SlideShare a Scribd company logo
1 of 23
Download to read offline
Review of Tm and Ho Materials;
    Spectroscopy and Lasers


                        Brian M. Walsh
                       Norman P. Barnes
                   NASA Langley Research Center
                     Hampton, VA 23681 USA



  Laser Physics Workshop - Trondheim, Norway (June 30 - July 4, 2008)
National Aeronautics and        Laser Physics Workshop
Space Administration       Trondheim, Norway (June/July 2008)
Prelude

“Lanthanum has only one oxidation state, the +3 state. With
few exceptions, this tells the whole boring story about the
other 14 lanthanides.”

G.C. Pimentel & R.D. Sprately,
quot;Understanding Chemistryquot;,
Holden-Day, 1971, p. 862




                So much for ‘Understanding Chemistry’…
                Let’s do some physics!

National Aeronautics and        Laser Physics Workshop
Space Administration       Trondheim, Norway (June/July 2008)
NASA - Laser Material Research
Activity                           Input                               Results
 Quantum                      X-ray data and                  Energy levels, transition
 Mechanics                    refractive index                probabilities, ET parameters

                           Materials meeting requirements

                             Small spectroscopic              Cross sections, lifetimes,
Spectroscopy                 Samples - inexpensive            energy levels, ET parameters


                              Best Materials Only


                             Laser quality samples                 Laser demonstration,
Laser research
                             (rods, discs, fibers                   modeling


National Aeronautics and           Laser Physics Workshop
Space Administration          Trondheim, Norway (June/July 2008)
Remote Sensing Applications

4X                           DIAL: CO2
                             Backscatter Lidar: Aerosols/Clouds


     2 Micrometer
         laser             Coherent Winds:
                      Lower Troposphere & clouds



                                          3X
                                        Noncoherent Winds:
                                          Mid/Upper Atmosphere

     1 Micrometer
                               2X                 Altimetry:
         laser                                 Surface Mapping
                                                Oceanography


                               2X                  OPO
                                                                 DIAL: Ozone
                                                                 Backscatter Lidar: Aerosols/Clouds

National Aeronautics and                 Laser Physics Workshop
Space Administration                Trondheim, Norway (June/July 2008)
Quasi-4-Level Lasers
 It looks like a three level laser, but behaves more nearly like a 4-level laser!
                                  E3                                    E4
                                                   relaxation                        relaxation
                                  E2                                    E3
3-level example:
Cr:Al2O3 - Ruby
2E → 4A (0.69 µm)
         2                             pump                     laser        pump                 laser
4-level example:
Nd:Y3Al5O12 - YAG
   3/2 → I9/2 (1.064 µm)
4F      4                                                               E2
                                                                                     relaxation
                                  E1                                    E1
Quasi-4-level Examples:                  (a) Three level laser                  (b) Four level laser


                                  g0 = ! e $quot; Nu # ( quot; # 1) C A Ns &
                                           %                       '         (small signal gain)
Nd: 4I3/2 → 4I9/2 (~ 0.94 µm)
Yb: 2F5/2 → 2F7/2 (~ 1.0 µm)                  fl      γ = 2 for true 3-level-laser
                                  ! = 1+
Er: 4I13/2 → 4I15/2 (~ 1.5 µm)                fu      γ = 1 for true 4-level-laser
Tm: 3F4 → 3H6 (~1.9 µm)
                                   Criteria: γ < 1.5; Laser is quasi-4-level
Ho: 5I7 → 5I8 (~ 2.0 µm)
                                             γ >1.5; Laser is quasi-3-level
National Aeronautics and         Laser Physics Workshop
Space Administration        Trondheim, Norway (June/July 2008)
Dipole-dipole Energy transfer
Dexter averages over dipole orientation, integrates over distances
                             PSA = CDA/R6
Real situation: orientation and distance set by crystal lattice
                                             z          N.P. Barnes, et al.,
                                                        IEEE JQE, 32, 92 (1996)
               z
                                                  ra
                                                                 y
                            R
          rs
                            y      x

  x                    rs • ra - 3 (ra• R )( rs• R )/ R2
National Aeronautics and         Laser Physics Workshop
Space Administration        Trondheim, Norway (June/July 2008)
Energy Transfer: Tm-Tm, Ho-Ho




               Tm-Tm Energy transfer                       Ho-Ho Energy transfer
             B.M. Walsh, N.P. Barnes, et al.,             N.P. Barnes, B.M. Walsh, et al.,
             J. Non-Cryst. Sol., 352, 5344 (2006)         J. Opt. Soc. Am. B, 20, 1212 (2003)

National Aeronautics and              Laser Physics Workshop
Space Administration             Trondheim, Norway (June/July 2008)
Energy Transfer: Tm-Ho
                    16000                                             3F       5F
                                                                        3        5
                                                                      3F
                    14000                                                2
                                                                               5I
                            4                                         3H            4
                                                                         4
                    12000                                                      5I
                                                                                    5                                         5
                                         P 41 P 22                   !4
                                                                                                                         !5
   Energy (cm-1 )




                    10000                                                                                    P 27 P 51
                                                                      3H       5I                                             6
                            3                                              5        6
                    8000
                                                 P 38 P 61           !3                          P 38 P 61               !6
                    6000    2                                         3F
                                                                        4      5I                                             7
                                                                                    7
                    4000
                                P 28 P 71 P 41 P 22      P 27 P 51   !2                  P 28 P 71                       !7
                    2000

