SlideShare une entreprise Scribd logo
1  sur  21
COCOMO Model
Basic
Introduction
COCOMO is one of the most widely used software
estimation models in the world
It was developed by Barry Boehm in 1981
COCOMO predicts the effort and schedule for a software
product development based on inputs relating to the size of
the software and a number of cost drivers that affect
productivity
COCOMO Models
COCOMO has three different models that reflect the
complexity:
the Basic Model
the Intermediate Model
and the Detailed Model
The Development Modes: Project
Characteristics
Organic Mode
• Relatively small, simple software projects
• Small teams with good application experience work to a
set of less than rigid requirements
• Similar to the previously developed projects
• relatively small and requires little innovation
Semidetached Mode
• Intermediate (in size and complexity) software projects in
which teams with mixed experience levels must meet a mix
of rigid and less than rigid requirements.
Contd…
Embedded Mode
• Software projects that must be developed within a set of tight
hardware, software, and operational constraints.
COCOMO:
Some Assumptions
Primary cost driver is the number of Delivered Source
Instructions (DSI) / Delivered Line Of Code
developed by the project
COCOMO estimates assume that the project will enjoy
good management by both the developer and the
customer
Assumes the requirements specification is not
substantially changed after the plans and requirements
phase
Basic COCOMO
Basic COCOMO is good for quick, early, rough order of
magnitude estimates of software costs
It does not account for differences in hardware
constraints, personnel quality and experience, use of
modern tools and techniques, and other project attributes
known to have a significant influence on software costs,
which limits its accuracy
Basic COCOMO Model: Formula
E=ab (KLOC or KDSI) b
b
D=cb(E) d
b
P=E/D
where E is the effort applied in person-months, D is the
development time in chronological months, KLOC / KDSI
is the estimated number of delivered lines of code for the
project (expressed in thousands), and P is the number of
people required. The coefficients ab, bb, cb and db are given in
next slide.
Contd…
Software project ab bb cb db
Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32
Basic COCOMO Model: Equation
Mode Effort Schedule
Organic E=2.4*(KDSI)
1.05
TDEV=2.5*(E)
0.38
Semidetached E=3.0*(KDSI)
1.12
TDEV=2.5*(E)
0.35
Embedded E=3.6*(KDSI)
1.20
TDEV=2.5*(E)
0.32
Basic COCOMO Model: Limitation
Its accuracy is necessarily limited because of its lack of
factors which have a significant influence on software costs
The Basic COCOMO estimates are within a factor of 1.3
only 29% of the time, and within a factor of 2 only 60% of
the time
Basic COCOMO Model: Example
 We have determined our project fits the characteristics of Semi-Detached
mode
 We estimate our project will have 32,000 Delivered Source Instructions.
Using the formulas, we can estimate:
 Effort = 3.0*(32) 1.12
= 146 man-months
 Schedule = 2.5*(146) 0.35
= 14 months
 Productivity = 32,000 DSI / 146 MM
= 219 DSI/MM
 Average Staffing = 146 MM /14 months
= 10 FSP
Function Point Analysis
What is Function Point Analysis (FPA)?
 It is designed to estimate and measure the time, and thereby the cost, of
developing new software applications and maintaining existing software
applications.
 It is also useful in comparing and highlighting opportunities for productivity
improvements in software development.
 It was developed by A.J. Albrecht of the IBM Corporation in the early 1980s.
 The main other approach used for measuring the size, and therefore the time
required, of software project is lines of code (LOC) – which has a number of
inherent problems.
Function Point Analysis
How is Function Point Analysis done?
Working from the project design specifications, the following
system functions are measured (counted):
 Inputs
 Outputs
 Files
 Inquires
 Interfaces
Function Point Analysis
These function-point counts are then weighed (multiplied) by
their degree of complexity:
Simple Average Complex
Inputs 2 4 6
Outputs 3 5 7
Files 5 10 15
Inquires 2 4 6
Interfaces 4 7 10
Function Point Analysis
A simple example:
inputs
3 simple X 2 = 6
4 average X 4 = 16
1 complex X 6 = 6
outputs
6 average X 5 = 30
2 complex X 7 = 14
files
5 complex X 15 = 75
inquiries
8 average X 4 = 32
interfaces
3 average X 7 = 21
4 complex X 10 = 40
Unadjusted function points 240
Function Point Analysis
In addition to these individually weighted function points, there are factors that affect
the project and/or system as a whole. There are a number (~35) of these factors
that affect the size of the project effort, and each is ranked from “0”- no influence to
“5”- essential.
The following are some examples of these factors:
 Is high performance critical?
 Is the internal processing complex?
 Is the system to be used in multiple sites and/or by multiple organizations?
 Is the code designed to be reusable?
 Is the processing to be distributed?
 and so forth . . .
Function Point Analysis
Continuing our example . . .
Complex internal processing = 3
Code to be reusable = 2
High performance = 4
Multiple sites = 3
Distributed processing = 5
Project adjustment factor = 17
Adjustment calculation:
Adjusted FP = Unadjusted FP X [0.65 + (adjustment factor X 0.01)]
= 240 X [0.65 + ( 17 X 0.01)]
= 240 X [0.82]
= 197 Adjusted function points
Function Point Analysis
But how long will the project take and how much will it cost?
As previously measured, programmers in our organization
average 18 function points per month. Thus . . .
197 FP divided by 18 = 11 man-months
If the average programmer is paid $5,200 per month
(including benefits), then the [labor] cost of the project will
be . . .
11 man-months X $5,200 = $57,200
Function Point Analysis
Because function point analysis is independent of language used,
development platform, etc. it can be used to identify the
productivity benefits of . . .
One programming language over another
One development platform over another
One development methodology over another
One programming department over another
Before-and-after gains in investing in programmer training
And so forth . . .
Function Point Analysis
But there are problems and criticisms:
 Function point counts are affected by project size
 Difficult to apply to massively distributed systems or to systems with very
complex internal processing
 Difficult to define logical files from physical files
 The validity of the weights that Albrecht established – and the consistency
of their application – has been challenged
 Different companies will calculate function points slightly different, making
intercompany comparisons questionable

