SlideShare una empresa de Scribd logo
1 de 4
UNIVERSIDAD TECNOLÓGICA DE PANAMÁ
FACULTAD DE INGENIERÍA MECÁNICA
POSGRADO Y MAESTRÍA EN MANTENIMIENTO DE PLANTAS INDUSTRIALES
Diseño y Metalurgia de la Soldadura
Por: Ing. Alexis Tejedor De León, PhD
wwwalexistejedor.org
                              Soldadura de aceros austeníticos

        Para estabilizar la micro estructura austenítica en la temperatura ambiente siempre es
necesario una gran cantidad de elementos de aleación, conocidos como gamagenos, lo que hace con
que necesariamente los aceros austeníticos sean de alta aleación, utilizados en aplicaciones
especiales de resistencia ala corrosión, resistencia a temperaturas extremas (al calor o al frío) o
resistencia al desgaste, cuyas propiedades específicas pueden deteriorarse por la soldadura caso no
sea utilizado un procedimiento adecuado.
        Este documento intenta explicar los cuidados generales en la soldadura de aceros
austeníticos, considerando la aplicación a los cuales se destinan.

¿Qué son aceros austeníticos?

        Son aleaciones ferrosas que presentan microestructura predominantemente austenítica,
estabilizadas por la gran cantidad de elementos de aleación gamagenos, que son principalmente
níquel, manganeso, nitrógeno y el carbono, siendo que en aleaciones resistentes a la corrosión y en
ligas resistentes a temperaturas extremas el principal papel del carbono no es el de estabilizar la
austenita, y sí la de garantizar la resistencia mecánica.

¿Cuál es la composición típica de un acero austenítico?

        Depende del tipo de aplicación a la que se destina. Los principales aceros austeníticos
pueden encuadrarse como:
        1.-     Aceros resistentes a la corrosión (o inoxidables austeníticos), son básicamente
aleaciones de Fe-Cr-Ni de la serie 300, donde el cromo se utiliza en cantidades mínimas de 16%
para garantizar la resistencia a la corrosión (por medio de la formación de una película de óxido
pasiva); el níquel se utiliza en cantidades mínimas de 6% para estabilizar la estructura austenítica, y
el carbono varía para los grados estándares (usualmente con carbono hasta 0.08 %) y L (bajo
carbono, usualmente hasta 0.03%). El grado H (alto carbono) nunca es utilizado en medios acuosos,
donde la resistencia a la corrosión debe ser superior, pues la presencia de carbono reduce la
resistencia a la corrosión
        2.-     Aceros resistentes al calor: normalmente también son aceros inoxidable, no
obstante con mayores cantidades de carbono, para garantizar mayor resistencia a la cedencia y
mayores cantidades de cromo, níquel y silicio, para garantizar la resistencia a la oxidación. Existen
los de la serie 300 (como el 310, por ejemplo que es bien específico para trabajo en caliente), los de
la serie 300 en grado H (alto carbono, normalmente hasta 0.1 %) y existen los fundidos de
estructura austenítica en carburos, tipo HK y HP
        3.-     Aceros criogénicos, que también son inoxidables de la serie 300, normalmente de
bajo carbono y con mayores contenidos de elementos austenitizantes para garantizar la estabilidad
de la estructura austenítica incluso en temperaturas muy bajas.
4.-     Aceros resistentes al desgaste metal * metal: básicamente aleaciones de Fe-Mn, con Cr e
C, estabilizados por el manganeso (cuyos contenidos se sitúan en el orden del 13 %) y con alto
contenido de carbono (del orden del 1 %). Este tipo de material también se le conoce como acero
Hadfield y es muy utilizado en componentes fundidos para aplicaciones severas de desgaste metal –
metal, como por ejemplo en la industria ferroviaria.

         Cabe indicar que los aceros austeníticos fueron encuadrados según su aplicación, pero
dentro de cada aplicación existen diversos otros tipos de acero que no son austeníticos, por
ejemplo, los aceros austeníticos de la serie 300 con alto contenido de carbono son utilizados para
resistir al calor, pero también existen diversos tipos de aceros ferríticos y martensíticos (aleados al
Cr-Mo) que también son resistentes al calor.

¿Cuáles son las características de propiedades mecánicas de esos aceros?