                            1                                         3H        5I                                            8
                     0                                                     6         8
                                                 Tm3+                                                    Ho3+
                                                             Tm-Ho Energy transfer
                                        B.M. Walsh, N.P. Barnes, et al., J. Appl Phys., 95, 3255 (2004)

National Aeronautics and                              Laser Physics Workshop
Space Administration                             Trondheim, Norway (June/July 2008)
Decay of Tm 3F4 and Ho 5I7
                                                Excitation of Tm 3F4 manifold
                                     Short times: energy transfer                                                         Long times: thermalization

                         1.0                                                                                  1.0

                                                                                                                                                                   Ho:YAG decay
                                                                                                                                                                   Tm:YAG decay
                         0.8                                                                                  0.8
Normalized intensity




                                                                                       Normalized intensity
                         0.6                                                                                  0.6



                         0.4                                                                                  0.4



                         0.2                                      Ho:YAG decay                                0.2
                                                                  Tm:YAG decay


                         0.0                                                                                  0.0
                               0.0        0.5       1.0          1.5             2.0                                0.0   5.0   10.0   15.0      20.0     25.0   30.0   35.0      40.0
                                                 Time (ms)                                                                                    Time (ms)



                       National Aeronautics and                   Laser Physics Workshop
                       Space Administration                  Trondheim, Norway (June/July 2008)
Forward and Backward transfer
  P28/P71 = [Z7T Z1T/Z2T Z8T] exp[(E2ZL - E7ZL)/kT]

                                                                          E2

                                E7

                                E7ZL                                      E2ZL



             P28        P71                                  P28    P71




                                                                          E1

                                E8
                   Ho                                              Tm
National Aeronautics and           Laser Physics Workshop
Space Administration          Trondheim, Norway (June/July 2008)
Laser Modeling
                 • Useful tool
                       - Predicting and diagnosing laser performance
                       - Understanding the physics
                 • Rate equation approach
                       - Coupled set of complex equations
                       - Laser simulation on the computer
                 • Many parameters needed
                       - Laser parameters
                       - Spectroscopic parameters
                       - Quantum Mechanical Model
                 • Modeling of pulsed Tm:Ho lasers
                       - Agrees reasonably well with experiment

National Aeronautics and           Laser Physics Workshop
Space Administration          Trondheim, Norway (June/July 2008)
Rate Equation Approach
                                                  N g + N2 = N t
 (See O. Svelto, “Principles of Lasers”)
                                                  dN 2                   N
                                                       = Wp N g ! BqN 2 ! 2
                                                   dt                     quot;
N3                            fast decay          dq                q
                                                       = Va BqN 2 !
                N2                                dt                quot;c
                                              Nt = total density of laser atoms (1/cm3)
          pump                   laser        Ni = population density of states (1/cm3)
                                              τ = spontaneous lifetime of level 2 (s)
                 N1                           τc = lifetime of photons in the resonator (s)
                                              Va = laser-active volume (cm3)
                            fast decay
Ng                                            Wp = pump rate from g to 3 (1/s)
                                              B = Stimulated emission coefficient (1/s)
                                              q = number of photons in cavity (no units)


 National Aeronautics and          Laser Physics Workshop
 Space Administration         Trondheim, Norway (June/July 2008)
Coupled Rate Eqns. - Tm:Ho Model
  dn1                                        n      (
       = !R p #1 ! exp(!quot; a !n1 ) % + 2 + 41 n 4 + n 2 n 8 p 28 ! n 7 n1p 71 ! n 4 n1p 41 + n 2 p 22
                $                       & '2 '4                                                   2
   dt
       +n 2 n 7 p 27 ! n 5 n1p 51 ! n 6 n1p 61 + n 3n 8 p 38
  dn 2     n        (          (
       = ! 2 + 32 n 3 + 42 n 4 ! n 2 n 8 p 28 + n 7 n1p 71 + 2n 4 n1p 41 ! 2n 2 p 22 ! n 2 n 7 p 27 + n 5 n1p 51
   dt      '2 '3                '4                                            2


  dn 3       n 3 ( 43
         =!      +     n + n 6 n1p 61 ! n 3n 8 p 38
   dt        '3 '4 4
  dn 4                                     n
         = R p #1 ! exp(!quot; a !n1 ) % ! 4 ! n 4 n1p 41 + n 2 p 22
               $                      & '4                     2
   dt
  dn 5       n
         = ! 5 + n 2 n 7 p 27 ! n 5 n1p 51
   dt        '5
  dn 6       n     (
         = ! 6 + 56 n 5 ! n 6 n1p 61 + n 3n 8 p 38
   dt        '6 '5
  dn 7       n     (           (
         = ! 7 + 67 n 6 + 57 n 5 + n 2 n 8 p 28 ! n 7 n1p 71 ! n 2 n 7 p 27 + n 5 n1p 51 ! quot; se (f7 n 7 ! f8 n 8 ))
   dt        '7 '6             '5
  dn 8       n
         = ! 7 ! n 2 n 8 p 28 + n 7 n1p 71 + quot; se (f7 n 7 ! f8 n 8 ))
   dt        '7
   d)    )                                       n
      = ! + c ! quot; se (f7 n 7 ! f8 n 8 )) + c ! 7 B
   dt    'c  Lopt                           Lopt ' 7