Contenu connexe

Tendances

Software Configuration Management (SCM)
Software Configuration Management (SCM)Software Configuration Management (SCM)
Software Configuration Management (SCM)Er. Shiva K. Shrestha
 
Estimating Software Maintenance Costs
Estimating Software Maintenance CostsEstimating Software Maintenance Costs
Estimating Software Maintenance Costslalithambiga kamaraj
 
Designing applications with web access capabilities
Designing applications with web access capabilitiesDesigning applications with web access capabilities
Designing applications with web access capabilitiesK Senthil Kumar
 
Constructive Cost Model - II (COCOMO-II)
Constructive Cost Model - II (COCOMO-II)Constructive Cost Model - II (COCOMO-II)
Constructive Cost Model - II (COCOMO-II)AmanSharma1172
 
Fundamental design concepts
Fundamental design conceptsFundamental design concepts
Fundamental design conceptssrijavel
 
User Interface Analysis and Design
User Interface Analysis and DesignUser Interface Analysis and Design
User Interface Analysis and Design Saqib Raza
 
Software project management
Software project managementSoftware project management
Software project managementR A Akerkar
 
COCOMO Model For Effort Estimation
COCOMO Model For Effort EstimationCOCOMO Model For Effort Estimation
COCOMO Model For Effort Estimationgrandhiprasuna
 
Software requirements specification
Software requirements specificationSoftware requirements specification
Software requirements specificationlavanya marichamy
 
hci in software development process
hci in software development processhci in software development process
hci in software development processKainat Ilyas
 
Spm software effort estimation
Spm software effort estimationSpm software effort estimation
Spm software effort estimationKanchana Devi
 
Function Oriented Design
Function Oriented DesignFunction Oriented Design
Function Oriented DesignSharath g
 

Tendances (20)

COCOMO MODEL 1 And 2
COCOMO MODEL 1 And 2COCOMO MODEL 1 And 2
COCOMO MODEL 1 And 2
 
Software Configuration Management (SCM)
Software Configuration Management (SCM)Software Configuration Management (SCM)
Software Configuration Management (SCM)
 
Software Evolution
Software EvolutionSoftware Evolution
Software Evolution
 
COCOMO Model By Dr. B. J. Mohite
COCOMO Model By Dr. B. J. MohiteCOCOMO Model By Dr. B. J. Mohite
COCOMO Model By Dr. B. J. Mohite
 
Estimating Software Maintenance Costs
Estimating Software Maintenance CostsEstimating Software Maintenance Costs
Estimating Software Maintenance Costs
 
Designing applications with web access capabilities
Designing applications with web access capabilitiesDesigning applications with web access capabilities
Designing applications with web access capabilities
 
Staffing level estimation
Staffing level estimation Staffing level estimation
Staffing level estimation
 
