adalah 45°, maka u ∙ v = Definisi ke-dua dari perkalian titik dua vektor adalah menggunakan komponenkomponen dari masing-masing vektor. Definisi 2 Jika u = (u1, u2) dan v = (v1, v2) adalah vektor di R2, maka perkalian titik/perkalian dalam u ∙ vdidefinisikan oleh :u ∙ v = u1v1 + u2v2 Jika u = (u1, u2, u3) dan v= (v1, v2, v3) adalah vektor di R3, maka perkalian titik u ∙ vdidefinisikan oleh :u ∙ v = u1v1 + u2v2 + u3v3 Contoh :R Misalkan a = 0, 3, −7 dan b = (2,3, 1) maka a ∙ b = 0.2 + 3.3 + −7 .1 = 2 Kedua definisi ini saling berkaitan karena salah satu definisi diperoleh dari definisi yang lain. Dalam beberapa buku, salah satu definisi dituliskan sebagai “definisi”, kemudian definisi yang lainnya dituliskan sebagai “teorema” yang diturunkan dari definisi sebelumnya. Biasanya kedua definisi digabungkan untuk mencari besar sudut di antara udan vjika komponen udan vdiketahui. Contoh : Misalkan u = (2, −1,1) dan v = (1, 1, 2), Hitunglah u ∙ vdan tentukan sudut diantara keduanya. Penyelesaian : Dan u ∙ v = 2.1 + −1 .1 + 1.2 = 3 sehingga, Teorema : Sudut Antara Dua Vektor Jika udan v adalah vektor-vektor tak nol, dan θadalah besar sudut di antara kedua vektor tersebut, maka  θlancip (0° < < 90°) jika dan hanya jika u ∙ v> 0  θtumpul (90° < < 180°) jika dan hanya jika u ∙ v< 0  θsiku-siku ( = 90°) jika dan hanya jika u ∙ v = 0 Dua vektor yang membentuk sudut siku-siku dinamakan ortogonal (tegak lurus).
  • 19. 15 Teorema : Sifat-sifat Perkalian Titik Jika u, v, dan wadalah vektor- vektor di R2atau R3dan k adalah skalar, maka 1) u ∙ v = v ∙ u 0 2) u ∙ v + w = u ∙ v + u ∙ w 3) ku ∙ v = ku ∙ v = u ∙ (kv) 4) v ∙ v> 0 jika v ≠ 0 dan v ∙ v = 0 jika v = 0 2.6 Proyeksi Dua vektor yang titik asalnya berimpit dapat menghasilkan vektor lain yangdinamakan vektor proyeksi. Perhatikan ilustrasi berikut: Misalkan adan bberimpit di titik asalnya. Jika dari titik ujung bditarik garis menuju asedemikian sehingga tegak lurus a(diproyeksikan terhadap a), maka vektor yang dapat dibuat dengan titik asal yang sama dan berujung di titik di mana b diproyeksikan pada adinamakan vektor proyeksi bterhadap a. Vektor ini disebut juga proyeksi ortogonal bpada a. Dengan cara yang sama dapat diperoleh vektor proyeksi aterhadap b. Notasi Vektor Proyeksi Vektor proyeksi bterhadap adinotasikan proya b Vektor proyeksi aterhadap bdinotasikan dengan proyab Teorema : Proyeksi Ortogonal Jika udan vadalah vektor di R2atau R3 dan keduanya bukan vektor nol, maka
  • 20. 16 Sedangkan panjang dari vektor-vektor proyeksi tersebut adalah: Contoh : Jika a= (1, 0, −2) dan b = (2,1, −1) , tentukan vektor proyeksi apada b. Penyelesaian :a ∙ b = 4 dan II bII2= 6 maka proyeksi ortogonal apada badalah: 2.7 Perkalian Silang (Cross Product) Berikut akan diperkenalkan sebuah operasi antar vektor dalam R3. Jika perkalian titikakan menghasilkan skalar/bilangan, maka perkalian silang akan menghasilkan vektor.Dan jika proyeksi ortogonal suatu vektor terhadap vektor la in akan menghasilkanvektor baru yang berimpit dengan vektor tersebut, maka perkalian silang dua vektor akan menghasilkan vektor baru yang tegak lurus dengan kedua vektor tersebut. Definisi Perkalian Silang Jika u = (u1, u2, u3) dan v = (v1, v2 ,v3) adalah vektor di R3, maka perkalian silangu × vdidefinisikan olehu × v = (u2v3 − u3v2 , u3v1 − u1v3 , u1v2 − u2v1) atau dalam notasi determinan Rumus di atas dapat dibuat pola yang mudah diingat. Bentuklah matriks 2 × 3 : Komponen pertama dari u × vadalah determinan matriks tersebut setelah kolom pertama dicoret, komponen ke-2 adalah negatif dari determinan matriks setelah kolom ke-2 dicoret, dan komponen ke-3 adalah determinan matriks setelah kolom ke- 3 dicoret.