National Aeronautics and                       Laser Physics Workshop
Space Administration                      Trondheim, Norway (June/July 2008)
Spectroscopic Parameters
                             0.40                                                                                                          1.2
                                                                                           Tm:YLF                                                                                         Ho:YLF                                level    I.R. E (exp.)    E (theo.)    !E       level   I.R. E (exp.)   E (theo.)   !E
                                                                                           Tm:LuLF                                                                                        Ho:LuLF                                             (cm-1)      (cm-1)       (cm-1)                (cm-1)     (cm-1)      (cm-1)
                                                                                                                                          1.00                                                                                           quot;3,4 0                                         quot;2
Cross Section (x10-20 cm2)




                                                                                                             Cross Section (x10-20 cm2)
                                                                                                                                                                                                                                1                         0            0        14           5157.1     5157.5      0.4
                             0.30                                                                                                                                                                                               2        quot;2   7.5         6.1          0.4      15      quot;3,4 5161.5     5161.1      0.4
                                                                                                                                                                                                                                3        quot;2   27.6        26.9         0.7      16      quot;1   5167.0     5167.4      0.4
                                                                                                                                          0.80
                                                                                                                                                                                                                                4        quot;1   47.2        48.2         1.0      17      quot;2   5168.6     5169.5      0.9
                                                                                                                                                                                                                                5        quot;1   57.8        55.1         2.7      18      quot;3,4 5190.6     5189.4      0.6
                             0.20                                                                                                         0.60                                                                                           quot;3,4 76.2                                      quot;1
                                                                                                                                                                                                                                6                         77.8         1.6      19           5211.7     5210.1      1.6
                                                                                                                                                                                                                                7        quot;1   222.0       222.1        0.1      20      quot;3,4 5229.6     5233.4      3.8
                                                                                                                                                                                                                                8        quot;1   -           279.7        -        21      quot;2   5235.3     5239.1      3.8
                                                                                                                                          0.40
                                                                                                                                                                                                                                9        quot;3,4 -           284.9        -        22      quot;2   5295.0     5295.2      0.2
                             0.10
                                                                                                                                                                                                                                10       quot;2   -           288.9        -        23      quot;3,4 5299.1     5297.3      1.2
                                                                                                                                          0.20                                                                                  11       quot;1   -           305.1        -        24      quot;1   5301.6     5298.2      2.4
                                                                                                                                                                                                                                12       quot;3,4 315.0       315.6        0.6
                              0.0                                                                                                                                                                                               13       quot;2   332.0       333.7        1.7
                                                                                                                                           0.0
                                    740   750   760   770    780   790   800   810   820    830      840                                         1850   1900   1950    2000     2050   2100     2150
                                                            Wavelength (nm)                                                                                       Wavelength (nm)


                                   Pump absorption                                                                                                   Laser emission                                                                         Energy Levels
                               (absorption cross section)                                                                                        (emission cross section)                                                                (Thermal population)
                                                                                                                                                                                                                               1.0
                                                                                                                                                                                                                                                                                                           Ho:YLF
                                                                                                                                                                                                                                                                  Ho: 5I7 ! 5I8 decay                      Ho:YAG
                                                                                                                                                                                                                              0.80




                                                                                                                                                                                                       Normalized Intensity
                                                                                                                                                                                                                              0.60


                                                                                                                                                                                                                              0.40


                                                                                                                                                                                                                              0.20


                                                                                                                                                                                                                               0.0
                                                                                                                                                                                                                                     0       10          20       30        40      50            60        70        80
                                                                                                                                                                                                                                                                          Time (ms)


                                                                           Judd-Ofelt Analysis                                                                                                                                       Decay Dynamics
                                                                   (Radiative lifetime, branching ratios)                                                                                                                        (ET parameters, lifetimes)

                                National Aeronautics and                                                        Laser Physics Workshop
                                Space Administration                                                       Trondheim, Norway (June/July 2008)
Laser Parameters
                                              Laser crystal
                                                                     Pumped volume


        M1                                                                                   M2

                                                      l
          Laser mode volume                                          Active volume of the laser

     1       L   quot;    quot;
Va = 2    # # #
                                    2             The volume of the laser mode that spatially overlaps
                           E(x, y, z) dxdydz      with the pumped volume in the laser medium
    E0     0     !quot;   !quot;


 1    c                        The cavity photon lifetime that accounts for the removal of
   =       ln(R m R L )
! c 2L opt                     photons due to mirror losses and internal losses.




National Aeronautics and                Laser Physics Workshop
Space Administration               Trondheim, Norway (June/July 2008)
Tm:Ho:YLF/LuLF Modeling
                   1.0                                                                                      0.8
                                LuLF experiment                                                                           LuLF model
                                YLF experiment                                                              0.7           YLF model
                   0.8
                                                                                                            0.6




                                                                                         Laser energy (J)
Laser energy (J)




                                                                                                            0.5
                   0.6
                                                                                                            0.4

                   0.4                                                                                      0.3

                                                                                                            0.2
                   0.2
                                                                                                            0.1

                   0.0                                                                                      0.0
                         2.5      3.5             4.5        5.5        6.5     7.5                               2.5       3.5        4.5        5.5       6.5         7.5
                                                  Pump energy (J)                                                                      Pump energy (J)



                                 Diode laser side-pumped experiment vs. model
                    Parameter              YLF experiment           LuLF experiment   % difference                      YLF model       LuLF model       % difference
                    Threshold              3.22 J                   2.74 J            14.9%                             4.00 J          3.46 J           13.5 %
                    Slope efficiency       0.2003                   0.2216            9.6%                              0.2002          0.2168           7.6%