        Dependiendo del tipo de aplicación a que se destinan, los aceros austeníticos pueden
presentar las más variadas composiciones químicas y algunas aleaciones no son totalmente
austeniticas, de forma que sus propiedades varían mucho, pero alguna características inherentes a la
estructura austenítica (CFC), y muy importante cuando se pretende soldar un material son:
        .-      que la estructura austenítica no se fragiliza, o sea, cualquier que sea la temperatura
de trabajo o la tasa de carga o el estado de tensiones, el acero austenítico siempre presenta un
comportamiento dúctil, y
        .-      que la estructura austenítica presenta una elevada tasa de endurecimiento, o sea, que
el material comienza a fluir con baja tensión (normalmente la tensión límite de deformación es baja
y la razón LE/LR puede ser inferior a 0.4 y a medida que el material se va deformando
plásticamente, el material se va endureciendo rápidamente hasta llegar a la tensión límite de
resistencia.




¿Cómo las características mecánicas afectan la soldabilidad?

        Como este material no se fragiliza y presenta baja tensión límite de endurecimiento, el nivel
de tensiones residuales de soldadura acostumbra ser bajo y el riesgo de agrietamiento es menor que
en materiales que se endurecen y fragilizan. Adicionalmente, durante trabajo posterior (con
tensiones externa actuantes) el material como soldado se va deformando y aliviando la tensión
interna, de forma que en la mayoría de las aplicaciones los aceros austeníticos no necesitan de un
tratamiento térmico de alivio de tensiones. Existen, sin embargo, excepciones, y esta afirmación no
debe considerarse como una recomendación, ya que cada caso es un caso diferente y debe ser
evaluado. Solamente se debe recordar que como estos aceros son de “alta aleación”, su alivio
solamente ocurre en temperaturas muy elevadas y normalmente, cuando es necesario realizar el
alivio, se utiliza la temperatura de solubilización del material.
¿Lo anterior significa que este tipo de acero no se agrieta durante la soldadura?

        Si, en verdad los aceros austeníticos, cuando soldados con material similar (consumible
austenítico) son muy susceptibles al agrietamiento a caliente, que ocurre debido a la baja
solubilidad de las impureza en la estructura austenítica. Estas impurezas permanecen en los
contornos de los granos y presentan puntos de fusión más bajos, creando una película líquida que se
abre fácilmente.
        Existen dos tipos de grietas a caliente de ocurrencia frecuente en los aceros austeníticos, las
grietas de solidificación (en el metal de la solda) y las grietas de liquefacción (en la zona de unión),
con morfología intergranular (o interdendrítica).
        Para minimizar las grietas a caliente se acostumbra soldar con un consumible que no sea
totalmente austenítico, y sí austero-ferrítico, donde la estructura bifásica disminuye la
concentración de impurezas y disminuye el riesgo de agrietamiento.
        De forma general, los aceros austeníticos no son susceptibles al agrietamiento a frío, pues
disuelven el hidrógeno y no endurecen durante el enfriamiento.

Adicional a las grietas en caliente, ¿qué tipo de problemas pueden sufrir los aceros
austeníticos durante la soldadura?

       Como son aceros utilizados en aplicaciones especiales, uno de los principales problemas,
normalmente, no detectable durante la soldadura, está relacionado a la pérdida de la propiedad
específica de resistencia a la corrosión, al calor o al desgaste.

¿Cómo ocurre la pérdida de resistencia a la corrosión?

        Como la resistencia a la corrosión del acero inoxidable está relacionada a la formación de
una película de óxido protector, garantizada por un contenido mínimo de cromo, en el caso de que
ocurra cualquier transformación que reduzca el contenido de cromo en solución sólida para una
dada región del material, esta región pasa a no formar óxido protector y será susceptible a la
corrosión. Eso puede ocurrir siempre que algún elemento se combine con el cromo, normalmente el
carbono, formando carburos, y algunas veces el nitrógeno, formando nitruros.
        La baja temperatura de formación de los carburo de cromo, conocida como sensitización, es
entre 400º y 800 ºC, y durante la soldadura la región que pasa mayor tiempo dentro de esta región
está situada un poco alejada de la región de soldadura.
        Cuando el enfriamiento de la unión soldada es lento, existe la posibilidad de formación de
carburos, que precipitan en los contornos de los granos y le roban el cromo al acero, haciendo con
que las regiones adyacentes queden empobrecidas y, cuando colocadas en medios acuosos, sufran
un proceso corrosivo conocido como corrosión intergranular. Para evitar ese tipo de problema se
debe soldar los aceros austeníticos con procesos de bajo aporte de calor, sin pre calentamiento y
con técnicas de manutención a frío (baño maría)
        Otro tipo de problema asociado a la pérdida de resistencia a la corrosión, ocurre en equipos
cuyo medio de operación es muy agresivo, y la soldadura se realiza con un consumible anódico en
relación al metal base. En este caso, la soldadura pasa a sufrir un proceso corrosivo preferencial

¿Cómo ocurre la pérdida de resistencia al desgaste?

