SlideShare une entreprise Scribd logo
1  sur  32
Télécharger pour lire hors ligne
Extinction Coefficients and Purity
of Single-walled Carbon Nanotubes


                   Bin Zhao


             Haddon Research Group

           Departments of Chemistry and
      Chemical & Environmental Engineering
   Center for Nanoscale Science and Engineering
         University of California, Riverside
Applications of Carbon nanotubes
                       the needs of high purity


                                                   High strength light weight composites



Nano-electronic
   devices
                              carbon
                             nanotubes

                                                                 AFM probes




      biology                                                   Hydrogen storage
                                                                    fuel cells
                          Field emission devices
a




b      Purity evaluation by using
      electron microscopy (SEM)

    Give non-quantitative
     evaluation of the
     purity of SWNTs.
c
    Detect samples at 10-12 gram
     scale.
Energy of Interband transition of SWNTs




                                                                                                                    M11
              1
                                                                                                S22
energy (eV)




              0                       Semiconducting                        S11
                           S11 S22
                                         SWNTs




                                                       Absorbance
                                                                                                AA(N)
              -1

                   DOS (a.u.)
                                                                                                AA(I)

              1
energy (eV)




                                         metallic
              0                 M11
                                         SWNTs

              -1


                   DOS (a.u.)                                                                 AA(S)
                                                                    0.4   0.6     0.8   1.0    1.2      1.4   1.6   1.8   2.0   2.2

                                                                                                 (eV)
Solution phase near-IR spectra of SWNT samples



               0.40                                              a

               0.35
                                                                 b
               0.30
  Absorbance




               0.25                                              c
               0.20

               0.15

               0.10

               0.05

               0.00
                      8000   10000      12000   14000    16000       18000
                                                    -1
                                     Wavenumber (cm )
Purity Evaluation of As-Prepared Single-Walled
    Carbon Nanotube Soot by Use of Solution-Phase
                 Near-IR Spectroscopy




                        reference sample (R)
M. E. Itkis, D. E. Perea, S. Niyogi, S. M. Rickard, M. A. Hamon, H.Hu,
B. Zhao, and R. C. Haddon* Nano lett. 2003, 3, 309.
0.1
                     R                           X
                            AA(S,R)                        AA(S,X)
 Absorbance
               0.0


              0.4


                                                 AA(T,X)
                      AA(T,R)
              0.2
                                                         SWNTs: 67%
                         REFERENCE (R)                  CARBONACEOUS
                                                        IMPURITIES: 33%
              0.0
                     8000       10000    12000   8000       10000         12000
                                                           -1
                                      Wavenumber (cm )
              AA(S, R)                               AA(S, X)
                                  = 0.141                                   = 0.095
         AA(T, R)                                    AA(T, X)
Purity of X against R = (0.095/0.141)*100% =67%
Controlled Purification of Single-Walled Carbon
             Nanotube Films by Use of Selective Oxidation and
                          Near-IR Spectroscopy
              0.12                                    0.12

                                          M11
              0.10                                    0.10

                                  S22
Absorbance




              0.08                                    0.08


              0.06
                      S11                             0.06


              0.04                                    0.04


              0.02
                                          O2-292oC-4h
                                                    0.02


              0.00                                    0.00
                     5000        10000      15000        5000       10000     15000
                                           -1                                 -1
                            Wavenumber (cm )                    Wavenumber (cm )
                             AP-SWNT                         Oxidized SWNT

                            R. Sen, S. M. Rickard, M. E. Itkis, and R. C. Haddon*
                            Chem. Mater. 2003, 15, 4273.
AP-SWNT                                        Oxidized SWNT
              0.08                                                0.08



              0.06                                                0.06




                                                     Absorbance
Absorbance




              0.04                                                0.04
                                 AA(T)=278
              0.02                                                0.02


                                                                                     AA(T)=67
              0.00                                                0.00

             0.008                                            0.008

             0.004                                            0.004
                                AA(S)=17.7
                                                                                    AA(S) =12.8
             0.000                                            0.000
                     8000     9000   10000   11000                       8000     9000   10000    11000
                                             -1                                                   -1
                            Wavenumber (cm )                                    Wavenumber (cm )
                AA(S)/AA(T) = 0.0635                                     AA(S)/AA(T) = 0.191


                                    AA(S, OX)/AA(T, OX)
             Relative Purity (RP) =                     = 3.0
                                    AA(S, AP)/AA(T, AP)
Nitric Acid Purification of
                         Single-Walled Carbon Nanotubes

                   80

                   60         3M/12h
                                       3M/24h
                         AP                     3M/48h 7M/6h
                                                               7M/12h
                                                                                           AP-SWNT
    Weight%




                   40
                                                                        16M/6h
                   20                                                            16M/12h


                    0

                   20
    Weight loss%




                   40
                                                                                           7M/6h
                   60
                              SWNT weight%
                              Metal weight%
                   80
                              Carbonaceous impurities weight%
                   100        Lost Weight%




H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon                                               15M/12h
J. Phys. Chem. B. 2003, 107, 13838.
Extinction coefficient study of single-walled carbon
   nanotubes and other carbonaceous materials

   Solution phase NIR is a powerful tool to assess
    carbonaceous purity of SWNTs.