  • 21. 17 Contoh : Misalkan u = (1, 2, −2) dan v = (3, 0, 1), maka Secara geometris, perkalian silang u × vdapat diinterpretasikan oleh gambar berikut, Arah u × vdapat ditentukan dengan “aturan tangan kanan” (right hand rule). Misalkan θadalah sudut di antara udan v, dan anggaplah uterotasi sejauh sudut θmenuju v(sehingga berimpit dengan v). Jika jari-jari tangan kanan menunjukkan arahrotasi umaka ibu jari menunjukkan arah u × v.Dengan menggunakan definisi ataupun dengan mempraktekkan aturan ini, dapat diperoleh hasil-hasil berikut : i × i = j × j = k × k = 0 i × j = k , j × k = i, k × I = j j × i = −k , k × j= −i , i × k = −j Diagram berikut dapat membantu untuk mengingat hasil perkalian di atas. Perkalian silang u × vdapat dinyatakan secara simbolis dalam bentuk determinan3 × 3 :
  • 22. 18 Contoh : Contoh soal sebelumnya dapat dikejakan dengan cara : Teorema : Hubungan Perkalian Silang dan Perkalian titik Jika u dan v adalah vektor di R3, maka : a. u ∙ u × v = 0 ( × vortogonal ke u) b. v ∙ u × v = 0 ( × vortogonal ke u) c.(Identitas Lagrange/Lagrange Identity) Teorema : Sifat-Sifat Perkalian Silang Jika u, v, dan w dalah sembarang vektor di R3dan k adalah sebarang skalar, maka : 1. u × v = − v × u 2. u × v+ w = u × v + (u × w) 3. u + v × w = u × w + (v × w) 4. ku × v = ku × v = u × (kv) 5. u × 0 = 0 × u = 0 6. u × u = 0 7. u ∙ v × w = u × v ∙ w = Berdasarkan teorema-teorema sebelumnya, dapat diturunkan teorema berikut. Teorema : Aplikasi Geometri Perkalian Silang Jika u, v, dan w vektor-vektor di R3dengan titik asal yang sama, maka, a) Jika θadalah sudut di antara udan v, maka II u × vII = II uII II vII sin θ b) Norma dari u × vsama dengan luas jajaran genjang yang dibentuk oleh udan v,atau Luas jajar genjang = II u × vII c) Volume bangun yang dibentuk oleh ketiganya adalah [u∙( v × w) ]. Contoh : a, b, dan cadalah sembarang vektor di R3yang berimpit di titik awalnya. Jika ketiganya dihubungkan akan membentuk suatu bangun dimensi-3 (parallelpiped).
  • 23. 19 Luas masing-masing sisinya adalah : Sedangkan volume bangun tersebut adalah : abs(a ∙ b × c ) Rumus volume di atas biasanya digunakan untuk mengetahui apakah ketiga vektor berada pada bidang yang sama. Jika volume yang dihitung bernilai nol, maka ketiganya berada pada bidang yang sama, dan sebaliknya jika volumenya tidak sama dengan nol. Fungsi abs(absolute)/mutlak berguna untuk mempositifkan hasil akhir perhitungan volume. Contoh: Tentukan apakah ketiga vektor a = (1, 4, −7), b = (2, −1, 4), danc= (0, −9, 18)terletak pada satu bidang di R3atau tidak. Penyelesaian : Jadi, ketiga vektor tersebut terletak pada satu bidang di R3 Contoh : Carilah luas segitiga yang dibentuk oleh P1 2, 2, 0, P2 −1,0, 2 ,danP3(0,4, 3).
  • 24. 20 Penyelesaian : Luas segitiga tersebut adalah ½ luas jajaran genjang yang dibentuk dan di mana, Sehingga Luas segitiga =
  • 25. 21 BAB III PENUTUP 3.1 Kesimpulan Vektor adalah suatu besaran yang memiliki arah dan besar tertentu.Contoh : kecepatan, gaya, percepatan, kuat medan listrik, dan onduksi magnetik. Vektor terdiri dari vektor di ruang-2 (bidang) dan vektor di ruang-3.Pada vektor di ruang-2 (bidang) kita dapat menentukan koordinat di bidang yang terdiri dari koordinat x dan y. Namun koordinat bidang tidak cukup untuk menentukan posisi suatu objek di permukaan bumi.Dalam hal ini kita membuthkan satu koordinat ruang (vektor di ruang-3) yang terdiri dari koordinat x, y, dan z. Sekarang setiap objek dimanapun dapat ditentukan koordinatnya dari suatu titik O tertentu dengan urutan (x, y, z). 3.2 Saran Alangkah baiknya kita mengenal Matematika dulu sebelum kita menganggap Matematika itu sulit, karena bila kita telah mengenal Matematika dengan baik dan menikmati bagaimana Matematika itu bekerja akan terasa bahwa Matematika itu tidaklah seburuk apa yang kita pikirkan.
  • 26. 22 DAFTAR PUSTAKA T.Sutojo, S.Si., M.Kom., Bowo N., S.Si., M.Kom. 2010. ALJABAR LINIER & MATRIKS. Yogyakarta: Andi Publisher. Kartono. 2005. Aljabar Linear, Vektor dan Eksplorasinya dengan Maple Edisi 2. Jakarta: Garaha Ilmu. http://datapendidik.blogspot.com/2012/03/modul-kuliah-materi-aljabar-linear- dan.html -- diakses pada tanggal 6 Juni 2013, pukul 23.13. WIB. http://diar-matematika.blogspot.com/2009/06/ruang-ruang-vektor.html-- diakses pada tanggal 5 Juni 2013, pukul 20.46.WIB. http://kartomarmo2050.blogspot.com/2013/01/vektor-pada-ruang-berdimensi-2- ruang.html-- diakses pada tanggal 5 Juni 2013, pukul 19.25. WIB.