        Los aceros austeníticos tipo Hadfield presentan una buena resistencia al desgaste debido al
fuerte endurecimiento de la austenita, cuando sometida al desgaste, lo que significa que el material
es colocado para trabajar en el estado “suave”, y cuando sufre trabajo (en desgaste), su superficie se
endurece, tornándose cada vez más resistente.
El principal tipo de problemas en este tipo de material también es la formación de
precipitados, que pueden desestabilizar la austenita y favorecer la formación de martensita, con
consecuente fragilización localizada y arrancamientos durante el trabajo en desgaste. De la misma
forma se debe evitar enfriamientos lentos para este tipo de material

¿Y en relación a los aceros resistentes al calor?

        Normalmente estos materiales trabajan en medios menos corrosivos (gaseosos y no
acuosos) y el contenido de carbono en el acero acostumbra ser elevado para garantizar su
resistencia a la cedencia. Sin dudas, si el contenido de carbono en el acero es elevado, y si todavía
trabaja a caliente, es prácticamente imposible evitar la formación de carburos, pero eso no significa
que el material sufrirá corrosión intergranular, pues estos materiales tienen también alto cromo y
que a pesar de que sufran la precipitación, todavía sobra mucho cromo en solución para garantizar
su pasividad. Pero, a pesar de eso, las técnicas de bajo aporte de calor también deben ser empleadas
para garantizar menores alteraciones.
        Uno de los principales problemas de la soldadura de estas aleaciones ocurre cuando se
pretende soldar en mantenimiento un material que ya sufrió un trabajo en caliente, pues como el
material e muy aleado (principalmente con alto carbono y alto cromo) existe la posibilidad de la
microestructura evolucionar cuando en trabajo, endureciéndose por precipitación secundaria de
carburos o formando fases intermetálicas, del tipo sigma. En ese caso la ductilidad del material baja
asustadoramente y caso no haya un tratamiento de solubilización efectivo anterior a la soldadura
(que es de difícil realización en el campo), el agrietamiento en la soldadura será casi inevitable.

¿Existe algún procedimiento de soldadura estándar para aceros austeníticos?

      No, pues cada material es diferente uno del otro. Pero existen algunos cuidados que son
comunes a todos los aceros austeníticos, que son:

        .-      seleccionar consumibles compatibles con la aplicación y que al mismo tiempo
tengan menor riesgo de agrietamiento en caliente; por ejemplo en la soldadura de una acero
inoxidable austenítico utilizar un consumible austero – ferrítico, que contenga el mínimo de ferrita
delta posible, para no agrietar y el máximo permitido para no que no se corroa.
        .-      evitar soldar con fuertes restricciones para minimizar el riesgo del agrietamiento a
caliente.
        .-      evitar la soldadura con procesos / procedimientos de aporte de calor muy elevado,
pues las uniones soldadas pueden sufrir alteraciones (principalmente precipitaciones) que
comprometen su futuro rendimiento en trabajo.
        .-      si el material es nuevo y su estructura es austenítica, se debe evitar el enfriamiento
lento para que no ocurra diferentes tipos de precipitación.
        .-      evitar solda un material que ya sufrió trabajo a caliente (en mantenimiento) sin antes
evaluar los tipos de fases presentes, pues caso el material se presente con fases intermetálicas éste
podrá tener baja ductilidad y agrietarse durante la soldadura. En este caso un tratamiento térmico de
solubilización anterior puede que sea necesario.

Más contenido relacionado

La actualidad más candente

La actualidad más candente (20)

Cuestionario de soldadura
Cuestionario de soldaduraCuestionario de soldadura
Cuestionario de soldadura
 
Fundicion
FundicionFundicion
Fundicion
 
Aceros martensíticos
Aceros martensíticosAceros martensíticos
Aceros martensíticos
 
Cerámicas resistentes al desgaste
Cerámicas resistentes al desgasteCerámicas resistentes al desgaste
Cerámicas resistentes al desgaste
 
Capitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosasCapitulo 3. aleaciones no ferrosas
Capitulo 3. aleaciones no ferrosas
 
Fracutras y sus caracteristicas
Fracutras y sus caracteristicasFracutras y sus caracteristicas
Fracutras y sus caracteristicas
 
06 proceso smaw
06 proceso smaw06 proceso smaw
06 proceso smaw
 
Tratamientos termicos de pernos
Tratamientos termicos de pernosTratamientos termicos de pernos
Tratamientos termicos de pernos
 
