SlideShare une entreprise Scribd logo
1  sur  17
CONTEXT-AWARE SIMILARITIES
WITHIN THE FACTORIZATION
FRAMEWORK

Balázs Hidasi
Domonkos Tikk

CARR WORKSHOP, 5TH FEBRUARY
2013, ROME
OUTLINE
 Background & scope
 Levels of CA similarity

 Experiments

 Future work
BACKGROUND



              Implicit
             feedback            Context




                                  I2I
         Factorization
                             recommendation




                         This work
IMPLICIT FEEDBACK
 User preference not coded explicitely in data
 E.g. purchase history
     Presence  preference assumed
     Absence  ???

   Binary „preference” matrix
       Zeroes should be considered
   Optimize for
     Weighted RMSE
     Partial ordering (ranking)
CONTEXT
 Can mean anything
 Here: event context
     User U has an event
     on Item I
     while the context is C

 E.g.: time, weather, mood of U, freshness of I, etc.
 In the experiments:
       Seasonality (time of the day or time of the week)
           Time period: week / day
FACTORIZATION I
   Preference data can be organized into matrix
     Size of dimensions high
     Data is sparse

   Approximate this matrix by the product of two
    low rank matrices
     Each item and user has a feature vector
     Predicted preference is the scalar product of the




                                                          item
      appropriate vectors
                                                   user          r
                   T
     r       Uu       Ii
       u ,i

   Here we optimize for wRMSE (implicit case)
       Learning features with ALS
FACTORIZATION II.
 Context introduced  additional context
  dimension
 Matrix  tensor (table of records)




                                                                                 item
 Models for preference prediction:
       Elementwise product model                                         user          r
                       T
            WeightedU u  I i product
            r    1 ( scalar  C c )
         u ,i , c

        

       Pairwise model
                                T                    T               T
           ContextU u I i
            ru , i , c dependent user/item I i C c
                               U u Cc      bias
        
                                           context




                                                                context
                     item




                            +                        +
            user                    user                 item                      r
ITEM-TO-ITEM RECOMMENDATIONS
 Items similar to the current item
 E.g.: user cold start, related items, etc.

 Approaches: association rules, similarity between
  item consumption vectors, etc.
 In the factorization framework:
       Similarity between the feature vectors
        Scalar product:s i , j
                                 T
                              Ii I j
                                               T
                                      Ii           Ij
       Cosine similarity: s i , j
                                     Ii    2
                                               Ij
                                                        2
SCOPE OF THIS PROJECT
   Examination wether item similarities can be
    improved
     using context-aware learning or prediction
     compared to the basic feature based solution

   Motivation:
       If factorization models are used anyways, it would be
        good to use them for I2I recommendations as well
   Out of scope:
       Comparision with other approaches (e.g. association
        rules)
CONTEXT-AWARE SIMILARITIES: LEVEL1
   The form of computing similarity remains
                     T
       si, j   Ii       Ij            Ii
                                                T
                                                    Ij
                              si, j
                                      Ii    2
                                                Ij
                                                         2



   Similarity is NOT CA
   Context-aware learning is used
     Assumption: item models will be more accurate
     Reasons: during the learning context is modelled
      separately
   Elementwise product model
       Context related effects coded in the context feature vector
   Pairwise model
       Context related biases removed
CONTEXT-AWARE SIMILARITIES: LEVEL2
 Incorporating the context features
 Elementwise product model
     Similarities reweighted by the context feature
     Assumption: will be sensitive to the quality of the
      context
                                                     T
     si , j ,c
                   T
                  1 Ii  Cc  I j                1       Ii  Cc  I j
                                    s i , j ,c
   Pairwise model                                       Ii   2
                                                                  Ij
                                                                       2

     Context dependent promotions/demotions for the
      participating items
     Assumption: minor improvements to the basic
      similarity I j I i T C c I j T C c
      s i , j ,c Ii
                    T


