SlideShare une entreprise Scribd logo
1  sur  89
Seminar: Statistical NLP Girona, June 2003 Machine Learning for  Natural Language Processing  Lluís Màrquez TALP Research Center  Llenguatges i Sistemes Informàtics  Universitat Politècnica de Catalunya
Outline ,[object Object],[object Object],[object Object],[object Object]
Outline ,[object Object],[object Object],[object Object],[object Object]
[object Object],Machine Learning ML4NLP ,[object Object],[object Object],[object Object],[object Object],Making a computer automatically acquire some kind of knowledge from a concrete data domain
Machine Learning ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],ML4NLP
Machine Learning ,[object Object],[object Object],A more precise definition: ML4NLP Obtaining a description  of the concept  in some representation language that explains observations and helps predicting new instances of the same distribution
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Empirical NLP  90 ’s : Application of Machine Learning techniques  (ML) to NLP problems ML4NLP ,[object Object],Clasification   problems
[object Object],NLP “classification” problems  ,[object Object],( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],NN VB JJ VB NN VB ( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],NN VB JJ VB NN VB ( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],body -part clock -part ( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],body -part clock -part ( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],( The Wall Street Journal Corpus ) ML4NLP
[object Object],NLP “classification” problems  ,[object Object],( The Wall Street Journal Corpus ) ML4NLP
Outline ,[object Object],[object Object],[object Object],[object Object]
Feature Vector Classification ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],IA  perspective Classification
Feature Vector Classification ,[object Object],[object Object],Classification
An Example otherwise   negative Classification (COLOR= red )     (SHAPE= circle )   positive Rules red blue SHAPE negative positive circle triangle negative COLOR Decision Tree
An Example Classification Rules (SIZE= small )     (SHAPE= circle )   positive otherwise   negative (SIZE= big )     (COLOR= red )   positive small big SHAPE pos circle red SIZE Decision Tree COLOR triang blue neg pos neg
Some important concepts ,[object Object],[object Object],[object Object],Classification red blue SHAPE negative positive circle triangle negative COLOR Decision Tree
[object Object],[object Object],Some important concepts ,[object Object],[object Object],[object Object],[object Object],Classification
Propositional vs.  Relational Learning  Classification color(red)    shape(circle)     classA ,[object Object],course(X)    person(Y)    link_to(Y,X)     instructor_of(X,Y) research_project(X)    person(Z)    link_to(L 1 ,X,Y)   link_to(L 2 ,Y,Z)    neighbour_word_ people (L 1 )     member_proj(X,Z) ,[object Object]
The Classification Setting Class, Point, Example, Data Set, ... ,[object Object],[object Object],[object Object],[object Object],[object Object],Classification CoLT/SLT  perspective
The Classification Setting Learning, Error, ... ,[object Object],[object Object],Classification
The Classification Setting Learning, Error, ... ,[object Object],[object Object],[object Object],Classification
The Classification Setting Error, Over(under)fitting,... ,[object Object],[object Object],[object Object],[object Object],(Müller et al., 2001) Classification Under fitting Over fitting
Outline ,[object Object],[object Object],[object Object],[object Object]