Metalografia no destructiva_volumen1_zm[1]
Metalografia no destructiva_volumen1_zm[1]Metalografia no destructiva_volumen1_zm[1]
Metalografia no destructiva_volumen1_zm[1]
 
CurvasTTTResueltos.pdf
CurvasTTTResueltos.pdfCurvasTTTResueltos.pdf
CurvasTTTResueltos.pdf
 
Aleaciones del magnesio
Aleaciones del magnesioAleaciones del magnesio
Aleaciones del magnesio
 
Difrencia entre aceite y gaua
Difrencia entre aceite y gauaDifrencia entre aceite y gaua
Difrencia entre aceite y gaua
 
Solidificación y defectos
Solidificación y defectosSolidificación y defectos
Solidificación y defectos
 
7422408
74224087422408
7422408
 
propiedades de las arenas de moldeo
propiedades de las arenas de moldeopropiedades de las arenas de moldeo
propiedades de las arenas de moldeo
 
Alto horno alumno
Alto horno  alumnoAlto horno  alumno
Alto horno alumno
 
Presentación corrosión
Presentación corrosiónPresentación corrosión
Presentación corrosión
 
9 tratamientos aceros
9 tratamientos aceros9 tratamientos aceros
9 tratamientos aceros
 
Informe 4 de soldadura gmaw
Informe 4 de soldadura  gmawInforme 4 de soldadura  gmaw
Informe 4 de soldadura gmaw
 
NORMALIZADO
NORMALIZADONORMALIZADO
NORMALIZADO
 

Similar a Aceros austeníticos

Designacion de los aceros
Designacion de los acerosDesignacion de los aceros
Designacion de los acerosWilliam Lopez
 
Tema 1 Acero
Tema 1 AceroTema 1 Acero
Tema 1 Acerosuryfer
 
Presentacion Metalografia 11 2022.ppt
Presentacion Metalografia 11 2022.pptPresentacion Metalografia 11 2022.ppt
Presentacion Metalografia 11 2022.pptBenjaminMorales54
 
Conoce más sobre el acero inoxidable ferrítico
Conoce más sobre el acero inoxidable ferríticoConoce más sobre el acero inoxidable ferrítico
Conoce más sobre el acero inoxidable ferríticoJN Aceros
 
caracteristicas de los métales
caracteristicas de los métalescaracteristicas de los métales
caracteristicas de los métalesAlejandro Campos
 
Acero inox
Acero inoxAcero inox
Acero inoxherhomer
 
Presentacion Metalografia 9 2022 (1) (2).ppt
Presentacion Metalografia 9 2022 (1) (2).pptPresentacion Metalografia 9 2022 (1) (2).ppt
Presentacion Metalografia 9 2022 (1) (2).pptBenjaminMorales54
 
TEMA N°5. Aleaciones Ferrosas
TEMA N°5. Aleaciones FerrosasTEMA N°5. Aleaciones Ferrosas
TEMA N°5. Aleaciones Ferrosasklanche
 
MATERIALES METALICOS FERROSOS.pptx
MATERIALES METALICOS FERROSOS.pptxMATERIALES METALICOS FERROSOS.pptx
MATERIALES METALICOS FERROSOS.pptxalexisestrada60
 
Pregunta problematizadora
Pregunta problematizadoraPregunta problematizadora
Pregunta problematizadoraguest9ebf13
 

Similar a Aceros austeníticos (20)

Aceros
AcerosAceros
Aceros
 
Aceros
AcerosAceros
Aceros
 
Aceros (1)
Aceros (1)Aceros (1)
Aceros (1)
 
Designacion de los aceros
Designacion de los acerosDesignacion de los aceros
Designacion de los aceros
 
Aceros
AcerosAceros
Aceros
 
Aceros exposicion
Aceros exposicionAceros exposicion
Aceros exposicion
 
Tema 1 Acero
Tema 1 AceroTema 1 Acero
Tema 1 Acero
 
Presentacion Metalografia 11 2022.ppt
Presentacion Metalografia 11 2022.pptPresentacion Metalografia 11 2022.ppt
Presentacion Metalografia 11 2022.ppt
 
El acero
El aceroEl acero
El acero
 
Conoce más sobre el acero inoxidable ferrítico
Conoce más sobre el acero inoxidable ferríticoConoce más sobre el acero inoxidable ferrítico
Conoce más sobre el acero inoxidable ferrítico
 
caracteristicas de los métales
caracteristicas de los métalescaracteristicas de los métales
caracteristicas de los métales
 