                                                   Walsh, Barnes, Petros, Yu, Singh, J. Appl. Phys. 95, 3255 (2004)

                   National Aeronautics and                              Laser Physics Workshop
                   Space Administration                             Trondheim, Norway (June/July 2008)
Recent Developments: Tm-pump Ho

• Laser physics predicts high efficiency
      - No Tm:Ho up-conversion or energy sharing
      - Ho:Ho up-conversion minimal
• Diode pumped Tm:YLF/Tm:fiber & direct diode pump
      - Overlaps with Ho:YAG/LuAG absorption
• Ho:YAG and Ho:LuAG
      - Ho:YAG has higher absorption
      - Ho:LuAG has lower thermal population
• Low quantum defect
      - implies low heat deposition
      - minimal thermal focusing


National Aeronautics and        Laser Physics Workshop
Space Administration       Trondheim, Norway (June/July 2008)
Tm-YLF Pump Ho:YAG Scheme

                                                    Pump lines                          Tm:YLF pumped Ho:YAG laser
                                                    Laser lines

                                                                                                 Output mirror
                                                                                                 0.5m RC



                              Diode Laser pumped Tm:YLF laser


                      Diode
                      Laser       Dichroic
                                  HR@1.9µm                Output                                 Ho:YAG      HR
                                                Tm:YLF             RG-1000    Lens
                                  HT@0.79µm               mirror                                 laser rod   2.1µm
                                                disc               filter     f=100mm


                           Lens
                           f=125mm                                      Aperture        Dichroic
                                                                                        HR@2.1µm
                                                                                        HT@1.9µm




                                                 HR@1.9µm
                                                 0.5m RC




National Aeronautics and                  Laser Physics Workshop
Space Administration                 Trondheim, Norway (June/July 2008)
Tm-YLF Pump Ho:YAG (Pulsed)
                          0.50                                                                           0.50


                          0.40                                                                           0.40
       Slope efficiency




                                                                                  Slope efficiency
                          0.30                                                                           0.30


                          0.20                                                                           0.20


                          0.10                                                                           0.10

                           0.0                                                                            0.0
                                 0   4   8    12 16 20 24 28        32    36                                0.00     0.05     0.10     0.15    0.20   0.25   0.30
                                              Ho rod length (mm)                                                                     -ln (R m)

                          0.50                                                                            5.0
                                                                                                                   Slope efficiency = 41%
                          0.40                                                                            4.0
                                                                                                                   Threshold = 3.28 mJ



                                                                                  Ho laser energy (mJ)
       Slope efficiency




                          0.30                                                                            3.0


                          0.20                                                                            2.0

                          0.10                                                                            1.0

                           0.0                                                                            0.0
                             1.905   1.906    1.907 1.908 1.909 1.910    1.911                               0.0    2.0     4.0 6.0 8.0 10.0 12.0 14.0 16.0
                                             Pump wavelength (µm)                                                             Tm pump energy (mJ)


National Aeronautics and                                           Laser Physics Workshop
Space Administration                                          Trondheim, Norway (June/July 2008)
Tm-fiber Pump Ho:YAG Scheme
                                                                            4
                                 0.9
                                 0.8
                                 0.7                                        3
                                 0.6
                                 0.5                                        2
                                 0.4
                                 0.3                              6.02 m
                                                                            1
                                 0.2                              2.76 m
                                 0.1                              Grating
                                 0.0                                        0
                                    1.8     1.9          2.0          2.1
                                          Wavelength in micrometers
                                                                                600 g/mm
                                                                                 grating
                                          Dichroic             Tm:glass
                    Laser
                    diode


                           !/2


                    Laser                                        HR
                    diode
                                                        Ho:YAG




National Aeronautics and               Laser Physics Workshop
Space Administration              Trondheim, Norway (June/July 2008)
Tm-fiber Pump Ho:YAG (cw)

                                 Ho:YAG, 0.010 Ho, 8.0 mm
    0.8
                                                     0.5
    0.7                                                          Ho:YAG
                                                                 (!s = 0.37, E th = 1.45 W)
    0.6                                              0.4
    0.5
                                                     0.3
    0.4
    0.3                                              0.2
    0.2
                                                      0.1
    0.1
    0.0                                              0.0
       0.0     0.5   1.0   1.5     2.0   2.5   3.0      0.0    0.5       1.0        1.5       2.0   2.5   3.0
                     Pump power in W                                     Pump power in W


               Absorption in Ho:YAG                           Ho:YAG Laser Performance
             (absorption efficiency ≈ 0.35)



National Aeronautics and                Laser Physics Workshop
Space Administration               Trondheim, Norway (June/July 2008)
Summary

                   • Quasi-4-level lasers
                           - Look like 3-level, behave more like 4-level.
                           - Based on physics
                   • Energy transfer
                           - Prolific in Tm and Ho materials
                           - Distinction: classical vs. crystal
                   • Modeling
                           - Based on rate equations
                           - Agrees reasonably well with experiment
                   • Laser schemes
                           - Tm:YLF pump Ho:YAG
                           - Tm:fiber pump Ho:YAG

National Aeronautics and              Laser Physics Workshop
Space Administration             Trondheim, Norway (June/July 2008)
NASA Langley               Brian M. Walsh
                           Research Center            Laser Remote Sensing Branch
National Aeronautics and            Laser Physics Workshop
                                                      Email: brian.m.walsh@nasa.gov
Space Administration           Trondheim, Norway (June/July 2008)
                                                      Phone: 757 864-7112