   Demonstration of the applicability of Beer’s law of
    carbonaceous materials.

  Effective extinction coefficient study of SWNTs and
   carbonaceous materials – a way to estimate the universal
   purity of SWNTs.
Absorptivity of Functionalized
Dissolution of small diameter
                                Single-Walled Carbon Nanotubes
single-wall carbon nanotubes
                                           in Solution
     in organic solvents




    J. A. Bahr, et. al.                 B. Zhou, et. al.
 Chem. Comm. 2001, 193.              JPCB 2003, 107, 13588.
The NIR spectra of carbonaceous materials
              1.0
                    carbon black              MWNT                      AP-SWNT (EA)
              0.8
 Absorbance
              0.6


              0.4


              0.2


              0.0
                    10000 15000 20000 25000   10000 15000 20000 25000   10000 15000 20000 25000 30000



              1.0
                    purified SWNT (EA) AP-SWNT (LO)                     AP-SWNT (HC)
Absorbance




              0.8


              0.6


              0.4


              0.2


              0.0
                    10000 15000 20000 25000   10000 15000 20000 25000    10000 15000 20000 25000 30000

                                                                              -1
                                              Wavenumber (cm )
Electronic structures of SWNTs
                     produced by different methods


                                                           HC
                                                           LO
Absrobance (a.u.)




                                                           EA
                          S11
                    S11

                                            S22
                                                     M11
                    S11               S22
                                                    M11
                                S22
                                              M11

                           1                          2         3
                                      Energy (eV)
Purity of EA prepared SWNTs (against R-SWNT)
      Sample                 AA(S)                  AA(T)                     Purity
                                                                          (% of R-SWNT)
     AP1-EA                   101.9                 1149.5                      63
     AP2-EA                   50.2                   962.2                      37
     AP3-EA                   113.9                  1162                       70
     AP4-EA                   13.7                   892.1                      11
     AP5-EA                   60.4                  1109.8                      39
     AP6-EA                   43.2                   960.1                      32
      P1-EA                   158.5                  971.6                     116
      P2-EA                   252.3                 1348.1                     133
      P3-EA                   208.8                  1304                      113
                                                                                        133
                   140                                                           116           113
                   120
                   100
      Purity (%)




                                               70
                    80       63
                    60                                           39
                                      37                                  32
                    40
                                                        11
                    20
                     0
                                                                           -EA

                                                                                  -EA

                                                                                         -EA
                         A

                                  A

                                           A

                                                    A

                                                             A

                                                                      A
                     1-E

                              2-E

                                       3-E

                                               4-E

                                                         5-E

                                                                  6-E
                                                                          P1

                                                                                 P2

                                                                                        P3
                    AP

                             AP

                                      AP

                                             AP

                                                        AP

                                                                 AP
(a)           (b)




      P1-EA         P2-EA
The purity of LO SWNTs
                              0.20

Method 1:                     0.15
                                       AA(S, R)
                              0.10




                 Absorbance
                              0.05
                                                  AA(B, R)
                              0.00
                                            AA(S, LO)
                              0.15

                              0.10

                              0.05                AA(B, LO)


                              0.00
                                     8000      9000      10000   11000        12000   13000
                                                                         -1
                                                        Wavenumber (cm )
      AA(S, R)                                                         AA(S, LO)
                                            = 0.141                                           = 0.066
 AA(S, R) + AA(B, R)                                              AA(S, LO) + AA(B, LO)


    Purity of LO-SWNT = (0.066/0.141)  100% = 47%
0.20
Method 2:
                           0.15
                                    AA(S, R)
                           0.10

                           0.05


              Absorbance
                                                AA(B, R)
                           0.00
                                         AA(S, LO)
                           0.15

                           0.10

                           0.05                AA(B, LO)


                           0.00
                                  8000      9000      10000   11000        12000   13000
                                                                      -1
                                                     Wavenumber (cm )
       AA(S, R)                                                     AA(S, LO)
                                          = 0.096                                          = 0.046
  AA(S, R) + AA(B, R)                                          AA(S, LO) + AA(B, LO)


     Purity of LO-SWNT = (0.046/0.096)  100% = 48%
Purity of carbonaceous materials (against R-SWNT)


                                 Purity
Sample      AA(S)   AA(T)
                             (% of R-SWNT)
AP1-EA      101.9   1149.5        63
                                                                                                    133
AP2-EA      50.2    962.2         37                      140
                                                                                              116         113
AP3-EA      113.9   1162          70                      120                                                                        101
AP4-EA      13.7    892.1         11
                                                          100




                                             Purity (%)
AP5-EA      60.4    1109.8        39
                                                          80              70                                               66
AP6-EA      43.2    960.1         32                            63                                                   59
                                                          60                                                                    47
P1-EA       158.5   971.6        116                                                39
                                                                     37
P2-EA       252.3   1348.1       133                                                     32
                                                          40
P3-EA       208.8   1304         113                                           11
                                                          20
                                                                                                                1
 AC           1     831.4         <1
                                                           0
 HC         138.5   2127.4      49~69