Acero inox
Acero inoxAcero inox
Acero inox
 
Presentacion Metalografia 9 2022 (1) (2).ppt
Presentacion Metalografia 9 2022 (1) (2).pptPresentacion Metalografia 9 2022 (1) (2).ppt
Presentacion Metalografia 9 2022 (1) (2).ppt
 
TEMA N°5. Aleaciones Ferrosas
TEMA N°5. Aleaciones FerrosasTEMA N°5. Aleaciones Ferrosas
TEMA N°5. Aleaciones Ferrosas
 
MATERIALES METALICOS FERROSOS.pptx
MATERIALES METALICOS FERROSOS.pptxMATERIALES METALICOS FERROSOS.pptx
MATERIALES METALICOS FERROSOS.pptx
 
Acero inoxidable
Acero inoxidableAcero inoxidable
Acero inoxidable
 
Aceros
AcerosAceros
Aceros
 
Acero.pptx
Acero.pptxAcero.pptx
Acero.pptx
 
Aceros de alto carbono (2)
Aceros de alto carbono (2)Aceros de alto carbono (2)
Aceros de alto carbono (2)
 
Pregunta problematizadora
Pregunta problematizadoraPregunta problematizadora
Pregunta problematizadora
 

Más de Alexis Tejedor

Historia de los materiales.ppt
Historia de los materiales.pptHistoria de los materiales.ppt
Historia de los materiales.pptAlexis Tejedor
 
Presentacion qatar 2015
Presentacion qatar 2015Presentacion qatar 2015
Presentacion qatar 2015Alexis Tejedor
 
Fisuración por hidrógeno: grietas a frío.
Fisuración por hidrógeno: grietas a frío.Fisuración por hidrógeno: grietas a frío.
Fisuración por hidrógeno: grietas a frío.Alexis Tejedor
 
Como economizar energia elétrica na soldagem
Como economizar energia elétrica na soldagemComo economizar energia elétrica na soldagem
Como economizar energia elétrica na soldagemAlexis Tejedor
 
Costos en la soldadura
Costos en la soldaduraCostos en la soldadura
Costos en la soldaduraAlexis Tejedor
 
Teoría de progación errores
Teoría de progación erroresTeoría de progación errores
Teoría de progación erroresAlexis Tejedor
 
Tipos de maestrías: lato sensu vs stricto sensu.
Tipos de maestrías: lato sensu vs stricto sensu.Tipos de maestrías: lato sensu vs stricto sensu.
Tipos de maestrías: lato sensu vs stricto sensu.Alexis Tejedor
 
Muestra de trabajos XIII
Muestra de trabajos XIIIMuestra de trabajos XIII
Muestra de trabajos XIIIAlexis Tejedor
 
Horno de fundicion: smelter furnace
Horno de fundicion: smelter furnaceHorno de fundicion: smelter furnace
Horno de fundicion: smelter furnaceAlexis Tejedor
 

Más de Alexis Tejedor (13)

Historia de los materiales.ppt
Historia de los materiales.pptHistoria de los materiales.ppt
Historia de los materiales.ppt
 
Clásicos i
Clásicos iClásicos i
Clásicos i
 
Presentacion qatar 2015
Presentacion qatar 2015Presentacion qatar 2015
Presentacion qatar 2015
 
Tesis y disertaciones
Tesis y disertacionesTesis y disertaciones
Tesis y disertaciones
 
Fisuración por hidrógeno: grietas a frío.
Fisuración por hidrógeno: grietas a frío.Fisuración por hidrógeno: grietas a frío.
Fisuración por hidrógeno: grietas a frío.
 
Como economizar energia elétrica na soldagem
Como economizar energia elétrica na soldagemComo economizar energia elétrica na soldagem
Como economizar energia elétrica na soldagem
 
Costos en la soldadura
Costos en la soldaduraCostos en la soldadura
Costos en la soldadura
 
Teoría de progación errores
Teoría de progación erroresTeoría de progación errores
Teoría de progación errores
 
Tipos de maestrías: lato sensu vs stricto sensu.
Tipos de maestrías: lato sensu vs stricto sensu.Tipos de maestrías: lato sensu vs stricto sensu.
Tipos de maestrías: lato sensu vs stricto sensu.
 