Outline ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Learning Paradigms ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Learning Paradigms ,[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Decision Trees ,[object Object],[object Object],[object Object],Algorithms
Decision Trees ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
An Example Algorithms A1 A2 A3 C1 A5 A2 A2 A5 C3 C2 C1 ... ... ... ... v 1 v 2 v 3 v 5 v 4 v 6 v 7 small big SHAPE pos circle red SIZE Decision Tree COLOR triang blue neg pos neg
Learning Decision Trees Algorithms Training Training  Set TDIDT + DT = Test = DT Example + Class
General Induction Algorithm Algorithms function   TDIDT  (X:set-of-examples; A:set-of-features) var : tree 1 ,tree 2 : decision-tree; X’: set-of-examples; A’: set-of-features  end-var if  ( stopping_criterion   (X))  then tree 1  :=  create_leaf_tree   (X) else a max  :=  feature_selection   (X,A); tree 1  :=  create_tree   (X, a max ); for-all  val  in   values   (a max )  do X’ :=  select_examples   (X,a max ,val); A’ := A - {a max }; tree 2  :=  TDIDT   (X’,A’); tree 1  :=  add_branch   (tree 1 ,tree 2 ,val) end-for end-if return   (tree 1 ) end-function
General Induction Algorithm Algorithms function   TDIDT  (X:set-of-examples; A:set-of-features) var : tree 1 ,tree 2 : decision-tree; X’: set-of-examples; A’: set-of-features  end-var if  ( stopping_criterion   (X))  then tree 1  :=  create_leaf_tree   (X) else a max  :=  feature_selection   (X,A); tree 1  :=  create_tree   (X, a max ); for-all  val  in   values   (a max )  do X’ :=  select_examples   (X,a max ,val); A’ := A - {a max }; tree 2  :=  TDIDT   (X’,A’); tree 1  :=  add_branch   (tree 1 ,tree 2 ,val) end-for end-if return   (tree 1 ) end-function
Feature Selection Criteria ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Extensions of DTs ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],(Murthy 95) Algorithms
Decision Trees and NLP ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Decision Trees and NLP ,[object Object],[object Object],[object Object],[object Object],Algorithms
Decision Trees: pros&cons ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Decision Trees: pros&cons ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Boosting algorithms ,[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
AdaBoost: general scheme TRAINING Algorithms TS 2 D 2 TS 1 D 1 Weak  Learner h 1 Weak  Learner h 2 TS T . . . Probability  distribution  updating D T Weak  Learner h T . . . Linear  combination F( h 1 ,h 2 ,...,h T ) TEST  2    
AdaBoost: algorithm Algorithms (Freund & Schapire 97)
AdaBoost: example Weak hypotheses  = vertical/horizontal hyperplanes Algorithms
AdaBoost: round  1 Algorithms
AdaBoost: round  2 Algorithms
AdaBoost: round  3 Algorithms
Combined Hypothesis Algorithms www.research.att.com/ ~ yoav/adaboost
AdaBoost and NLP ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
AdaBoost: pros&cons Algorithms ,[object Object],[object Object],[object Object],[object Object],[object Object]
AdaBoost: pros&cons ,[object Object],[object Object],[object Object],Algorithms
[object Object],Algorithms SVM: A General Definition
SVM: A General Definition ,[object Object],Key Concepts Algorithms
Linear Classifiers ,[object Object],[object Object],[object Object],Algorithms w + + + + + + _ _ _ _ _ _ _ _ _
Optimal Hyperplane:  Geometric Intuition Algorithms
Optimal Hyperplane:  Geometric Intuition    Maximal  Margin  Hyperplane Algorithms These are the Support  Vectors
Linearly separable data Quadratic  Programming Algorithms Seminari SVM s  22/05/2001