    
CONTEXT-AWARE SIMILARITIES: LEVEL2
NORMALIZATION

 Normalization of context vector
 Only for cosine similarity

 Elementwise product model:
     Makes no difference in the ordering
     Recommendation in a given context to a given user

   Pairwise model
     Might affect results
     Controls the importance of item
      promotions/demotions
             I I
                T
                       I C
                          T
                               I
                                  T
                                    C
                            i             j            i             c    j            c
         s i , j ,c
                      Ii            Ij                     Ii   2
                                                                          Ij
                                2             2                                    2

                                T                           T                      T
                       Ii            Ij            Ii           Cc        Ij           Cc
        s i , j ,c
                      Ii            Ij            Ii    2
                                                                Cc   2
                                                                         Ij        Cc
                            2             2                                    2            2
EXPERIMENTS - SETUP
   Four implicit dataset
     LastFM 1K – music
     TV1, TV2 – IPTV
     Grocery – online grocery shopping

   Context: seasonality
       Both with manually and automatically determined
        time bands
   Evaluation: recommend similar items to the
    users’ previous item
     Recall@20
     MAP@20
     Coverage@20
EXPERIMENTS - RESULTS
       Improvement for Grocery                                          Improvement for LastFM
35.00%                                                           200.00%                         183.91%
                                  29.40%
30.00%
                                                                 150.00%
25.00%                   21.40%
20.00%                                                Recall     100.00%
                                                                                                                           Recall
15.00%                                     12.90%     Coverage
                                                                                                                           Coverage
10.00%                                                             50.00%
          6.11% 6.79%                                                       6.14%    17.99%19.72%
                            5.14%   5.83%
       3.91% 3.53%                                                             5.27%
 5.00%
                                             0.87%                  0.00%
 0.00%                                                                             -7.92%              -1.62% -3.18%
                                                                                                         -18.26% -21.96%
                                                                  -50.00%

           Improvement for TV1                                              Improvement for TV2
 900.00%              797.51%                                     20.00%
 800.00%                                                                      0.91%      0.79%
                                                                   0.00%              0.59%
 700.00%
                                                                                                       -0.23% -3.23%
 600.00%                                                          -20.00% -8.08%                          -8.13% -10.40%
 500.00%                                             Recall                                                                Recall
 400.00%                                                          -40.00%
                                                     Coverage                                    -37.24%                   Coverage
 300.00%
                                                                  -60.00%
 200.00%
                              7.34% 46.40%
 100.00% 0.69% 8.31%
                  1.77% 6.77% 5.89% 4.86%                         -80.00%
   0.00%                                                                                     -82.32%
           -3.53%                                                -100.00%
-100.00%
        From left to right: L1 elementwise, L1 pairwise, L2 elementwise, L2 pairwise, L2 pairwise (norm)
EXPERIMENTS - CONCLUSION
 Context awareness generally helps
 Impromevent greatly depends on method and
  context quality
 All but the elementwise level2 method:
     Minor improvements
     Tolerant of context quality

   Elementwise product level2:
     Possibly huge improvements
     Or huge decrease in recommendations
     Depends on the context/problem
(POSSIBLE) FUTURE WORK
 Experimentation with different contexts
 Different similarity between feature vectors

 Predetermination wether context is useful for
     User bias
     Item bias
     Reweighting

 Predetermination of context quality
 Different evaluation methods
       E.g. recommend to session
THANKS FOR THE
   ATTENTION!