More Related Content

What's hot

2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...LeonidBovkun
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Pawan Kumar
 
Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...
Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...
Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...Raul Palomares
 
Neutron activation analysis (NAA)
Neutron activation analysis (NAA)Neutron activation analysis (NAA)
Neutron activation analysis (NAA)Sajjad Ullah
 
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Pawan Kumar
 
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...Pawan Kumar
 
Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Grant Allen
 
ADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXE
ADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXEADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXE
ADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXEEmad Behdad
 
Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...
Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...
Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...Alexander Bolshakov
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Chelsey Crosse
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayaliNASAPMC
 
Simpkins strong vibrational coupling - aps mar 2020
Simpkins   strong vibrational coupling - aps mar 2020Simpkins   strong vibrational coupling - aps mar 2020
Simpkins strong vibrational coupling - aps mar 2020BlakeSimpkins
 
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...IOSR Journals
 
IGARSS2011_presentation.ppt
IGARSS2011_presentation.pptIGARSS2011_presentation.ppt
IGARSS2011_presentation.pptgrssieee
 
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Integrated Carbon Observation System (ICOS)
 
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Riikka Puurunen
 

What's hot (19)

2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...2019-06-07 Characterization and research of semiconductors with an FTIR spect...
2019-06-07 Characterization and research of semiconductors with an FTIR spect...
 
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems...
 
Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...
Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...
Predictive Modeling of Neutron Activation Analysis of Spent Nuclear Fuel for ...
 
Surfaces of Metal Oxides.
Surfaces of Metal Oxides.Surfaces of Metal Oxides.
Surfaces of Metal Oxides.
 
Neutron activation analysis (NAA)
Neutron activation analysis (NAA)Neutron activation analysis (NAA)
Neutron activation analysis (NAA)
 
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Perfor...
 
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...
Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C3N5 Co...
 
XRD Proposal
XRD ProposalXRD Proposal
XRD Proposal
 
Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12Gas Phase Pyrolysis of Freon 12
Gas Phase Pyrolysis of Freon 12
 
ADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXE
ADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXEADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXE
ADVANCED MATERIALS ANALYSIS EDX WDX TXRF PIXE
 
Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...
Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...
Laser Ablation Molecular Isotopic Spectrometry for rare isotopes of the light...
 
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
Metal ion burst: Examining metal ion diffusion using ultrafast fluorescence s...
 
Sammy.kayali
Sammy.kayaliSammy.kayali
Sammy.kayali
 
Simpkins strong vibrational coupling - aps mar 2020
Simpkins   strong vibrational coupling - aps mar 2020Simpkins   strong vibrational coupling - aps mar 2020
Simpkins strong vibrational coupling - aps mar 2020
 
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
Uranium Concentrations measurement for Ground Water and Soil Samples in Al-Na...
 
IGARSS2011_presentation.ppt
IGARSS2011_presentation.pptIGARSS2011_presentation.ppt
IGARSS2011_presentation.ppt
 
Magnetism at oxide interface final
Magnetism at oxide interface finalMagnetism at oxide interface final
Magnetism at oxide interface final
 
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
Zazzeri, Giulia: Efficient sampling of atmospheric methane for radiocarbon an...
 
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805Puurunen_invited-talk_ALD-modelling_ALD2005_050805
Puurunen_invited-talk_ALD-modelling_ALD2005_050805
 

Similar to Review of Tm and Ho Materials;

Nonstoichiometric Laser Materials;
Nonstoichiometric Laser Materials;Nonstoichiometric Laser Materials;
Nonstoichiometric Laser Materials;Brian Walsh
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Po-Chun Yeh
 
Neon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunNeon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunAstroAtom
 
Proslier - Localized magnetism on the Surface of Niobium: experiments and theory
Proslier - Localized magnetism on the Surface of Niobium: experiments and theoryProslier - Localized magnetism on the Surface of Niobium: experiments and theory
Proslier - Localized magnetism on the Surface of Niobium: experiments and theorythinfilmsworkshop
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometryAmlan Roy
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Philippe Smet
 
Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...
Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...
Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...nivedithag131
 
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin FilmsFTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin FilmsMD ABDUL AHAD TALUKDER
 
Ferroelectric nanostructures and their processing issues
Ferroelectric nanostructures and their processing issuesFerroelectric nanostructures and their processing issues
Ferroelectric nanostructures and their processing issues♪♫•*¨ *•.¸¸
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAstroAtom
 
iMinds The Conference 2012: Bernard Gallez
iMinds The Conference 2012: Bernard GalleziMinds The Conference 2012: Bernard Gallez
iMinds The Conference 2012: Bernard Gallezimec
 
Electron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsElectron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsJoke Hadermann
 
Nakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.pptNakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.pptgrssieee
 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015Po-Chun Yeh
 

Similar to Review of Tm and Ho Materials; (20)

Nonstoichiometric Laser Materials;
Nonstoichiometric Laser Materials;Nonstoichiometric Laser Materials;
Nonstoichiometric Laser Materials;
 
Spintronics
SpintronicsSpintronics
Spintronics
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2
 
Neon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the SunNeon and oxygen in stellar coronae - a unification with the Sun
Neon and oxygen in stellar coronae - a unification with the Sun
 
Proslier - Localized magnetism on the Surface of Niobium: experiments and theory
Proslier - Localized magnetism on the Surface of Niobium: experiments and theoryProslier - Localized magnetism on the Surface of Niobium: experiments and theory
Proslier - Localized magnetism on the Surface of Niobium: experiments and theory
 
Mass spectrometry
Mass spectrometryMass spectrometry
Mass spectrometry
 
Neutron Detection
Neutron DetectionNeutron Detection
Neutron Detection
 
Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019Energy storage phosphors @ Phosphor Global Summit 2019
Energy storage phosphors @ Phosphor Global Summit 2019
 
Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...
Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...
Magnetic resonance Magnetic Resonance Imaging to Assess Tissue Oxygenation an...
 