Non-separable case (soft margin) Algorithms Seminari SVM s  22/05/2001
Non-linear SVMs ,[object Object],Algorithms Non-linear mapping Set of hypotheses Seminari SVM s  22/05/2001 Dual formulation Kernel function Evaluation
Non-linear SVMs ,[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms Seminari SVM s  22/05/2001
Non linear SVMs Degree 3 polynomial kernel lin. separable lin. non-separable Algorithms Seminari SVM s  22/05/2001
Toy Examples ,[object Object],[object Object],[object Object],Algorithms
Toy Examples  (I) Linearly separable data set Linear SVM Maximal margin Hyperplane Algorithms . What happens if we add a blue training example here?
Toy Examples  (I) (still) Linearly separable data set Linear SVM High value of  C  parameter Maximal margin Hyperplane The example is  correctly classified Algorithms
Toy Examples  (I) (still) Linearly separable data set Linear SVM Low value of  C  parameter Trade-off between: margin and training error The example is  now a bounded SV Algorithms
Toy Examples  (II) Algorithms
Toy Examples  (II) Algorithms
Toy Examples  (II) Algorithms
Toy Examples  (III) Algorithms
SVM: Summary ,[object Object],[object Object],[object Object],[object Object],Algorithms
SVM: Summary ,[object Object],[object Object],[object Object],[object Object],[object Object],Algorithms
Outline ,[object Object],[object Object],[object Object],[object Object]
NLP problems Applications ,[object Object],[object Object]
NLP problems: structural complexity Applications ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],POS tagging ,[object Object],NN VB JJ VB NN VB ( The Wall Street Journal Corpus ) Applications
POS tagging Applications “ preposition-adverb” tree root P(IN)=0.81 P(RB)=0.19 Word Form leaf P(IN)=0.83 P(RB)=0.17 tag(+1) P(IN)=0.13 P(RB)=0.87 tag(+2) P(IN)=0.013 P(RB)=0.987 “ As”,“as” RB IN others others ... ... ^ Probabilistic interpretation: P( RB | word=“A/as”    tag(+1)=RB    tag(+2)=IN) = 0.987 P( IN | word=“A/as”    tag(+1)=RB    tag(+2)=IN) = 0.013 ^
POS tagging “ as _ RB  much_ RB  as_ IN ” Collocations: “ as _ RB  well_ RB  as_ IN ” “ as _ RB  soon_ RB  as_ IN ” Applications “ preposition-adverb” tree root P(IN)=0.81 P(RB)=0.19 Word Form leaf P(IN)=0.83 P(RB)=0.17 tag(+1) P(IN)=0.13 P(RB)=0.87 tag(+2) P(IN)=0.013 P(RB)=0.987 “ As”,“as” RB IN others others ... ...
POS tagging Raw text Morphological analysis Tagged text Classify Update Filter Language   Model Disambiguation stop? RTT  (Màrquez & Rodríguez 97) yes no Applications A Sequential Model for Multi-class Classification:  NLP/POS Tagging  (Even-Zohar & Roth, 01)
POS tagging STT  (Màrquez & Rodríguez 97) Applications Tagged text Raw text Morphological analysis Viterbi algorithm Language   Model Disambiguation Lexical probs. + Contextual probs. The Use of Classifiers in sequential inference:  Chunking  (Punyakanok & Roth, 00)
Detection of sequential and hierarchical structures  ,[object Object],[object Object],Applications
Summary/conclusions ,[object Object],[object Object],[object Object],[object Object],Conclusions
[object Object],[object Object],[object Object],[object Object],[object Object],Conclusions Summary/conclusions
Summary/conclusions ,[object Object],Conclusions
Some current research lines  ,[object Object],[object Object],[object Object],[object Object],Conclusions
Bibliografia ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Conclusions
Seminar: Statistical NLP Girona, June 2003 Machine Learning for  Natural Language Processing  Lluís Màrquez TALP Research Center  Llenguatges i Sistemes Informàtics  Universitat Politècnica de Catalunya