For more of my recommender systems related research visit my website:
http://www.hidasi.eu

Contenu connexe

En vedette

Công ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dương
Công ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dươngCông ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dương
Công ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dươngCông ty Tổ Chức Sự Kiện VietSky
 
ejbresume10mar2016
ejbresume10mar2016ejbresume10mar2016
ejbresume10mar2016Eric Bielski
 
Miikka Tunturi_B.Sc degree Häme
Miikka Tunturi_B.Sc degree HämeMiikka Tunturi_B.Sc degree Häme
Miikka Tunturi_B.Sc degree HämeMiikka Tunturi
 
Tổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dương
Tổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dươngTổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dương
Tổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dươngCông ty Tổ Chức Sự Kiện VietSky
 
Caracteristicas lipidos
Caracteristicas lipidosCaracteristicas lipidos
Caracteristicas lipidosmagomez
 

En vedette (8)

Công ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dương
Công ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dươngCông ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dương
Công ty tổ chức lễ khởi công lớn nhất tại tp.hcm, đồng nai, bình dương
 
ejbresume10mar2016
ejbresume10mar2016ejbresume10mar2016
ejbresume10mar2016
 
Miikka Tunturi_B.Sc degree Häme
Miikka Tunturi_B.Sc degree HämeMiikka Tunturi_B.Sc degree Häme
Miikka Tunturi_B.Sc degree Häme
 
Tổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dương
Tổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dươngTổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dương
Tổ chức lễ động thổ chuyên nghiệp lớn nhất ở tại đồng nai, bình dương
 
RSDL2016
RSDL2016RSDL2016
RSDL2016
 
Caracteristicas lipidos
Caracteristicas lipidosCaracteristicas lipidos
Caracteristicas lipidos
 
jp2_0
jp2_0jp2_0
jp2_0
 
june'15
june'15june'15
june'15
 

Similaire à Context-aware similarities within the factorization framework (CaRR 2013 presentation)

Context-aware similarities within the factorization framework - presented at ...
Context-aware similarities within the factorization framework - presented at ...Context-aware similarities within the factorization framework - presented at ...
Context-aware similarities within the factorization framework - presented at ...Domonkos Tikk
 
RecSys 2008: Social Ranking
RecSys 2008: Social RankingRecSys 2008: Social Ranking
RecSys 2008: Social RankingUCL-CS MobiSys
 
Recommendation systems in the scope of opinion formation: a model
Recommendation systems in the scope of opinion formation: a modelRecommendation systems in the scope of opinion formation: a model
Recommendation systems in the scope of opinion formation: a modelMarcel Blattner, PhD
 
Statistical Models for Massive Web Data
Statistical Models for Massive Web DataStatistical Models for Massive Web Data
Statistical Models for Massive Web DataDeepak Agarwal
 
CFAR-m Presentation English
CFAR-m Presentation EnglishCFAR-m Presentation English
CFAR-m Presentation Englishbusinessangeleu
 
Leveraging collaborativetaggingforwebitemdesign ajithajjarani
Leveraging collaborativetaggingforwebitemdesign ajithajjaraniLeveraging collaborativetaggingforwebitemdesign ajithajjarani
Leveraging collaborativetaggingforwebitemdesign ajithajjaraniAjith Ajjarani
 
Partial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather ConditionsPartial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather ConditionsIRJET Journal
 
Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...
Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...
Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...Matthew Rowe
 

Similaire à Context-aware similarities within the factorization framework (CaRR 2013 presentation) (8)

Context-aware similarities within the factorization framework - presented at ...
Context-aware similarities within the factorization framework - presented at ...Context-aware similarities within the factorization framework - presented at ...
Context-aware similarities within the factorization framework - presented at ...
 
RecSys 2008: Social Ranking
RecSys 2008: Social RankingRecSys 2008: Social Ranking
RecSys 2008: Social Ranking
 
Recommendation systems in the scope of opinion formation: a model
Recommendation systems in the scope of opinion formation: a modelRecommendation systems in the scope of opinion formation: a model
Recommendation systems in the scope of opinion formation: a model
 
Statistical Models for Massive Web Data
Statistical Models for Massive Web DataStatistical Models for Massive Web Data
Statistical Models for Massive Web Data
 
CFAR-m Presentation English
CFAR-m Presentation EnglishCFAR-m Presentation English
CFAR-m Presentation English
 
Leveraging collaborativetaggingforwebitemdesign ajithajjarani
Leveraging collaborativetaggingforwebitemdesign ajithajjaraniLeveraging collaborativetaggingforwebitemdesign ajithajjarani
Leveraging collaborativetaggingforwebitemdesign ajithajjarani
 
Partial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather ConditionsPartial Object Detection in Inclined Weather Conditions
Partial Object Detection in Inclined Weather Conditions
 
Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...
Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...
Transferring Semantic Categories with Vertex Kernels: Recommendations with Se...
 