                                                                                                                      C
                                                              -EA
                                                              -EA
                                                              -EA




                                                                                                                              O
                                                                 A
                                                                 A
                                                                 A
                                                                 A
                                                                 A
                                                                 A




                                                                                                                HC
                                                                                                          AC




                                                                                                                             LO
                                                                                                                     P-H
                                                             1-E
                                                             2-E
                                                             3-E
                                                             4-E
                                                             5-E
                                                             6-E




                                                                                                                           P-L
P-HC        165.2   2078.7      55~76




                                                           P1
                                                           P2
                                                           P3
                                                          AP
                                                          AP
                                                          AP
                                                          AP
                                                          AP
                                                          AP
 LO         62.6    1252.2      48~48
P-LO        85.4    803.8       92~110
0.35


             0.30                            M11

             0.25          S22
Absorbance




             0.20


             0.15


             0.10

                    8000   10000     12000    14000   16000
                                               -1
                                 wavenumber (cm )
0.35


             0.30                                M11

             0.25          S22
Absorbance




             0.20
                           AA(S)
             0.15
                           AA(N)               AA(T)

             0.10          AA(I)
                    8000    10000      12000      14000   16000
                                                  -1
                                   wavenumber (cm )
                      AA(T)=AA(S) + AA(N) + AA(I)
The applicability of Beer’s law of carbonaceous materials



                                            AA
effective spectral absorbance: A =
                                   spectral width of cutoff


                A(T) = A(S) + A(N) + A(I)
                C(T) = C(NS) + C(I)

                A(I) = (I)  C(I)  l
                A(N) = (N)  C(NS)  l
                A(S) = (S)  C(NS)  l
50
                                                                               AP1-EA
                                                                               AP2-EA
                                                                               AP4-EA
                           40
Absorbance/Concentration


                                                                               P1-EA
                                                                               P2-EA

                           30



                           20



                           10



                           0
                           0.00   0.02   0.04      0.06   0.08   0.10   0.12       0.14
                                                Concentration (mg/mL)
50
                                                                               AP1-EA
                                                                               AP2-EA
                                                                               AP4-EA
                           40
Absorbance/Concentration


                                                                               P1-EA
                                                                               P2-EA
                                                                               AC
                           30                                                  CB
                                                                               MWNT



                           20



                           10



                           0
                           0.00   0.02   0.04      0.06   0.08   0.10   0.12       0.14
                                                Concentration (mg/mL)
50
                                                                               AP1-EA
                                                                               AP2-EA
                                                                               AP4-EA
                           40
Absorbance/Concentration


                                                                               P1-EA
                                                                               P2-EA
                                                                               AC
                           30                                                  CB
                                                                               MWNT
                                                                               HC(S11)
                                                                               HC(S22)
                           20                                                  P-HC(S11)
                                                                               P-HC(S22)


                           10



                           0
                           0.00   0.02   0.04      0.06   0.08   0.10   0.12        0.14
                                                Concentration (mg/mL)
50
                                                                               AP1-EA
                                                                               AP2-EA
                                                                               AP4-EA
                           40
Absorbance/Concentration


                                                                               P1-EA
                                                                               P2-EA
                                                                               AC
                           30                                                  CB
                                                                               MWNT
                                                                               HC(S11)
                                                                               HC(S22)
                           20                                                  P-HC(S11)
                                                                               P-HC(S22)
                                                                               LO
                                                                               P-LO
                           10
                                                                               AP-C60
                                                                               P-C60

                           0
                           0.00   0.02   0.04      0.06   0.08   0.10   0.12        0.14
                                                Concentration (mg/mL)
Beer’s Law: A =   C  l

                                                                          C = 0.01mg/mL 8.3  10-4 mol/L
500
                                                                                                                                                    496
                                                                                                                                                                        487
450
                                                                                                                        437
                                                                                           405
400                                                                                                 391
                   345             349                  (S)           (T)                                                              382
                                Sample                                                                                                                      386
350                                                (Lmol-1cm-1) (Lmol-1cm-1)                                               364
                                                                  333
                                AP1-EA                  31                         345
                               289
                                AP2-EA                  15                         289
300                            AP3-EA                   34                288      292
                                                                                   349
                               AP4-EA
                                                     268 4                         268
                               AP5-EA                   18                         333                                                                                             301
250                            AP6-EA                   13                         288
                                                                                                               261
                                P1-EA                   48                         292
                                P2-EA                   76                         405
 200                            P3-EA                   63                         391
                                 AC                     0                         261
 150                             CB                      -                         437
                                MWNT                     -                         364
                                                                                                                                                                                           194
                               HC (S11)                 118                        382
 100                           HC (S22)                       32                   496
                                                                                                                                                                                                    143
                              P-HC (S11)                  129                      386
  50                          P-HC (S22)                      39                    487                                                                   129
                  31             LO                           15                    301                                              118
                                  34
                             15 P-LO                          20                    194 76
      0                                            4          18
                                                                                  48               63
                               AP-C60                          -         13         143
              A