Contenu connexe

Tendances

Dialectica amongst friends
Dialectica amongst friendsDialectica amongst friends
Dialectica amongst friendsValeria de Paiva
 
MLlecture1.ppt
MLlecture1.pptMLlecture1.ppt
MLlecture1.pptbutest
 
Logics of Context and Modal Type Theories
Logics of Context and Modal Type TheoriesLogics of Context and Modal Type Theories
Logics of Context and Modal Type TheoriesValeria de Paiva
 
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...Association for Computational Linguistics
 
Dialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek CalculusDialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek CalculusValeria de Paiva
 
Categorical Explicit Substitutions
Categorical Explicit SubstitutionsCategorical Explicit Substitutions
Categorical Explicit SubstitutionsValeria de Paiva
 
Introduction to Machine Learning.
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.butest
 
2021 icse reducedsylabiix-computer applications
2021 icse reducedsylabiix-computer applications2021 icse reducedsylabiix-computer applications
2021 icse reducedsylabiix-computer applicationsVahabshaik Shai
 
Constructive Modal and Linear Logics
Constructive Modal and Linear LogicsConstructive Modal and Linear Logics
Constructive Modal and Linear LogicsValeria de Paiva
 
Dialectica Categories and Petri Nets
Dialectica Categories and Petri NetsDialectica Categories and Petri Nets
Dialectica Categories and Petri NetsValeria de Paiva
 
Dialectica Categories: the mathematical version
Dialectica Categories: the mathematical versionDialectica Categories: the mathematical version
Dialectica Categories: the mathematical versionValeria de Paiva
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its roleValeria de Paiva
 
Non Standard Logics & Modal Logics
Non Standard Logics & Modal LogicsNon Standard Logics & Modal Logics
Non Standard Logics & Modal LogicsSerge Garlatti
 
Du Calcul des prédicats vers Prolog
Du Calcul des prédicats vers PrologDu Calcul des prédicats vers Prolog
Du Calcul des prédicats vers PrologSerge Garlatti
 
Interpretability of machine learning
Interpretability of machine learningInterpretability of machine learning
Interpretability of machine learningDaiki Tanaka
 

Tendances (20)

Dialectica amongst friends
Dialectica amongst friendsDialectica amongst friends
Dialectica amongst friends
 
Constructive Modalities
Constructive ModalitiesConstructive Modalities
Constructive Modalities
 
MLlecture1.ppt
MLlecture1.pptMLlecture1.ppt
MLlecture1.ppt
 
Logics of Context and Modal Type Theories
Logics of Context and Modal Type TheoriesLogics of Context and Modal Type Theories
Logics of Context and Modal Type Theories
 
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
Chris Dyer - 2017 - Neural MT Workshop Invited Talk: The Neural Noisy Channel...
 
Dialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek CalculusDialectica Categories for the Lambek Calculus
Dialectica Categories for the Lambek Calculus
 
Categorical Explicit Substitutions
Categorical Explicit SubstitutionsCategorical Explicit Substitutions
Categorical Explicit Substitutions
 
Dialectica Comonads
Dialectica ComonadsDialectica Comonads
Dialectica Comonads
 
Introduction to Machine Learning.
Introduction to Machine Learning.Introduction to Machine Learning.
Introduction to Machine Learning.
 
2021 icse reducedsylabiix-computer applications
2021 icse reducedsylabiix-computer applications2021 icse reducedsylabiix-computer applications
2021 icse reducedsylabiix-computer applications
 
Constructive Modal and Linear Logics
Constructive Modal and Linear LogicsConstructive Modal and Linear Logics
Constructive Modal and Linear Logics
 
Dialectica Categories and Petri Nets
Dialectica Categories and Petri NetsDialectica Categories and Petri Nets
Dialectica Categories and Petri Nets
 
Dialectica Categories: the mathematical version
Dialectica Categories: the mathematical versionDialectica Categories: the mathematical version
Dialectica Categories: the mathematical version
 
Going Without: a modality and its role
Going Without: a modality and its roleGoing Without: a modality and its role
Going Without: a modality and its role
 
Non Standard Logics & Modal Logics
Non Standard Logics & Modal LogicsNon Standard Logics & Modal Logics
Non Standard Logics & Modal Logics
 
Du Calcul des prédicats vers Prolog
Du Calcul des prédicats vers PrologDu Calcul des prédicats vers Prolog
Du Calcul des prédicats vers Prolog
 
Predicate Calculus
Predicate CalculusPredicate Calculus
Predicate Calculus
 
Modal Logic
Modal LogicModal Logic
Modal Logic
 
Constructive Modalities
Constructive ModalitiesConstructive Modalities
Constructive Modalities
 
Interpretability of machine learning
Interpretability of machine learningInterpretability of machine learning
Interpretability of machine learning
 

En vedette

Natural Language Processing and Machine Learning for Discovery
Natural Language Processing and Machine Learning for DiscoveryNatural Language Processing and Machine Learning for Discovery
Natural Language Processing and Machine Learning for Discoverymjbommar
 
NLTK - Natural Language Processing in Python
NLTK - Natural Language Processing in PythonNLTK - Natural Language Processing in Python
NLTK - Natural Language Processing in Pythonshanbady
 
Python Performance 101
Python Performance 101Python Performance 101
Python Performance 101Ankur Gupta
 