Muestra de trabajos XIII
Muestra de trabajos XIIIMuestra de trabajos XIII
Muestra de trabajos XIII
 
Alfombras pictóricas
Alfombras pictóricasAlfombras pictóricas
Alfombras pictóricas
 
Alfombras pictóricas
Alfombras pictóricasAlfombras pictóricas
Alfombras pictóricas
 
Horno de fundicion: smelter furnace
Horno de fundicion: smelter furnaceHorno de fundicion: smelter furnace
Horno de fundicion: smelter furnace
 

Último

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxRAMON EUSTAQUIO CARO BAYONA
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
cuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básicacuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básicaGianninaValeskaContr
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Rosabel UA
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALEDUCCUniversidadCatl
 
sesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdfsesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdfpatriciavsquezbecerr
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfDaniel Ángel Corral de la Mata, Ph.D.
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfssuser50d1252
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialpatriciaines1993
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressionsConsueloSantana3
 

Último (20)

periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docxMODELO DE INFORME DE INDAGACION CIENTIFICA .docx
MODELO DE INFORME DE INDAGACION CIENTIFICA .docx
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
cuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básicacuadernillo de lectoescritura para niños de básica
cuadernillo de lectoescritura para niños de básica
 
Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024Actividad transversal 2-bloque 2. Actualización 2024
Actividad transversal 2-bloque 2. Actualización 2024
 
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMALVOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
VOLUMEN 1 COLECCION PRODUCCION BOVINA . SERIE SANIDAD ANIMAL
 
sesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdfsesión de aprendizaje 4 E1 Exposición oral.pdf
sesión de aprendizaje 4 E1 Exposición oral.pdf
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdfTema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
Tema 8.- Gestion de la imagen a traves de la comunicacion de crisis.pdf
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
 
Día de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundialDía de la Madre Tierra-1.pdf día mundial
Día de la Madre Tierra-1.pdf día mundial
 
Uses of simple past and time expressions
Uses of simple past and time expressionsUses of simple past and time expressions
Uses of simple past and time expressions
 