                         A




                                                                                                                                                                                                                 (T)
                                 P-C60                        -                     2
          1-E




                                    A




                                                                                                             0.1
                     2-E




                                               A




                                                                                                                                               32
                                3-E




                                                          A
                                           4-E




                                                                     A




                                                                                                                                                                   39
       AP




                                                      5-E




                                                                            -EA
                  AP




                                                                 6-E




                                                                                     -EA
                             AP




                                                                                             -EA




                                                                                                                                                                                                           2
                                        AP




                                                                                                        AC
                                                   AP




                                                                                                                                                                              15          20
                                                                          P1
                                                              AP




                                                                                                                   CB




                                                                                                                                                                                                               (S)
                                                                                                                          T
                                                                                   P2


                                                                                           P3




                                                                                                                           N


                                                                                                                                   1)


                                                                                                                                            2)


                                                                                                                                                       1)
                                                                                                                        MW


                                                                                                                                (S1




                                                                                                                                                                  2)
                                                                                                                                         (S2


                                                                                                                                                     S1




                                                                                                                                                                         LO
                                                                                                                                                                S2




                                                                                                                                                                                      O
                                                                                                                               HC




                                                                                                                                                 C(




                                                                                                                                                                                               60
                                                                                                                                                                                   P-L
                                                                                                                                        HC




                                                                                                                                                                                                      60
                                                                                                                                                            C(




                                                                                                                                                                                              -C
                                                                                                                                               P-H




                                                                                                                                                                                                     P-C
                                                                                                                                                          P-H




                                                                                                                                                                                           AP
A(T)=A(S) + A(N) + A(I)
                      C(T)=C(NS) + C(I)

                      A(I) = (I)  C(I)
                      A(N) = (N)  C(NS)
                      A(S) = (S)  C(NS)


    A(T) = (I)  C(I) + [(N) + (S)]  C(NS)



 A(T) = (I)  C(T) + [(N) + (S) – (I)]  (S) -1  A(S)

the intercept is (I)  C(T)
the gradient is [(N) + (S) – (I)]  (S) -1.
0.34


       0.32


       0.30

A(T)
       0.28


       0.26


       0.24


       0.22

          0.00     0.01   0.02   0.03   0.04   0.05   0.06   0.07
                                    A(S)

        C = 0.01mg/mL 8.3  10-4 mol/L


                 (I) = 270  10 L mol-1 cm-1
the gradient is [(N) + (S) – (I)]  (S) -1  2




   (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
Conclusion

 Solution phase NIR is a powerful tool to assess
  carbonaceous purity of SWNTs.

 The Effective extinction coefficient of EA produced
  SWNTs falls in the range of 268 ~ 391 L mol-1 cm-1 .

 The effective extinction coefficient of carbonaceous
  impurities in SWNTs is 270  10 L mol-1 cm-1 (calculation).

 The relationship of extinction coefficient of carbonaceous
  contents in EA-SWNTs is:
  (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
Acknowledgement

Haddon research group


Dr. Robert C. Haddon (advisor)

Dr. Mikhail E. Itkis
    Hui Hu
Dr. Rahul Sen

Daniel Perea
Sandip Niyogi
Dr. Elena Bekyarova
James Love
Jingtao Zhang
Shawna M. Rickard

Contenu connexe

Tendances

MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Bostonbmazumder
 
Brilliant Polymer Scientist-Nantes-2011
Brilliant Polymer Scientist-Nantes-2011Brilliant Polymer Scientist-Nantes-2011
Brilliant Polymer Scientist-Nantes-2011malcolmmackley
 
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...thinfilmsworkshop
 
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...grssieee
 
IGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdfIGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdfgrssieee
 
Km lux-99-100 k-200k
Km lux-99-100 k-200kKm lux-99-100 k-200k
Km lux-99-100 k-200kangelochintu
 
A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry  A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry Younes Sina
 
Energy conversion
Energy conversionEnergy conversion
Energy conversionSaif Azhar
 
Passive, Wireless SAW OFC Strain Sensor
Passive, Wireless SAW OFC Strain SensorPassive, Wireless SAW OFC Strain Sensor
Passive, Wireless SAW OFC Strain SensorJames_Humphries
 
2010 CRC Showcase - Performance - Ballast Design R3.106
2010 CRC Showcase - Performance - Ballast Design R3.1062010 CRC Showcase - Performance - Ballast Design R3.106
2010 CRC Showcase - Performance - Ballast Design R3.106CRC for Rail Innovation
 
Uo2 samples exposed to jh device (1)
Uo2 samples exposed to jh device (1)Uo2 samples exposed to jh device (1)
Uo2 samples exposed to jh device (1)John Hutchison
 
Five Years of Land Surface Phenology in an Arctic Landscape
Five Years of Land Surface Phenology in an Arctic LandscapeFive Years of Land Surface Phenology in an Arctic Landscape
Five Years of Land Surface Phenology in an Arctic LandscapeSantonu Goswami
 