Game Design Patterns Workshop - FDG2012 - Opening Remarks
Game Design Patterns Workshop - FDG2012 - Opening RemarksGame Design Patterns Workshop - FDG2012 - Opening Remarks
Game Design Patterns Workshop - FDG2012 - Opening RemarksJose Zagal
 
Inside the ANN: A visual and intuitive journey to understand how artificial n...
Inside the ANN: A visual and intuitive journey to understand how artificial n...Inside the ANN: A visual and intuitive journey to understand how artificial n...
Inside the ANN: A visual and intuitive journey to understand how artificial n...XavierArrufat
 
Natural Language Processing for Games Research
Natural Language Processing for Games ResearchNatural Language Processing for Games Research
Natural Language Processing for Games ResearchJose Zagal
 
Introduction to natural language processing
Introduction to natural language processingIntroduction to natural language processing
Introduction to natural language processingMinh Pham
 
Natural language processing
Natural language processingNatural language processing
Natural language processingYogendra Tamang
 
Practical Natural Language Processing
Practical Natural Language ProcessingPractical Natural Language Processing
Practical Natural Language ProcessingJaganadh Gopinadhan
 
Introduction to Natural Language Processing
Introduction to Natural Language ProcessingIntroduction to Natural Language Processing
Introduction to Natural Language ProcessingPranav Gupta
 
Slideshare Powerpoint presentation
Slideshare Powerpoint presentationSlideshare Powerpoint presentation
Slideshare Powerpoint presentationelliehood
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011photomatt
 

En vedette (14)

Natural Language Processing and Machine Learning for Discovery
Natural Language Processing and Machine Learning for DiscoveryNatural Language Processing and Machine Learning for Discovery
Natural Language Processing and Machine Learning for Discovery
 
NLTK - Natural Language Processing in Python
NLTK - Natural Language Processing in PythonNLTK - Natural Language Processing in Python
NLTK - Natural Language Processing in Python
 
Python Performance 101
Python Performance 101Python Performance 101
Python Performance 101
 
Game Design Patterns Workshop - FDG2012 - Opening Remarks
Game Design Patterns Workshop - FDG2012 - Opening RemarksGame Design Patterns Workshop - FDG2012 - Opening Remarks
Game Design Patterns Workshop - FDG2012 - Opening Remarks
 
Inside the ANN: A visual and intuitive journey to understand how artificial n...
Inside the ANN: A visual and intuitive journey to understand how artificial n...Inside the ANN: A visual and intuitive journey to understand how artificial n...
Inside the ANN: A visual and intuitive journey to understand how artificial n...
 
Natural Language Processing for Games Research
Natural Language Processing for Games ResearchNatural Language Processing for Games Research
Natural Language Processing for Games Research
 
Introduction to natural language processing
Introduction to natural language processingIntroduction to natural language processing
Introduction to natural language processing
 
Natural language processing
Natural language processingNatural language processing
Natural language processing
 
Practical Natural Language Processing
Practical Natural Language ProcessingPractical Natural Language Processing
Practical Natural Language Processing
 
NLP
NLPNLP
NLP
 
Introduction to Natural Language Processing
Introduction to Natural Language ProcessingIntroduction to Natural Language Processing
Introduction to Natural Language Processing
 
Natural Language Processing
Natural Language ProcessingNatural Language Processing
Natural Language Processing
 
Slideshare Powerpoint presentation
Slideshare Powerpoint presentationSlideshare Powerpoint presentation
Slideshare Powerpoint presentation
 
State of the Word 2011
State of the Word 2011State of the Word 2011
State of the Word 2011
 

Similaire à Machine Learning for NLP

ppt slides
ppt slidesppt slides
ppt slidesbutest
 
Simulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter DaelemansSimulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter Daelemansbutest
 
lecture_mooney.ppt
lecture_mooney.pptlecture_mooney.ppt
lecture_mooney.pptbutest
 
课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)butest
 
[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程台灣資料科學年會
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
 
