SlideShare une entreprise Scribd logo
1  sur  62
Télécharger pour lire hors ligne
Scale Space         The Gaussian Approach

                               Li Hui


                   bugway@gmail.com



                         July 8, 2009




Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   1 / 17
1




    Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   2 / 17
1


2




    Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   2 / 17
1


2


3




    Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   2 / 17
1


2


3


4




    Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   2 / 17
1


2


3


4


5




    Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   2 / 17
1


2


3


4


5


6




    Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   2 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   3 / 17
Tt                    t ≥0                                              {Tt }t∈R + ,
Tt : Cb (R 2 ) → Cb (R 2 ),
      ∞                                  Cb (R 2 )
                                          ∞

                                    Cb (R 2 )
                               u0 (x, y) (x, y, t) = (Tt u0 )(x, y),                 {Tt }t∈R +
               t                   Tt u0                              t




       Li Hui (Earth)           Scale Space   The Gaussian Approach           July 8, 2009        3 / 17
Tt                    t ≥0                                              {Tt }t∈R + ,
Tt : Cb (R 2 ) → Cb (R 2 ),
      ∞                                  Cb (R 2 )
                                          ∞

                                    Cb (R 2 )
                               u0 (x, y) (x, y, t) = (Tt u0 )(x, y),                 {Tt }t∈R +
               t                   Tt u0                              t


                                    "         "             .




       Li Hui (Earth)           Scale Space   The Gaussian Approach           July 8, 2009        3 / 17
Tt                    t ≥0                                              {Tt }t∈R + ,
Tt : Cb (R 2 ) → Cb (R 2 ),
      ∞                                     Cb (R 2 )
                                             ∞

                                    Cb (R 2 )
                               u0 (x, y) (x, y, t) = (Tt u0 )(x, y),                 {Tt }t∈R +
               t                   Tt u0                              t


                                    "         "             .
                                        (           10m                   10cm               )




       Li Hui (Earth)           Scale Space   The Gaussian Approach           July 8, 2009        3 / 17
Marr-Hildreth-Koenderink-WitKin
    1980           Marr   Hildreth[1]




      Li Hui (Earth)        Scale Space   The Gaussian Approach   July 8, 2009   4 / 17
Marr-Hildreth-Koenderink-WitKin
    1980           Marr   Hildreth[1]
              1983     (Witkin[2],Koenderink [3])




      Li Hui (Earth)        Scale Space   The Gaussian Approach   July 8, 2009   4 / 17
Marr-Hildreth-Koenderink-WitKin
    1980           Marr    Hildreth[1]
              1983     (Witkin[2],Koenderink [3])
    1986       Canny [4]




      Li Hui (Earth)         Scale Space   The Gaussian Approach   July 8, 2009   4 / 17
Marr-Hildreth-Koenderink-WitKin
    1980           Marr    Hildreth[1]
              1983     (Witkin[2],Koenderink [3])
    1986       Canny [4]
                                    σ (0 ≤ σ < ∞)

                                           1     −(x 2 +y 2 )
                              Gσ (x, y) =       e 2σ2
                                          4Πσ 2
                                                                   .




      Li Hui (Earth)         Scale Space   The Gaussian Approach   July 8, 2009   4 / 17
Koenderink [3]         Hummel [5]                                t


                   ∂u(x, y, t)
                               = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0
                      ∂t
                         u(x, y, 0) = u0 (x, y), (x, y) ∈ ω




  Li Hui (Earth)           Scale Space   The Gaussian Approach   July 8, 2009   5 / 17
Koenderink [3]           Hummel [5]                                t


                     ∂u(x, y, t)
                                 = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0
                        ∂t
                           u(x, y, 0) = u0 (x, y), (x, y) ∈ ω



        u0 (x, y)                     ω = (xa , xb )x(ya , yb )
t                    ,∇2




    Li Hui (Earth)           Scale Space   The Gaussian Approach   July 8, 2009   5 / 17
:




Li Hui (Earth)       Scale Space   The Gaussian Approach   July 8, 2009   6 / 17
:
                            +∞        +∞
             u(x, y, t) =                   u(x, y, 0) · Gt (x, y)dxdy
                            −∞       −∞