Tendances (19)

Scintillator materials for gamma ray spectroscopy cherepy forexternal
Scintillator materials for gamma ray spectroscopy cherepy forexternalScintillator materials for gamma ray spectroscopy cherepy forexternal
Scintillator materials for gamma ray spectroscopy cherepy forexternal
 
CNT Nantes- 2011
CNT Nantes- 2011CNT Nantes- 2011
CNT Nantes- 2011
 
Llnl Presentation 1 Apr 10
Llnl Presentation 1 Apr 10Llnl Presentation 1 Apr 10
Llnl Presentation 1 Apr 10
 
MRS fall meeting 2009, Boston
MRS fall meeting 2009, BostonMRS fall meeting 2009, Boston
MRS fall meeting 2009, Boston
 
Brilliant Polymer Scientist-Nantes-2011
Brilliant Polymer Scientist-Nantes-2011Brilliant Polymer Scientist-Nantes-2011
Brilliant Polymer Scientist-Nantes-2011
 
Sebastian
SebastianSebastian
Sebastian
 
Diodo
DiodoDiodo
Diodo
 
Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012Weinstock - Quantum Electronic Solids - Spring Review 2012
Weinstock - Quantum Electronic Solids - Spring Review 2012
 
Session 68 Björn Birgisson
Session 68 Björn BirgissonSession 68 Björn Birgisson
Session 68 Björn Birgisson
 
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
Antoine - Enhancement of First Penetration Field in Superconducting Multi-lay...
 
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
PriorInformationSupportedAerosolOpticalDepthRetrievalUsingGeostationarySatell...
 
IGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdfIGARSS11 End-to-end calibration v2.pdf
IGARSS11 End-to-end calibration v2.pdf
 
Km lux-99-100 k-200k
Km lux-99-100 k-200kKm lux-99-100 k-200k
Km lux-99-100 k-200k
 
A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry  A presentation by Younes Sina: Backscattering spectrometry
A presentation by Younes Sina: Backscattering spectrometry
 
Energy conversion
Energy conversionEnergy conversion
Energy conversion
 
Passive, Wireless SAW OFC Strain Sensor
Passive, Wireless SAW OFC Strain SensorPassive, Wireless SAW OFC Strain Sensor
Passive, Wireless SAW OFC Strain Sensor
 
2010 CRC Showcase - Performance - Ballast Design R3.106
2010 CRC Showcase - Performance - Ballast Design R3.1062010 CRC Showcase - Performance - Ballast Design R3.106
2010 CRC Showcase - Performance - Ballast Design R3.106
 
Uo2 samples exposed to jh device (1)
Uo2 samples exposed to jh device (1)Uo2 samples exposed to jh device (1)
Uo2 samples exposed to jh device (1)
 
Five Years of Land Surface Phenology in an Arctic Landscape
Five Years of Land Surface Phenology in an Arctic LandscapeFive Years of Land Surface Phenology in an Arctic Landscape
Five Years of Land Surface Phenology in an Arctic Landscape
 

Similaire à 227th ACS BZ Oral Presentation

Carbon International Conference 2007 Bin Zhao Oral Presentation
Carbon International Conference  2007   Bin Zhao Oral PresentationCarbon International Conference  2007   Bin Zhao Oral Presentation
Carbon International Conference 2007 Bin Zhao Oral Presentationbinzhao2004
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-ReyesReenergize
 
Description Of Research
Description Of ResearchDescription Of Research
Description Of Researchnncheng
 
Vaneet Sharma Carbon Nanotubes
Vaneet Sharma  Carbon NanotubesVaneet Sharma  Carbon Nanotubes
Vaneet Sharma Carbon Nanotubesvsharma78
 
Light sensor (on when dark)
Light sensor (on when dark)Light sensor (on when dark)
Light sensor (on when dark)MrTalha
 
Younes Sina, Backscattering spectrometry
Younes Sina, Backscattering spectrometry  Younes Sina, Backscattering spectrometry
Younes Sina, Backscattering spectrometry Younes Sina
 
Thesis Presentation
Thesis PresentationThesis Presentation
Thesis PresentationEABennett79
 
Synthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresSynthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresMartial Duchamp
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnologyStar Gold
 
KTubeTech.com-poster1
KTubeTech.com-poster1KTubeTech.com-poster1
KTubeTech.com-poster1ktubetech
 
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research CenterSensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research CenterBusiness Turku
 
Chennai edc manual
Chennai edc manualChennai edc manual
Chennai edc manualpurushine
 
Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...
Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...
Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...Xin Jin
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003Nityanand Gopalika
 
My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.Gururaj M. Shivashimpi
 
Nano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarNano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarEngr Mansoor Mirza
 
Class 1: The Fundamental of Designing with Semiconductors
Class 1: The Fundamental of Designing with SemiconductorsClass 1: The Fundamental of Designing with Semiconductors
Class 1: The Fundamental of Designing with SemiconductorsAnalog Devices, Inc.
 