Unit 5
Unit   5Unit   5
Unit 5
 
Constructive Cost Model - II (COCOMO-II)
Constructive Cost Model - II (COCOMO-II)Constructive Cost Model - II (COCOMO-II)
Constructive Cost Model - II (COCOMO-II)
 
Fundamental design concepts
Fundamental design conceptsFundamental design concepts
Fundamental design concepts
 
Cocomo model
Cocomo modelCocomo model
Cocomo model
 
User Interface Analysis and Design
User Interface Analysis and DesignUser Interface Analysis and Design
User Interface Analysis and Design
 
Software project management
Software project managementSoftware project management
Software project management
 
COCOMO Model For Effort Estimation
COCOMO Model For Effort EstimationCOCOMO Model For Effort Estimation
COCOMO Model For Effort Estimation
 
Software requirements specification
Software requirements specificationSoftware requirements specification
Software requirements specification
 
Cocomo model
Cocomo modelCocomo model
Cocomo model
 
hci in software development process
hci in software development processhci in software development process
hci in software development process
 
Spm software effort estimation
Spm software effort estimationSpm software effort estimation
Spm software effort estimation
 
Software metrics
Software metricsSoftware metrics
Software metrics
 
Function Oriented Design
Function Oriented DesignFunction Oriented Design
Function Oriented Design
 

En vedette

software project management Cocomo model
software project management Cocomo modelsoftware project management Cocomo model
software project management Cocomo modelREHMAT ULLAH
 
Software Cost Estimation in Software Engineering SE23
Software Cost Estimation in Software Engineering SE23Software Cost Estimation in Software Engineering SE23
Software Cost Estimation in Software Engineering SE23koolkampus
 
Project Planning in Software Engineering
Project Planning in Software EngineeringProject Planning in Software Engineering
Project Planning in Software EngineeringFáber D. Giraldo
 
Cocomo II
Cocomo IICocomo II
Cocomo IIActimel
 
Introduction To Software Engineering
Introduction To Software EngineeringIntroduction To Software Engineering
Introduction To Software EngineeringLeyla Bonilla
 
Software engineering lecture notes
Software engineering lecture notesSoftware engineering lecture notes
Software engineering lecture notesSiva Ayyakutti
 

En vedette (11)

Zipf distribution
Zipf distributionZipf distribution
Zipf distribution
 
Cocomo
CocomoCocomo
Cocomo
 
COCOMO MODEL
COCOMO MODELCOCOMO MODEL
COCOMO MODEL
 
software project management Cocomo model
software project management Cocomo modelsoftware project management Cocomo model
software project management Cocomo model
 
Cocomo
CocomoCocomo
Cocomo
 
Software Cost Estimation in Software Engineering SE23
Software Cost Estimation in Software Engineering SE23Software Cost Estimation in Software Engineering SE23
Software Cost Estimation in Software Engineering SE23
 
Project Planning in Software Engineering
Project Planning in Software EngineeringProject Planning in Software Engineering
Project Planning in Software Engineering
 
Cocomo II
Cocomo IICocomo II
Cocomo II
 
Cocomo II
Cocomo IICocomo II
Cocomo II
 
Introduction To Software Engineering
Introduction To Software EngineeringIntroduction To Software Engineering
Introduction To Software Engineering
 
Software engineering lecture notes
Software engineering lecture notesSoftware engineering lecture notes
Software engineering lecture notes
 

Similaire à Cocomo model

Exp 02-COCOMO (1).pptx
Exp 02-COCOMO (1).pptxExp 02-COCOMO (1).pptx
Exp 02-COCOMO (1).pptxYagnaGummadi
 
Software Engineering Fundamentals in Computer Science
Software Engineering Fundamentals in Computer ScienceSoftware Engineering Fundamentals in Computer Science
Software Engineering Fundamentals in Computer ScienceArti Parab Academics
 
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERICCOCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERICSneha Padhiar
 
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERICCOCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERICSneha Padhiar
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Se 381 - lec 25 - 32 - 12 may29 - program size and cost estimation models
Se 381 - lec 25 - 32 - 12 may29 - program size and cost estimation modelsSe 381 - lec 25 - 32 - 12 may29 - program size and cost estimation models
Se 381 - lec 25 - 32 - 12 may29 - program size and cost estimation modelsbabak danyal
 
SE_Sec-A_Lecture-10.pdf
SE_Sec-A_Lecture-10.pdfSE_Sec-A_Lecture-10.pdf
SE_Sec-A_Lecture-10.pdfDISHANTBALOTRA
 