MLlecture1.ppt
MLlecture1.pptMLlecture1.ppt
MLlecture1.pptbutest
 
Lecture 01: Machine Learning for Language Technology - Introduction
 Lecture 01: Machine Learning for Language Technology - Introduction Lecture 01: Machine Learning for Language Technology - Introduction
Lecture 01: Machine Learning for Language Technology - IntroductionMarina Santini
 
Machine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.pptMachine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.pptbutest
 
Machine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.pptMachine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.pptAnshika865276
 
Supervised Corpus-based Methods for Word Sense Disambiguation
Supervised Corpus-based Methods for Word Sense DisambiguationSupervised Corpus-based Methods for Word Sense Disambiguation
Supervised Corpus-based Methods for Word Sense Disambiguationbutest
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401butest
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401butest
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401butest
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine LearningAI Summary
 

Similaire à Machine Learning for NLP (20)

ppt slides
ppt slidesppt slides
ppt slides
 
ppt
pptppt
ppt
 
Simulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter DaelemansSimulation of Language Acquisition Walter Daelemans
Simulation of Language Acquisition Walter Daelemans
 
lecture_mooney.ppt
lecture_mooney.pptlecture_mooney.ppt
lecture_mooney.ppt
 
课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)课堂讲义(最后更新:2009-9-25)
课堂讲义(最后更新:2009-9-25)
 
[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程[系列活動] Machine Learning 機器學習課程
[系列活動] Machine Learning 機器學習課程
 
nnml.ppt
nnml.pptnnml.ppt
nnml.ppt
 
Eric Smidth
Eric SmidthEric Smidth
Eric Smidth
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 
MLlecture1.ppt
MLlecture1.pptMLlecture1.ppt
MLlecture1.ppt
 
Lecture 01: Machine Learning for Language Technology - Introduction
 Lecture 01: Machine Learning for Language Technology - Introduction Lecture 01: Machine Learning for Language Technology - Introduction
Lecture 01: Machine Learning for Language Technology - Introduction
 
Machine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.pptMachine Learning Applications in NLP.ppt
Machine Learning Applications in NLP.ppt
 
Machine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.pptMachine Learning and Artificial Neural Networks.ppt
Machine Learning and Artificial Neural Networks.ppt
 
Supervised Corpus-based Methods for Word Sense Disambiguation
Supervised Corpus-based Methods for Word Sense DisambiguationSupervised Corpus-based Methods for Word Sense Disambiguation
Supervised Corpus-based Methods for Word Sense Disambiguation
 
LR2. Summary Day 2
LR2. Summary Day 2LR2. Summary Day 2
LR2. Summary Day 2
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401
 
Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 

Plus de butest

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEbutest
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jacksonbutest
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...butest
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALbutest
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer IIbutest
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazzbutest
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.docbutest
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1butest
 
Facebook
Facebook Facebook
Facebook butest
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...butest
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...butest
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTbutest
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docbutest
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docbutest
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.docbutest
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!butest
 

Plus de butest (20)

EL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBEEL MODELO DE NEGOCIO DE YOUTUBE
EL MODELO DE NEGOCIO DE YOUTUBE
 
1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同1. MPEG I.B.P frame之不同
1. MPEG I.B.P frame之不同
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Timeline: The Life of Michael Jackson
Timeline: The Life of Michael JacksonTimeline: The Life of Michael Jackson
Timeline: The Life of Michael Jackson
 
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
Popular Reading Last Updated April 1, 2010 Adams, Lorraine The ...
 
LESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIALLESSONS FROM THE MICHAEL JACKSON TRIAL
LESSONS FROM THE MICHAEL JACKSON TRIAL
 
Com 380, Summer II
Com 380, Summer IICom 380, Summer II
Com 380, Summer II
 
PPT
PPTPPT
PPT
 
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet JazzThe MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
The MYnstrel Free Press Volume 2: Economic Struggles, Meet Jazz
 
MICHAEL JACKSON.doc
MICHAEL JACKSON.docMICHAEL JACKSON.doc
MICHAEL JACKSON.doc
 
Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1Social Networks: Twitter Facebook SL - Slide 1
Social Networks: Twitter Facebook SL - Slide 1
 
Facebook
Facebook Facebook
Facebook
 
Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...Executive Summary Hare Chevrolet is a General Motors dealership ...
Executive Summary Hare Chevrolet is a General Motors dealership ...
 
Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...Welcome to the Dougherty County Public Library's Facebook and ...
Welcome to the Dougherty County Public Library's Facebook and ...
 
NEWS ANNOUNCEMENT
NEWS ANNOUNCEMENTNEWS ANNOUNCEMENT
NEWS ANNOUNCEMENT
 
C-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.docC-2100 Ultra Zoom.doc
C-2100 Ultra Zoom.doc
 
MAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.docMAC Printing on ITS Printers.doc.doc
MAC Printing on ITS Printers.doc.doc
 
Mac OS X Guide.doc
Mac OS X Guide.docMac OS X Guide.doc
Mac OS X Guide.doc
 
hier
hierhier
hier
 
WEB DESIGN!
WEB DESIGN!WEB DESIGN!
WEB DESIGN!
 

Machine Learning for NLP

  • 1. Seminar: Statistical NLP Girona, June 2003 Machine Learning for Natural Language Processing Lluís Màrquez TALP Research Center Llenguatges i Sistemes Informàtics Universitat Politècnica de Catalunya
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19. An Example otherwise  negative Classification (COLOR= red )  (SHAPE= circle )  positive Rules red blue SHAPE negative positive circle triangle negative COLOR Decision Tree
  • 20. An Example Classification Rules (SIZE= small )   (SHAPE= circle )  positive otherwise  negative (SIZE= big )   (COLOR= red )  positive small big SHAPE pos circle red SIZE Decision Tree COLOR triang blue neg pos neg
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34. An Example Algorithms A1 A2 A3 C1 A5 A2 A2 A5 C3 C2 C1 ... ... ... ... v 1 v 2 v 3 v 5 v 4 v 6 v 7 small big SHAPE pos circle red SIZE Decision Tree COLOR triang blue neg pos neg
  • 35. Learning Decision Trees Algorithms Training Training Set TDIDT + DT = Test = DT Example + Class
  • 36. General Induction Algorithm Algorithms function TDIDT (X:set-of-examples; A:set-of-features) var : tree 1 ,tree 2 : decision-tree; X’: set-of-examples; A’: set-of-features end-var if ( stopping_criterion (X)) then tree 1 := create_leaf_tree (X) else a max := feature_selection (X,A); tree 1 := create_tree (X, a max ); for-all val in values (a max ) do X’ := select_examples (X,a max ,val); A’ := A - {a max }; tree 2 := TDIDT (X’,A’); tree 1 := add_branch (tree 1 ,tree 2 ,val) end-for end-if return (tree 1 ) end-function
  • 37. General Induction Algorithm Algorithms function TDIDT (X:set-of-examples; A:set-of-features) var : tree 1 ,tree 2 : decision-tree; X’: set-of-examples; A’: set-of-features end-var if ( stopping_criterion (X)) then tree 1 := create_leaf_tree (X) else a max := feature_selection (X,A); tree 1 := create_tree (X, a max ); for-all val in values (a max ) do X’ := select_examples (X,a max ,val); A’ := A - {a max }; tree 2 := TDIDT (X’,A’); tree 1 := add_branch (tree 1 ,tree 2 ,val) end-for end-if return (tree 1 ) end-function
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45. AdaBoost: general scheme TRAINING Algorithms TS 2 D 2 TS 1 D 1 Weak Learner h 1 Weak Learner h 2 TS T . . . Probability distribution updating D T Weak Learner h T . . . Linear combination F( h 1 ,h 2 ,...,h T ) TEST  2    
  • 46. AdaBoost: algorithm Algorithms (Freund & Schapire 97)
  • 47. AdaBoost: example Weak hypotheses = vertical/horizontal hyperplanes Algorithms
  • 48. AdaBoost: round 1 Algorithms
  • 49. AdaBoost: round 2 Algorithms
  • 50. AdaBoost: round 3 Algorithms
  • 51. Combined Hypothesis Algorithms www.research.att.com/ ~ yoav/adaboost