Aceros austeníticos

  • 1. UNIVERSIDAD TECNOLÓGICA DE PANAMÁ FACULTAD DE INGENIERÍA MECÁNICA POSGRADO Y MAESTRÍA EN MANTENIMIENTO DE PLANTAS INDUSTRIALES Diseño y Metalurgia de la Soldadura Por: Ing. Alexis Tejedor De León, PhD wwwalexistejedor.org Soldadura de aceros austeníticos Para estabilizar la micro estructura austenítica en la temperatura ambiente siempre es necesario una gran cantidad de elementos de aleación, conocidos como gamagenos, lo que hace con que necesariamente los aceros austeníticos sean de alta aleación, utilizados en aplicaciones especiales de resistencia ala corrosión, resistencia a temperaturas extremas (al calor o al frío) o resistencia al desgaste, cuyas propiedades específicas pueden deteriorarse por la soldadura caso no sea utilizado un procedimiento adecuado. Este documento intenta explicar los cuidados generales en la soldadura de aceros austeníticos, considerando la aplicación a los cuales se destinan. ¿Qué son aceros austeníticos? Son aleaciones ferrosas que presentan microestructura predominantemente austenítica, estabilizadas por la gran cantidad de elementos de aleación gamagenos, que son principalmente níquel, manganeso, nitrógeno y el carbono, siendo que en aleaciones resistentes a la corrosión y en ligas resistentes a temperaturas extremas el principal papel del carbono no es el de estabilizar la austenita, y sí la de garantizar la resistencia mecánica. ¿Cuál es la composición típica de un acero austenítico? Depende del tipo de aplicación a la que se destina. Los principales aceros austeníticos pueden encuadrarse como: 1.- Aceros resistentes a la corrosión (o inoxidables austeníticos), son básicamente aleaciones de Fe-Cr-Ni de la serie 300, donde el cromo se utiliza en cantidades mínimas de 16% para garantizar la resistencia a la corrosión (por medio de la formación de una película de óxido pasiva); el níquel se utiliza en cantidades mínimas de 6% para estabilizar la estructura austenítica, y el carbono varía para los grados estándares (usualmente con carbono hasta 0.08 %) y L (bajo carbono, usualmente hasta 0.03%). El grado H (alto carbono) nunca es utilizado en medios acuosos, donde la resistencia a la corrosión debe ser superior, pues la presencia de carbono reduce la resistencia a la corrosión 2.- Aceros resistentes al calor: normalmente también son aceros inoxidable, no obstante con mayores cantidades de carbono, para garantizar mayor resistencia a la cedencia y mayores cantidades de cromo, níquel y silicio, para garantizar la resistencia a la oxidación. Existen los de la serie 300 (como el 310, por ejemplo que es bien específico para trabajo en caliente), los de la serie 300 en grado H (alto carbono, normalmente hasta 0.1 %) y existen los fundidos de estructura austenítica en carburos, tipo HK y HP 3.- Aceros criogénicos, que también son inoxidables de la serie 300, normalmente de bajo carbono y con mayores contenidos de elementos austenitizantes para garantizar la estabilidad de la estructura austenítica incluso en temperaturas muy bajas. 4.- Aceros resistentes al desgaste metal * metal: básicamente aleaciones de Fe-Mn, con Cr e C, estabilizados por el manganeso (cuyos contenidos se sitúan en el orden del 13 %) y con alto contenido de carbono (del orden del 1 %). Este tipo de material también se le conoce como acero
  • 2. Hadfield y es muy utilizado en componentes fundidos para aplicaciones severas de desgaste metal – metal, como por ejemplo en la industria ferroviaria. Cabe indicar que los aceros austeníticos fueron encuadrados según su aplicación, pero dentro de cada aplicación existen diversos otros tipos de acero que no son austeníticos, por ejemplo, los aceros austeníticos de la serie 300 con alto contenido de carbono son utilizados para resistir al calor, pero también existen diversos tipos de aceros ferríticos y martensíticos (aleados al Cr-Mo) que también son resistentes al calor. ¿Cuáles son las características de propiedades mecánicas de esos aceros? Dependiendo del tipo de aplicación a que se destinan, los aceros austeníticos pueden presentar las más variadas composiciones químicas y algunas aleaciones no son totalmente austeniticas, de forma que sus propiedades varían mucho, pero alguna características inherentes a la estructura austenítica (CFC), y muy importante cuando se pretende soldar un material son: .- que la estructura austenítica no se fragiliza, o sea, cualquier que sea la temperatura de trabajo o la tasa de carga o el estado de tensiones, el acero austenítico siempre presenta un comportamiento dúctil, y .- que la estructura austenítica presenta una elevada tasa de endurecimiento, o sea, que el material comienza a fluir con baja tensión (normalmente la tensión límite de deformación es baja y la razón LE/LR puede ser inferior a 0.4 y a medida que el material se va deformando plásticamente, el material se va endureciendo rápidamente hasta llegar a la tensión límite de resistencia. ¿Cómo las características mecánicas afectan la soldabilidad? Como este material no se fragiliza y presenta baja tensión límite de endurecimiento, el nivel de tensiones residuales de soldadura acostumbra ser bajo y el riesgo de agrietamiento es menor que en materiales que se endurecen y fragilizan. Adicionalmente, durante trabajo posterior (con tensiones externa actuantes) el material como soldado se va deformando y aliviando la tensión interna, de forma que en la mayoría de las aplicaciones los aceros austeníticos no necesitan de un tratamiento térmico de alivio de tensiones. Existen, sin embargo, excepciones, y esta afirmación no debe considerarse como una recomendación, ya que cada caso es un caso diferente y debe ser evaluado. Solamente se debe recordar que como estos aceros son de “alta aleación”, su alivio solamente ocurre en temperaturas muy elevadas y normalmente, cuando es necesario realizar el alivio, se utiliza la temperatura de solubilización del material.