Software Estimation Part II
Software Estimation Part IISoftware Estimation Part II
Software Estimation Part IIsslovepk
 
Cocomo model
Cocomo modelCocomo model
Cocomo modelMZ5512
 
Cocomo model (muskan soni)
Cocomo model (muskan soni)Cocomo model (muskan soni)
Cocomo model (muskan soni)MuskanSony
 
OOSE Unit 2 PPT.ppt
OOSE Unit 2 PPT.pptOOSE Unit 2 PPT.ppt
OOSE Unit 2 PPT.pptitadmin33
 
COCOMO methods for software size estimation
COCOMO methods for software size estimationCOCOMO methods for software size estimation
COCOMO methods for software size estimationPramod Parajuli
 
CS8494 SOFTWARE ENGINEERING Unit-5
CS8494 SOFTWARE ENGINEERING Unit-5CS8494 SOFTWARE ENGINEERING Unit-5
CS8494 SOFTWARE ENGINEERING Unit-5SIMONTHOMAS S
 
LatestCOCOMO model presentation for college students .pptx
LatestCOCOMO model presentation for college students .pptxLatestCOCOMO model presentation for college students .pptx
LatestCOCOMO model presentation for college students .pptxaditiibaghla16
 
Software cost estimation
Software cost estimationSoftware cost estimation
Software cost estimationdeep sharma
 

Similaire à Cocomo model (20)

Exp 02-COCOMO (1).pptx
Exp 02-COCOMO (1).pptxExp 02-COCOMO (1).pptx
Exp 02-COCOMO (1).pptx
 
Metrics
MetricsMetrics
Metrics
 
Software Engineering Fundamentals in Computer Science
Software Engineering Fundamentals in Computer ScienceSoftware Engineering Fundamentals in Computer Science
Software Engineering Fundamentals in Computer Science
 
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERICCOCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
 
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERICCOCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
COCOMO FP COST ESTIMATION TECHNIQUES:NUMERIC
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
cost-estimation-tutorial
cost-estimation-tutorialcost-estimation-tutorial
cost-estimation-tutorial
 
Se 381 - lec 25 - 32 - 12 may29 - program size and cost estimation models
Se 381 - lec 25 - 32 - 12 may29 - program size and cost estimation modelsSe 381 - lec 25 - 32 - 12 may29 - program size and cost estimation models
Se 381 - lec 25 - 32 - 12 may29 - program size and cost estimation models
 
SE_Sec-A_Lecture-10.pdf
SE_Sec-A_Lecture-10.pdfSE_Sec-A_Lecture-10.pdf
SE_Sec-A_Lecture-10.pdf
 
Software Estimation Part II
Software Estimation Part IISoftware Estimation Part II
Software Estimation Part II
 
LECT9.ppt
LECT9.pptLECT9.ppt
LECT9.ppt
 
Cocomo model
Cocomo modelCocomo model
Cocomo model
 
5. COCOMO.pdf
5. COCOMO.pdf5. COCOMO.pdf
5. COCOMO.pdf
 
Cocomo model (muskan soni)
Cocomo model (muskan soni)Cocomo model (muskan soni)
Cocomo model (muskan soni)
 
OOSE Unit 2 PPT.ppt
OOSE Unit 2 PPT.pptOOSE Unit 2 PPT.ppt
OOSE Unit 2 PPT.ppt
 
COCOMO methods for software size estimation
COCOMO methods for software size estimationCOCOMO methods for software size estimation
COCOMO methods for software size estimation
 
CS8494 SOFTWARE ENGINEERING Unit-5
CS8494 SOFTWARE ENGINEERING Unit-5CS8494 SOFTWARE ENGINEERING Unit-5
CS8494 SOFTWARE ENGINEERING Unit-5
 
COCOMO.pptx
COCOMO.pptxCOCOMO.pptx
COCOMO.pptx
 
LatestCOCOMO model presentation for college students .pptx
LatestCOCOMO model presentation for college students .pptxLatestCOCOMO model presentation for college students .pptx
LatestCOCOMO model presentation for college students .pptx
 
Software cost estimation
Software cost estimationSoftware cost estimation
Software cost estimation
 

Plus de Bala Ganesh

Dbms chapter viii
Dbms chapter viiiDbms chapter viii
Dbms chapter viiiBala Ganesh
 
Dbms chapter vii
Dbms chapter viiDbms chapter vii
Dbms chapter viiBala Ganesh
 
Dbms chapter iii
Dbms chapter iiiDbms chapter iii
Dbms chapter iiiBala Ganesh
 
Flip flop& RAM ROM
Flip flop& RAM ROMFlip flop& RAM ROM
Flip flop& RAM ROMBala Ganesh
 