Rahman-INFN-LNL
Rahman-INFN-LNLRahman-INFN-LNL
Rahman-INFN-LNL
 
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin FilmsFTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films
 
Ferroelectric nanostructures and their processing issues
Ferroelectric nanostructures and their processing issuesFerroelectric nanostructures and their processing issues
Ferroelectric nanostructures and their processing issues
 
Atomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak speciesAtomic data and spectral models for lowly ionized iron-peak species
Atomic data and spectral models for lowly ionized iron-peak species
 
Chapter_5.pptx .
Chapter_5.pptx                                    .Chapter_5.pptx                                    .
Chapter_5.pptx .
 
iMinds The Conference 2012: Bernard Gallez
iMinds The Conference 2012: Bernard GalleziMinds The Conference 2012: Bernard Gallez
iMinds The Conference 2012: Bernard Gallez
 
Electron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materialsElectron crystallography for lithium based battery materials
Electron crystallography for lithium based battery materials
 
Nakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.pptNakata_Mukai_IGARSS2011.ppt
Nakata_Mukai_IGARSS2011.ppt
 
SNBoseTalk06
SNBoseTalk06SNBoseTalk06
SNBoseTalk06
 
Seminor ansto-0730
Seminor ansto-0730Seminor ansto-0730
Seminor ansto-0730
 
APS march meeting 2015
APS march meeting 2015APS march meeting 2015
APS march meeting 2015
 

Recently uploaded

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 

Recently uploaded (20)

IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 

Review of Tm and Ho Materials;