Similaire à 227th ACS BZ Oral Presentation (20)

Carbon International Conference 2007 Bin Zhao Oral Presentation
Carbon International Conference  2007   Bin Zhao Oral PresentationCarbon International Conference  2007   Bin Zhao Oral Presentation
Carbon International Conference 2007 Bin Zhao Oral Presentation
 
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes2012 Reenergize the Americas 2B: Miguel Velez-Reyes
2012 Reenergize the Americas 2B: Miguel Velez-Reyes
 
Velez reyes 2 b
Velez reyes 2 bVelez reyes 2 b
Velez reyes 2 b
 
Description Of Research
Description Of ResearchDescription Of Research
Description Of Research
 
Radiation detectors
Radiation detectorsRadiation detectors
Radiation detectors
 
Vaneet Sharma Carbon Nanotubes
Vaneet Sharma  Carbon NanotubesVaneet Sharma  Carbon Nanotubes
Vaneet Sharma Carbon Nanotubes
 
Light sensor (on when dark)
Light sensor (on when dark)Light sensor (on when dark)
Light sensor (on when dark)
 
Younes Sina, Backscattering spectrometry
Younes Sina, Backscattering spectrometry  Younes Sina, Backscattering spectrometry
Younes Sina, Backscattering spectrometry
 
Thesis Presentation
Thesis PresentationThesis Presentation
Thesis Presentation
 
Synthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO NanowiresSynthesis And Characterization Of Individual ZnO Nanowires
Synthesis And Characterization Of Individual ZnO Nanowires
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
KTubeTech.com-poster1
KTubeTech.com-poster1KTubeTech.com-poster1
KTubeTech.com-poster1
 
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research CenterSensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
Sensor Research in NASA, Director Meyya Meyyappan, NASA Ames Research Center
 
Chennai edc manual
Chennai edc manualChennai edc manual
Chennai edc manual
 
Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...
Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...
Sodium-Manganese Oxide Electrode Materials for Aqueous Electrochemical Energy...
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.My oral presentation at JCS spring meeting-2012, Tokyo.
My oral presentation at JCS spring meeting-2012, Tokyo.
 
CHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALSCHEMISTRY OF NANOSCALE MATERIALS
CHEMISTRY OF NANOSCALE MATERIALS
 
Nano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed AnwarNano Tech Lecture2 Dr. A. Waheed Anwar
Nano Tech Lecture2 Dr. A. Waheed Anwar
 
Class 1: The Fundamental of Designing with Semiconductors
Class 1: The Fundamental of Designing with SemiconductorsClass 1: The Fundamental of Designing with Semiconductors
Class 1: The Fundamental of Designing with Semiconductors
 

Dernier

TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 

Dernier (20)

TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 

227th ACS BZ Oral Presentation

  • 1. Extinction Coefficients and Purity of Single-walled Carbon Nanotubes Bin Zhao Haddon Research Group Departments of Chemistry and Chemical & Environmental Engineering Center for Nanoscale Science and Engineering University of California, Riverside
  • 2. Applications of Carbon nanotubes the needs of high purity High strength light weight composites Nano-electronic devices carbon nanotubes AFM probes biology Hydrogen storage fuel cells Field emission devices
  • 3. a b Purity evaluation by using electron microscopy (SEM) Give non-quantitative evaluation of the purity of SWNTs. c Detect samples at 10-12 gram scale.
  • 4. Energy of Interband transition of SWNTs M11 1 S22 energy (eV) 0 Semiconducting S11 S11 S22 SWNTs Absorbance AA(N) -1 DOS (a.u.) AA(I) 1 energy (eV) metallic 0 M11 SWNTs -1 DOS (a.u.) AA(S) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 (eV)
  • 5. Solution phase near-IR spectra of SWNT samples 0.40 a 0.35 b 0.30 Absorbance 0.25 c 0.20 0.15 0.10 0.05 0.00 8000 10000 12000 14000 16000 18000 -1 Wavenumber (cm )
  • 6. Purity Evaluation of As-Prepared Single-Walled Carbon Nanotube Soot by Use of Solution-Phase Near-IR Spectroscopy reference sample (R) M. E. Itkis, D. E. Perea, S. Niyogi, S. M. Rickard, M. A. Hamon, H.Hu, B. Zhao, and R. C. Haddon* Nano lett. 2003, 3, 309.
  • 7. 0.1 R X AA(S,R) AA(S,X) Absorbance 0.0 0.4 AA(T,X) AA(T,R) 0.2 SWNTs: 67% REFERENCE (R) CARBONACEOUS IMPURITIES: 33% 0.0 8000 10000 12000 8000 10000 12000 -1 Wavenumber (cm ) AA(S, R) AA(S, X) = 0.141 = 0.095 AA(T, R) AA(T, X) Purity of X against R = (0.095/0.141)*100% =67%
  • 8. Controlled Purification of Single-Walled Carbon Nanotube Films by Use of Selective Oxidation and Near-IR Spectroscopy 0.12 0.12 M11 0.10 0.10 S22 Absorbance 0.08 0.08 0.06 S11 0.06 0.04 0.04 0.02 O2-292oC-4h 0.02 0.00 0.00 5000 10000 15000 5000 10000 15000 -1 -1 Wavenumber (cm ) Wavenumber (cm ) AP-SWNT Oxidized SWNT R. Sen, S. M. Rickard, M. E. Itkis, and R. C. Haddon* Chem. Mater. 2003, 15, 4273.
  • 9. AP-SWNT Oxidized SWNT 0.08 0.08 0.06 0.06 Absorbance Absorbance 0.04 0.04 AA(T)=278 0.02 0.02 AA(T)=67 0.00 0.00 0.008 0.008 0.004 0.004 AA(S)=17.7 AA(S) =12.8 0.000 0.000 8000 9000 10000 11000 8000 9000 10000 11000 -1 -1 Wavenumber (cm ) Wavenumber (cm ) AA(S)/AA(T) = 0.0635 AA(S)/AA(T) = 0.191 AA(S, OX)/AA(T, OX) Relative Purity (RP) = = 3.0 AA(S, AP)/AA(T, AP)
  • 10. Nitric Acid Purification of Single-Walled Carbon Nanotubes 80 60 3M/12h 3M/24h AP 3M/48h 7M/6h 7M/12h AP-SWNT Weight% 40 16M/6h 20 16M/12h 0 20 Weight loss% 40 7M/6h 60 SWNT weight% Metal weight% 80 Carbonaceous impurities weight% 100 Lost Weight% H. Hu, B. Zhao, M. E. Itkis and R. C. Haddon 15M/12h J. Phys. Chem. B. 2003, 107, 13838.
  • 11. Extinction coefficient study of single-walled carbon nanotubes and other carbonaceous materials  Solution phase NIR is a powerful tool to assess carbonaceous purity of SWNTs.  Demonstration of the applicability of Beer’s law of carbonaceous materials.  Effective extinction coefficient study of SWNTs and carbonaceous materials – a way to estimate the universal purity of SWNTs.
  • 12. Absorptivity of Functionalized Dissolution of small diameter Single-Walled Carbon Nanotubes single-wall carbon nanotubes in Solution in organic solvents J. A. Bahr, et. al. B. Zhou, et. al. Chem. Comm. 2001, 193. JPCB 2003, 107, 13588.
  • 13. The NIR spectra of carbonaceous materials 1.0 carbon black MWNT AP-SWNT (EA) 0.8 Absorbance 0.6 0.4 0.2 0.0 10000 15000 20000 25000 10000 15000 20000 25000 10000 15000 20000 25000 30000 1.0 purified SWNT (EA) AP-SWNT (LO) AP-SWNT (HC) Absorbance 0.8 0.6 0.4 0.2 0.0 10000 15000 20000 25000 10000 15000 20000 25000 10000 15000 20000 25000 30000 -1 Wavenumber (cm )
  • 14. Electronic structures of SWNTs produced by different methods HC LO Absrobance (a.u.) EA S11 S11 S22 M11 S11 S22 M11 S22 M11 1 2 3 Energy (eV)
  • 15. Purity of EA prepared SWNTs (against R-SWNT) Sample AA(S) AA(T) Purity (% of R-SWNT) AP1-EA 101.9 1149.5 63 AP2-EA 50.2 962.2 37 AP3-EA 113.9 1162 70 AP4-EA 13.7 892.1 11 AP5-EA 60.4 1109.8 39 AP6-EA 43.2 960.1 32 P1-EA 158.5 971.6 116 P2-EA 252.3 1348.1 133 P3-EA 208.8 1304 113 133 140 116 113 120 100 Purity (%) 70 80 63 60 39 37 32 40 11 20 0 -EA -EA -EA A A A A A A 1-E 2-E 3-E 4-E 5-E 6-E P1 P2 P3 AP AP AP AP AP AP