Plus de Balázs Hidasi

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelBalázs Hidasi
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityBalázs Hidasi
 
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...Balázs Hidasi
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Balázs Hidasi
 
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...Balázs Hidasi
 
Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Balázs Hidasi
 
Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...Balázs Hidasi
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendationsBalázs Hidasi
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorizationBalázs Hidasi
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Balázs Hidasi
 
Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Balázs Hidasi
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Balázs Hidasi
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...Balázs Hidasi
 
Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)Balázs Hidasi
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)Balázs Hidasi
 

Plus de Balázs Hidasi (17)

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on Reproducibility
 
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
GRU4Rec v2 - Recurrent Neural Networks with Top-k Gains for Session-based Rec...
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
 
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
Parallel Recurrent Neural Network Architectures for Feature-rich Session-base...
 
Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...
 
Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...Deep learning to the rescue - solving long standing problems of recommender ...
Deep learning to the rescue - solving long standing problems of recommender ...
 
Deep learning: the future of recommendations
Deep learning: the future of recommendationsDeep learning: the future of recommendations
Deep learning: the future of recommendations
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorization
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...
 
Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...Utilizing additional information in factorization methods (research overview,...
Utilizing additional information in factorization methods (research overview,...
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
 
Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
 

Dernier

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 

Dernier (20)

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 

Context-aware similarities within the factorization framework (CaRR 2013 presentation)