  • 1. Review of Tm and Ho Materials; Spectroscopy and Lasers Brian M. Walsh Norman P. Barnes NASA Langley Research Center Hampton, VA 23681 USA Laser Physics Workshop - Trondheim, Norway (June 30 - July 4, 2008) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 2. Prelude “Lanthanum has only one oxidation state, the +3 state. With few exceptions, this tells the whole boring story about the other 14 lanthanides.” G.C. Pimentel & R.D. Sprately, quot;Understanding Chemistryquot;, Holden-Day, 1971, p. 862 So much for ‘Understanding Chemistry’… Let’s do some physics! National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 3. NASA - Laser Material Research Activity Input Results Quantum X-ray data and Energy levels, transition Mechanics refractive index probabilities, ET parameters Materials meeting requirements Small spectroscopic Cross sections, lifetimes, Spectroscopy Samples - inexpensive energy levels, ET parameters Best Materials Only Laser quality samples Laser demonstration, Laser research (rods, discs, fibers modeling National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 4. Remote Sensing Applications 4X DIAL: CO2 Backscatter Lidar: Aerosols/Clouds 2 Micrometer laser Coherent Winds: Lower Troposphere & clouds 3X Noncoherent Winds: Mid/Upper Atmosphere 1 Micrometer 2X Altimetry: laser Surface Mapping Oceanography 2X OPO DIAL: Ozone Backscatter Lidar: Aerosols/Clouds National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 5. Quasi-4-Level Lasers It looks like a three level laser, but behaves more nearly like a 4-level laser! E3 E4 relaxation relaxation E2 E3 3-level example: Cr:Al2O3 - Ruby 2E → 4A (0.69 µm) 2 pump laser pump laser 4-level example: Nd:Y3Al5O12 - YAG 3/2 → I9/2 (1.064 µm) 4F 4 E2 relaxation E1 E1 Quasi-4-level Examples: (a) Three level laser (b) Four level laser g0 = ! e $quot; Nu # ( quot; # 1) C A Ns & % ' (small signal gain) Nd: 4I3/2 → 4I9/2 (~ 0.94 µm) Yb: 2F5/2 → 2F7/2 (~ 1.0 µm) fl γ = 2 for true 3-level-laser ! = 1+ Er: 4I13/2 → 4I15/2 (~ 1.5 µm) fu γ = 1 for true 4-level-laser Tm: 3F4 → 3H6 (~1.9 µm) Criteria: γ < 1.5; Laser is quasi-4-level Ho: 5I7 → 5I8 (~ 2.0 µm) γ >1.5; Laser is quasi-3-level National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 6. Dipole-dipole Energy transfer Dexter averages over dipole orientation, integrates over distances PSA = CDA/R6 Real situation: orientation and distance set by crystal lattice z N.P. Barnes, et al., IEEE JQE, 32, 92 (1996) z ra y R rs y x x rs • ra - 3 (ra• R )( rs• R )/ R2 National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 7. Energy Transfer: Tm-Tm, Ho-Ho Tm-Tm Energy transfer Ho-Ho Energy transfer B.M. Walsh, N.P. Barnes, et al., N.P. Barnes, B.M. Walsh, et al., J. Non-Cryst. Sol., 352, 5344 (2006) J. Opt. Soc. Am. B, 20, 1212 (2003) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 8. Energy Transfer: Tm-Ho 16000 3F 5F 3 5 3F 14000 2 5I 4 3H 4 4 12000 5I 5 5 P 41 P 22 !4 !5 Energy (cm-1 ) 10000 P 27 P 51 3H 5I 6 3 5 6 8000 P 38 P 61 !3 P 38 P 61 !6 6000 2 3F 4 5I 7 7 4000 P 28 P 71 P 41 P 22 P 27 P 51 !2 P 28 P 71 !7 2000 1 3H 5I 8 0 6 8 Tm3+ Ho3+ Tm-Ho Energy transfer B.M. Walsh, N.P. Barnes, et al., J. Appl Phys., 95, 3255 (2004) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 9. Decay of Tm 3F4 and Ho 5I7 Excitation of Tm 3F4 manifold Short times: energy transfer Long times: thermalization 1.0 1.0 Ho:YAG decay Tm:YAG decay 0.8 0.8 Normalized intensity Normalized intensity 0.6 0.6 0.4 0.4 0.2 Ho:YAG decay 0.2 Tm:YAG decay 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Time (ms) Time (ms) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 10. Forward and Backward transfer P28/P71 = [Z7T Z1T/Z2T Z8T] exp[(E2ZL - E7ZL)/kT] E2 E7 E7ZL E2ZL P28 P71 P28 P71 E1 E8 Ho Tm National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 11. Laser Modeling • Useful tool - Predicting and diagnosing laser performance - Understanding the physics • Rate equation approach - Coupled set of complex equations - Laser simulation on the computer • Many parameters needed - Laser parameters - Spectroscopic parameters - Quantum Mechanical Model • Modeling of pulsed Tm:Ho lasers - Agrees reasonably well with experiment National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 12. Rate Equation Approach N g + N2 = N t (See O. Svelto, “Principles of Lasers”) dN 2 N = Wp N g ! BqN 2 ! 2 dt quot; N3 fast decay dq q = Va BqN 2 ! N2 dt quot;c Nt = total density of laser atoms (1/cm3) pump laser Ni = population density of states (1/cm3) τ = spontaneous lifetime of level 2 (s) N1 τc = lifetime of photons in the resonator (s) Va = laser-active volume (cm3) fast decay Ng Wp = pump rate from g to 3 (1/s) B = Stimulated emission coefficient (1/s) q = number of photons in cavity (no units) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 13. Coupled Rate Eqns. - Tm:Ho Model dn1 n ( = !R p #1 ! exp(!quot; a !n1 ) % + 2 + 41 n 4 + n 2 n 8 p 28 ! n 7 n1p 71 ! n 4 n1p 41 + n 2 p 22 $ & '2 '4 2 dt +n 2 n 7 p 27 ! n 5 n1p 51 ! n 6 n1p 61 + n 3n 8 p 38 dn 2 n ( ( = ! 2 + 32 n 3 + 42 n 4 ! n 2 n 8 p 28 + n 7 n1p 71 + 2n 4 n1p 41 ! 2n 2 p 22 ! n 2 n 7 p 27 + n 5 n1p 51 dt '2 '3 '4 2 dn 3 n 3 ( 43 =! + n + n 6 n1p 61 ! n 3n 8 p 38 dt '3 '4 4 dn 4 n = R p #1 ! exp(!quot; a !n1 ) % ! 4 ! n 4 n1p 41 + n 2 p 22 $ & '4 2 dt dn 5 n = ! 5 + n 2 n 7 p 27 ! n 5 n1p 51 dt '5 dn 6 n ( = ! 6 + 56 n 5 ! n 6 n1p 61 + n 3n 8 p 38 dt '6 '5 dn 7 n ( ( = ! 