  • 16. (a) (b) P1-EA P2-EA
  • 17. The purity of LO SWNTs 0.20 Method 1: 0.15 AA(S, R) 0.10 Absorbance 0.05 AA(B, R) 0.00 AA(S, LO) 0.15 0.10 0.05 AA(B, LO) 0.00 8000 9000 10000 11000 12000 13000 -1 Wavenumber (cm ) AA(S, R) AA(S, LO) = 0.141 = 0.066 AA(S, R) + AA(B, R) AA(S, LO) + AA(B, LO) Purity of LO-SWNT = (0.066/0.141)  100% = 47%
  • 18. 0.20 Method 2: 0.15 AA(S, R) 0.10 0.05 Absorbance AA(B, R) 0.00 AA(S, LO) 0.15 0.10 0.05 AA(B, LO) 0.00 8000 9000 10000 11000 12000 13000 -1 Wavenumber (cm ) AA(S, R) AA(S, LO) = 0.096 = 0.046 AA(S, R) + AA(B, R) AA(S, LO) + AA(B, LO) Purity of LO-SWNT = (0.046/0.096)  100% = 48%
  • 19. Purity of carbonaceous materials (against R-SWNT) Purity Sample AA(S) AA(T) (% of R-SWNT) AP1-EA 101.9 1149.5 63 133 AP2-EA 50.2 962.2 37 140 116 113 AP3-EA 113.9 1162 70 120 101 AP4-EA 13.7 892.1 11 100 Purity (%) AP5-EA 60.4 1109.8 39 80 70 66 AP6-EA 43.2 960.1 32 63 59 60 47 P1-EA 158.5 971.6 116 39 37 P2-EA 252.3 1348.1 133 32 40 P3-EA 208.8 1304 113 11 20 1 AC 1 831.4 <1 0 HC 138.5 2127.4 49~69 C -EA -EA -EA O A A A A A A HC AC LO P-H 1-E 2-E 3-E 4-E 5-E 6-E P-L P-HC 165.2 2078.7 55~76 P1 P2 P3 AP AP AP AP AP AP LO 62.6 1252.2 48~48 P-LO 85.4 803.8 92~110
  • 20. 0.35 0.30 M11 0.25 S22 Absorbance 0.20 0.15 0.10 8000 10000 12000 14000 16000 -1 wavenumber (cm )
  • 21. 0.35 0.30 M11 0.25 S22 Absorbance 0.20 AA(S) 0.15 AA(N) AA(T) 0.10 AA(I) 8000 10000 12000 14000 16000 -1 wavenumber (cm ) AA(T)=AA(S) + AA(N) + AA(I)
  • 22. The applicability of Beer’s law of carbonaceous materials AA effective spectral absorbance: A = spectral width of cutoff A(T) = A(S) + A(N) + A(I) C(T) = C(NS) + C(I) A(I) = (I)  C(I)  l A(N) = (N)  C(NS)  l A(S) = (S)  C(NS)  l
  • 23. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA 30 20 10 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  • 24. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA AC 30 CB MWNT 20 10 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  • 25. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA AC 30 CB MWNT HC(S11) HC(S22) 20 P-HC(S11) P-HC(S22) 10 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  • 26. 50 AP1-EA AP2-EA AP4-EA 40 Absorbance/Concentration P1-EA P2-EA AC 30 CB MWNT HC(S11) HC(S22) 20 P-HC(S11) P-HC(S22) LO P-LO 10 AP-C60 P-C60 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Concentration (mg/mL)
  • 27. Beer’s Law: A =   C  l C = 0.01mg/mL 8.3  10-4 mol/L 500 496 487 450 437 405 400 391 345 349  (S)  (T) 382 Sample 386 350 (Lmol-1cm-1) (Lmol-1cm-1) 364 333 AP1-EA 31 345 289 AP2-EA 15 289 300 AP3-EA 34 288 292 349 AP4-EA 268 4 268 AP5-EA 18 333 301 250 AP6-EA 13 288 261 P1-EA 48 292 P2-EA 76 405 200 P3-EA 63 391 AC 0 261 150 CB - 437 MWNT - 364 194 HC (S11) 118 382 100 HC (S22) 32 496 143 P-HC (S11) 129 386 50 P-HC (S22) 39 487 129 31 LO 15 301 118 34 15 P-LO 20 194 76 0 4 18 48 63 AP-C60 - 13 143 A A (T) P-C60 - 2 1-E A 0.1 2-E A 32 3-E A 4-E A 39 AP 5-E -EA AP 6-E -EA AP -EA 2 AP AC AP 15 20 P1 AP CB (S) T P2 P3 N 1) 2) 1) MW (S1 2) (S2 S1 LO S2 O HC C( 60 P-L HC 60 C( -C P-H P-C P-H AP
  • 28. A(T)=A(S) + A(N) + A(I) C(T)=C(NS) + C(I) A(I) = (I)  C(I) A(N) = (N)  C(NS) A(S) = (S)  C(NS) A(T) = (I)  C(I) + [(N) + (S)]  C(NS) A(T) = (I)  C(T) + [(N) + (S) – (I)]  (S) -1  A(S) the intercept is (I)  C(T) the gradient is [(N) + (S) – (I)]  (S) -1.
  • 29. 0.34 0.32 0.30 A(T) 0.28 0.26 0.24 0.22 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 A(S) C = 0.01mg/mL 8.3  10-4 mol/L (I) = 270  10 L mol-1 cm-1
  • 30. the gradient is [(N) + (S) – (I)]  (S) -1  2 (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
  • 31. Conclusion  Solution phase NIR is a powerful tool to assess carbonaceous purity of SWNTs.  The Effective extinction coefficient of EA produced SWNTs falls in the range of 268 ~ 391 L mol-1 cm-1 .  The effective extinction coefficient of carbonaceous impurities in SWNTs is 270  10 L mol-1 cm-1 (calculation).  The relationship of extinction coefficient of carbonaceous contents in EA-SWNTs is: (N)  (S) + (I) = (S) + 270 L mol-1 cm-1
  • 32. Acknowledgement Haddon research group Dr. Robert C. Haddon (advisor) Dr. Mikhail E. Itkis Hui Hu Dr. Rahul Sen Daniel Perea Sandip Niyogi Dr. Elena Bekyarova James Love Jingtao Zhang Shawna M. Rickard