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58. Optimal Hyperplane: Geometric Intuition Algorithms
  • 59. Optimal Hyperplane: Geometric Intuition    Maximal Margin Hyperplane Algorithms These are the Support Vectors
  • 60. Linearly separable data Quadratic Programming Algorithms Seminari SVM s 22/05/2001
  • 61. Non-separable case (soft margin) Algorithms Seminari SVM s 22/05/2001
  • 62.
  • 63.
  • 64. Non linear SVMs Degree 3 polynomial kernel lin. separable lin. non-separable Algorithms Seminari SVM s 22/05/2001
  • 65.
  • 66. Toy Examples (I) Linearly separable data set Linear SVM Maximal margin Hyperplane Algorithms . What happens if we add a blue training example here?
  • 67. Toy Examples (I) (still) Linearly separable data set Linear SVM High value of C parameter Maximal margin Hyperplane The example is correctly classified Algorithms
  • 68. Toy Examples (I) (still) Linearly separable data set Linear SVM Low value of C parameter Trade-off between: margin and training error The example is now a bounded SV Algorithms
  • 69. Toy Examples (II) Algorithms
  • 70. Toy Examples (II) Algorithms
  • 71. Toy Examples (II) Algorithms
  • 72. Toy Examples (III) Algorithms
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79. POS tagging Applications “ preposition-adverb” tree root P(IN)=0.81 P(RB)=0.19 Word Form leaf P(IN)=0.83 P(RB)=0.17 tag(+1) P(IN)=0.13 P(RB)=0.87 tag(+2) P(IN)=0.013 P(RB)=0.987 “ As”,“as” RB IN others others ... ... ^ Probabilistic interpretation: P( RB | word=“A/as”  tag(+1)=RB  tag(+2)=IN) = 0.987 P( IN | word=“A/as”  tag(+1)=RB  tag(+2)=IN) = 0.013 ^
  • 80. POS tagging “ as _ RB much_ RB as_ IN ” Collocations: “ as _ RB well_ RB as_ IN ” “ as _ RB soon_ RB as_ IN ” Applications “ preposition-adverb” tree root P(IN)=0.81 P(RB)=0.19 Word Form leaf P(IN)=0.83 P(RB)=0.17 tag(+1) P(IN)=0.13 P(RB)=0.87 tag(+2) P(IN)=0.013 P(RB)=0.987 “ As”,“as” RB IN others others ... ...
  • 81. POS tagging Raw text Morphological analysis Tagged text Classify Update Filter Language Model Disambiguation stop? RTT (Màrquez & Rodríguez 97) yes no Applications A Sequential Model for Multi-class Classification: NLP/POS Tagging (Even-Zohar & Roth, 01)
  • 82. POS tagging STT (Màrquez & Rodríguez 97) Applications Tagged text Raw text Morphological analysis Viterbi algorithm Language Model Disambiguation Lexical probs. + Contextual probs. The Use of Classifiers in sequential inference: Chunking (Punyakanok & Roth, 00)
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89. Seminar: Statistical NLP Girona, June 2003 Machine Learning for Natural Language Processing Lluís Màrquez TALP Research Center Llenguatges i Sistemes Informàtics Universitat Politècnica de Catalunya

Notes de l'éditeur

  1. ReliefF-IG... Variant de la funció ReliefF de Kononenko que determina la utilitat dels diferents atributs considerant les interrelacions entre ells.
  2. Last point : many functions for attribute selection, stopping criteria, pruning method, etc.
  3. Last point : many functions for attribute selection, stopping criteria, pruning method, etc.
  4. Maximitzar el marge funcional és equivalent a normalitzar-lo igualant-lo a 1(canonical hyperplanes) i minimitzar la norma del vector de pesos
  5. Maximitzar el marge funcional és equivalent a normalitzar-lo igualant-lo a 1(canonical hyperplanes) i minimitzar la norma del vector de pesos