7 + 67 n 6 + 57 n 5 + n 2 n 8 p 28 ! n 7 n1p 71 ! n 2 n 7 p 27 + n 5 n1p 51 ! quot; se (f7 n 7 ! f8 n 8 )) dt '7 '6 '5 dn 8 n = ! 7 ! n 2 n 8 p 28 + n 7 n1p 71 + quot; se (f7 n 7 ! f8 n 8 )) dt '7 d) ) n = ! + c ! quot; se (f7 n 7 ! f8 n 8 )) + c ! 7 B dt 'c Lopt Lopt ' 7 National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 14. Spectroscopic Parameters 0.40 1.2 Tm:YLF Ho:YLF level I.R. E (exp.) E (theo.) !E level I.R. E (exp.) E (theo.) !E Tm:LuLF Ho:LuLF (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) (cm-1) 1.00 quot;3,4 0 quot;2 Cross Section (x10-20 cm2) Cross Section (x10-20 cm2) 1 0 0 14 5157.1 5157.5 0.4 0.30 2 quot;2 7.5 6.1 0.4 15 quot;3,4 5161.5 5161.1 0.4 3 quot;2 27.6 26.9 0.7 16 quot;1 5167.0 5167.4 0.4 0.80 4 quot;1 47.2 48.2 1.0 17 quot;2 5168.6 5169.5 0.9 5 quot;1 57.8 55.1 2.7 18 quot;3,4 5190.6 5189.4 0.6 0.20 0.60 quot;3,4 76.2 quot;1 6 77.8 1.6 19 5211.7 5210.1 1.6 7 quot;1 222.0 222.1 0.1 20 quot;3,4 5229.6 5233.4 3.8 8 quot;1 - 279.7 - 21 quot;2 5235.3 5239.1 3.8 0.40 9 quot;3,4 - 284.9 - 22 quot;2 5295.0 5295.2 0.2 0.10 10 quot;2 - 288.9 - 23 quot;3,4 5299.1 5297.3 1.2 0.20 11 quot;1 - 305.1 - 24 quot;1 5301.6 5298.2 2.4 12 quot;3,4 315.0 315.6 0.6 0.0 13 quot;2 332.0 333.7 1.7 0.0 740 750 760 770 780 790 800 810 820 830 840 1850 1900 1950 2000 2050 2100 2150 Wavelength (nm) Wavelength (nm) Pump absorption Laser emission Energy Levels (absorption cross section) (emission cross section) (Thermal population) 1.0 Ho:YLF Ho: 5I7 ! 5I8 decay Ho:YAG 0.80 Normalized Intensity 0.60 0.40 0.20 0.0 0 10 20 30 40 50 60 70 80 Time (ms) Judd-Ofelt Analysis Decay Dynamics (Radiative lifetime, branching ratios) (ET parameters, lifetimes) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 15. Laser Parameters Laser crystal Pumped volume M1 M2 l Laser mode volume Active volume of the laser 1 L quot; quot; Va = 2 # # # 2 The volume of the laser mode that spatially overlaps E(x, y, z) dxdydz with the pumped volume in the laser medium E0 0 !quot; !quot; 1 c The cavity photon lifetime that accounts for the removal of = ln(R m R L ) ! c 2L opt photons due to mirror losses and internal losses. National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 16. Tm:Ho:YLF/LuLF Modeling 1.0 0.8 LuLF experiment LuLF model YLF experiment 0.7 YLF model 0.8 0.6 Laser energy (J) Laser energy (J) 0.5 0.6 0.4 0.4 0.3 0.2 0.2 0.1 0.0 0.0 2.5 3.5 4.5 5.5 6.5 7.5 2.5 3.5 4.5 5.5 6.5 7.5 Pump energy (J) Pump energy (J) Diode laser side-pumped experiment vs. model Parameter YLF experiment LuLF experiment % difference YLF model LuLF model % difference Threshold 3.22 J 2.74 J 14.9% 4.00 J 3.46 J 13.5 % Slope efficiency 0.2003 0.2216 9.6% 0.2002 0.2168 7.6% Walsh, Barnes, Petros, Yu, Singh, J. Appl. Phys. 95, 3255 (2004) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 17. Recent Developments: Tm-pump Ho • Laser physics predicts high efficiency - No Tm:Ho up-conversion or energy sharing - Ho:Ho up-conversion minimal • Diode pumped Tm:YLF/Tm:fiber & direct diode pump - Overlaps with Ho:YAG/LuAG absorption • Ho:YAG and Ho:LuAG - Ho:YAG has higher absorption - Ho:LuAG has lower thermal population • Low quantum defect - implies low heat deposition - minimal thermal focusing National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 18. Tm-YLF Pump Ho:YAG Scheme Pump lines Tm:YLF pumped Ho:YAG laser Laser lines Output mirror 0.5m RC Diode Laser pumped Tm:YLF laser Diode Laser Dichroic HR@1.9µm Output Ho:YAG HR Tm:YLF RG-1000 Lens HT@0.79µm mirror laser rod 2.1µm disc filter f=100mm Lens f=125mm Aperture Dichroic HR@2.1µm HT@1.9µm HR@1.9µm 0.5m RC National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 19. Tm-YLF Pump Ho:YAG (Pulsed) 0.50 0.50 0.40 0.40 Slope efficiency Slope efficiency 0.30 0.30 0.20 0.20 0.10 0.10 0.0 0.0 0 4 8 12 16 20 24 28 32 36 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Ho rod length (mm) -ln (R m) 0.50 5.0 Slope efficiency = 41% 0.40 4.0 Threshold = 3.28 mJ Ho laser energy (mJ) Slope efficiency 0.30 3.0 0.20 2.0 0.10 1.0 0.0 0.0 1.905 1.906 1.907 1.908 1.909 1.910 1.911 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 Pump wavelength (µm) Tm pump energy (mJ) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 20. Tm-fiber Pump Ho:YAG Scheme 4 0.9 0.8 0.7 3 0.6 0.5 2 0.4 0.3 6.02 m 1 0.2 2.76 m 0.1 Grating 0.0 0 1.8 1.9 2.0 2.1 Wavelength in micrometers 600 g/mm grating Dichroic Tm:glass Laser diode !/2 Laser HR diode Ho:YAG National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 21. Tm-fiber Pump Ho:YAG (cw) Ho:YAG, 0.010 Ho, 8.0 mm 0.8 0.5 0.7 Ho:YAG (!s = 0.37, E th = 1.45 W) 0.6 0.4 0.5 0.3 0.4 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Pump power in W Pump power in W Absorption in Ho:YAG Ho:YAG Laser Performance (absorption efficiency ≈ 0.35) National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 22. Summary • Quasi-4-level lasers - Look like 3-level, behave more like 4-level. - Based on physics • Energy transfer - Prolific in Tm and Ho materials - Distinction: classical vs. crystal • Modeling - Based on rate equations - Agrees reasonably well with experiment • Laser schemes - Tm:YLF pump Ho:YAG - Tm:fiber pump Ho:YAG National Aeronautics and Laser Physics Workshop Space Administration Trondheim, Norway (June/July 2008)
  • 23. NASA Langley Brian M. Walsh Research Center Laser Remote Sensing Branch National Aeronautics and Laser Physics Workshop Email: brian.m.walsh@nasa.gov Space Administration Trondheim, Norway (June/July 2008) Phone: 757 864-7112