                                                       −(x 2 +y 2 )
                                                1
    Gt (x, y)                Gt (x, y) =       4πt e
                                                           2t




Li Hui (Earth)         Scale Space   The Gaussian Approach            July 8, 2009   6 / 17
:
                                  +∞        +∞
             u(x, y, t) =                         u(x, y, 0) · Gt (x, y)dxdy
                                 −∞        −∞

                                                             −(x 2 +y 2 )
                                                      1
    Gt (x, y)                      Gt (x, y) =       4πt e
                                                                 2t


                                    u(x,y,t)                           (    )t
                 u0 (x, y)         Gt (x, y)




Li Hui (Earth)               Scale Space   The Gaussian Approach            July 8, 2009   6 / 17
.




Li Hui (Earth)   Scale Space       The Gaussian Approach   July 8, 2009   7 / 17
.




Li Hui (Earth)   Scale Space       The Gaussian Approach   July 8, 2009   7 / 17
.




Li Hui (Earth)   Scale Space       The Gaussian Approach   July 8, 2009   7 / 17
.




Li Hui (Earth)   Scale Space       The Gaussian Approach   July 8, 2009   7 / 17
.




Li Hui (Earth)   Scale Space       The Gaussian Approach   July 8, 2009   7 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   8 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   8 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   8 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   9 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   9 / 17
1




Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   9 / 17
1

2




Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   9 / 17
A                                   (                        )
e(x,t) =               (                               )         = e(x,y)A∆x( ∆x
                   )




  Li Hui (Earth)           Scale Space   The Gaussian Approach       July 8, 2009   10 / 17
A                                    (                        )
e(x,t) =                 (                                )         = e(x,y)A∆x( ∆x
                   )
              :        x ∆x

                                    ∂[ex,t]A∆x
  x                                     ∂t                              =
                   +




  Li Hui (Earth)              Scale Space   The Gaussian Approach       July 8, 2009   10 / 17
A                                      (                            )
e(x,t) =                    (                               )         = e(x,y)A∆x( ∆x
                   )
              :        x ∆x

                                      ∂[ex,t]A∆x
  x                                       ∂t                              =
                   +


φ(x, t) =               (                                                                )



  Li Hui (Earth)                Scale Space   The Gaussian Approach       July 8, 2009       10 / 17
Qx,t =             (                                              )


                       Q(x, t)A∆x




  Li Hui (Earth)            Scale Space   The Gaussian Approach       July 8, 2009   11 / 17
Qx,t =             (                                               )


                       Q(x, t)A∆x
                   ∂[e(x,t)A∆x]
              :         ∂t        ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x




  Li Hui (Earth)             Scale Space   The Gaussian Approach       July 8, 2009   11 / 17
Qx,t =             (                                              )


                       Q(x, t)A∆x
              ∂[e(x,t)A∆x]
              :    ∂t      ≈ Φ(x, t)A − Φ(x                 + ∆x, t)A + Q(x, t)A∆x
∂e
∂t   =   lim∆x→0 Φ(x,t)−Φ(x+∆x,t) + Q(x, t)
                         ∆x




  Li Hui (Earth)            Scale Space   The Gaussian Approach       July 8, 2009   11 / 17
Qx,t =             (                                              )


                       Q(x, t)A∆x
               ∂[e(x,t)A∆x]
              :     ∂t      ≈ Φ(x, t)A − Φ(x                + ∆x, t)A + Q(x, t)A∆x
∂e
∂t   =   lim∆x→0 Φ(x,t)−Φ(x+∆x,t) + Q(x, t)
                          ∆x
∂e          ∂φ
∂t   =   − ∂x + Q




  Li Hui (Earth)            Scale Space   The Gaussian Approach       July 8, 2009   11 / 17
,
u(x,t) =         (                        t                )




Li Hui (Earth)       Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
 u(x,t) =             (                        t                )
c=                (                                                          )




 Li Hui (Earth)           Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
  u(x,t) =             (                        t                )
c=                 (                                                          )
ρ(x) =