  • 1. CONTEXT-AWARE SIMILARITIES WITHIN THE FACTORIZATION FRAMEWORK Balázs Hidasi Domonkos Tikk CARR WORKSHOP, 5TH FEBRUARY 2013, ROME
  • 2. OUTLINE  Background & scope  Levels of CA similarity  Experiments  Future work
  • 3. BACKGROUND Implicit feedback Context I2I Factorization recommendation This work
  • 4. IMPLICIT FEEDBACK  User preference not coded explicitely in data  E.g. purchase history  Presence  preference assumed  Absence  ???  Binary „preference” matrix  Zeroes should be considered  Optimize for  Weighted RMSE  Partial ordering (ranking)
  • 5. CONTEXT  Can mean anything  Here: event context  User U has an event  on Item I  while the context is C  E.g.: time, weather, mood of U, freshness of I, etc.  In the experiments:  Seasonality (time of the day or time of the week)  Time period: week / day
  • 6. FACTORIZATION I  Preference data can be organized into matrix  Size of dimensions high  Data is sparse  Approximate this matrix by the product of two low rank matrices  Each item and user has a feature vector  Predicted preference is the scalar product of the item appropriate vectors user r T  r Uu Ii u ,i  Here we optimize for wRMSE (implicit case)  Learning features with ALS
  • 7. FACTORIZATION II.  Context introduced  additional context dimension  Matrix  tensor (table of records) item  Models for preference prediction:  Elementwise product model user r T WeightedU u  I i product r 1 ( scalar  C c )  u ,i , c   Pairwise model T T T  ContextU u I i ru , i , c dependent user/item I i C c U u Cc bias  context context item + + user user item r
  • 8. ITEM-TO-ITEM RECOMMENDATIONS  Items similar to the current item  E.g.: user cold start, related items, etc.  Approaches: association rules, similarity between item consumption vectors, etc.  In the factorization framework:  Similarity between the feature vectors Scalar product:s i , j T  Ii I j T Ii Ij  Cosine similarity: s i , j Ii 2 Ij 2
  • 9. SCOPE OF THIS PROJECT  Examination wether item similarities can be improved  using context-aware learning or prediction  compared to the basic feature based solution  Motivation:  If factorization models are used anyways, it would be good to use them for I2I recommendations as well  Out of scope:  Comparision with other approaches (e.g. association rules)
  • 10. CONTEXT-AWARE SIMILARITIES: LEVEL1  The form of computing similarity remains T  si, j Ii Ij Ii T Ij si, j Ii 2 Ij 2  Similarity is NOT CA  Context-aware learning is used  Assumption: item models will be more accurate  Reasons: during the learning context is modelled separately  Elementwise product model  Context related effects coded in the context feature vector  Pairwise model  Context related biases removed
  • 11. CONTEXT-AWARE SIMILARITIES: LEVEL2  Incorporating the context features  Elementwise product model  Similarities reweighted by the context feature  Assumption: will be sensitive to the quality of the context T  si , j ,c T 1 Ii  Cc  I j 1 Ii  Cc  I j s i , j ,c  Pairwise model Ii 2 Ij 2  Context dependent promotions/demotions for the participating items  Assumption: minor improvements to the basic similarity I j I i T C c I j T C c s i , j ,c Ii T 
  • 12. CONTEXT-AWARE SIMILARITIES: LEVEL2 NORMALIZATION  Normalization of context vector  Only for cosine similarity  Elementwise product model:  Makes no difference in the ordering  Recommendation in a given context to a given user  Pairwise model  Might affect results  Controls the importance of item promotions/demotions I I T I C T I T C i j i c j c s i , j ,c Ii Ij Ii 2 Ij 2 2 2 T T T Ii Ij Ii Cc Ij Cc s i , j ,c Ii Ij Ii 2 Cc 2 Ij Cc 2 2 2 2
  • 13. EXPERIMENTS - SETUP  Four implicit dataset  LastFM 1K – music  TV1, TV2 – IPTV  Grocery – online grocery shopping  Context: seasonality  Both with manually and automatically determined time bands  Evaluation: recommend similar items to the users’ previous item  Recall@20  MAP@20  Coverage@20
  • 14. EXPERIMENTS - RESULTS Improvement for Grocery Improvement for LastFM 35.00% 200.00% 183.91% 29.40% 30.00% 150.00% 25.00% 21.40% 20.00% Recall 100.00% Recall 15.00% 12.90% Coverage Coverage 10.00% 50.00% 6.11% 6.79% 6.14% 17.99%19.72% 5.14% 5.83% 3.91% 3.53% 5.27% 5.00% 0.87% 0.00% 0.00% -7.92% -1.62% -3.18% -18.26% -21.96% -50.00% Improvement for TV1 Improvement for TV2 900.00% 797.51% 20.00% 800.00% 0.91% 0.79% 0.00% 0.59% 700.00% -0.23% -3.23% 600.00% -20.00% -8.08% -8.13% -10.40% 500.00% Recall Recall 400.00% -40.00% Coverage -37.24% Coverage 300.00% -60.00% 200.00% 7.34% 46.40% 100.00% 0.69% 8.31% 1.77% 6.77% 5.89% 4.86% -80.00% 0.00% -82.32% -3.53% -100.00% -100.00%  From left to right: L1 elementwise, L1 pairwise, L2 elementwise, L2 pairwise, L2 pairwise (norm)
  • 15. EXPERIMENTS - CONCLUSION  Context awareness generally helps  Impromevent greatly depends on method and context quality  All but the elementwise level2 method:  Minor improvements  Tolerant of context quality  Elementwise product level2:  Possibly huge improvements  Or huge decrease in recommendations  Depends on the context/problem
  • 16. (POSSIBLE) FUTURE WORK  Experimentation with different contexts  Different similarity between feature vectors  Predetermination wether context is useful for  User bias  Item bias  Reweighting  Predetermination of context quality  Different evaluation methods  E.g. recommend to session
  • 17. THANKS FOR THE ATTENTION! For more of my recommender systems related research visit my website: http://www.hidasi.eu