  • 3. ¿Lo anterior significa que este tipo de acero no se agrieta durante la soldadura? Si, en verdad los aceros austeníticos, cuando soldados con material similar (consumible austenítico) son muy susceptibles al agrietamiento a caliente, que ocurre debido a la baja solubilidad de las impureza en la estructura austenítica. Estas impurezas permanecen en los contornos de los granos y presentan puntos de fusión más bajos, creando una película líquida que se abre fácilmente. Existen dos tipos de grietas a caliente de ocurrencia frecuente en los aceros austeníticos, las grietas de solidificación (en el metal de la solda) y las grietas de liquefacción (en la zona de unión), con morfología intergranular (o interdendrítica). Para minimizar las grietas a caliente se acostumbra soldar con un consumible que no sea totalmente austenítico, y sí austero-ferrítico, donde la estructura bifásica disminuye la concentración de impurezas y disminuye el riesgo de agrietamiento. De forma general, los aceros austeníticos no son susceptibles al agrietamiento a frío, pues disuelven el hidrógeno y no endurecen durante el enfriamiento. Adicional a las grietas en caliente, ¿qué tipo de problemas pueden sufrir los aceros austeníticos durante la soldadura? Como son aceros utilizados en aplicaciones especiales, uno de los principales problemas, normalmente, no detectable durante la soldadura, está relacionado a la pérdida de la propiedad específica de resistencia a la corrosión, al calor o al desgaste. ¿Cómo ocurre la pérdida de resistencia a la corrosión? Como la resistencia a la corrosión del acero inoxidable está relacionada a la formación de una película de óxido protector, garantizada por un contenido mínimo de cromo, en el caso de que ocurra cualquier transformación que reduzca el contenido de cromo en solución sólida para una dada región del material, esta región pasa a no formar óxido protector y será susceptible a la corrosión. Eso puede ocurrir siempre que algún elemento se combine con el cromo, normalmente el carbono, formando carburos, y algunas veces el nitrógeno, formando nitruros. La baja temperatura de formación de los carburo de cromo, conocida como sensitización, es entre 400º y 800 ºC, y durante la soldadura la región que pasa mayor tiempo dentro de esta región está situada un poco alejada de la región de soldadura. Cuando el enfriamiento de la unión soldada es lento, existe la posibilidad de formación de carburos, que precipitan en los contornos de los granos y le roban el cromo al acero, haciendo con que las regiones adyacentes queden empobrecidas y, cuando colocadas en medios acuosos, sufran un proceso corrosivo conocido como corrosión intergranular. Para evitar ese tipo de problema se debe soldar los aceros austeníticos con procesos de bajo aporte de calor, sin pre calentamiento y con técnicas de manutención a frío (baño maría) Otro tipo de problema asociado a la pérdida de resistencia a la corrosión, ocurre en equipos cuyo medio de operación es muy agresivo, y la soldadura se realiza con un consumible anódico en relación al metal base. En este caso, la soldadura pasa a sufrir un proceso corrosivo preferencial ¿Cómo ocurre la pérdida de resistencia al desgaste? Los aceros austeníticos tipo Hadfield presentan una buena resistencia al desgaste debido al fuerte endurecimiento de la austenita, cuando sometida al desgaste, lo que significa que el material es colocado para trabajar en el estado “suave”, y cuando sufre trabajo (en desgaste), su superficie se endurece, tornándose cada vez más resistente.
  • 4. El principal tipo de problemas en este tipo de material también es la formación de precipitados, que pueden desestabilizar la austenita y favorecer la formación de martensita, con consecuente fragilización localizada y arrancamientos durante el trabajo en desgaste. De la misma forma se debe evitar enfriamientos lentos para este tipo de material ¿Y en relación a los aceros resistentes al calor? Normalmente estos materiales trabajan en medios menos corrosivos (gaseosos y no acuosos) y el contenido de carbono en el acero acostumbra ser elevado para garantizar su resistencia a la cedencia. Sin dudas, si el contenido de carbono en el acero es elevado, y si todavía trabaja a caliente, es prácticamente imposible evitar la formación de carburos, pero eso no significa que el material sufrirá corrosión intergranular, pues estos materiales tienen también alto cromo y que a pesar de que sufran la precipitación, todavía sobra mucho cromo en solución para garantizar su pasividad. Pero, a pesar de eso, las técnicas de bajo aporte de calor también deben ser empleadas para garantizar menores alteraciones. Uno de los principales problemas de la soldadura de estas aleaciones ocurre cuando se pretende soldar en mantenimiento un material que ya sufrió un trabajo en caliente, pues como el material e muy aleado (principalmente con alto carbono y alto cromo) existe la posibilidad de la microestructura evolucionar cuando en trabajo, endureciéndose por precipitación secundaria de carburos o formando fases intermetálicas, del tipo sigma. En ese caso la ductilidad del material baja asustadoramente y caso no haya un tratamiento de solubilización efectivo anterior a la soldadura (que es de difícil realización en el campo), el agrietamiento en la soldadura será casi inevitable. ¿Existe algún procedimiento de soldadura estándar para aceros austeníticos? No, pues cada material es diferente uno del otro. Pero existen algunos cuidados que son comunes a todos los aceros austeníticos, que son: .- seleccionar consumibles compatibles con la aplicación y que al mismo tiempo tengan menor riesgo de agrietamiento en caliente; por ejemplo en la soldadura de una acero inoxidable austenítico utilizar un consumible austero – ferrítico, que contenga el mínimo de ferrita delta posible, para no agrietar y el máximo permitido para no que no se corroa. .- evitar soldar con fuertes restricciones para minimizar el riesgo del agrietamiento a caliente. .- evitar la soldadura con procesos / procedimientos de aporte de calor muy elevado, pues las uniones soldadas pueden sufrir alteraciones (principalmente precipitaciones) que comprometen su futuro rendimiento en trabajo. .- si el material es nuevo y su estructura es austenítica, se debe evitar el enfriamiento lento para que no ocurra diferentes tipos de precipitación. .- evitar solda un material que ya sufrió trabajo a caliente (en mantenimiento) sin antes evaluar los tipos de fases presentes, pues caso el material se presente con fases intermetálicas éste podrá tener baja ductilidad y agrietarse durante la soldadura. En este caso un tratamiento térmico de solubilización anterior puede que sea necesario.