  Li Hui (Earth)           Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
  u(x,t) =             (                        t                )
c=                 (                                                          )
ρ(x) =




  Li Hui (Earth)           Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
  u(x,t) =             (                        t                )
c=                 (                                                          )
ρ(x) =


          :e(x, t) = c(x)ρ(x)u(x, t)




  Li Hui (Earth)           Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
  u(x,t) =             (                        t                )
c=                 (                                                          )
ρ(x) =


          :e(x, t) = c(x)ρ(x)u(x, t)
c(x)ρ(x) ∂u = − ∂φ + Q
         ∂t     ∂x




  Li Hui (Earth)           Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
  u(x,t) =             (                         t                )
c=                 (                                                           )
ρ(x) =


          :e(x, t) = c(x)ρ(x)u(x, t)
c(x)ρ(x) ∂u = − ∂φ + Q
         ∂t     ∂x

                       φ = −K0 ∂u
                               ∂x




  Li Hui (Earth)            Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
,
  u(x,t) =             (                         t                )
c=                 (                                                           )
ρ(x) =


          :e(x, t) = c(x)ρ(x)u(x, t)
c(x)ρ(x) ∂u = − ∂φ + Q
         ∂t     ∂x

                       φ = −K0 ∂u
                               ∂x

cρ ∂u =
   ∂t
             ∂       ∂u
             ∂t (K0 ∂(x) ) +   Q



  Li Hui (Earth)            Scale Space   The Gaussian Approach       July 8, 2009   12 / 17
2
∂u
∂t   = k∂ u
        ∂x 2




 Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   13 / 17
2
∂u
∂t   = k∂ u
        ∂x 2
      K0
k=    cρ




 Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   13 / 17
2
∂u
∂t   = k∂ u
        ∂x 2
      K0
k=    cρ
                                               x2
                   : u(x, t) =      √ 1 e − 4kt
                                     4Πt




 Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   13 / 17
2
∂u
∂t   = k∂ u
        ∂x 2
      K0
k=    cρ
                                               x2
                   : u(x, t) =      √ 1 e − 4kt
                                     4Πt
                                            u(x, 0) = u0 (x)




 Li Hui (Earth)   Scale Space   The Gaussian Approach    July 8, 2009   13 / 17
2
∂u
∂t   = k∂ u
        ∂x 2
      K0
k=    cρ
                                                        x2
                            : u(x, t) =      √ 1 e − 4kt
                                              4Πt
                                                     u(x, 0) = u0 (x)

                                    x    2
                       +∞
u(x, t) =       √1                − 4kt
                 4Πt   −∞ u0 (x)e       dx




  Li Hui (Earth)           Scale Space   The Gaussian Approach    July 8, 2009   13 / 17
∂u(x,y ,t)
   ∂t        = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0




  Li Hui (Earth)         Scale Space   The Gaussian Approach   July 8, 2009   14 / 17
∂u(x,y ,t)
   ∂t        = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0
                        u(x, y, 0) = u0 (x, y), (x, y) ∈ ω




  Li Hui (Earth)         Scale Space   The Gaussian Approach   July 8, 2009   14 / 17
∂u(x,y ,t)
   ∂t        = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0
                          u(x, y, 0) = u0 (x, y), (x, y) ∈ ω
                                  +∞ +∞
                   u(x, y, t) =   −∞ −∞ u(x, y, 0)               · Gt (x, y)dxdy




  Li Hui (Earth)           Scale Space   The Gaussian Approach         July 8, 2009   14 / 17
∂u(x,y ,t)
   ∂t        = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0
                          u(x, y, 0) = u0 (x, y), (x, y) ∈ ω
                                   +∞ +∞
                   u(x, y, t) =    −∞ −∞ u(x, y, 0)               · Gt (x, y)dxdy
                                                           −(x 2 +y 2 )
                                                    1
      Gt (x, y)                   Gt (x, y) =      4πt e
                                                               2t




  Li Hui (Earth)           Scale Space   The Gaussian Approach            July 8, 2009   14 / 17
Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   15 / 17
Hummel [6]




 Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   15 / 17
Hummel [6]


P-M               Perona    Malik [7]                                            .