Chap iii-Logic Gates
Chap iii-Logic GatesChap iii-Logic Gates
Chap iii-Logic GatesBala Ganesh
 
Chap ii.BCD code,Gray code
Chap ii.BCD code,Gray codeChap ii.BCD code,Gray code
Chap ii.BCD code,Gray codeBala Ganesh
 
Software engineering Questions and Answers
Software engineering Questions and AnswersSoftware engineering Questions and Answers
Software engineering Questions and AnswersBala Ganesh
 
Software testing
Software testingSoftware testing
Software testingBala Ganesh
 

Plus de Bala Ganesh (20)

DDL,DML,1stNF
DDL,DML,1stNFDDL,DML,1stNF
DDL,DML,1stNF
 
sfdfds
sfdfdssfdfds
sfdfds
 
Dbms chapter viii
Dbms chapter viiiDbms chapter viii
Dbms chapter viii
 
Dbms chapter vii
Dbms chapter viiDbms chapter vii
Dbms chapter vii
 
Dbms chapter v
Dbms chapter vDbms chapter v
Dbms chapter v
 
Dbms chapter iv
Dbms chapter ivDbms chapter iv
Dbms chapter iv
 
Dbms chapter iii
Dbms chapter iiiDbms chapter iii
Dbms chapter iii
 
Dmbs chapter vi
Dmbs chapter viDmbs chapter vi
Dmbs chapter vi
 
Dbms chapter ii
Dbms chapter iiDbms chapter ii
Dbms chapter ii
 
Dbms chap i
Dbms chap iDbms chap i
Dbms chap i
 
Flip flop& RAM ROM
Flip flop& RAM ROMFlip flop& RAM ROM
Flip flop& RAM ROM
 
karnaugh maps
karnaugh mapskarnaugh maps
karnaugh maps
 
Chap iii-Logic Gates
Chap iii-Logic GatesChap iii-Logic Gates
Chap iii-Logic Gates
 
Chap ii.BCD code,Gray code
Chap ii.BCD code,Gray codeChap ii.BCD code,Gray code
Chap ii.BCD code,Gray code
 
DEL-244Chep i
DEL-244Chep iDEL-244Chep i
DEL-244Chep i
 
Software engineering Questions and Answers
Software engineering Questions and AnswersSoftware engineering Questions and Answers
Software engineering Questions and Answers
 
Software testing
Software testingSoftware testing
Software testing
 
Design
DesignDesign
Design
 
Comp 107 cep 8
Comp 107 cep 8Comp 107 cep 8
Comp 107 cep 8
 
Comp 107 cep 7
Comp 107 cep 7Comp 107 cep 7
Comp 107 cep 7
 

Dernier

Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 

Dernier (20)

Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 

Cocomo model

  • 2. Introduction COCOMO is one of the most widely used software estimation models in the world It was developed by Barry Boehm in 1981 COCOMO predicts the effort and schedule for a software product development based on inputs relating to the size of the software and a number of cost drivers that affect productivity
  • 3. COCOMO Models COCOMO has three different models that reflect the complexity: the Basic Model the Intermediate Model and the Detailed Model
  • 4. The Development Modes: Project Characteristics Organic Mode • Relatively small, simple software projects • Small teams with good application experience work to a set of less than rigid requirements • Similar to the previously developed projects • relatively small and requires little innovation Semidetached Mode • Intermediate (in size and complexity) software projects in which teams with mixed experience levels must meet a mix of rigid and less than rigid requirements.
  • 5. Contd… Embedded Mode • Software projects that must be developed within a set of tight hardware, software, and operational constraints.
  • 6. COCOMO: Some Assumptions Primary cost driver is the number of Delivered Source Instructions (DSI) / Delivered Line Of Code developed by the project COCOMO estimates assume that the project will enjoy good management by both the developer and the customer Assumes the requirements specification is not substantially changed after the plans and requirements phase
  • 7. Basic COCOMO Basic COCOMO is good for quick, early, rough order of magnitude estimates of software costs It does not account for differences in hardware constraints, personnel quality and experience, use of modern tools and techniques, and other project attributes known to have a significant influence on software costs, which limits its accuracy
  • 8. Basic COCOMO Model: Formula E=ab (KLOC or KDSI) b b D=cb(E) d b P=E/D where E is the effort applied in person-months, D is the development time in chronological months, KLOC / KDSI is the estimated number of delivered lines of code for the project (expressed in thousands), and P is the number of people required. The coefficients ab, bb, cb and db are given in next slide.
  • 9. Contd… Software project ab bb cb db Organic 2.4 1.05 2.5 0.38 Semi-detached 3.0 1.12 2.5 0.35 Embedded 3.6 1.20 2.5 0.32
  • 10. Basic COCOMO Model: Equation Mode Effort Schedule Organic E=2.4*(KDSI) 1.05 TDEV=2.5*(E) 0.38 Semidetached E=3.0*(KDSI) 1.12 TDEV=2.5*(E) 0.35 Embedded E=3.6*(KDSI) 1.20 TDEV=2.5*(E) 0.32
  • 11. Basic COCOMO Model: Limitation Its accuracy is necessarily limited because of its lack of factors which have a significant influence on software costs The Basic COCOMO estimates are within a factor of 1.3 only 29% of the time, and within a factor of 2 only 60% of the time
  • 12. Basic COCOMO Model: Example  We have determined our project fits the characteristics of Semi-Detached mode  We estimate our project will have 32,000 Delivered Source Instructions. Using the formulas, we can estimate:  Effort = 3.0*(32) 1.12 = 146 man-months  Schedule = 2.5*(146) 0.35 = 14 months  Productivity = 32,000 DSI / 146 MM = 219 DSI/MM  Average Staffing = 146 MM /14 months = 10 FSP
  • 13. Function Point Analysis What is Function Point Analysis (FPA)?  It is designed to estimate and measure the time, and thereby the cost, of developing new software applications and maintaining existing software applications.  It is also useful in comparing and highlighting opportunities for productivity improvements in software development.  It was developed by A.J. Albrecht of the IBM Corporation in the early 1980s.  The main other approach used for measuring the size, and therefore the time required, of software project is lines of code (LOC) – which has a number of inherent problems.
  • 14. Function Point Analysis How is Function Point Analysis done? Working from the project design specifications, the following system functions are measured (counted):  Inputs  Outputs  Files  Inquires  Interfaces
  • 15. Function Point Analysis These function-point counts are then weighed (multiplied) by their degree of complexity: Simple Average Complex Inputs 2 4 6 Outputs 3 5 7 Files 5 10 15 Inquires 2 4 6 Interfaces 4 7 10
  • 16. Function Point Analysis A simple example: inputs 3 simple X 2 = 6 4 average X 4 = 16 1 complex X 6 = 6 outputs 6 average X 5 = 30 2 complex X 7 = 14 files 5 complex X 15 = 75 inquiries 8 average X 4 = 32 interfaces 3 average X 7 = 21 4 complex X 10 = 40 Unadjusted function points 240
  • 17. Function Point Analysis In addition to these individually weighted function points, there are factors that affect the project and/or system as a whole. There are a number (~35) of these factors that affect the size of the project effort, and each is ranked from “0”- no influence to “5”- essential. The following are some examples of these factors:  Is high performance critical?  Is the internal processing complex?  Is the system to be used in multiple sites and/or by multiple organizations?  Is the code designed to be reusable?  Is the processing to be distributed?  and so forth . . .
  • 18. Function Point Analysis Continuing our example . . . Complex internal processing = 3 Code to be reusable = 2 High performance = 4 Multiple sites = 3 Distributed processing = 5 Project adjustment factor = 17 Adjustment calculation: Adjusted FP = Unadjusted FP X [0.65 + (adjustment factor X 0.01)] = 240 X [0.65 + ( 17 X 0.01)] = 240 X [0.82] = 197 Adjusted function points
  • 19. Function Point Analysis But how long will the project take and how much will it cost? As previously measured, programmers in our organization average 18 function points per month. Thus . . . 197 FP divided by 18 = 11 man-months If the average programmer is paid $5,200 per month (including benefits), then the [labor] cost of the project will be . . . 11 man-months X $5,200 = $57,200
  • 20. Function Point Analysis Because function point analysis is independent of language used, development platform, etc. it can be used to identify the productivity benefits of . . . One programming language over another One development platform over another One development methodology over another One programming department over another Before-and-after gains in investing in programmer training And so forth . . .
  • 21. Function Point Analysis But there are problems and criticisms:  Function point counts are affected by project size  Difficult to apply to massively distributed systems or to systems with very complex internal processing  Difficult to define logical files from physical files  The validity of the weights that Albrecht established – and the consistency of their application – has been challenged  Different companies will calculate function points slightly different, making intercompany comparisons questionable