 Li Hui (Earth)            Scale Space   The Gaussian Approach   July 8, 2009   15 / 17
Hummel [6]


P-M               Perona    Malik [7]                                            .
                               Alvarez,Lions,Morel [8]




 Li Hui (Earth)            Scale Space   The Gaussian Approach   July 8, 2009   15 / 17
[1]Marr D,and Hildreth E,Theory of edge detection.Proc.Roy.Soc.Lond,B207 p187-217,1980
[2]A.P.Witkin.Space-scale filtering.In Proc.Of IJCAI,p1019-1021 1983
[3]J.Koenderink.The structure of images.Biological Cybernation,Vol 50,p262-270 1984
[4]A.Canny.A computational approach to edge detection.IEEE Trans.PAMI,vol 8,p769-698 1986
[5]R.A.Hummel,Representations based on zero crossing in scale-space.CVPR p204-209 1986
[6]R.A.Hummel,B.Kimia,Zucker,De-blurring Gaussian blur[J],1987
[7]P.Perona,J.Malik,Scale-Space and edge detection using anisotropic diffusion. PAMI p629-639 1990




           Li Hui (Earth)                 Scale Space    The Gaussian Approach                 July 8, 2009   16 / 17
!
                    Email/Gtalk: bugway@gmail.com




Li Hui (Earth)   Scale Space   The Gaussian Approach   July 8, 2009   17 / 17

Contenu connexe

Tendances

กำเนิดเอกภพ
กำเนิดเอกภพกำเนิดเอกภพ
กำเนิดเอกภพ276612
 
PhD Defense presentation
PhD Defense presentationPhD Defense presentation
PhD Defense presentationBrunetto Ziosi
 
Neuromat seminar 13 11-2017
Neuromat seminar 13 11-2017Neuromat seminar 13 11-2017
Neuromat seminar 13 11-2017Osame Kinouchi
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jay Wacker
 
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological modelsSome bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological modelsAlexander Decker
 
Nonlinear transport phenomena: models, method of solving and unusual features...
Nonlinear transport phenomena: models, method of solving and unusual features...Nonlinear transport phenomena: models, method of solving and unusual features...
Nonlinear transport phenomena: models, method of solving and unusual features...SSA KPI
 
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014Jurgen Riedel
 
Transformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterTransformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterAlex Quadros
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsTommaso Rigon
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...SOCIEDAD JULIO GARAVITO
 

Tendances (17)

กำเนิดเอกภพ
กำเนิดเอกภพกำเนิดเอกภพ
กำเนิดเอกภพ
 
PhD Defense presentation
PhD Defense presentationPhD Defense presentation
PhD Defense presentation
 
Neuromat seminar 13 11-2017
Neuromat seminar 13 11-2017Neuromat seminar 13 11-2017
Neuromat seminar 13 11-2017
 
Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011Jets MET Atlas Jamboree 2011
Jets MET Atlas Jamboree 2011
 
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological modelsSome bianchi type i magnetized bulk viscous fluid tilted cosmological models
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
 
Nonlinear transport phenomena: models, method of solving and unusual features...
Nonlinear transport phenomena: models, method of solving and unusual features...Nonlinear transport phenomena: models, method of solving and unusual features...
Nonlinear transport phenomena: models, method of solving and unusual features...
 
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal,  2014
Gauss–Bonnet Boson Stars in AdS - Ibericos, Portugal, 2014
 
Transformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear MatterTransformations of the Pairing Fields in Nuclear Matter
Transformations of the Pairing Fields in Nuclear Matter
 
International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI), International Journal of Engineering Inventions (IJEI),
International Journal of Engineering Inventions (IJEI),
 
Ejercicio de mecanica
Ejercicio de mecanicaEjercicio de mecanica
Ejercicio de mecanica
 
Dynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether System
 
ENFPC 2013
ENFPC 2013ENFPC 2013
ENFPC 2013
 
Gravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault DamourGravitational Waves and Binary Systems (2) - Thibault Damour
Gravitational Waves and Binary Systems (2) - Thibault Damour
 
Gravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault DamourGravitational Waves and Binary Systems (3) - Thibault Damour
Gravitational Waves and Binary Systems (3) - Thibault Damour
 
Bayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process modelsBayesian regression models and treed Gaussian process models
Bayesian regression models and treed Gaussian process models
 
Crystallographic groups
Crystallographic groupsCrystallographic groups
Crystallographic groups
 
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
Apartes de la Conferencia de la SJG del 14 y 21 de Enero de 2012: Hubble diag...
 

Similaire à Scale Space: The Gaussion Approach

Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...Frederic Perez
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsMatthew Leingang
 
6 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-746 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-74Alexander Decker
 
A common fixed point of integral type contraction in generalized metric spacess
A  common fixed point of integral type contraction in generalized metric spacessA  common fixed point of integral type contraction in generalized metric spacess
A common fixed point of integral type contraction in generalized metric spacessAlexander Decker
 
Talk for the Center for Astrophysics (Harvard)
Talk for the Center for Astrophysics (Harvard)Talk for the Center for Astrophysics (Harvard)
Talk for the Center for Astrophysics (Harvard)ylibert
 
I managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdfI managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdfMadansilks
 
I managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdfI managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdfamitpurbey2
 
Algebra 2 Lesson 5-6
Algebra 2 Lesson 5-6Algebra 2 Lesson 5-6
Algebra 2 Lesson 5-6Kate Nowak
 
Kriging interpolationtheory
Kriging interpolationtheoryKriging interpolationtheory
Kriging interpolationtheory湘云 黄
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Alexander Decker
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsSEENET-MTP
 
Causal Dynamical Triangulations
Causal Dynamical TriangulationsCausal Dynamical Triangulations
Causal Dynamical TriangulationsRene García
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 

Similaire à Scale Space: The Gaussion Approach (20)

Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...Global illumination techniques for the computation of hight quality images in...
Global illumination techniques for the computation of hight quality images in...
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
L02 acous
L02 acousL02 acous
L02 acous
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
6 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-746 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-74
 
A common fixed point of integral type contraction in generalized metric spacess
A  common fixed point of integral type contraction in generalized metric spacessA  common fixed point of integral type contraction in generalized metric spacess
A common fixed point of integral type contraction in generalized metric spacess
 
Talk for the Center for Astrophysics (Harvard)
Talk for the Center for Astrophysics (Harvard)Talk for the Center for Astrophysics (Harvard)
Talk for the Center for Astrophysics (Harvard)
 
I managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdfI managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdf
 
I managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdfI managed to do this in terms of polar coordinates. How would one so.pdf
I managed to do this in terms of polar coordinates. How would one so.pdf
 
Algebra 2 Lesson 5-6
Algebra 2 Lesson 5-6Algebra 2 Lesson 5-6
Algebra 2 Lesson 5-6
 
Kriging interpolationtheory
Kriging interpolationtheoryKriging interpolationtheory
Kriging interpolationtheory
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
 
R. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical ObservationsR. Jimenez - Fundamental Physics from Astronomical Observations
R. Jimenez - Fundamental Physics from Astronomical Observations
 
Causal Dynamical Triangulations
Causal Dynamical TriangulationsCausal Dynamical Triangulations
Causal Dynamical Triangulations
 
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
CMSI計算科学技術特論C (2015) ALPS と量子多体問題①
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Fdtd
FdtdFdtd
Fdtd
 

Scale Space: The Gaussion Approach

  • 1. Scale Space The Gaussian Approach Li Hui bugway@gmail.com July 8, 2009 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 1 / 17
  • 2. 1 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
  • 3. 1 2 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
  • 4. 1 2 3 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
  • 5. 1 2 3 4 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
  • 6. 1 2 3 4 5 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
  • 7. 1 2 3 4 5 6 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 2 / 17
  • 8. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
  • 9. Tt t ≥0 {Tt }t∈R + , Tt : Cb (R 2 ) → Cb (R 2 ), ∞ Cb (R 2 ) ∞ Cb (R 2 ) u0 (x, y) (x, y, t) = (Tt u0 )(x, y), {Tt }t∈R + t Tt u0 t Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
  • 10. Tt t ≥0 {Tt }t∈R + , Tt : Cb (R 2 ) → Cb (R 2 ), ∞ Cb (R 2 ) ∞ Cb (R 2 ) u0 (x, y) (x, y, t) = (Tt u0 )(x, y), {Tt }t∈R + t Tt u0 t " " . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
  • 11. Tt t ≥0 {Tt }t∈R + , Tt : Cb (R 2 ) → Cb (R 2 ), ∞ Cb (R 2 ) ∞ Cb (R 2 ) u0 (x, y) (x, y, t) = (Tt u0 )(x, y), {Tt }t∈R + t Tt u0 t " " . ( 10m 10cm ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 3 / 17
  • 12. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
  • 13. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] 1983 (Witkin[2],Koenderink [3]) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
  • 14. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] 1983 (Witkin[2],Koenderink [3]) 1986 Canny [4] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
  • 15. Marr-Hildreth-Koenderink-WitKin 1980 Marr Hildreth[1] 1983 (Witkin[2],Koenderink [3]) 1986 Canny [4] σ (0 ≤ σ < ∞) 1 −(x 2 +y 2 ) Gσ (x, y) = e 2σ2 4Πσ 2 . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 4 / 17
  • 16. Koenderink [3] Hummel [5] t ∂u(x, y, t) = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 ∂t u(x, y, 0) = u0 (x, y), (x, y) ∈ ω Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 5 / 17
  • 17. Koenderink [3] Hummel [5] t ∂u(x, y, t) = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 ∂t u(x, y, 0) = u0 (x, y), (x, y) ∈ ω u0 (x, y) ω = (xa , xb )x(ya , yb ) t ,∇2 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 5 / 17
  • 18. : Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 6 / 17
  • 19. : +∞ +∞ u(x, y, t) = u(x, y, 0) · Gt (x, y)dxdy −∞ −∞ −(x 2 +y 2 ) 1 Gt (x, y) Gt (x, y) = 4πt e 2t Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 6 / 17
  • 20. : +∞ +∞ u(x, y, t) = u(x, y, 0) · Gt (x, y)dxdy −∞ −∞ −(x 2 +y 2 ) 1 Gt (x, y) Gt (x, y) = 4πt e 2t u(x,y,t) ( )t u0 (x, y) Gt (x, y) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 6 / 17
  • 21. . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
  • 22. . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
  • 23. . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
  • 24. . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
  • 25. . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 7 / 17
  • 26. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 8 / 17
  • 27. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 8 / 17
  • 28. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 8 / 17
  • 29. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
  • 30. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
  • 31. 1 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
  • 32. 1 2 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 9 / 17
  • 33. A ( ) e(x,t) = ( ) = e(x,y)A∆x( ∆x ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 10 / 17
  • 34. A ( ) e(x,t) = ( ) = e(x,y)A∆x( ∆x ) : x ∆x ∂[ex,t]A∆x x ∂t = + Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 10 / 17
  • 35. A ( ) e(x,t) = ( ) = e(x,y)A∆x( ∆x ) : x ∆x ∂[ex,t]A∆x x ∂t = + φ(x, t) = ( ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 10 / 17
  • 36. Qx,t = ( ) Q(x, t)A∆x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
  • 37. Qx,t = ( ) Q(x, t)A∆x ∂[e(x,t)A∆x] : ∂t ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
  • 38. Qx,t = ( ) Q(x, t)A∆x ∂[e(x,t)A∆x] : ∂t ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x ∂e ∂t = lim∆x→0 Φ(x,t)−Φ(x+∆x,t) + Q(x, t) ∆x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
  • 39. Qx,t = ( ) Q(x, t)A∆x ∂[e(x,t)A∆x] : ∂t ≈ Φ(x, t)A − Φ(x + ∆x, t)A + Q(x, t)A∆x ∂e ∂t = lim∆x→0 Φ(x,t)−Φ(x+∆x,t) + Q(x, t) ∆x ∂e ∂φ ∂t = − ∂x + Q Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 11 / 17
  • 40. , u(x,t) = ( t ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 41. , u(x,t) = ( t ) c= ( ) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 42. , u(x,t) = ( t ) c= ( ) ρ(x) = Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 43. , u(x,t) = ( t ) c= ( ) ρ(x) = Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 44. , u(x,t) = ( t ) c= ( ) ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 45. , u(x,t) = ( t ) c= ( ) ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t) c(x)ρ(x) ∂u = − ∂φ + Q ∂t ∂x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 46. , u(x,t) = ( t ) c= ( ) ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t) c(x)ρ(x) ∂u = − ∂φ + Q ∂t ∂x φ = −K0 ∂u ∂x Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 47. , u(x,t) = ( t ) c= ( ) ρ(x) = :e(x, t) = c(x)ρ(x)u(x, t) c(x)ρ(x) ∂u = − ∂φ + Q ∂t ∂x φ = −K0 ∂u ∂x cρ ∂u = ∂t ∂ ∂u ∂t (K0 ∂(x) ) + Q Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 12 / 17
  • 48. 2 ∂u ∂t = k∂ u ∂x 2 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
  • 49. 2 ∂u ∂t = k∂ u ∂x 2 K0 k= cρ Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
  • 50. 2 ∂u ∂t = k∂ u ∂x 2 K0 k= cρ x2 : u(x, t) = √ 1 e − 4kt 4Πt Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
  • 51. 2 ∂u ∂t = k∂ u ∂x 2 K0 k= cρ x2 : u(x, t) = √ 1 e − 4kt 4Πt u(x, 0) = u0 (x) Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
  • 52. 2 ∂u ∂t = k∂ u ∂x 2 K0 k= cρ x2 : u(x, t) = √ 1 e − 4kt 4Πt u(x, 0) = u0 (x) x 2 +∞ u(x, t) = √1 − 4kt 4Πt −∞ u0 (x)e dx Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 13 / 17
  • 53. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
  • 54. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 u(x, y, 0) = u0 (x, y), (x, y) ∈ ω Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
  • 55. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 u(x, y, 0) = u0 (x, y), (x, y) ∈ ω +∞ +∞ u(x, y, t) = −∞ −∞ u(x, y, 0) · Gt (x, y)dxdy Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
  • 56. ∂u(x,y ,t) ∂t = ∇2 u(x, y, t), (x, y) ∈ Ω , t > 0 u(x, y, 0) = u0 (x, y), (x, y) ∈ ω +∞ +∞ u(x, y, t) = −∞ −∞ u(x, y, 0) · Gt (x, y)dxdy −(x 2 +y 2 ) 1 Gt (x, y) Gt (x, y) = 4πt e 2t Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 14 / 17
  • 57. Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
  • 58. Hummel [6] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
  • 59. Hummel [6] P-M Perona Malik [7] . Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
  • 60. Hummel [6] P-M Perona Malik [7] . Alvarez,Lions,Morel [8] Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 15 / 17
  • 61. [1]Marr D,and Hildreth E,Theory of edge detection.Proc.Roy.Soc.Lond,B207 p187-217,1980 [2]A.P.Witkin.Space-scale filtering.In Proc.Of IJCAI,p1019-1021 1983 [3]J.Koenderink.The structure of images.Biological Cybernation,Vol 50,p262-270 1984 [4]A.Canny.A computational approach to edge detection.IEEE Trans.PAMI,vol 8,p769-698 1986 [5]R.A.Hummel,Representations based on zero crossing in scale-space.CVPR p204-209 1986 [6]R.A.Hummel,B.Kimia,Zucker,De-blurring Gaussian blur[J],1987 [7]P.Perona,J.Malik,Scale-Space and edge detection using anisotropic diffusion. PAMI p629-639 1990 Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 16 / 17
  • 62. ! Email/Gtalk: bugway@gmail.com Li Hui (Earth) Scale Space The Gaussian Approach July 8, 2009 17 / 17